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INTERNAL EXPONENTIAL STABILIZATION TO A
NON-STATIONARY SOLUTION FOR 3D NAVIER–STOKES

EQUATIONS

VIOREL BARBU∗, SÉRGIO S. RODRIGUES† , AND ARMEN SHIRIKYAN‡

Abstract. We consider the Navier–Stokes system in a bounded domain with a smooth boundary.
Given a sufficiently regular time-dependent global solution, we construct a finite-dimensional feedback
control that is supported by a given open set and stabilizes the linearized equation. The proof of
this fact is based on a truncated observability inequality, the regularizing property for the linearized
equation, and some standard techniques of the optimal control theory. We then show that the control
constructed for the linear problem stabilizes locally also the full Navier–Stokes system.
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1. Introduction. Let Ω ⊂ R
3 be a connected bounded domain located locally

on one side of its smooth boundary Γ = ∂Ω. We consider the controlled Navier–Stokes
system in Ω:

∂tu+ 〈u · ∇〉u − ν∆u+∇p = h+ ζ, ∇ · u = 0, (1.1)

u
∣

∣

Γ
= 0. (1.2)

Here u = (u1, u2, u3) and p are unknown velocity field and pressure of the fluid, ν > 0
is the viscosity, 〈u · ∇〉 stands for the differential operator u1∂1 + u2∂2 + u3∂3, h is
a fixed function, and ζ is a control taking values in the space E of square-integrable
functions in Ω whose support in x is contained in a given open subset ω ⊂ Ω. The
problem of exact controllability for (1.1), (1.2) was in the focus of attention of many
researchers starting from the early nineties, and it is now rather well understood.
Namely, it was proved that, given a time T > 0 and a smooth solution û of (1.1),
(1.2) with ζ ≡ 0, for any initial function u0 sufficiently close to û(0) one can find a
control ζ : [0, T ] → E such that the solution of problem (1.1), (1.2) supplemented with
the initial condition

u(0, x) = u0(x) (1.3)

is defined on [0, T ] and satisfies the relation u(T ) = û(T ). We refer the reader to [6,
11, 12, 13, 14, 7] for the exact statements and the proofs of these results.

Even though the property of exact controllability is quite satisfactory from the
mathematical point of view, many problems arising in applications require that the
control in question be feedback, because closed-loop controls are usually more stable
under perturbations (e.g., see the introduction to Part 3 in [5]). This question has
found a positive answer in the context of stabilization theory. It was intensively
studied for the case in which the target solution û is stationary (in particular, the
external force is independent of time). A typical result in such a situation claims that,
given a smooth stationary state û of the Navier–Stokes system and a constant λ > 0,
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one can construct a continuous linear operator Kû : L2 → E with finite-dimensional
range such that the solution of problem (1.1) – (1.3) with ζ = Kû(u − û) and a
function u0 sufficiently close to û is defined for all t ≥ 0 and converges to û at least
with the rate e−λt. We refer the reader to the papers [9, 10, 17, 18, 19, 1] for boundary
stabilization and to [2, 4, 3] for stabilization by a distributed control.

The aim of this paper is to establish a similar result in the case when the target
solution û depends on time. Namely, we will prove the following theorem, whose exact
formulation is given in Section 4.

Main Theorem. Let (û, p̂) be a global smooth solution for problem (1.1), (1.2)
with ζ ≡ 0 such that

ess sup
(t,x)∈Q

∣

∣∂
j
t ∂

α
x û(t, x)

∣

∣ ≤ R for j = 0, 1, |α| ≤ 1,

where Q = R+ × Ω and R > 0 is a constant. Then for any λ > 0 and any open

subset ω ⊂ Ω there is an integer M = M(R, λ, ω) ≥ 1, an M -dimensional space

E ⊂ C∞
0 (ω,R3), and a family of continuous linear operators Kû(t) : L

2(Ω,R3) → E,
t ≥ 0, such that the following assertions hold.

(a) The function t 7→ Kû(t) is continuous in the weak operator topology, and its

operator norm is bounded by a constant depending only on R, λ, and ω.

(b) For any divergence free function u0 ∈ H1
0 (Ω,R

3) that is sufficiently close

to û(0) in the H1-norm problem (1.1) – (1.3) with ζ = Kû(t)(u− û(t)) has a

unique global strong solution (u, p), which satisfies the inequality

|u(t)− û(t)|H1 ≤ Ce−λt|u0 − û(0)|H1 , t ≥ 0.

Note that this theorem remains true for the two-dimensional Navier–Stokes sys-
tem, and in this case, it suffices to assume that the initial function u0 is close to û(0) in
the L2-norm. Furthermore, the approach developed in this paper applies equally well
to the case when the control acts via the boundary. This situation will be addressed
in a subsequent publication.

As was mentioned above, the problem of feedback stabilization is rather well un-
derstood for stationary reference solutions. Let us explain informally the additional
difficulties arising in the non-stationary case and reveal a common mechanism of stabi-
lization. A well-known argument based on the contraction mapping principle enables
one to prove that a control stabilizing the linearized problem locally stabilizes also
the nonlinear equation. Thus, it suffices to study the linearized problem. The main
idea in the stationary case is to split it into a system of two autonomous equations,
the first of which is finite-dimensional and has the zero solution as a possibly unstable
equilibrium point, whereas the second is exponentially stable due to the large negative
eigenvalues of the Laplacian. One then applies methods of finite-dimensional theory
(e.g., the pole assignment theorem [21, Section 2.5]) to find a stabilizing feedback
control for the first equation and proves that using the same control in the original
problem yields an exponentially decaying solution; see [2, 4, 17, 3, 18, 19, 1].

It is difficult to apply this approach in the case of time-dependent reference so-
lutions, because a non-autonomous equation does not necessarily admits invariant
subspaces. However, the above-mentioned scheme for stabilization is based essen-
tially on the so-called Foiaş–Prodi property for parabolic PDE’s [8]. It says, roughly
speaking, that if the projections of two solutions to the unstable modes converge to
each other as time goes to infinity, then the difference between these solutions goes
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to zero. It turns out that the conclusion remains true if the projections are close to
each other at times proportional to a fixed constant. The main idea of this paper is to
choose a control that ensures the equality at integer times for the projections of two
solutions to the unstable modes. More precisely, we consider the following problem
obtained by linearizing (1.1), (1.2) around a non-stationary solution û(t, x):

∂tv + 〈û · ∇〉v + 〈v · ∇〉û− ν∆v +∇p = ζ, ∇ · v = 0, v
∣

∣

Γ
= 0. (1.4)

Let us assume that, for a sufficiently large integerN , we have constructed a continuous
linear operator ζ̄ : L2(Ω,R3) → L2((0, 1); E) such that, for any initial function v0, the
solution of (1.4) with ζ = ζ̄(v0) issued from v0 satisfies the relation ΠNv(1) = 0,
where ΠN stands for the orthogonal projection in L2 onto the subspace spanned by
the first N eigenfunctions of the Stokes operator in Ω. In this case, using the Poincaré
inequality and regularizing property of the resolving operator for (1.4), we get

|v(1)|L2 = |(I −ΠN )v(1)|L2 ≤ C1α
−1/2
N |v(1)|H1

≤ C2 α
−1/2
N

(

|v0|L2 + |ζ̄(v0)|L2((0,1);E)

)

≤ C3 α
−1/2
N |v0|L2 , (1.5)

where {αj} denotes the increasing sequence of the eigenvalues for the Stokes operator
and Ci, i = 1, 2, 3, are some constants not depending on N . The fact that C3 is inde-
pendent of N is a crucial property, and its proof is based on a truncated observability
inequality (see Section 5.3 in Appendix). It follows from (1.5) that, if N is sufficiently
large, then |v(1)|L2 ≤ e−λ|v0|L2 . Iterating this procedure, we get an exponentially
decaying solution. Once an exponential stabilization of the linearized problem (1.4) is
obtained, the existence of an exponentially stabilizing feedback control can be proved
with the help of the dynamic programming principle. We refer the reader to Section 3
for an accurate presentation of the results on the linearized equation and some further
comments on the existence of Lyapunov function, derivation of a Riccati equation for
the feedback control operator, and the dimension of controllers.

The paper is organized as follows. In Section 2, we introduce the functional spaces
arising in the theory of the Navier–Stokes equations and recall some well-known facts.
Section 3 is devoted to studying the linearized problem. In Section 4, we establish the
main result of the paper on local exponential stabilization of the full Navier–Stokes
system. The Appendix gathers some auxiliary results used in the main text.

Notation. We write N and R for the sets of non-negative integers and real num-
bers, respectively, and we define N0 = N \ {0}, R+ = (0, +∞), and Rs = (s,+∞).
We denote by Ω ⊂ R

3 a bounded domain with a C2-smooth boundary Γ = ∂Ω, and
for τ ∈ R, we set Iτ = (τ, τ + 1), Qτ = Iτ × Ω, and Q = R+ × Ω. The partial time
derivative ∂tu of a function u(t, x) will be denoted by ut.

