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ENHANCEMENT OF ELECTROMAGNETIC FIELDS CAUSED BY

INTERACTING SUBWAVELENGTH CAVITIES

JEAN-FRANÇOIS BABADJIAN, ERIC BONNETIER, AND FAOUZI TRIKI

Abstract. This article is devoted to the asymptotic analysis of the electromagnetic fields scattered

by a perfectly conducting plane containing two sub-wavelength rectangular cavities. The problem is
formulated through an integral equation, and a spectral analysis of the integral operator is performed.
Using the generalized Rouché theorem on operator valued functions, it is possible to localize two types

of resonances, symmetric and anti-symmetric, in a neighborhood of each zero of some explicit function,

associated to the limiting geometry. For the symmetric modes, the fields in the cavities interact in
phase, and the system of two cavities essentially acts as a dipole. In the anti-symmetric case, the

fields oscillate in anti-phase, and the system behaves like a quadripole. Asymptotic expansions of the
resonances, the far-field and the near-field are given.
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sion
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1. Introduction

The interaction of light and rough metallic surfaces gives rise to fascinating phenomena, such as trans-
mission of light through subwavelength apertures [9, 15, 13, 16], or such as Surface Enhancement Raman
Scattering [5, 6, 7, 11]. The optical excitation of resonant modes can lead to a concentration and lo-
calization of energy in volumes much smaller than λ3, where λ is the wavelength of the incident light.
Potential applications are numerous, in particular to near field microscopy.
We are interested in metallic surfaces that contain parallel slits, which have been studied experimentally
in [5, 6]. Our objective is to understand the role played by the rugosity of the surfaces in the creation
of resonant modes. The case of planar devices with rectangular cavities is particularly interesting. On
the one hand, they can be manufactured with controled precision by current lithographic processes at
the appropriate scales, and are widely used in opto-electronics. On the other hand, their simple geom-
etry allows one to develop the mathematical analysis very far. Experimental results suggest that the
amplification factors of the fields depend on the width of the cavities. In [8], the case of a half plane
containing a single cavity of width w was considered. The authors studied the asymptotic of the Green
function as w tends to zero using techniques based on integral representation [3, 18, 10], which are well
adapted to such geometry. The limiting Green function turns out to be that of an infinite half plane on
which a dipole is placed. The present paper extends the analysis of [8] to two sub-wavelength cavities
separated by a sub-wavelength distance, and studies the interaction between the cavities.
Let us briefly summarize our analysis and the main results. Due to geometrical considerations and to
the choice of a time harmonic incident field [5, 8], the scattering problem can be reduced to a Helmholtz
equation. Using the Green formula we reformulate the Helmholtz equation as a system of integral
equations (2.11)-(2.12) defined on the aperture of the two cavities, for the normal derivatives of the
solution u. The operator-valued matrix Sw(k) associated to the system depends on the width w of
the cavities and the frequency k of the incident field. The kernels of the integral operators combine
the Green functions of the Helmholtz operator in the rectangular cavities and in the upper half plane
which are explicitly known. It is thus possible to derive a rigorous asymptotic expansion of Sw(k) with
respect to w (Lemma 3.2), and to ensure the invertibility of its dominant term in suitable fractional
Sobolev spaces. Based on Fredholm theory we prove that the scattering resonances of the two cavities
are exactly the poles of S−1

w (k). Using the generalized Rouché Theorem for meromorphic operator-
valued functions (see [12] and the recent monograph [3]), and the asymptotic expansion of S−1

w (k), we
1
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localize the resonances in the lower half complex plane (Theorem 4.10), and derive their asymptotic
expansion (Theorem 4.11). Precisely, we prove the existence of two types of resonances. The first type
corresponds to a symmetric mode with an imaginary part of order O(w), the second type corresponds to
an antisymmetric mode with a smaller imaginary part, of order O(w3), which leads to a much stronger
electromagnetic enhancement (see Theorem 4.11). This partition of the resonances results from the
near-field coupling of the cavities, and confirms the experimental results observed in [7]. Using again
the generalized Rouché Theorem we derive the asymptotic expansion of the field u far from and close to
the resonances (Theorems 5.1-5.4). When the frequency is far from the resonances, the field is essentially
the same as without cavities. However, when it is close to the resonances, the radiation pattern strongly
depends on which mode is excited. Indeed, if the symmetric mode is active, then the scattered field u
behaves asymptotically like that of an infinite half plane on which a dipole is placed, as in the case of a
single cavity. When the anti-symmetric mode is excited, the singularity is that of a quadripole. Finally,
we perform an asymptotic expansion of the field inside the cavities (see Remark 5.7). In particular, we
show that the field u actually concentrates in the cavities when the frequency is close to the resonances.
Moreover we prove that close to the symmetrical mode, the field has the same sign in both cavities,
while close to the anti-symmetrical mode it has opposite signs.
The paper is organized as follows, we state the scattering problem in section 2, and reformulate it as
an integral equation. Section 3 is devoted to the asymptotic expansion of Sw(k) as w goes to zero. In
section 4, we derive useful qualitative properties of the operator-valued function k → Sw(k), as well as
the asymptotic expansion of S−1

w (k) and the scattering resonances when w is close to zero. Based on the
previous results we give in section 5, the asymptotic expansion of the scattered field in different regions
of the scattering domain. Finally, in the appendix, we recall some results of Ghoberg and Sigal [12] on
the operator version of the Residue theorem.

2. Problem formulation

Let Ω ⊂ R
2 be the domain defined by

Ω := Ωe ∪ C1 ∪ C2 ∪ Γ1 ∪ Γ2,

where Ωe is the upper half-plane R
2
+, Ci, i = 1, 2, are the rectangular cavities:

C1 :=
(
− (d+ 1)w,−(d− 1)w

)
×
(
− h, 0

)
, C2 :=

(
(d− 1)w, (d+ 1)w

)
×
(
− h, 0

)
,

and Γi denotes the aperture of Ci, i = 1, 2, i.e.,

Γ1 :=
(
− (d+ 1)w,−(d− 1)w

)
× {0}, Γ2 :=

(
(d− 1)w, (d+ 1)w

)
× {0}.

C1

Γ1

C2

Γ2

Dieletric

Conductor

Ωe

✻

✲

The cavities Ci, i = 1, 2 are illuminated by a source f ∈ L2(Ωe) with compact support in Ωe. In
the harmonic regime, and under the same assumptions as in [8, 6], the Maxwell equations that govern
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the propagation of electromagnetic fields in the scattering domain Ω reduce to the following Helmholtz
equation 




∆u+ k2u = f in Ω,

∂u

∂ν
= 0 on ∂Ω,

lim
|x|→+∞

√
|x|
(
∂u

∂r
(x) − ik u(x)

)
= 0 ,

(2.1)

where u(x) represents the component of the magnetic field in the transverse magnetic polarization.
It is known that the problem (2.1) has a unique solution whenever Im(k) ≥ 0 [2]. The mapping
R(k) : f → u defines an operator-valued function which is holomorphic in Im(k) ≥ 0. It has a
meromorphic extension to the whole complex plane, except for a countable number of poles: These
values of k are the resonant frequencies. In other words, they are the values k for which (2.1) has non-
trivial solutions when f = 0. The space of such non-trivial solutions, called characteristic functions,
has finite dimension. When the pole kj is simple, the solution operator R(k) can be factorized in the
form

R(k) =
R−1,j

k − kj
+R0,j(k),

where R−1,j is a finite rank operator, and where R0,j(k) is an operator-valued function which is holomor-
phic near kj [14]. The confinement of the electromagnetic fields around the cavities occurs at frequencies

k ∈ R+ close to Re(kj), if the imaginary part Im(kj) is small enough. In this case
‖R−1,j‖
|Im(kj)| represents

the factor of enhancement of the fields. Experimental results (see [5] and references therein) show that
when the width of the cavities is smaller than the wavelength, the resonant frequencies are close to the
real axis. In [8], the resonnant frequencies to a simple cavity have been studied, as the cavity width
w → 0. Precisely, it is proven there that Im(kj) = O(w) as w → 0. The imaginary part of the resonant
frequencies also represents the lifetime of the confinement phenomena (see section 2.1 in [8]), which
plays an important role in applications.
Recently, it was shown in [7] that a system of two deep identical cavities at subwavelength distance
could produce resonant frequencies much closer to the real axis than those created by a simple cavity.
Thus the optical excitation of such resonances can lead to a larger factor of concentration of the elec-
tromagnetic fields near the cavities. In this work, we analyse how the interplay between the fields in
two cavities may cause such phenomena.

2.1. Fractional Sobolev spaces. Let s ∈ R, we denote by Hs(R) the space of tempered distributions
u ∈ S ′(R) with Fourier transform û ∈ L2

loc(R), and

‖u‖2
Hs(R) :=

∫

R

(1 + |ξ|2)s|û(ξ)|2 dξ < +∞.

Let I be a bounded and open interval in R. The sobolev space Hs(I) is defined by

Hs(I) := {u ∈ (C∞
c (I))

′
: u = U |I for some U ∈ Hs(R)}.

It is endowed with the norm

‖u‖Hs(I) = inf{‖U‖Hs(R) : U ∈ Hs(R), U |I = u}.
It follows that Hs(I) (resp. Hs(R)) equipped with the norm ‖ · ‖Hs(I) (resp. ‖ · ‖Hs(R)) is a Hilbert

space. We also denote by H̃s(I) the closure of C∞
c (I) in Hs(R) so that H−s(I) = [H̃s(I)]′ and H̃−s(I) =

[Hs(I)]′ (see [17, Theorem 3.30 (i)]). Moreover, by [17, Theorem 3.29 (ii)] we have that

H̃s(I) = {u ∈ Hs(R) : Suppu ⊂ I},
and when s ≥ 0, [17, Theorem 3.3] asserts that

H̃s(I) = {u ∈ L2(I) : ũ ∈ Hs(R)},
where ũ denotes the extension of u by zero outside I.
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In the sequel we will mostly be concerned with the cases s = ±1/2; in particular, it is proved (see
[17, Theorem 3.30 (ii)]) that H1/2(I) can be identified to the space of functions u ∈ L2(I) satisfying

∫

I

∫

I

|u(x) − u(y)|2
|x− y|2 dx dy < +∞.

If φ ∈ H̃−1/2(I) and f ∈ H1/2(I), we will denote by 〈φ, f〉 the duality product between H̃−1/2(I) and

H1/2(I). Similarly for vector valued functions, the duality product between [H̃−1/2(I)]2 and [H1/2(I)]2

will be denoted by 〈φ, f〉 := 〈φ1, f1〉 + 〈φ2, f2〉 whenever φ = (φ1, φ2) ∈ [H̃−1/2(I)]2 and f = (f1, f2) ∈
[H1/2(I)]2.

2.2. The Green functions. Fix a source point y ∈ Ωe, and consider Ge the Green function of the
Helmholtz operator in Ωe with a homogeneous Neumann boundary condition and a Sommerfeld radiation
condition at infinity, i.e.,





∆Ge(· ; y) + k2Ge(· ; y) = δy(.) in Ωe,

∂Ge

∂ν
(· ; y) = 0 on ∂Ωe,

lim
|x|→+∞

√
|x|
(
∂Ge

∂r
(x; y) − ik Ge(x; y)

)
= 0.

(2.2)

It is known that

Ge(x; y) = − i

4
H

(1)
0 (k|x− y|) − i

4
H

(1)
0 (k|x− ỹ|), (2.3)

where ỹ = (y1, y2) is the symmetric of y = (y1, y2) with respect to the y1-axis, and H
(1)
0 stands for

the Hankel function of first kind and zero order. We introduce the function ue(x) ∈ H1
loc(Ωe) solution

to 



∆ue + k2ue = f in Ωe,

∂ue

∂ν
= 0 on ∂Ωe,

lim
|x|→+∞

√
|x|
(
∂ue

∂r
(x) − ik ue(x)

)
= 0,

which may be represented as

ue(x) =

∫

Ωe

Ge(x; y)f(y) dy. (2.4)

Let Gi (i = 1, 2) be the Green function of the Helmholtz operator in the cavity Ci, with a homogeneous
Neumann boundary condition, i.e.,





∆Gi(· ; y) + k2Gi(· ; y) = δy(.) in Ci,

∂Gi

∂ν
(· ; y) = 0 on ∂Ci.

(2.5)

For k2 6=
(

mπ
2w

)2
+
(

nπ
h

)2
, the Green functions G1 and G2 have the following spectral decomposition

G1(x; y) =
2

wh

+∞∑

m,n=0

cos
(

mπ
2

(
x1

w + d+ 1
))

cos
(

mπ
2

(
y1

w + d+ 1
))

cos
(
nπ
(

x2

h + 1
))

cos
(
nπ
(

y2

h + 1
))

k2 −
(

mπ
2w

)2 −
(

nπ
h

)2 .

and

G2(x; y) =
2

wh

+∞∑

m,n=0

cos
(

mπ
2

(
x1

w − d+ 1
))

cos
(

mπ
2

(
y1

w − d+ 1
))

cos
(
nπ
(

x2

h + 1
))

cos
(
nπ
(

y2

h + 1
))

k2 −
(

mπ
2w

)2 −
(

nπ
h

)2 .

Remark 2.1. Since u andGi, i = 1, 2 depend on w and k, we sometimes write u(x;w) andGi(x; y;w, k), i =
1, 2 respectively in place of u(x) and Gi(x; y), i = 1, 2 to emphasize the dependence on these parameters.
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2.3. Integral representation. In this section, we derive an integral representation of u(x) that is
equivalent to the problem (2.1). Multiplying equation (2.1) by Ge(x; y), integrating over Ωe and using
the Green formula in Ωe implies that for every y ∈ Ωe

ue(y) =

∫

Ωe

f(x)Ge(x; y) dx =

∫

Ωe

[
∆u(x) + k2u(x)

]
Ge(x; y) dx (2.6)

=

∫

Ωe

[
∆Ge(x; y) + k2Ge(x; y)

]
u(x) dx

+

∫

∂Ωe

[
∂u

∂ν
(x)Ge(x; y) −

∂Ge

∂ν
(x; y)u(x)

]
dσ(x)

= u(y) −
∫

Γ1∪Γ2

∂u

∂x2
(x1, 0)Ge(x1, 0; y) dx1, (2.7)

where we used equations (2.2) and (2.1) in the last equality.
Similarly, multiplying (2.1) by Gi(x; y), integrating over Ci and applying the Green formula in Ci

together with equation (2.5), and noting that f is supported in Ωe, leads to

0 = u(y) +

∫

Γi

∂u

∂x2
(x1, 0)Gi(x1, 0; y) dx1 for every y ∈ Ci. (2.8)

Since u ∈ H1
loc(Ω) and ∆u = f − k2u ∈ L2

loc(Ω), it follows by elliptic regularity that u ∈ H2
loc(Ω).