For a Banach space X , we denote by | · |X the corresponding norm, by X ′ its
dual, and by 〈·, ·〉X′,X the duality between X ′ and X .

If X and Y are Banach spaces and I ⊆ R is an open interval, then we write

W (I, X, Y ) := {f ∈ L2(I, X) | ft ∈ L2(I, Y )},

where the derivative ft = df
dt is taken in the sense of distributions. This space is

endowed with the natural norm

|f |W (I,X, Y ) :=
(

|f |2L2(I,X) + |ft|2L2(I, Y )

)1/2
.
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Note that if X = Y , then we obtain the Sobolev space W 1,2(I,X).

If I ⊂ R is a closed interval, then C(I,X) stands for the space of continuous
functions f : I → X with the norm

|f |C(I,X) = max
t∈I

|f(t)|X .

For a given space Z of functions f = f(t) defined on an interval of R and a
constant λ > 0, we define

Zλ := {f ∈ Z | e(λ/2)tf ∈ Z}.
This space is endowed with the norm

|f |Zλ
:=
(

|f |2Z + |e(λ/2)tf |2Z
)1/2

.

Throughout the paper, we deal with two integers, N and M . Roughly speaking,
N stands for the number of unstable modes in the linearized Navier–Stokes system
andM denotes the space dimension of the control function arising in various problems.

C [a1,...,ak] denotes a function of non-negative variables aj that increases in each
of its arguments.

Ci, i = 1, 2, . . . , stand for unessential positive constants.

2. Preliminaries.

2.1. Functional spaces and reduction to an evolution equation. In what
follows, we will confine ourselves to the 3D case, although all the results remain valid
for the 2D Navier–Stokes equations.

Let Ω ⊂ R
3 be a connected bounded domain located locally on one side of its C2-

smooth boundary Γ = ∂Ω. It is natural to study the incompressible Navier–Stokes
system as an evolution equation in the subspace H of divergence free vector fields
tangent to the boundary:

H := {u ∈ L2(Ω,R3) | ∇ · u = 0 in Ω, u · n = 0 on Γ}.
Here L2(Ω,R3) is the space of square integrable vector fields (u1, u2, u3) in Ω, ∇·u :=
∂1u1+∂2u2+∂3u3 is the divergence of u, and n is the normal vector to the boundary Γ.
Let us denote by Hs(Ω) the Sobolev space of order s and by Hs(Ω,R3) the space of
vector fields in Ω whose components belong to Hs(Ω). To simplify notation, we will
often write L2 and Hs; the context will imply the domain on which these spaces are
considered. Define

V := {u ∈ H1(Ω,R3) | ∇ · u = 0 in Ω, u = 0 on Γ}, U := H2(Ω,R3) ∩ V.

Note that U coincides with the natural domain D(L) of the Stokes operator L =
−νΠ∆, where Π is the orthogonal projection in L2(Ω,R3) onto H . The spaces H , V
and U are endowed with the scalar products

(u, v)H := (u, v)L2(Ω,R3), (u, v)V := 〈Lu, v〉V ′,V , (u, v)D(L) := (Lu, Lv)L2(Ω,R3),

respectively, and we denote by | · |H , | · |V and | · |D(L) the corresponding norms.

Finally, for any integer k ≥ 0, we introduce the space Banach Wk of measurable
vector functions u = (u1, u2, u3) defined in Q such that

|u|Wk :=
∑

j,α

ess sup
(t,x)∈Q

∣

∣∂
j
t ∂

α
x u(t, x)

∣

∣ < ∞, (2.1)
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where the sum is taken over 0 ≤ j ≤ k and |α| ≤ 1. In the case k = 1, we will write W
instead of W1.

It is well known (e.g., see [20]) that problem (1.1), (1.2) is equivalent to the
following evolutionary equation in H :

ut + Lu+Bu = Π(h+ ζ), (2.2)

where Bu : V → V ′ is defined by Bu := B(u, u) with

〈B(u, v), w〉V ′,V =
3
∑

i,j=1

∫

Ω

ui(∂iuj)wjdx.

In the following, we will deal also with linear equations obtained from (2.2) after
replacing B by one of the operators B(û) and B

∗(û), where û ∈ W is a fixed function,
B(û)v = B(v, û) + B(û, v), and B

∗(û) stands for the formal adjoint of B(û) with
respect to the scalar product on H :

〈B∗(û)v, w〉V ′,V =

3
∑

i,j=1

∫

Ω

(vj∂iûj − ûj∂jvi)widx.

Namely, let us consider the problem

rt + Lr + B̂r = f, t ∈ I0 = (0, 1), (2.3)

r(0) = r0, (2.4)

where B̂ = B(û) or B∗(û).

Lemma 2.1. For any û ∈ W, u0 ∈ H, and f ∈ L2(I0, V
′), problem (2.3), (2.4)

has a unique solution r ∈ W (I0, V, V
′), which satisfies the inequality

|r|2C(Ī0, H) +

∫

I0

|r|2V dt+

∫

I0

|rt|2V ′ dt ≤ C [|û|
W0 ]|r0|2H + |f |2L2(I0,V ′), (2.5)

where Ī stands for the closure of an interval I ⊂ R. Moreover, if f ∈ L2(I0, H), then
we have the inclusions

√
tv ∈ C(Ī0, V ),

√
tv ∈ L2(I0, U) and the estimate

|
√
tr|2C(Ī0, V ) +

∫

I0

(
√
t|r|U )2 dt ≤ C [|û|

W0 ](|r0|2H + |f |2L2(I0,H)). (2.6)

Finally, if r0 ∈ V and f ∈ L2(I0, H), then r ∈ W (I0, U,H) and

|r|2C(Ī0, V ) +

∫

I0

|r|2D(L) dt+

∫

I0

|rt|2H dt ≤ C [|û|
W0 ](|r0|2V + |f |2L2(I0,H)). (2.7)

The proof of this lemma is based on a well-known argument, and we will not
present it here. We refer the reader to the books [16, 20] for more general results
on existence, uniqueness, and a priori estimates for solutions linear and nonlinear
Navier–Stokes type problems.
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2.2. Setting of the problem. Let us fix a function h ∈ L2(R+, H) and suppose
that û ∈ L2(R+, V ) ∩W solves the Navier–Stokes system

ût + Lû+Bû = h, t > 0.

Given a function u0 ∈ H and a sub-domain ω ⊆ Ω, our goal is to find a finite-
dimensional subspace E ⊂ L2(ω,R3) and a control ζ ∈ L2

loc(R+, E) such that the
solution of the problem

ut + Lu+Bu = h+Πζ, u(0) = u0 (2.8)

is defined for all t > 0 and converges exponentially to û, i.e.,

|u(t)− û(t)|H ≤ C e−κt for t ≥ 0,

where C and κ are positive constants.

Let us write L2(Ω,R3) as a direct sum L2(Ω,R3) = H ⊕H⊥, where H⊥ denotes
the orthogonal complement of H in L2. For each positive integer N , we now define
N -dimensional spaces EN ⊂ L2 and FN ⊂ H as follows. Let {φi | i ∈ N0} be an
orthonormal basis in L2(Ω,R3) formed by the eigenfunctions of the Dirichlet Laplacian
and let 0 < β1 ≤ β2 ≤ . . . be the corresponding eigenvalues. Furthermore, let
{ei | i ∈ N0} be the orthonormal basis in H formed by the eigenfunctions of the
Stokes operator and let 0 < α1 ≤ α2 ≤ . . . be the corresponding eigenvalues. For
each N ∈ N0, we introduce the N -dimensional subspaces

EN := span{φi | i ≤ N} ⊂ L2(Ω,R3), FN := span{ei | i ≤ N} ⊂ H

and denote by PN : L2(Ω,R3) → EN and ΠN : L2(Ω,R3) → FN the corresponding
orthogonal projections. We will show that the required control space can be chosen
in the form EM = χEM , where χ ∈ C∞

0 (Ω) is a given function not identically equal
to zero, and the integer M is sufficiently large.

Let us note that, seeking a solution of (2.8) in the form u = û+ v, we obtain the
following equivalent problem for v:

vt + Lv +Bv + B(û)v = Πζ, v(0) = v0, (2.9)

where v0 = u0−u(0). It is clear that it suffices to consider the problem of exponential
stabilization to zero for solutions of (2.9). Thus, in what follows, we will study
problem (2.9).