Sobolev imbedding implies that u is a continuous function on Γi, i = 1, 2. Hence, letting y tend to
Γ1 ∪ Γ2 in (2.7), letting y tend to Γi in (2.8), and taking the difference, we infer that for every y1 ∈ Γ1

∫

Γ1

∂u

∂x2
(x1, 0) [G1 +Ge] (x1, 0; y1, 0) dx1

+

∫

Γ2

∂u

∂x2
(x1, 0)Ge(x1, 0; y1, 0) dx1 = −ue(y1, 0), (2.9)

and that for every y1 ∈ Γ2
∫

Γ2

∂u

∂x2
(x1, 0) [G2 +Ge] (x1, 0; y1, 0) dx1

+

∫

Γ1

∂u

∂x2
(x1, 0)Ge(x1, 0; y1, 0) dx1 = −ue(y1, 0). (2.10)

Next, we rescale both previous equations. To this end, we set

Γ := (−1, 1),

and for x ∈ Γ




φ1(x) :=
∂u

∂x2
(wx− wd, 0),

φ2(x) :=
∂u

∂x2
(wx+ wd, 0),

and





g1(x) := − 1

w
ue(wx− wd, 0),

g2(x) := − 1

w
ue(wx+ wd, 0).

From (2.9) and (2.10), we deduce that for every y ∈ Γ
∫

Γ

{
[G1 +Ge] (wx− wd, 0;wy − wd, 0)φ1(x) +Ge(wx+ wd, 0;wy − wd, 0)φ2(x)

}
dx = g1(y) (2.11)

and
∫

Γ

{
[G2 +Ge] (wx+ wd, 0;wy + wd, 0)φ2(x) +Ge(wx− wd, 0;wy + wd, 0)φ1(x)

}
dx = g2(y). (2.12)

Let us define the 2 × 2 matrix-valued kernel

sw(x, y, k) :=

(
[G1 +Ge] (wx− wd, 0;wy − wd, 0) Ge(wx+ wd, 0;wy − wd, 0)

Ge(wx− wd, 0;wy + wd, 0) [G2 +Ge] (wx+ wd, 0;wy + wd, 0)

)
. (2.13)
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Since u ∈ H1
loc(Ω) and ∆u ∈ L2

loc(Ω), it follows that ∂u
∂x2

|Γi ∈ [H1/2(Γi)]
′ = H̃−1/2(Γi) and thus φ1 and

φ2 ∈ H̃−1/2(Γ).

Consequently, it is natural to define the integral operator Sw(k) : [H̃−1/2(Γ)]2 → [H1/2(Γ)]2 by

Sw(k)φ(x) :=

∫

Γ

sw(x, y, k)φ(y) dy, for every φ = (φ1, φ2) ∈ [H̃−1/2(Γ)]2. (2.14)

3. Asymptotic expansion

In this section we derive an asymptotic expansion of the kernel sw and of the associated integral operator
Sw(k). This can be achieved thanks to the explicit expression (2.13) of sw using standard tools of pseudo-
differential analysis (see [20]). In the sequel, we fix w0 > 0 and set r0 := π

(2w0)
. In the complex plane,

Dr(a) := {z ∈ C : |z − a| < r} denotes the disc centered at a and of of radius r > 0. If a = 0, we write
Dr := Dr(0) and D+

r := (C \ R−) ∩Dr.

Lemma 3.1. For every (w, k) ∈ (0, w0) ×D+
r0

the kernel sw has the following asymptotic expansion:

sw(x, y, k) = θw(k) + s(x, y) + s1(x, y)w +

+∞∑

n=2

sn(x, y, k)wn +

+∞∑

n=2

tn(x, y, k)wn lnw, (3.1)

where

θw(k) :=




α(k)

w
+ δ2 +

1

π
(ln k + lnw) δ +

1

π
(ln k + lnw)

δ +
1

π
(ln k + lnw)

α(k)

w
+ δ2 +

1

π
(ln k + lnw)


 , (3.2)

is a constant 2 × 2 matrix, α(k) is a complex function defined in (3.11),

s(x, y) :=
1

π
ln
[
4|x− y|

∣∣∣ sin
(π

4
(x− y)

)∣∣∣
∣∣∣ sin

(π
4

(x+ y + 2)
)∣∣∣
]
I

+




δ1
1

π
ln |x− y + 2d|

1

π
ln |x− y − 2d| δ1


 . (3.3)

is a matrix valued kernel independent of k, δi, i = 1, 2 are constants to be fixed later (Remark(4.6))
satisfying δ1 + δ2 = δ, i = 1, 2 where δ is the universal constant defined in (3.8).

s1(x, y) := − 1

h

(
2

3
− |x− y| + x+ y + 2

4
+

(x− y)2 + (x+ y + 2)2

8

)
I.

Moreover, for every n ≥ 1, there exists functions fn, gn and hn defined in (3.7) and (3.15) such that

s2n(x, y, k) :=
(
f2n(x− y, k) + h2n(x− y, k) + h2n(x+ y + 2, k)

)
I

+

(
0 f2n(x− y + 2d, k)

f2n(x− y − 2d, k) 0

)
, (3.4)

s2n+1(x, y, k) :=
(
h2n+1(x− y, k) + h2n+1(x+ y + 2, k)

)
I,

and

t2n(x, y, k) :=

(
g2n(x− y, k) g2n(x− y + 2d, k)

g2n(x− y − 2d, k) g2n(x− y, k)

)
, t2n+1(x, y, k) =

(
0 0

0 0

)
.

Finally, there exists a constant C1 > 0 (that only depends on w0) such that for every k ∈ D+
r0

,

∥∥∥s1w +
+∞∑

n=2

sn(·, ·, k)wn +
+∞∑

n=2

tn(·, ·, k)wn lnw
∥∥∥
C0,1(Γ×Γ)

≤ C1w. (3.5)



ENHANCEMENT OF ELECTROMAGNETIC FIELDS 7

Proof. We consider the asymptotic expansion of the Hankel function near zero (see [1, page 360]),

H
(1)
0 (z) =

{
1 +

2i

π

[
ln
(z

2

)
+ γ
]}(+∞∑

n=0

(−z2/4)n

(n!)2

)
− 2i

π

+∞∑

n=1

(
n∑

m=1

1

m

)
(−z2/4)n

(n!)2
,

where γ is the Euler constant. For every t ∈ R, we thus obtain

− i

2
H

(1)
0 (kw|t|) = δ +

1

π
(lnw + ln k) +

1

π
ln |t| +

+∞∑

n=1

f2n(t, k)w2n +
+∞∑

n=1

g2n(t, k)w2n lnw (3.6)

where, for each n ∈ N
∗,





f2n(t, k) :=
(−1/4)n

π(n!)2

(
−

n∑

m=1

1

m
+ πδ + ln |t| + ln k

)
k2nt2n,

g2n(t, k) :=
(−1/4)n

π(n!)2
k2nt2n,

(3.7)

and where

δ := − i

2
+

1

π
(γ − ln 2). (3.8)

Note that g2n(·, k) ∈ C∞(R) for any k ∈ C, while g2n(t, ·) is analytic in C. On the other hand, since
the function t 7→ t2 ln |t| is of class C1,ν(R) for any ν ∈ [0, 1) (see [8]), it follows that f2n(·, k) ∈
C2n−1,ν(R) ∩ C∞(R \ {0}) and that f2n(t, ·) is analytic in C \ R−. Moreover, there exists a constant
C > 0 (depending only on w0) such that for every (w, k) ∈ (0, w0) ×D+

r0
,

+∞∑

n=1

‖f2n(·, k)‖C0,1([−4,4])w
2n−2 ≤ C and

+∞∑

n=1

‖g2n(·, k)‖C0,1([−4,4])w
2n−2 ≤ C.

Consequently, the limits

f(t, k, w) :=

+∞∑

n=1

f2n(t, k)w2n and g(t, k, w) :=
+∞∑

n=1

g2n(t, k)w2n lnw (3.9)

exist and furthermore

‖f(·, k, w)‖C0,1([−4,4]) ≤ Cw2 and ‖g(·, k, w)‖C0,1([−4,4]) ≤ Cw2 lnw. (3.10)

Note that provided w ∈ (0, w0), the first series in (3.9) (as well as its first derivative with respect to
t) converges uniformly as a function of (t, k) ∈ [−4, 4] ×D+

r0
. Consequently, f(·, k, w) ∈ C1,ν([−4, 4]) ∩

C∞([−4, 4] \ {0}) for any k ∈ D+
r0

, and the function f(t, ·, w) is analytic in D+
r0

for every t ∈ [−4, 4].
Arguing similarly for the second series in (3.9), we can show that g(·, k, w) ∈ C∞([−4, 4]) for any k ∈ D+

r0
,

and that g(t, ·, w) is analytic in D+
r0

for every t ∈ [−4, 4]. As consequence, we infer from the definition
of Ge, that

Ge(wx− wd, 0;wy − wd, 0) = Ge(wx+ wd, 0;wy + wd, 0) = − i

2
H

(1)
0 (kw|x− y|)

= δ +
1

π
(lnw + ln k) +

1

π
ln |x− y|

+
+∞∑

n=1

f2n(x− y, k)w2n +

+∞∑

n=1

g2n(x− y, k)w2n lnw,

and that

Ge(wx± wd, 0;wy ∓ wd, 0) = − i

2
H

(1)
0 (kw|x− y ± 2d|)

= δ +
1

π
(lnw + ln k) +

1

π
ln |x− y ± 2d|

+
+∞∑

n=1

f2n(x− y ± 2d, k)w2n +

+∞∑

n=1

g2n(x− y ± 2d, k)w2n lnw.
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We now turn our attention to the Green functions inside the cavities. From the expression of G1

and G2, we have

G1(wx− wd, 0;wy − wd, 0) = G2(wx+ wd, 0;wy + wd, 0)

=
2

wh

+∞∑

m,n=0

cos
(

mπ
2 (x+ 1)

)
cos
(

mπ
2 (y + 1)

)

k2 −
(

mπ
2w

)2 −
(

nπ
h

)2 .

We define

Rm(w, k) :=
2

h

+∞∑

n=0

1

k2 −
(

mπ
2w

)2 −
(

nπ
h

)2 .

When m = 0, we observe that R0(w, k) = α(k), where

α(k) :=
1

k

(
1

kh
+ cot(kh)

)
, (3.11)

while for m ∈ N
∗, Rm(w, k) has the following asymptotic expansion as w/m tends to zero:

Rm(w, k) = − 2

π

w

m
− 4

π2h

w2

m2
−

+∞∑

n=3

pn(k)
wn

mn
, (3.12)

where pn(k) are suitable nonnegative constants which depend on k in an analytic manner. Actually,
one has

Rm(w, k) = − 1

k2h

+∞∑

n=1

(
2wk

mπ

)2n

− 2w

mπ



1 +

+∞∑

n=1

1

n!




n−1∏

j=0

(1

2
+ j
)


(

2wk

mπ

)2n




{
2

1 − e−2h
q

(mπ
2w )

2−k2

− 1

}
,

which indeed can be expanded as a series of w
m . Thus, from (3.12), there exists a constant C ′ > 0 (that

only depends on w0) such that

+∞∑

n=2

pn(k)
wn

mn
≤ C ′

+∞∑

n=2

(
2wk

mπ

)n

. (3.13)

Note that the previous series converges when m ∈ N
∗, w < w0 and k ∈ Dr0

(recall that r0 = π/(2w0)).
Using (3.12) and the definition of G1 and G2, we immediately deduce that

G1(wx− wd, 0;wy − wd, 0) = G2(wx+ wd, 0;wy + wd, 0)

=
α(k)

w
− 1

π

+∞∑

m=1

cos
(

mπ
2 (x− y)

)
+ cos

(
mπ
2 (x+ y + 2)

)

m

− 2

π2h
w

+∞∑

m=1

cos
(

mπ
2 (x− y)

)
+ cos

(
mπ
2 (x+ y + 2)

)

m2

−
+∞∑

n=2

pn(k)wn

(
+∞∑

m=1

cos
(

mπ
2 (x− y)

)
+ cos

(
mπ
2 (x+ y + 2)

)

mn+1

)
.

As a consequence,

G1(wx− wd, 0;wy − wd, 0) = G2(wx+ wd, 0;wy + wd, 0)

=
α(k)

w
+

1

π
ln
[
4
∣∣∣ sin

(π
4

(x− y)
)∣∣∣
∣∣∣ sin

(π
4

(x+ y + 2)
)∣∣∣
]

−w
h

(
2

3
− |x− y| + x+ y + 2

4
+

(x− y)2 + (x+ y + 2)2

8

)

+

+∞∑

n=2

[hn(x− y, k) + hn(x+ y + 2, k)]wn, (3.14)
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where we defined

hn(t, k) := −
+∞∑

m=1

pn(k)
cos
(

mπt
2

)

mn+1
. (3.15)

From [8], we know that for each k ∈ C, the function h2(·, k) ∈ C1,ν(R) ∩ C∞(R \ {0}) for any ν ∈ [0, 1),
and thus by iteration, the functions hn(·, k) ∈ Cn−1,ν(R) ∩ C∞(R \ {0}) for every n ≥ 2. Moreover the
function hn(t, ·) is analytic on C for every t ∈ R. Using (3.13), we observe that for w < w0 and k ∈ Dr0

,
then

+∞∑

n=2

‖hn(·, k)‖C0,1([−4,4])w
n−2 ≤ 1

w2

+∞∑

m=1

+∞∑

n=2

pn(k)
wn

mn
≤ C ′

w2

+∞∑

m=1

+∞∑

n=2

(
2wk

mπ

)n

≤ C ′π2

6w2

+∞∑

n=2

(
2wk

π

)n

≤ C ′′,

for some constant C ′′ > 0 depending only on w0. Hence we deduce that the limit

h(t, k, w) :=

+∞∑

n=2

hn(t, k)wn, (3.16)

exists and that

‖h(·, k, w)‖C0,1([−4,4]) ≤ C ′′w2. (3.17)

Since the series (3.16) is uniformly converging as a function of (t, k) ∈ [−4, 4] × Dr0
, it follows that

h(·, k, w) ∈ C1,ν([−4, 4]) ∩ C∞([−4, 4] \ {0}) for every k ∈ Dr0
and h(t, ·, w) is analytic in Dr0

for every
t ∈ [−4, 4].