3. Main result for linearized system. We fix a function û ∈ L2
loc(R+, V )∩W .

In what follows, it will be convenient to write the control ζ entering (2.9) in the form
ζ = χPMη, where η takes its values in L2(Ω,R3) and χ ∈ C∞

0 (Ω) is a nonzero function
not identically equal to zero. Thus, we study the problem

vt + Lv + B(û)v = Π(χPMη), (3.1)

v(0) = v0, (3.2)

where v0 ∈ H . We refer the reader to [16, 20] for precise definitions of the concept of
a solution for (3.1) (and all other Navier–Stokes type PDE’s).
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3.1. Existence of a stabilizing control. We begin with the following result,
which shows that one can choose a finite-dimensional control exponentially stabilizing
the zero solution for (3.1).

Theorem 3.1. For each v0 ∈ H and λ > 0, there is an integer M = C [|û|W ,λ] ≥ 1

and a control ηû,λ(v0) ∈ L2(R+, EM ) such that the solution v of system (3.1), (3.2)
satisfies the inequality

|v(t)|2H ≤ κ1|v0|2He−λt, t ≥ 0, (3.3)

where κ1 = C [|û|W ,λ] > 0 is a constant not depending on v0. Moreover, the mapping

v0 7→ ηû,λ(v0) is linear and satisfies the inequality

∣

∣e(λ̃/2)tηû,λ(v0)
∣

∣

L2(R+,EM)
≤ κ2|v0|H , (3.4)

for 0 ≤ λ̃ < λ, where κ2 = C [|û|W ,λ,(λ−λ̃)−1]. Finally, if v0 ∈ V , then

|v(t)|2V ≤ κ3|v0|2V e−λt, t ≥ 0, (3.5)

where κ3 = C [|û|W ,λ] > 0 does not depend on v0.

To prove this theorem, we will need two auxiliary lemmas. For each τ ≥ 0,
consider equation (3.1) on the time interval Iτ = (τ, τ + 1) and supplement it with
the initial condition

v(τ) = w0. (3.6)

Let us denote by Sû,τ (w0, η) the operator that takes the pair (w0, η) to the solution
of (3.1), (3.6). By Lemma 2.1, the operator Sû,τ is continuous from H to C(Īτ , H)∩
L2(Iτ , V ) and from V to C(Īτ , V ) ∩ L2(Iτ , U). We will write Sû,τ (w0, η)(t) for the
value of the solution at time t.

Lemma 3.2. For each N ∈ N there is an integer M1 = C [λ,|û|W ,N ] ≥ 1 such that,

for every w0 ∈ H, one can find a control η ∈ L2(Iτ , EM1
) for which

ΠNSû,τ (w0, η)(τ + 1) = 0.

Moreover, there is a constant Cχ depending only on |û|W (but not on N and τ) such

that

|η|2L2(Qτ )
≤ Cχ|w0|2H . (3.7)

Proof. Let us fix ǫ > 0 and consider the following minimization problem.
Problem 3.3. Given M,N ∈ N and w0 ∈ H, find the minimum of the quadratic

functional

Jǫ(v, η) := |η|2L2(Qτ ,R3) +
1

ǫ
|ΠNSû,τ (w0, η)(τ + 1)|2H

on the set of functions (v, η) ∈ W (Iτ , V, V
′)×L2(Qτ , R

3) that satisfy (3.1) and (3.6).

Theorem 5.2 implies that Problem 3.3 has a unique minimizer (v̄ǫ, η̄ǫ), which
linearly depends on w0 ∈ H . We now derive some estimates for the norm of the
optimal control η̄ǫ.
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To this end, the general theory of linear-quadratic optimal control problems is
applicable. We use here a version of the Karush–Kuhn–Tucker theorem (see Theo-
rem 5.1). Let us define the affine mapping

F : W (Īτ , V, V
′)× L2(Qτ ,R

3) → H × L2(Iτ , V
′),

(

v, η) 7→ (v(0)− w0, vt + Lv + B(û)v −Π(χPMη)
)

and note that its derivative is surjective. Hence, by the Karush–Kuhn–Tucker theo-
rem, there is a Lagrange multiplier (µǫ, qǫ) ∈ H × L2(Iτ , V ) such that 1

J ′
ǫ(v̄

ǫ, η̄ǫ)− (µǫ, qǫ) ◦ F ′(v̄ǫ, η̄ǫ) = 0.

It follows that, for all (z, ξ) ∈ W (Īτ , V, V
′)× L2(Qτ , R

3), we have

2

ǫ
(ΠN v̄ǫ(τ + 1), z(τ + 1))H + (z(τ), µǫ)H +

∫

Iτ

〈zt + Lz + B(û)z, qǫ〉V ′,V dt = 0,

(3.8)

2

∫

Iτ

(η̄ǫ, ξ)L2 dt+

∫

Iτ

〈−Π(χPMξ), qǫ〉V ′,V dt = 0. (3.9)

Relation (3.8) implies that qǫ is the solution of the problem

qǫt − Lqǫ − B
∗(û)qǫ = 0, t ∈ Iτ , (3.10)

qǫ(τ + 1) = −2ǫ−1ΠN v̄ǫ(τ + 1). (3.11)

Furthermore, it follows from (3.9) that

2η̄ǫ = PM (χqǫ). (3.12)

Combining (3.1), (3.10), and (3.12), we derive

d

dt
(qǫ, v̄ǫ)H = (qǫt , v̄

ǫ)H + (qǫ, v̄ǫt )H

= (Lqǫ + B
∗(û)qǫ, v̄ǫ)H + (qǫ, −Lv̄ǫ − B(û)v̄ǫ +Π(χPM η̄ǫ))H

= (qǫ, Π(χPM η̄ǫ))H =
1

2
|PM (χqǫ)|2L2 .

Integrating in time over the interval Iτ , we obtain

∫

Iτ

∣

∣PM (χqǫ(t))
∣

∣

2

L2 dt = 2
(

(qǫ(τ + 1), v̄ǫ(τ + 1))H − (qǫ(τ), v̄ǫ(τ))H
)

.

Recalling now (3.11), we see that 2(qǫ(τ + 1), v̄ǫ(τ + 1))H = −ǫ|qǫ(τ + 1)|2H and
therefore

∫

Iτ

|PM (χqǫ)|2L2 dt+ ǫ|qǫ(τ + 1)|2H = −2(qǫ(τ), v̄ǫ(τ))H . (3.13)

1The space H × L2(Iτ , V ) is regarded as the dual of H × L2(Iτ , V ′), and the sign ◦ stands for
the composition of two linear operators.
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We wish to use the truncated observability inequality (5.9) to estimate the right-hand
side of (3.13). To this end, we take M = M1, where M1 is the integer constructed in
Proposition 5.3. Then, for every α > 0, we can write

∫

Iτ

|PM (χqǫ)|2L2 dt+ ǫ|qǫ(τ + 1)|2H ≤ α|qǫ(τ)|2H + α−1|v̄ǫ(τ)|2H

≤ αDχ

∫

Iτ

|PMχqǫ|2L2 dt+ α−1|v̄ǫ(τ)|2H .

Setting α = (2Dχ)
−1, we obtain

∫

Iτ

|PM (χqǫ)|2L2 dt+ 2ǫ|qǫ(τ + 1)|2H ≤ 4Dχ|w0|2H . (3.14)

In particular, the family of functions {PM (χqǫ) | ǫ > 0} is bounded in L2(Qτ ,R
3), and

the family of solutions {v̄ǫ | ǫ > 0} for problem (3.1), (3.6) is bounded in L2(Iτ , V ).
It follows that the family {v̄ǫt | ǫ > 0} is bounded in L2(Iτ , V

′). Thus, we can find a
sequence ǫn → 0+ such that

ηǫn =
1

2
PM (χqǫn) ⇀ η0 in L2(Iτ , EM ),

v̄ǫn ⇀ v0 in L2(Iτ , V ),

v̄ǫnt ⇀ v0t in L2(Iτ , V
′),

where η0 ∈ L2(Iτ , EM ) and v0 ∈ W (Iτ , V, V
′) are some functions. A standard limiting

argument shows that v0 is a solution of problem (3.1), (3.6) with η = η0. Furthermore,
it follows from (3.14) and (3.11) that

|ΠN v̄ǫ(τ + 1)|2H =
ǫ2

4
|qǫ(τ + 1)|2H ≤ ǫDχ

2
|w0|2H → 0 as ǫ → 0.

This convergence implies that ΠNv0(τ + 1) = 0. Furthermore, it follows from (3.14)
that the function η0 satisfies inequality (3.7) with Cχ = 4Dχ. The proof of the lemma
is complete.

In view of Lemma 3.2, it makes sense to consider the following minimization
problem.