We define θw(k), s, s1, sn and tn (for n ≥ 2) as in the statement of Lemma 3.1, and let

ρw(x, y, k) := s1(x, y)w +

+∞∑

n=2

sn(x, y, k)wn +

+∞∑

n=2

tn(x, y, k)wn lnw. (3.18)

Thanks to (3.9) and (3.16), we deduce that for every w ∈ (0, w0), both previous series are uniformly
converging in Γ × Γ × D+

r0
as functions of (x, y, k). Consequently ρw(·, ·, k) ∈ C0,1(Γ × Γ) for every

k ∈ D+
r0

and ρw(x, y, ·) is analytic in D+
r0

for every (x, y) ∈ Γ × Γ. Finally, sw expands as announced in
(3.1), and from (3.10) and (3.17) we immediately deduce (3.5). �

For every φ ∈ [C∞
c (Γ)]2, define the following integral operators





Θw(k)φ(x) := θw(k)

∫

Γ

φ(y) dy,

Sφ(x) :=

∫

Γ

s(x, y)φ(y) dy,

S1φ(x) :=

∫

Γ

s1(x, y)φ(y) dy,

Sn(k)φ(x) :=

∫

Γ

sn(x, y, k)φ(y) dy,

Tn(k)φ(x) :=

∫

Γ

tn(x, y, k)φ(y) dy.

We now deduce from Lemma 3.1 an asymptotic expansion of the integral operator Sw(k).

Lemma 3.2. For every (w, k) ∈ (0, w0) × D+
r0

, the operator Sw(k) admits the following asymptotic
expansion:

Sw(k) = Θw(k) + S + S1w +

+∞∑

n=2

Sn(k)wn +

+∞∑

n=2

Tn(k)wn lnw,
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where S1, Sn(k) and Tn(k) are compact from [H̃−1/2(Γ)]2 to [H1/2(Γ)]2 and

∥∥∥S1w +

+∞∑

n=2

Sn(k)wn +

+∞∑

n=2

Tn(k)wn lnw
∥∥∥ ≤ C2w, (3.19)

for some constant C2 > 0 depending only on w0.

Proof. Let χ ∈ C∞
c (R; [0, 1]) be a cut-off function satisfying χ(t) = 1 for every t ∈ Γ. For any integer

n ≥ 2 and every (x, y) ∈ R × R, define
{

s̃n(x, y, k) := χ(x)χ(y)sn(x, y, k),

t̃n(x, y, k) := χ(x)χ(y)tn(x, y, k).

Denoting by σn and τn the symbols of s̃n and t̃n respectively, on can check that σn and τn belong to the
class of symbols S−n

1,0 and thus (see [20, Chapter II]), it follows that the associated integral operators

S̃n(k) and T̃n(k) defined, for every φ ∈ [C∞
c (R)]2, by

S̃n(k)φ(x) :=

∫

R

s̃n(x, y, k)φ(y) dy and T̃n(k)φ(x) :=

∫

R

t̃n(x, y, k)φ(y) dy

are bounded from [H−1/2(R)]2 to [Hn−1/2(R)]2. As a consequence, the operators Sn(k) and Tn(k)

defined above are bounded from [H̃−1/2(Γ)]2 to [Hn−1/2(Γ)]2, and using the compact imbedding of

Hn−1/2(Γ) into H1/2(Γ) for n ≥ 2, it follows that they are actually compact from [H̃−1/2(Γ)]2 to

[H1/2(Γ)]2. From [8] we also know that the integral operator S1 is compact from [H̃−1/2(Γ)]2 to
[H1/2(Γ)]2. Moreover, thanks to (3.1) and the Dominated Convergence Theorem, the operator Sw(k)
has the expected asymptotic expansion for (w, k) ∈ (0, w0) × D+

r0
. Finally, according to (3.5), the

operator

Rw(k) := S1w +

+∞∑

n=2

Sn(k)wn +

+∞∑

n=2

Tn(k)wn lnw,

is an integral operator with kernel ρw(x, y, k) given by (3.18), and we have ‖Rw(k)‖ ≤ C2w where
C2 > 0 is a constant depending on w0 and C1. �

4. Asymptotic of S−1
w (k) and of the resonances

Let S̃ : [H̃−1/2(Γ)]2 → [H1/2(Γ)]2 be the integral operator associated to the kernel

1

π
ln
[
|x− y|

∣∣∣ sin
(π

4
(x− y)

)∣∣∣
∣∣∣ sin

(π
4

(x+ y + 2)
)∣∣∣
]
I.

The following result is proved in [8](see Lemma 5.1).

Lemma 4.1. The operator S̃ is invertible from [H̃−1/2(Γ)]2 to [H1/2(Γ)]2.

Theorem 3.2 implies that for every (w, k) ∈ (0, w0) × D+
r0

, we have Sw(k) = Θw(k) + S + Rw(k)
where

Θw(k) = θw(k)

(
〈·, e1〉
〈·, e2〉

)
,

the matrix θw(k) is defined in (3.2), and e1 = (1, 0), e2 = (0, 1).

Theorem 4.2. The operator valued function k 7→ Sw(k) is finitely meromorphic and of Fredholm type

in C \ R−, its poles are {±
(
(nπ

h )2 + (mπ
2w )2

) 1
2 : n, m ∈ N}. The operator Sw(k) is invertible from

[H̃−1/2(Γ)]2 to [H1/2(Γ)]2 for Im(k) ≥ 0. Moreover the operator valued function k 7→ S−1
w (k) is finitely

meromorphic in C \ R− and its poles are exactly the resonances of the open cavities.

Proof. By the expression (2.13) of the kernel sw, it is clear that the poles of Sw(k) are exactly {±
(
(nπ

h )2+

(mπ
2w )2

) 1
2 : n, m ∈ N}. Expanding the operator Sw(k) as a Laurent series around each of these poles
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implies that the range of the operator that consists in the multiplication by 1

k±
(
( nπ

h )2+( mπ
2w )2

) 1
2

is of

dimension two. The range of that operator is actually the vector space spanned by the function

cos
(mπ

2
(x+ 1)

)
(e1 + e2), x ∈ Γ.

This implies that Sw(k) is finitely meromorphic in C \ R−.
Now, according to Lemma 3.2, the only term independent of k in the previous Laurent series, is the

operator

A0 :=

(
δ2 + ln w

π δ + ln w
π

δ + ln w
π δ2 + ln w

π

)(
〈., e1〉
〈., e2〉

)
+ S + S1w.

We remark that the following kernel



δ1 + ln(4)
1

π
ln |x− y + 2d|

1

π
ln |x− y − 2d| δ1 + ln(4)




belongs to C∞(Γ × Γ) and so the corresponding integral operator is compact from [H̃−1/2(Γ)]2 to

[H1/2(Γ)]2. It follows that S is a compact perturbation of S̃ which is invertible from [H̃−1/2(Γ)]2

to [H1/2(Γ)]2 (Lemma 4.1). Since S1 is compact (Lemma 3.2) the operator A0 is also a compact

perturbation of S̃ and so it is a Fredholm operator of index zero. Consequently, the operator valued
function k 7→ Sw(k) is of Fredholm type of index zero as well (see the appendix). The invertibility of
the operator Sw(k) for Im(k) ≥ 0 is a consequence of the fact that the equation (2.1) admits a unique
solution for such frequencies k. Finally, we deduce from the Steinberg Theorem (Theorem 6.3) that the
operator valued function k 7→ S−1

w (k) is finitely meromorphic in C \ R− and its poles are exactly the
resonances of the open cavities. �

Let Ŝ : [H̃−1/2(Γ)]2 → [H1/2(Γ)]2 be the integral operator with kernel

1

π
ln
[
4|x− y|

∣∣∣ sin
(π

4
(x− y)

)∣∣∣
∣∣∣ sin

(π
4

(x+ y + 2)
)∣∣∣
]
I +




0
1

π
ln |x− y + 2d|

1

π
ln |x− y − 2d| 0


 .

Let H̃
−1/2
0 (Γ) denotes the space of functions ϕ in H̃−1/2(Γ) satisfying

∫
Γ
ϕ(x)dx = 0.

Lemma 4.3. Ŝ is Fredholm of index zero on [H̃−1/2(Γ)]2. In addition, Ŝ is coercive on [H̃
−1/2
0 (Γ)]2,

i.e.,

−〈ϕ, Ŝϕ〉 ≥ C‖ϕ‖2
[ eH−1/2(Γ)]2

, ∀ϕ ∈ [H̃
−1/2
0 (Γ)]2, (4.1)

where C > 0 is a fixed constant.

Proof. The operator Ŝ is a compact perturbation of S̃ and so is Fredholm of index zero on [H̃−1/2(Γ)]2.

Let ϕ = (ϕ1, ϕ2) ∈ [H̃−1/2(Γ)]2 and define

ϕ1,w(x) :=
1

w
ϕ1(

x

w
+ d) x ∈ Γ1,

ϕ2,w(x) :=
1

w
ϕ2(

x

w
− d) x ∈ Γ2.

We consider the solution v to the following Helmholtz equation




∆v + k2v = 0 in Ωe ∪ C1 ∪ C2,

∂x2
v|+ = ∂x2

v|− = ϕ1,w on Γ1

∂x2
v|+ = ∂x2

v|− = ϕ2,w on Γ2,

∂v

∂ν
= 0 on ∂Ω,

lim
|x|→+∞

√
|x|
(
∂v

∂r
(x) − ik v(x)

)
= 0.

(4.2)
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Multiplying v in the equation (4.2) by Ge(x, y) and integrating by parts we obtain

v(x) =

2∑

i=1

∫

Γi

Ge(x, y)ϕi,w(y)dσ(y), x ∈ Ωe. (4.3)

The Green formula inside the cavities yields

v(x) = −
∫

Γi

Gi(x, y)ϕi,w(y)dσ(y), x ∈ Ci, i = 1, 2. (4.4)

Taking the difference between the traces of the equations (4.3) and (4.4) on both sides of Γi, we obtain

[v(x)] =

2∑

i=1

∫

Γi

(
Ge(x, y) + δijGi(x, y)

)
ϕi,w(y)dσ(y), x ∈ Γj , j = 1, 2, (4.5)

where [v(x)] = v|+−v|− and δij is th Kronecker’s delta. Now, we fix k = i =
√
−1. Due to the explicit

expression of Ge (equation (2.3)) one can easily check that when k = i, the function v(x) belongs to
H1(Ωe). Thus, multiplying the equation (4.2) by v and integrating over Ωe leads to

∫

Ωe

|∇v(x)|2dx+

∫

Ωe

|v(x)|2dx = −
2∑

i=1

∫

Γi

ϕi,w(x)v|+(x)dσ(x). (4.6)

Similarly, multiplying the equation (4.2) by v and integrating over Ci implies
∫

Ci

|∇v(x)|2dx+

∫

Ci

|v(x)|2dx =

∫

Γi

ϕi,w(x)v|−(x)dσ(x). (4.7)

Adding the equations (4.6) and (4.7) we obtain

∫

Ω

|∇v(x)|2dx+

∫

Ω

|v(x)|2dx = −
2∑

i=1

∫

Γi

ϕi,w(x)[v(x)]dσ(x). (4.8)

Replacing [v(x)] by its expression in (4.5) and rescaling the right hand term in the last equation with
respect to w, we find

∫

Ω

|∇v(x)|2dx+

∫

Ω

|v(x)|2dx = −〈ϕ,Sw(i)ϕ〉.

On the other hand we have (see [17])

C‖ϕ‖2
[ eH−1/2(Γ)]2

= C‖∂x2
v‖2

H−1/2(∂Ωe) ≤
∫

Ωe

|∇v(x)|2dx+

∫

Ωe

|v(x)|2dx,

where C > 0 is a constant independent of w. Combining the last two equalities yield

−〈ϕ,Sw(i)ϕ〉 ≥ C‖ϕ‖2
[ eH−1/2(Γ)]2

. (4.9)

Since ϕ ∈ [H̃
−1/2
0 (Γ)]2, Lemma 3.2 implies

Sw(i)ϕ→ Ŝϕ, as w → 0.

Taking the limit of the equation (4.9) as w tends to zero we obtain the desired result.
�

Lemma 4.4. Let T : [H̃−1/2(Γ)]2 × R
2 → [H1/2(Γ)]2 × R

2 be the integral operator defined by

T (ψ, a) :=
(
Ŝψ − a,

∫

Γ

ψ(x)dx
)
.

Then, T is invertible.

Proof. Since Ŝ is Fredholm of index zero T is also a Fredholm operator with zero index. Thus, we

only need to prove injectivity. In fact, if Ŝψ − a = 0 and
∫
Γ
ψ(x)dx = 0, then 〈ψ, Ŝψ〉 = 0. The

inequality (4.1) implies that ψ = 0 and consequently a = 0. Thus T is invertible. �
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Let ψe = (ψ1, ψ2) and ae = (a1, a2) be the unique solution to the following system

T (ψe, ae) = (0, e1),

Let ψ̃e = (ψ2(−x), ψ1(−x)) and ãe = (a2, a1). By taking into account the symmetries of the kernel

of Ŝ we obtain

T (ψ̃e, ãe) = (0, e2).

Theorem 4.5. Let δ1 be a fixed real constant such that δ1 6= −a1 ± a2. Then, S is invertible from

[H̃−1/2(Γ)]2 to [H1/2(Γ)]2.

Proof. It follows from the definition of Ŝ that S = δ1

(
〈., e1〉
〈., e2〉

)
+ Ŝ. Lemma 4.4 implies that S is

of Fredholm type with index zero. Thus, we only need to prove injectivity. Assume that Sϕ = 0 with

ϕ ∈ [H̃−1/2(Γ)]2. Let

ϕ0 := ϕ− 〈ϕ, e1〉ψe − 〈ϕ, e2〉ψ̃e.

Then, ϕ0 belongs to [H̃
−1/2
0 (Γ)]2 and satisfies

Ŝϕ0 = −
(
δ1 + a1 a2

a2 δ1 + a1

)∫

Γ

ϕ(x)dx.

Consequently 〈ϕ0, Ŝϕ0〉 = 0. We deduce from Lemma 4.3 that ϕ0 = 0 and hence ϕ is also zero.
�

Remark 4.6. We assume throughout the paper that δ1 ∈ R is fixed such that δ1 6= −a1 ± a2. The
constant δ2 is immediately determined by the relation δ1 + δ2 = δ, where δ is defined by (3.8). Notice
that the constants δi, i = 1, 2 are independent of w.

Define

Lw(k) := S + Rw(k). (4.10)

By (3.19) and Theorem 4.5, the operator Lw(k) is invertible from [H̃−1/2(Γ)]2 to [H1/2(Γ)]2 for w small
enough (depending only on w0), and it admits the following asymptotic expansion

L−1
w (k) = S−1

+∞∑

m=0

(
−Rw(k)S−1

)m

= S−1 − S−1S1S−1w − S−1T2(k)S−1w2 lnw +
[
S−1S2

1S−2 − S−1S2(k)S−1
]
w2

+2S−1S1T2(k)S−2w3 lnw +
[
2S−1S1S2(k)S−2 − S−1S3

1S−3 − S−1S3(k)S−1
]
w3

+
∑

n ≥ 4

m ≥ 0

Lmn(k)wn(lnw)m, (4.11)

where each Lmn(k) is a compact operator from [H1/2(Γ)]2 to [H̃−1/2(Γ)]2, holomorphic with respect
to k ∈ D+

r0
. Moreover, since ρw(x, y, ·) defined by (3.18), is analytic in D+

r0
for every (x, y) ∈ Γ × Γ,

it follows that the kernel of Lw(k) is analytic with respect to k ∈ D+
r0

, and that the operator valued
function k 7→ Lw(k) is holomorphic in the domain D+

r0
. As a consequence of the Steinberg Theorem

(Theorem 6.3), we deduce that k 7→ L−1
w (k) is holomorphic as well in the same domain D+

r0
.