Problem 3.4. Given integers M,N ≥ 1 and a function w0 ∈ H, find the

minimum of the quadratic functional

J(η) := |η|2L2(Qτ ,R3)

on the set of functions (v, η) ∈ W (Iτ , V, V
′)×L2(Iτ , EM ) satisfying equations (3.1),

(3.6) and the condition ΠNv(τ + 1) = 0.
The following result shows that the control η constructed in Lemma 3.2 can be

chosen to be a linear function of the initial state.
Lemma 3.5. Let N ≥ 1 be an arbitrary integer and let M be the integer con-

structed in Lemma 3.2. Then for any w0 ∈ H Problem 3.4 has a unique minimizer

(v̄û,τ , η̄û,τ ) ∈ W (Iτ , V, V
′)× L2(Iτ , EM ). Moreover, the mapping w0 7→ (v̄û,τ , η̄û,τ )

is linear and continuous in the corresponding spaces, and there is a constant Cχ de-

pending only on |û|W (but not on N and τ) such that

|η̄û,τ |2L2(Iτ , EM ) ≤ Cχ|w0|2H . (3.15)
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Proof. Let us fix N ∈ N, set

WN (Iτ , V, V
′) := {v ∈ W (Iτ , V, V

′) | ΠNv(τ + 1) = 0},

and define X as the space of functions (v, η) ∈ WN (Iτ , V, V
′)×L2(Iτ , EM ) that satisfy

equation (3.1). In view of Lemma 3.2 and the linearity of (3.1), X is a nontrivial
Banach space, and the operator A : X → H taking (v, η) to v(0) is surjective. Thus,
by Theorem 5.2, Problem 3.4 has a unique minimizer (v̄û,τ , η̄û,τ ), which linearly
depends on w0. Inequality (3.15) follows immediately from (3.7), because the norm
of η̄û,τ (w0) in the space L2(Iτ , EM ) is necessarily smaller than the norm of the control
function η constructed in Lemma 3.2.

Proof of Theorem 3.1. Let us fix a sufficiently large N ≥ 1 and denote by M1

the integer M constructed in Lemma 3.2. The main idea of the proof was outlined
in the introduction: we use the operator η̄û,τ constructed in Lemma 3.5 to define an
exponentially stabilizing control ηû,λ consecutively on the intervals In = (n, n + 1),
n ≥ 0. Namely, let us fix an initial function v0 ∈ H and set 2

ηû,λ(t) = η̄û,0(v0)(t) for t ∈ I0.

Assuming that ηû,λ is constructed on the interval (0, n) and denoting by v(t) the
corresponding solution on [0, n], we define

ηû,λ(t) = η̄û,n(v(n))(t) for t ∈ In.

By construction, ηû,λ is an EM1
-valued function square integrable on every bounded

interval. Moreover, the linearity of η̄û,τ implies that ηû,λ linearly depends on v0. We
claim that, if N ∈ N is sufficiently large, then the solution v of system (3.1), (3.2)
with η = ηû,λ satisfies inequalities (3.3) and (3.5).

Indeed, it follows from (2.6) that

|v(1)|2V = |Sû,0(v0, η̄
û,0(v0))(1)|2V ≤ C [|û|W ]

(

|v0|2H + |χ|2L∞(Ω)|η̄û,0(v0)|2L2(I0, EM)

)

,

where we set E = EM1
to simplify the notation. Since ΠNv(1) = 0, we obtain

αN |v(1)|2H ≤ |v(1)|2V ≤ C [|û|W ]

(

|v0|2 + |χ|2L∞(Ω)|η̄û,0(v0)|2L2(I0, EM )

)

.

Using the continuity of η̄û,0 (see Lemma 3.5) and setting C′
χ := Cχ|χ|2L∞(Ω), we derive

|v(1)|2H ≤ α−1
N |v(1)|2V ≤ α−1

N (C [|û|W ] + C′
χ)|v0|2.

Taking N so large that αN ≥ eλ(C [|û|W ] + C′
χ), we obtain

|v(1)|2H ≤ e−λ|v0|2H .

We may repeat the above argument on every the interval In and conclude that

|v(n+ 1)|2H ≤ e−λ|v(n)|2H .

2Recall that the operator η̄û,τ depends on N .
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By induction, we see that the solution v of problem (3.1), (3.2) with η = ηû,λ satisfies
the inequality

|v(n)|2H ≤ e−λn|v0|2H . (3.16)

On the other hand, in view of (2.6), we have

|v|2C(Īn, H) ≤ C [|û|W ]

(

|v(n)|2H + |χ|2L∞ |η̄û,n(v(n))|2L2(In, EM )

)

≤ (C [|û|W ] + C′
χ)|v(n)|2H .

Combining this with (2.5), we see that v satisfies inequality (3.3).

We now prove (3.4). It follows from (3.15) and (3.16) that, for any λ̃ < λ, we
have

|e(λ̃/2)tηû,λ|2L2(R+, EM ) =
∑

n∈N

|e(λ̃/2)tη̄û,n(v(n))|2L2(In, EM) ≤ C′
χ

∑

n∈N

eλ̃(n+1)|v(n)|2H

≤ C′
χe

λ̃
∑

n∈N

e(λ̃−λ)n|v0|2H ≤ κ2|v0|2H . (3.17)

It remains to prove inequality (3.5). In view of (2.6), we have

|
√
t− nv|2C(Īn, V ) ≤ C [|û|W ]

(

|v(n)|2H + 3|χ|2L∞(Ω)|η̄û,n(v(n))|2L2(In, EM )

)

≤
(

C [|û|W ] + 3C′
χ

)

|v(n)|2H .

Combining this with (3.16), we see that

|v(n+ 1)|2V ≤ C1|v(n)|2H ≤ C1e
−λn|v0|2H .

In view of (2.7), for n ≥ 1 we derive

|v|2C(Īn, V ) ≤ C [|û|W ]|v(n)|2V + 3|χ|2L∞(Ω)|η̄û,n(v(n))|2L2(In, EM ) ≤ C2e
−λ(n−1)|v0|2H ,

whence it follows that

|v(t)|2V ≤ C3e
−λt|v0|2H for t ≥ 1.

Using again inequality (2.7), we conclude that (3.5) holds. The proof of the theorem
is complete.

3.2. Feedback control. In this section, we show that the exponentially stabi-
lizing control constructed in Theorem 3.1 can be chosen in a feedback form. Namely,
let us fix a nonzero function χ ∈ C∞

0 (Ω) and denote by EM the vector space spanned
by the functions χφj , j = 1, . . . ,M . Note that, due to elliptic regularity, the eigen-
functions φj are infinitely smooth in Ω, whence it follows, in particular, that EM is
contained in C∞

0 (ω,R3) for any ω ⊃ suppχ. We will prove the following theorem.

Theorem 3.6. Given û ∈ W and λ > 0, let M = C [|û|W ,λ] ∈ N be the integer

constructed in Theorem 3.1. Then there are a family of continuous operators Kλ
û (t) :

H → EM and a constant κ = C [|û|W ,λ] such that the following properties hold.

(i) The function t 7→ Kλ
û (t) is continuous in the weak operator topology, and its

operator norm is bounded by κ.
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(ii) For any s ≥ 0 and v0 ∈ H, the solution of the problem

vt + Lv + B(û)v = ΠKλ
û (t)v, (3.18)

v(s) = v0 (3.19)

exists on the half-line Rs and satisfies the inequality

eλ(t−s)|v(t)|2H +

∫ t

s

eλ(τ−s)
(

|v(τ)|2V + |vt(τ)|2V ′

)

dτ ≤ κ|v0|2H , t ≥ s, (3.20)

Moreover, if v0 ∈ V , then

eλ(t−s)|v(t)|2V +

∫ t

s

eλ(τ−s)
(

|v(τ)|2D(L)+|vt(τ)|2H
)

dτ ≤ κ|v0|2V , t ≥ s. (3.21)

To prove this theorem, we will need two auxiliary lemmas. Let us consider the
following problem.

Problem 3.7. Given s ≥ 0, λ > 0, M ∈ N and w0 ∈ H, find the minimum of

the functional

Mλ
s (v, η) :=

∫

Rs

eλt(|v|2V + |η|2L2) dt

on the set of functions (v, η) ∈ Wλ(Rs, V, V
′)× L2

λ(Rs, L
2(Ω,R3)) that satisfy equa-

tion (3.1) and the initial condition

v(s) = w0. (3.22)

The following lemma establishes the existence of an optimal solution and gives a
formula for the optimal cost.

Lemma 3.8. For any û ∈ W and λ > 0 there is an integer M = C [|û|W ,λ] ≥ 1 such

that Problem 3.7 has a unique minimizer (v∗s , η
∗
s ). Moreover, there is a continuous

operator Q
s,λ
û : H → H such that

Mλ
s (v

∗
s , η

∗
s ) =

(

Q
s,λ
û w0, w0

)

, (3.23)

|Qs,λ
û |L(H) ≤ Ceλs, (3.24)

where L(H) stands for the space of continuous linear operators in H with the natural

norm and C = C [|û|W ,λ] > 0 is a constant. Finally, Q
s,λ
û continuously depends on s

in the weak operator topology.