Remark 4.7. Let φ and ψ ∈ [H̃−1/2(Γ)]2 be such that Lw(k)φ = e1 and Lw(k)ψ = e2. Using the
expression of the kernel of Lw(k) together with the fact that for each n ≥ 1 the function hn(·, k) in
(3.15) is 4-periodic, we infer that φ1(x) = ψ2(−x) and consequently

〈L−1
w (k)e1, e1〉 = 〈φ, e1〉 = 〈φ1, 1〉 = 〈ψ2, 1〉 = 〈ψ, e2〉 = 〈L−1

w (k)e2, e2〉.
Moreover, since Lw(k) is a self adjoint operator from [H̃−1/2(Γ)]2 to [H1/2(Γ)]2, it follows that

〈L−1
w (k)e1, e2〉 = 〈L−1

w (k)e2, e1〉.
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Remark 4.8. We define the matrix

Qw(k) :=




〈e1,L−1
w (k)e1〉 〈e1,L−1

w (k)e2〉

〈e1,L−1
w (k)e2〉 〈e1,L−1

w (k)e1〉


 . (4.12)

By the previous argument, the mapping k 7→ Qw(k) is holomorphic, and using the asymptotic expansion
(4.11) of L−1

w (k), one can also expand Qw(k) as

Qw(k) = Q0 −Q1w−Q12(k)w
2 lnw+Q2(k)w

2 +Q13(k)w
3 lnw+Q3(k)w

3 +
∑

n ≥ 4

m ≥ 0

Qmn(k)wn(lnw)m,

where

Q0 =




〈e1,S−1e1〉 〈e1,S−1e2〉

〈e1,S−1e2〉 〈e1,S−1e1〉


 , Q1 =




〈e1,S−1S1S−1e1〉 〈e1,S−1S1S−1e2〉

〈e1,S−1S1S−1e2〉 〈e1,S−1S1S−1e1〉




and Q12(k), Q2(k), Q13(k), Q3(k) and Qmn(k) (for n ≥ 4, m ≥ 0) are 2 × 2 matrices which are
holomorphic with respect to k.
Let ϕi := S−1ei, i = 1, 2. A straight-forward computation implies that

(
〈ψe,Sϕi〉
〈ψ̃e,Sϕi〉

)
=

(
δ1 + a1 a2

a2 δ1 + a1

)∫

Γ

ϕi(x)dx = ei i = 1, 2.

Note that thanks to Remark 4.6, the matrix on the right hand-side is invertible and we have

〈e1 + e2, ϕi〈 =

∫

Γ

ϕi(x)dx = λ0

(
δ1 + a1 −a2

−a2 δ1 + a1

)
ei i = 1, 2,

where λ0 =
(
(δ1 + a1)

2 − a2
2

)−1
. It follows that

detQ0 = λ0 6= 0,

and thus, the matrix Q0 is invertible. In the sequel, we also consider the following quantities

q±0 :=
〈
e1,S−1(e1 ± e2)

〉
, q±1 :=

〈
e1,S−1S1S−1(e1 ± e2)

〉
,

q±12(k) :=
〈
e1,S−1T2(k)S−1(e1 ± e2)

〉
,

q±2 (k) :=
〈
e1, (S−1S2

1S−2 − S−1S2(k)S−1)(e1 ± e2)
〉
,

q±13(k) := 2
〈
e1,S−1S1T2(k)S−2(e1 ± e2)

〉
,

and

q±3 (k) :=
〈
e1, (2S−1S1S2(k)S−2 − S−1S3

1S−3 − S−1S3(k)S−1)(e1 ± e2)
〉
.

Note that according to the definition of the kernels of the operators S, S1, Sn(k) and Tn(k) for n ≥ 2,
all the above quantities are real numbers except for q±2 (k) and q±3 (k) (see (3.4) and (3.7)).

We now derive an explicit expression for the inverse of Sw(k).

Theorem 4.9. For w ∈ (0, w0) small enough and k ∈ D+
r0

,

S−1
w (k) = L−1

w (k) − L−1
w (k)θw(k)F−1

w (k)

(
〈·,L−1

w (k)e1〉
〈·,L−1

w (k)e2〉

)
, (4.13)

where Fw(k) := I + θw(k)Qw(k), θw(k) is given by (3.2), and Qw(k) is defined in (4.12). Moreover, the
resonances of the open cavities coincide with the poles of the matrix valued function k 7→ F−1

w (k).

Proof. Let φ ∈ [H̃−1/2(Γ)]2 and g ∈ [H1/2(Γ)]2 be such that Sw(k)φ = (Θw(k)+Lw(k))φ = g. Applying
the operator L−1

w (k) on the left we obtain that

φ = L−1
w (k)g − L−1

w (k)θw(k)

(
〈φ, e1〉
〈φ, e2〉

)
. (4.14)
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Figure 1. The function k 7→ α(k)

Taking the scalar product of (4.14) with ei ∈ [H1/2(Γ)]2 (i = 1 and 2) and using the fact that L−1
w (k)

is a symmetric operator, we find
〈
θw(k)

(
〈φ, e1〉
〈φ, e2〉

)
,L−1

w (k)ei

〉
+ 〈φ, ei〉 = 〈g,L−1

w (k)ei〉.

Decomposing the matrix θw(k) on the basis {ei ⊗ ej}i,j=1,2 we obtain the following system

(
I + θw(k)Qw(k)

)( 〈φ, e1〉
〈φ, e2〉

)
= Fw(k)

(
〈φ, e1〉
〈φ, e2〉

)
=

(
〈g,L−1

w (k)e1〉
〈g,L−1

w (k)e2〉

)
.

This system is invertible provided that detFw(k) 6= 0, in which case we deduce
(

〈φ, e1〉
〈φ, e2〉

)
= F−1

w (k)

(
〈g,L−1

w (k)e1〉
〈g,L−1

w (k)e2〉

)
, (4.15)

and the anounced expression (4.13) follows from (4.14) and (4.15). Finally, since the operator valued
function k 7→ L−1

w (k) is holomorphic in D+
r0

, it follows directly from (4.13) that the poles of S−1
w (k)

coincide with those of the matrix valued function k 7→ θw(k)F−1
w (k).

The poles of θw(k) are the set real values
{

nπ
h

}
n∈N

and can not be the resonances of the open cavities.

Since for a real frequency k, the problem (2.1) is well-posed. By a simple calculation one can verify that{
nπ
h

}
n∈N

are indeed not poles of θw(k)F−1
w (k). Consequently, the resonances of the open cavities are

the poles of F−1
w (k). �

Let Z := {kℓ}ℓ∈N be the set of zeros of the function α defined in (3.11), satisfying kℓ < kℓ+1 for all
ℓ ∈ N. Let P := {ℓπ/h}ℓ∈N∗ denote the poles of α. It is easily seen that each zero has multiplicity one.
Moreover, since for each ℓ ∈ N, kℓ is an isolated point, there exists rℓ > 0 such that

(
Z ∪ P

)
∩Drℓ

(kℓ) = {kℓ}.
We also introduce the integer ℓ0 : = max{ℓ ∈ N : |kℓ| < r0}.