Proof. Let X be the space of functions (v, η) ∈ Wλ(Rs, V, V
′)×L2

λ(Rs, L
2) that

satisfy (3.1) and endow it with the norm Mλ
s (v, η)

1/2. It is straightforward to see

that X is a Hilbert space. Using Theorem 3.1 with a constant λ̂ > λ and the initial
point moved to s, one can construct an integer M = C [|û|W ,λ̂] ≥ 1 such that, for any

w0 ∈ H and an appropriate control η ∈ L2
λ̂
(Rs, EM ), we have

|v(t)|2H ≤ κ1e
−λ̂(t−s)|w0|2H , |η(t)|2EM

≤ κ2e
−λ̂(t−s)|w0|2H ,

where v stands for the solution of (3.1), (3.22). Furthermore, by Lemma 2.1, we have
∫

Iτ

eλt|v|2V dt ≤ eλ(τ+1)

∫

Iτ

|v|2V dt ≤ C [|û|W ,λ] e
λτ |v(τ)|2H for any τ ≥ 0.
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Combining the above three inequalities, we conclude that

Mλ
s (v, η) =

∫

Rs

eλt(|v|2V + |η|2L2) dt ≤ C [λ̂,(λ̂−λ)−1,|û|W ] e
λs|w0|2H . (3.25)

It follows that X is nonempty, and the mapping A : X → H taking (v, η) to v(0)
is surjective. Thus, by Theorem 5.2, Problem 3.7 has a unique minimizer (v∗s , η

∗
s ) =

(v∗s (w0), η
∗
s (w0)), which linearly depends on w0.

We now prove (3.23) and (3.24). It follows from (3.25) that the mapping

(a, b) 7→
∫

Rs

eλt((v∗s (a), v
∗
s (b))V + (η∗s (a), η

∗
s (b))L2) dt

is a continuous bilinear form on H which is bounded by C2e
λs on the unit ball.

Therefore, the optimal cost can be written as (3.23), where Q
s,λ
û is a bounded self-

adjoint operator in H whose norm satisfies (3.24).

It remains to establish the continuity of Qs,λ
û in the weak operator topology. To

this end, it suffices to prove that

(Qs,λ
û w,w) → (Qs0,λ

û w,w) as s → s0 for any w ∈ H. (3.26)

We will prove this convergence for s0 > 0; in the case s0 = 0, the proof is simpler.
Let us fix τ ≤ s0 and denote by (v∗τ , η

∗
τ ) the optimal solution of Problem 3.7

with s = τ and w0 = w. Note that, for any bounded interval I ⊂ Rτ , the norms
of the functions v∗τ and η∗τ in the spaces W (I, V, V ′) and L2(I, L2), respectively, are
bounded uniformly in τ . It is straightforward to see that the restriction of (v∗τ , η

∗
τ ) to

the half-line Rs with s > τ is the optimal solution of Problem 3.7 with w0 = v∗τ (s);

cf. Lemma 3.10 below. Therefore, abbreviating Qs = Q
s,λ
û , we can write

(

Qsv∗τ (s), v
∗
τ (s)

)

=

∫ ∞

s

eλt
(

|v∗τ (t)|2V + |η∗τ (t)|2L2

)

dt.

Setting ∆s
τ (w) = |(Qsv∗τ (s), v

∗
τ (s))− (Qsw,w)|, for s ≥ τ we have

∣

∣(Qsw,w) − (Qs0w,w)
∣

∣ ≤ ∆s
τ (w) + ∆s0

τ (w) +

∣

∣

∣

∣

∫ s

s0

eλt
(

|v∗τ (t)|2V + |η∗τ (t)|2L2

)

dt

∣

∣

∣

∣

.

The third term on the right-hand side of this inequality goes to zero as s → s0.
Therefore convergence (3.26) will be established if we prove that ∆s

τ (w) → 0 as
τ, s → s0. To this end, note that the above-mentioned boundedness of v∗τ implies that

|v∗r (s)− w|L2 → 0 as τ, s → s0.

Combining this with the fact that the norm of Qs is bounded on finite intervals
(see (3.24)), we arrive at the required assertion.

We now consider another minimization problem closely related to Problem 3.7
with s = 0.

Problem 3.9. Given λ > 0 and v0 ∈ H, find the minimum of the functional

Nλ
s (v, η) :=

∫

(0, s)

eλt(|v|2V + |η|2L2) dt+ (Qs,λ
û v(s), v(s))
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on the set of functions (v, η) ∈ W ((0, s), V, V ′) × L2((0, s), L2(Ω,R3)) that sat-

isfy (3.1), (3.2), where M is the integer constructed in Lemma 3.8.

Theorem 5.2 implies that Problem 3.9 has a unique minimizer (v•s , η
•
s ), which

is a linear function of v0 ∈ H . The following lemma is the dynamic programming
principle for Problem 3.7 with s = 0.

Lemma 3.10. Under the hypotheses of Lemma 3.8, the restriction of (v∗0 , η
∗
0) to

the interval (0, s) coincides with (v•s , η
•
s ) and the restriction of (v∗0 , η

∗
0) to the half-

line Rs coincides with (v∗s , η
∗
s )(v

∗
0(s)).

Proof. We will confine ourselves to the proof of the first assertion, because the
second one is obvious. Let us define the function

(z∗0 , θ
∗
0)(t) :=

{

(v•s , η
•
s )(v0)(t) for t ∈ (0, s),

(v∗s , η
∗
s )(v

•
s (s))(t) for t ∈ Rs.

Then we have

Mλ
0 (z

∗
0 , θ

∗
0) = Nλ

s (v
•
s , η

•
s ).

On the other hand, the definition of (v•s , η
•
s ) implies that

Nλ
s (v

•
s , η

•
s ) ≤ Nλ

s

(

(v∗0 , η
∗
0)|(0,s)

)

≤ Mλ
0 (v

∗
0 , η

∗
0),

whence it follows that

Mλ
0 (z

∗
0 , θ

∗
0) ≤ Mλ

0 (v
∗
0 , η

∗
0).

The uniqueness of minimizer for Problem 3.7 with s = 0 implies that (z∗0 , θ
∗
0) =

(v∗0 , η
∗
0), and the required assertion follows.

Proof of Theorem 3.6. Step 1. It is straightforward to see that Problem 3.9
satisfies the hypotheses of the Karush–Kuhn–Tucker Theorem 5.1, in which

X = W ((0, s), V, V ′)× L2((0, s), L2(Ω,R3)), Y = H × L2((0, s), V ),

J = Nλ
s , and F : X → Y is the affine operator taking (v, η) to

(

v(0)− w0, vt + Lv +

B(û)v−Π(χPMη)
)

. Hence, there is a Lagrange multiplier (µs, qs) ∈ H×L2((0, s), V )
such that

(Nλ
s )

′(v•s , η
•
s )− (µs, qs) ◦ F ′(v•s , η

•
s ) = 0.

It follows that, for all z ∈ W ((0, s), V, V ′) and ξ ∈ L2((0, s), L2), we have

2

∫ s

0

eλt(v•s , z)V dt+ 2(Qs,λ
û v•s (s), z(s))H + (z(0), µs)H

+

∫ s

0

〈zt + Lz + B(û)z, qs〉V ′,V dt = 0, (3.27)

2

∫ s

0

eλt(η•s , ξ)L2 dt+

∫ s

0

〈−Π(χPMξ), qs〉V ′,V dt = 0. (3.28)

In particular, we conclude from (3.27) that

(qs)t − Lqs − B
∗(û)qs = 2eλtLv•s (t). (3.29)
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Since qs, v
•
s ∈ L2((0, s), V ), we see that ∂tqs ∈ L2((0, s), V ′), and therefore qs ∈

W ((0, s), V, V ′), whence it follows that qs ∈ C([0, s], H). Using again (3.27), we
derive

qs(s) = −2Qs,λ
û v•s (s). (3.30)

On the other hand, relation (3.28) implies that

η•s =
1

2
e−λtPM (χqs). (3.31)

In particular, η•s (t) is a continuous function of t with range in EM . Combining (3.31)
and (3.30), we derive

η•s (s) = −e−λsPMχQ
s,λ
û v•s (s).

Recalling Lemma 3.10 and using the fact that s is arbitrary, we conclude that η∗0 is a
continuous function of time with range in EM and that

η∗0(t) = −e−λtPM

(

χQ
t,λ
û v∗0(t)

)

for all t ≥ 0.

Thus, the optimal trajectory v∗0 for Problem 3.7 with s = 0 satisfies (3.18), where

Kλ
û (t) := −e−λtχPMχQ

t,λ
û .

It is clear that Kλ
û (t) is a linear continuous operator from H to EM . Moreover,

it continuously depends on t in the weak operator topology, because so does the
family Q

t,λ
û . Finally, it follows from (3.24) that the norm of Kλ

û (t) is bounded by
a constant depending only on λ and |û|W . We have thus constructed a feedback
control Kλ

û (t) possessing the properties mentioned in (i). Moreover, repeating the
above arguments for Problem 3.7 with an arbitrary s > 0, we conclude that its
optimal solution (v∗s , η

∗
s ) satisfies the relation η∗s (t) = −e−λtPM (χQt,λ

û v∗s (t)) for t ≥ s.
Hence, if v(t) is the solution of problem (3.18), (3.19), then

(

v(t),−e−λtPM (χQt,λ
û v(t))

)

=
(

v∗s (t), η
∗
s (t)

)

for t ≥ s.

Combining this with (3.24), we conclude that

(

Q
s,λ
û v0, v0

)

=

∫

Rs

(

eλt|v(t)|2V + e−λt
∣

∣PM (χQt,λ
û v(t))

∣

∣

2

L2

)

dt ≤ C eλs|v0|2H . (3.32)

Step 2. We now prove inequalities (3.20) and (3.21) for solutions of problem (3.18),
(3.19). Let us fix v0 ∈ H and denote by v the solution of (3.18), (3.19). It is
straightforward to see that the function z(t) = e(λ/2)tv(t) satisfies the equation

zt + Lz + B(û)z =
λ

2
z +Kλ

û (t)z. (3.33)

Taking the scalar product of (3.33) with 2z and using the uniform boundedness of
the family Kλ

û (t), we derive

d

dt
|z(t)|2H +2|z(t)|2V = λ|z(t)|2H +2(Kλ

û (t)z, z)− 2(B(û)z(t), z(t))H ≤ C [|û|W ,λ]|z(t)|2H
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Integrating this inequality over the interval (s, t) with t > s, recalling the definition
of z, and using Lemmas 3.8, 3.10 and inequality (3.32), we obtain

eλt|v(t)|2H + 2

∫

(s, t)

eλτ |v(τ)|2V dτ ≤ eλs|v0|2H + C1

∫

(s, t)

eλτ |v(τ)|2H dτ

≤ eλs|v0|2H + C1

∫

Rs

eλτ |v(τ)|2H dτ

≤ C2e
λs|v0|2H . (3.34)

Furthermore, it follows from (3.18) that

eλt|vt(t)|2V ′ ≤ C3e
λt|v(t)|2V .

Combining this with (3.34), we arrive at the inequality

eλt|v(t)|2H + 2

∫

(s, t)

eλτ
(

|v(τ)|2V + |vt(τ)|2V ′

)

dτ ≤ C4e
λs|v0|2H ,

which is equivalent to (3.20).

We now assume that v0 ∈ V . Taking the scalar product of (3.33) with 2Lz, and
using the Schwarz inequality and the uniform boundedness of the family Kλ

û (t), we
derive

d

dt
|z(t)|2V + 2|z(t)|2D(L) = λ(z, Lz)H + 2(Kλ

û (t)z, Lz)− 2(B(û)z(t), Lz(t))H

≤ |Lz|2H + C [|û|W ,λ]|z(t)|2V .

Integrating this inequality over the interval (s, t) and using (3.20), we obtain

eλt|v(t)|2V +

∫

(s, t)

eλτ |v(τ)|2D(L) dτ ≤ eλs|v0|2V + C5

∫

(s,t)

eλτ |v(τ)|2V dτ

≤ C6e
λs|v0|2V . (3.35)

Furthermore, relation (3.18) implies that

eλt|vt(t)|2H ≤ C6e
λt|v(t)|2D(L).

Combining this with (3.35), we arrive at (3.21).

We conclude this section with a few remarks.
Remarks 3.11. (a) Once a feedback control is constructed, it is easy to find a

time-dependent Lyapunov function for the problem in question. Indeed, let U(s, t) be
the operator taking v0 ∈ H to v(t), where v stands for the solution of (3.18), (3.19).
It is straightforward to check that the functional

Φ(t, w) =

∫ ∞

t

|U(t, τ)w|2L2(Ω,R3)dτ

decays along the trajectories of (3.18). It is difficult, however, to write down this
functional in a more explicit form.
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(b) The operator Q
t,λ
û defining the optimal cost satisfies the following Ricatti

equation:

Q̇− (QL(û) + L
∗(û)Q)− e−λsQ(ΠχPMχΠ)Q = −eλsL, (3.36)

where L(û) = L+ B(û). Since this equation does not play any role in this paper, we
confine ourselves to its formal derivation. Let v be the solution of (3.18), (3.19) with

v0 ∈ H and let η(t) = −e−λtPMχQtv(t), where we set Qt = Q
t,λ
û . By the dynamic

programming principle (cf. Lemma 3.10), the restriction of (v, η) to the half-line Rτ

is the optimal solution of Problem 3.7 with s = τ and w0 = v(τ). Therefore, we have
(cf. the equality in (3.32))

(

Qτv(τ), v(τ)
)

=

∫

Rτ

(

eλt|v(t)|2V + e−λt
∣

∣PM (χQtv(t))
∣

∣

2

L2

)

dt.

Differentiating this relation with respect to τ and carrying out some simple transfor-
mations, we obtain

((

Q̇τ − (Qτ
L(û) + L

∗(û)Qτ )− e−λτQτ (ΠχPMχΠ)Qτ + eλτL
)

v(τ), v(τ)
)

= 0.

Setting τ = s and recalling that v(s) = v0 is arbitrary, we conclude that Qs satis-
fies (3.36).

(c) In the case of a stationary reference solution û, it is possible to give a rather
sharp description of the dimension M for the feedback controller whose range depends
on û; e.g., see [4, 1, 19]. In our situation, the range of the controller depends only
on the norm of û, and its space dimension is determined by the integer M1 in the
truncated observability inequality (5.9) with a sufficiently large integer N . However,
the feedback operator depends on time, and its image may be infinite-dimensional in
time. It would be interesting to find out if it is possible to reduce the space dimension
of the controller in our situation using further information about û.

4. Stabilization of the nonlinear problem.

4.1. Main result. Let us consider the nonlinear problem

vt + Lv +Bv + B(û)v = Kλ
û (t)v, t ∈ R+; (4.1)

v(0) = v0, (4.2)

where the operator Kλ
û (t) is constructed in Theorem 3.6. Given a constant λ > 0, we

denote by Zλ the space of functions z ∈ C(R+, V ) ∩ L2
loc(R+, U) such that

|z|Zλ := sup
t≥0

(

eλt|z(t)|2V +

∫

(t, t+1)

eλτ |z(τ)|2D(L) dτ

)1/2

< ∞.

The following theorem is the main result of this paper.
Theorem 4.1. Given û ∈ W and λ > 0, let M = C [|û|W ,λ] be the integer

constructed in Theorem 3.6. Then there are positive constants ϑ and ǫ depending only

on |û|W and λ such that for |v0|V ≤ ǫ the solution v of system (4.1), (4.2) is well

defined for all t ≥ 0 and satisfies the inequality

|v(t)|2V ≤ ϑe−λt|v0|2V for t ≥ 0. (4.3)
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Proof. We will use the contraction mapping principle. We fix a constant ϑ > 0
and a function v0 ∈ V and introduce the following subset of Zλ:

Zλ
ϑ := {z ∈ Zλ | z(0) = v0, |z|2Zλ ≤ ϑ|v0|2V }.

We define a mapping Ξ : Zλ
ϑ → C(R+, V )∩L2

loc(R+, U) that takes a function a ∈ Zλ

to the solution of the problem

bt + Lb+ B(û)b = Kλ
ûb−Ba, t ∈ R+, (4.4)

b(0) = v0. (4.5)

Suppose we have shown the following proposition.
Proposition 4.2. Under the hypotheses of Theorem 4.1, there exists ϑ > 0 such

that the following property holds: for any γ ∈ (0, 1) one can find a constant ǫ = ǫγ > 0
such that for any v0 ∈ V with |v0|V ≤ ǫ the mapping Ξ takes the set Zλ

ϑ into itself

and satisfies the inequality

|Ξ(a1)− Ξ(a2)|Zλ ≤ γ|a1 − a2|Zλ for all a1, a2 ∈ Zλ
ϑ . (4.6)

Thus, if |v0|V is sufficiently small, then the contraction mapping principle im-
plies that there is a unique fixed point v ∈ Zλ

ϑ for Ξ. It follows from the definition
of Ξ and Zλ

ϑ that v is a solution of problem (4.1), (4.2) and satisfies the required
inequality (4.3). We claim that v is the unique solution of (4.1), (4.2) in the space
C(R+, V )∩L2

loc(R+, U). Indeed, if w is another solution, then the difference z = v−w

vanishes at t = 0 and satisfies the equation

zt + Lz +B(z, v) +B(w, z) + B(û)z = Kλ
û (t)z.

Taking the scalar product of this equation with z in H , carrying out some standard
transformations (e.g., see [20]), and using the uniform boundedness of the feedback
control Kλ

û (t) as an operator in H , we see that z ≡ 0. Hence, to complete the proof
of the theorem, it suffices to establish the above proposition. This is done in the next
subsection.

Remark 4.3. The hypotheses of Theorem 4.1 can be relaxed. Namely, it suffices
to assume that the reference solution û satisfies the condition

sup
τ≥0

(

|û|L∞(Qτ ) + |ût|L2(Qτ )

)

< ∞.

Indeed, as is proved in [7], the observability inequality (5.8) remains valid in this
situation. It follows that the truncated observability inequality (5.9), which is the
key point of our approach, is also true. One can check that all the proofs can be
carried out under the above weaker hypothesis. However, some calculations become
cumbersome, and for the sake of clarity of the paper, we have imposed the more
restrictive condition û ∈ W .

4.2. Proof of Proposition 4.2. Step 1. We first derive an estimate for solutions
of the equation

zt + Lz + B(û)z = Kλ
ûz + f(t), (4.7)
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where f ∈ L2
loc(R+, H). Namely, we will show that

sup
t≥0

(

eλt|z(t)|2V +

∫

(t,t+1)

eλs|z(s)|2D(L)ds

)

≤ C1

(

|z(0)|2V +sup
t≥0

∫

(t,t+1)

e2λs|f(s)|2Hds

)

,

(4.8)
where C1 = C [|û|W ,λ] is a constant. Indeed, recall that U(s, t) denotes the operator
taking v0 ∈ H to v(t), where v stands for the solution of (3.18), (3.19). By the
Duhamel formula, we can write z as

z(t) = U(0, t)z(0) +

∫

(0, t)

U(s, t)f(s) ds. (4.9)

Combining this with (3.20), we derive

|z(t)|2H = 2|U(0, t)z(0)|2H + 2

(
∫

(0, t)

|U(s, t)f(s)|H ds

)2

= 2κe−λt|z(0)|2H + 2κe−λt

(
∫

(0, t)

e(λ/2)s|f(s)|H ds

)2

. (4.10)

Now note that, for any non-negative function c(t) and any λ > 0, we have

sup
t≥0

∫

(0, t)

e(λ/2)sc(s) ds ≤
∫

(0,+∞)

e(λ/2)sc(s) ds =

∞
∑

k=1

∫

(k−1, k)

e(λ/2)sc(s) ds

≤
∞
∑

k=1

e(λ/2)k
(
∫

(k−1, k)

|c(s)|2 ds
)1/2

≤
∞
∑

k=1

e−(λ/2)(k−2)

(
∫

(k−1, k)

e2λs|c(s)|2 ds
)1/2

≤ C2

(

sup
t≥0

∫

(t, t+1)

e2λs|c(s)|2 ds
)1/2

.

Substituting this inequality with c(t) = |f(t)|H into (4.10), we derive

sup
t≥0

(

eλt|z(t)|2H
)

≤ 2κ

(

|z(0)|2H + C2
2 sup

t≥0

∫

(t, t+1)

e2λs|f(s)|2H ds

)

(4.11)

On the other hand, it is easy to see that the analogue of Lemma 2.1 is true for
equation (4.7). In particular, for any s ≥ 0 we have the estimates

(t− s)|U(s, t)z0|2V ≤ C3

(

|z0|2H +

∫

(s,t)

|f(τ)|2Hdτ

)

, (4.12)

|U(s, t)z0|2V +

∫

(s,s+1)

|U(s, τ)z0|2D(L)dτ ≤ C3

(

|z0|2V +

∫

(s,t)

|f(τ)|2Hdτ

)

, (4.13)

where s ≤ t ≤ s + 1, and C3 > 0 does not depend on s. Combining (4.11) with
inequality (4.12) in which z0 = U(0, s)z(0) and t = s+ 1, we obtain

|z(s+ 1)|2V ≤ C3

(

|U(0, s)z(0)|2H +

∫

(s,s+1)

|f(τ)|2Hdτ

)

≤ C4e
−λs

(

|z(0)|2H + sup
t≥0

∫

(t,t+1)

e2λτ |f(τ)|2Hdτ

)

.
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Using now (4.13), for s ≥ 1 we derive

|z(s)|2V +

∫

(s,s+1)

|z(τ)|2D(L)dτ ≤ C5e
−λs

(

|z(0)|2H + sup
t≥0

∫

(t,t+1)

e2λτ |f(τ)|2Hdτ

)

.

(4.14)
On the other hand, it follows from (4.13) that

sup
0≤s≤1

|z(s)|2V +

∫

(0,1)

|z(τ)|2D(L)dτ ≤ C3

(

|z0|2V +

∫

(0,1)

|f(τ)|2Hdτ

)

. (4.15)

The required inequality (4.8) follows immediately from (4.14) and (4.15).

Step 2. We now prove that Ξ maps the set Zλ
ϑ into itself. Inequality (4.8) with

f(t) = −Ba(t) implies that

|Ξ(a)|2Zλ ≤ C1

(

|v0|2V + sup
t≥0

∫

(t,t+1)

e2λs|Ba(s)|2Hds

)

. (4.16)

Now note that |Ba|H ≤ C6|a|V |a|D(L), whence it follows that

sup
t≥0

∫

(t,t+1)

e2λs|Ba(s)|2Hds ≤ C2
6 sup

t≥0

∫

(t,t+1)

(

eλs|a|2V
) (

eλs|a|2D(L)

)

ds ≤ C2
6 |a|4Zλ .

Substituting this into (4.16), we see that if a ∈ Zλ
ϑ , then

|Ξ(a)|Zλ ≤ C7

(

|v0|V + |a|2Zλ

)

≤ C7

(

1 + ϑ|v0|V
)

|v0|V . (4.17)

Setting ϑ = 2C7 and choosing ǫ > 0 so small that C7(1 + ϑǫ) ≤ ϑ, we see that if
|v0|V ≤ ǫ, then Ξ maps the set Zλ

ϑ into itself.

Step 3. It remains to prove that Ξ satisfies inequality (4.6). Let us take two
functions a1, a2 ∈ Zλ

ϑ and set a = a1−a2 and z = Ξ(a1)−Ξ(a2). Then the function z

satisfies the initial condition z(0) = 0 and equation (4.7) with f = Ba2 − Ba1.
Therefore, by inequality (4.8), we have

|Ξ(a1)− Ξ(a2)|2Zλ ≤ sup
t≥0

∫

(t,t+1)

e2λs|Ba1 −Ba2|2Hds. (4.18)

Using a standard estimate for B(u, v) and the inequality |u|2L∞ ≤ C|u|V |u|D(L), we
derive

|Ba1 −Ba2|2H = |B(a1, a)−B(a, a2)|2H
≤ C8

(

|a1|L∞ |a|V + |a|L∞ |a2|V
)2

≤ C9

(

|a1|V |a1|D(L)|a|2V + |a|V |a|D(L)|a2|2V
)

.

It follows that
∫

(t,t+1)

e2λs|Ba1 −Ba2|2Hds ≤ C10

(

|a1|2Zλ + |a2|2Zλ

)

|a|2Zλ . (4.19)

Substituting (4.19) into (4.18) and recalling the definition of Zλ
ϑ , we obtain

|Ξ(a1)− Ξ(a2)|2Zλ ≤ 2ϑC10|v0|2V |a1 − a2|2Zλ .

Choosing ǫ > 0 so small that 2ϑC10ǫ
2 ≤ γ2, we see that if |v0|V ≤ ǫ, then (4.6) holds.

This completes the proof of the proposition.
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5. Appendix.

5.1. Karush–Kuhn–Tucker theorem. Let X and Y be Banach spaces and let
J : X → R and F : X → Y be two continuously differentiable functions. Consider the
following minimization problem with constraints:

J(x) → min, F (x) = 0. (5.1)

We will say that x̄ ∈ X is a local minimum for (5.1) if F (x̄) = 0 and there is a
neighborhood U ∋ x̄ such that J(x̄) ≤ J(x) for any x ∈ U such that F (x) = 0. A
proof of the following theorem can be found in [15].

Theorem 5.1. Let x̄ ∈ X be a local minimum for (5.1) and let the derivative

F ′(x̄) : X → Y be a surjective operator. Then there is y∗ ∈ Y∗ such that

J ′(x̄) + y∗ ◦ F ′(x̄) = 0. (5.2)

5.2. Quadratic functionals with linear constraint. Let X and Y be normed
vector spaces, let J̃(x, y) be a bounded symmetric bilinear form on X that is weakly
continuous with respect to each of its arguments, and let A : X → Y be a continuous
surjective linear operator. Given a vector y ∈ Y, consider the minimization problem

J(x) → min, Ax = y, (5.3)

where J(x) = J̃(x, x). We will say that x̄ ∈ X is a global minimum for (5.3) if Ax̄ = y

and J(x̄) ≤ J(x) for x ∈ X such that Ax = y. The following result is rather standard
in the optimal control theory, even though we were not able to find in the literature
the statement we need.

Theorem 5.2. Suppose that J(x) is non-negative and vanishes only for x = 0,
and the set {x ∈ X : J(x) ≤ c} is weakly compact for any c > 0. Then problem (5.3)
has a unique global minimum x̄ ∈ X , and the function L : Y → X taking y to x̄ is

linear.

Proof. Existence. Let m ≥ 0 be the infimum of J on A−1(y) and let {xn} ⊂
A−1(y) be a sequence such that J(xn) → m. Since the set {x ∈ X : J(x) ≤ m+ 1} is
weakly compact, we can assume that {xn} converges weakly to a vector x̄ ∈ X . Now
note that

0 ≤ J(xn − x̄) = J(xn)− 2J̃(xn, x̄) + J(x̄).

Combining this with the weak continuity of J , we see that

J(x̄) ≤ lim inf
n→∞

J(xn) = m.

Thus, x̄ is a global minimum for (5.3).

Uniqueness. Since the only point of X at which J vanishes is x = 0, a standard
argument proves that J is strictly convex, that is,

J
(

x1+x2

2

)

≤ 1
2

(

J(x1) + J(x2)
)

for all x1, x2 ∈ X ,

and the equality holds if and only if x1 = x2. This immediately implies that the
global minimum is unique.
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Linearity. Let y ∈ Y and z ∈ A−1(0). For all λ > 0, we have A(Ly ± λz) = y,
and the definition of L implies that J(Ly) ≤ J̃(Ly± λz). It follows that 0 ≤ λJ(z)±
2J̃(Ly, z) for all λ > 0. Letting λ go to 0, we see that

J̃(Ly, z) = 0 for all y ∈ Y, z ∈ A−1(0). (5.4)

For a, b ∈ Y and α, β ∈ R, let us set

k := αLa+ βLb− L(αa+ βb).

Then Ak = 0, and by (5.4), we have J(k) = J̃(k, k) = αJ̃(La, k) + βJ̃(Lb, k) −
J̃(L(αa+ βb), k) = 0. It follows that k = 0, and therefore L is linear.

5.3. Truncated observability inequality. We first recall a well-known ob-
servability inequality for the linearized Navier–Stokes system. Let us fix a function
û ∈ L2(Iτ , V ) ∩ Wτ , where Wτ stands for the space of measurable vector-functions
on Qτ such that (cf.(2.1))

|u|Wτ
:=
∑

j,α

ess sup
(t,x)∈Qτ

∣

∣∂
j
t ∂

α
x u(t, x)

∣

∣ < ∞,

where the sum is taken over j = 0, 1 and |α| ≤ 1. Consider the problem

qt − Lq − B
∗(û)q = 0, t ∈ Iτ , (5.5)

q(τ + 1) = q1, (5.6)

where q1 ∈ H . By Theorem 2.2 in [14] (see also [7]), for any open subset ω ⊂ Ω there
is a constant Cω such that

|q(τ)|2H ≤ Cω

∫

Iτ

|q|2L2(ω,R3) dt, (5.7)

Since suppχ ∩ Ω 6= ∅, the domain ωχ := {x ∈ Ω | |χ(x)| > ρ} is nonempty for a
sufficiently small ρ > 0. It follows from (5.7) that

|q(τ)|2H ≤ Cωχ

∫

Iτ

|q|2L2(ωχ,R3) dt ≤ Cωχ
ρ−2

∫

Iτ

|χq|2L2 dt.

Thus, setting D′
χ := Cωχ

ρ−2, for any solution of system (5.5), (5.6), we have the
observability inequality

|q(τ)|2H ≤ D′
χ

∫

Iτ

|χq(t)|2L2 dt. (5.8)

The following proposition shows that if q1 belongs to a finite-dimensional subspace
of H , then the function χq on the right-hand side of (5.8) can be replaced by PM (χq)
with a sufficiently large M .

Proposition 5.3. For any N ≥ 1 there is an integer M1 = C [|û|Wτ ,N ] ∈ N0

such that any solution q for system (5.5), (5.6) with q1 ∈ FN = ΠNH satisfies the

inequality

|q(τ)|2H ≤ Dχ

∫

Iτ

|PM1
(χq(t))|2L2 dt (5.9)
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for a suitable constant Dχ depending only on χ.

To prove the proposition, we need the following lemma.
Lemma 5.4. For any solution q of system (5.5), (5.6) with q1 ∈ FN , we have

∫

Iτ

|χq(t)|2H1(Ω,R3) dt ≤ C

∫

Iτ

|χq(t)|2L2(Ω,R3) dt, (5.10)

where the constant C depends only on N , Ω, and |û|W .

Proof. We argue by contradiction. Suppose there is a sequence (qn1 , û
n) ∈ FN ×

(L2(Iτ , V ) ∩Wτ ), with (|ûn|Wτ
) bounded, such that the solution qn of the problem

qnt − Lqn − B
∗(ûn)qn = 0, t ∈ Iτ , (5.11)

qn(τ + 1) = qn1 (5.12)

satisfies the inequality
∫

Iτ

|χqn|2H1 dt > n

∫

Iτ

|χqn|2L2 dt. (5.13)

Since the equations are linear, there is no loss of generality in assuming that |qn1 | = 1.
The boundedness of (|ûn|Wτ

) implies that (∂α
x û

n) and (∂α
x û

n
t ) are bounded in L∞(Qτ )

for |α| ≤ 1. It follows from Lemma 2.1 that the sequences (qn) and (qnt ) are bounded
in L2(Iτ , D(L)) and L2(Iτ , H), respectively. Since the unit ball in a Hilbert space
is weakly compact and the unit ball in L∞(Qτ ) is compact in the weak∗ topology,
there is a subsequence of (qn1 , q

n, ûn) (for which we preserve the same notation), a
unit vector q∞1 ∈ FN , and functions q∞ ∈ W (Iτ ,D(L), H) and û∞ ∈ Wτ such that

qn1 → q∞1 in FN ,

qn → q∞ in L2(Iτ , V ),

∂tq
n ⇀ ∂tq

∞ in L2(Iτ , H),

ûn → û∞ in L2(Iτ , H),

∂
j
t ∂

α
x û

n ⇀∗ ∂
j
t ∂

α
x û

∞ in L∞(Qτ ),

where j = 0, 1 and |α| ≤ 1. Combining this with the boundedness of the se-
quences (ûn) and (qn) in the corresponding spaces, we can easily pass to the limit
in (5.11), (5.12) and derive the equations

q∞t − Lq∞ − B
∗(û∞)q∞ = 0, t ∈ Iτ , (5.14)

q∞(τ + 1) = q∞1 . (5.15)

Furthermore, since multiplication by χ is a continuous operator in L2(Iτ , H
1), we

also have

χqn → χq∞ in L2(Iτ , H
1(Ω,R3)). (5.16)

Therefore, passing to the limit in inequality (5.13) as n → ∞, we conclude that
∫

Iτ

|χq∞|2L2 dt = 0. (5.17)

Applying now the observability inequality (5.8) to equation (5.14) considered on the
interval (τ + r, τ + 1) with 0 ≤ r < 1, we conclude that q∞(t) = 0 for τ ≤ t < τ + 1.
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Since q∞ ∈ C(Īτ , V ), we obtain q∞1 = q∞(τ + 1) = 0. This contradicts the fact that
q∞1 ∈ FN is a unit vector. The contradiction obtained proves that (5.10) holds.

Proof of Proposition 5.3. We use Lemma 5.4 to derive
∫

Iτ

|χq|2L2 dt ≤
∫

Iτ

|PM (χq)|2L2 dt+

∫

Iτ

|(1 − PM )χq|2L2 dt

≤
∫

Iτ

|PM (χq)|2L2 dt+ β−1
M

∫

Iτ

|(1− PM )(χq)|2H1 dt

≤
∫

Iτ

|PM (χq)|2L2 dt+ β−1
M

∫

Iτ

|χq|2H1 dt

≤
∫

Iτ

|PM (χq)|2L2 dt+ β−1
M C [N,|û|Wτ ]

∫

Iτ

|χq|2L2 dt.

Recall that βj stands for the jth eigenvalue of the Dirichlet Laplacian. Choosing the
integer M = M1 so large that β−1

M1
C [N,|û|Wτ ]

≤ 1
2 , we obtain

∫

Iτ

|χq|2L2 dt ≤ 2

∫

Iτ

|PM1
(χq)|2L2 dt.

Combining this with (5.8), we arrive the required inequality (5.9).
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