We now prove the existence of two resonances close to each kℓ, for every ℓ ∈ N.

Theorem 4.10. Let w ∈ (0, w0) and kℓ ∈ D+
r0

be a fixed zero of the function α. Then, there exist two

resonances of the open cavities k+
ℓ,w and k−ℓ,w inside the disk Drℓ

(kℓ) which are respectively the zeros of
the functions

λ+
w(k) := 1 +

[
α(k)

w
+

2

π
(ln k + lnw) + 2δ − δ1

]
〈e1,L−1

w (k)(e1 + e2)〉, (4.16)
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and

λ−w(k) := 1 +

(
α(k)

w
− δ1

)
〈e1,L−1

w (k)(e1 − e2)〉. (4.17)

Proof. Fix ℓ ∈ N. From the definition of Fw(k), θw(k) and Qw(k), we infer that for every k ∈ ∂Drℓ
(kℓ),

Fw(k) =
1

w

[
α(k)Q0 + Σw(k)

]
,

dFw(k)

dk
=

1

w

[
α′(k)Q0 + Σ′

w(k)
]
,

and

F−1
w (k) =

w

α(k)
Q−1

0

[
I + Υw(k)

]
,

where Σw(k) and Υw(k) are 2 × 2 matrices which are holomorphic on ∂Drℓ
(kℓ) and such that

sup
k∈∂Drℓ

(kℓ)

|Σw(k)| → 0, sup
k∈∂Drℓ

(kℓ)

|Σ′
w(k)| → 0 and sup

k∈∂Drℓ
(kℓ)

|Υw(k)| → 0

as w → 0. Therefore, we see that

F−1
w (k)

dFw(k)

dk
−−−→
w→0

α′(k)

α(k)
I

uniformly with respect to k ∈ ∂Drℓ
(kℓ), and thus

lim
w→0

tr

∫

∂Drℓ
(kℓ)

F−1
w (k)

dFw(k)

dk
dk = 2

∫

∂Drℓ
(kℓ)

α′(k)

α(k)
dk.

On the other hand, by our choice of the radius rℓ, we know that the function α admits exactly one zero
and no pole inside the disk Drℓ

(kℓ). Applying the Residue Theorem (see e.g. [19]) we deduce that

1

2iπ

∫

∂Drℓ
(kℓ)

α′(k)

α(k)
dk = 1,

and thus for w small enough (depending on ℓ) one has

1

2iπ
tr

∫

∂Drℓ
(kℓ)

F−1
w (k)

dFw(k)

dk
dk = 2.

Thus the operator Sw(k) admits two characteristic values k+
ℓ,w and k−ℓ,w inDrℓ

(kℓ). A simple computation

shows that the eigenvalues of Fw(k) are given by the functions λ±w(k) defined in (4.16) and (4.17), and
associated eigenvectors are e1±e2√

2
. Thus, one can write

F−1
w (k) =

(e1 + e2) ⊗ (e1 + e2)

2λ+
w(k)

+
(e1 − e2) ⊗ (e1 − e2)

2λ−w(k)
, (4.18)

and consequently, the poles of F−1
w (k) in Drℓ

(kℓ) are exactly the zeros of λ±w(k) in Drℓ
(kℓ). �

We next establish an asymptotic expansion of the resonances of the open cavities as their width w
tends to zero.

Theorem 4.11. For every ℓ ∈ N, the resonances k±ℓ,w have the following asymptotic expansion:

k+
ℓ,w = kℓ −

2w lnw

πα′(kℓ)
− 1

α′(kℓ)

[
1

q+0
+ 2

(
ln kℓ

π
+ δ − δ1

2

)]
w + o(w),

k−ℓ,w = kℓ −
1 − δ1q

−
0

q−0 α
′(kℓ)

w − 1

(q−0 )2α′(kℓ)

[
(1 − δ1q

−
0 )2α′′(kℓ)

2α′(kℓ)2
+ q−1

]
w2 +

q−12(kℓ)

(q−0 )2α′(kℓ)
w3 lnw

+
1

(q−0 )2α′(kℓ)

[
q−2 (kℓ) −

(q−1 )2

q−0
− q−1 (1 − δ1q

−
0 )α′′(kℓ)

q−0 α
′(kℓ)2

− (1 − δ1q
−
0 )3

2q−0 α
′(kℓ)3

(
α′′(kℓ)

2

α′(kℓ)
− α(3)(kℓ)

3

)]
w3 + o(w3).
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In particular, we have

Im(k+
ℓ,w) =

w

α′(kℓ)
+ o(w),

Im(k−ℓ,w) =
Im(q−2 (kℓ))

(q−0 )2 α′(kℓ)
w3 + o(w3).

Proof. Fix ℓ ∈ N. Since k±ℓ,w is a simple zero of the function λ±w(k) in Drℓ
(kℓ), we deduce from the

Residue Theorem that

k±ℓ,w − kℓ =
1

2iπ

∫

∂Drℓ
(kℓ)

dλ±
w

dk (k)

λ±w(k)
(k − kℓ) dk.

We now derive an asymptotic expansion of the functions
dλ±

w

dk (k)/λ±w(k) in terms of w. We start with
λ+

w(k). From (4.16) and (4.11) we have that for every k ∈ ∂Drℓ
(kℓ),

dλ+
w

dk
(k) =

α′(k)

w

{
q+0 +

[
2q+0

kπα′(k)
− q+1

]
w + ε+w,1(k)

}

and

1

λ+
w(k)

=
w

α(k)q+0

{
1 − 2w lnw

πα(k)
−
[

2

α(k)

(
ln k

π
+ δ − δ1

2

)
+

1

q+0

(
1

α(k)
− q+1

)]
w + ε+w,2(k)

}
,

for some functions ε+w,1(k) and ε+w,2(k) holomorphic on ∂Drℓ
(kℓ), such that

sup
k∈∂Drℓ

(kℓ)

w−1|ε+w,1(k)| −−−→
w→0

0 and sup
k∈∂Drℓ

(kℓ)

w−1|ε+w,2(k)| −−−→
w→0

0.

Hence, we obtain that

dλ+
w

dk (k)

λ+
w(k)

=
α′(k)

α(k)

{
1 − 2w lnw

πα(k)
+

[
2

πkα′(k)
− 2

α(k)

(
ln k

π
+ δ − δ1

2

)
− 1

α(k)q+0

]
w + η+

w (k)

}
, (4.19)

where η+
w (k) is a holomorphic function on ∂Drℓ

(kℓ) such that

sup
k∈∂Drℓ

(kℓ)

w−1|η+
w (k)| −−−→

w→0
0.

Since kℓ is a simple zero of the function α, we deduce from the Residue Theorem that for every holo-
morphic function f in Drℓ

(kℓ),

1

2iπ

∫

∂Drℓ
(kℓ)

(k − kℓ)
α′(k)

α(k)
f(k) dk = 0, (4.20)

and
1

2iπ

∫

∂Drℓ
(kℓ)

(k − kℓ)
α′(k)

α(k)2
f(k) dk =

f(kℓ)

α′(kℓ)
. (4.21)

Thanks to (4.21) and (4.21) we get the asymptotic expansion of k+
ℓ,w multiplying (4.19) by k − kℓ and

integrating over ∂Drℓ
(kℓ). The imaginary part of k+

ℓ,w is obtained using the expression (3.8) of δ.

We now treat the other resonance k−ℓ,w. We will observe a posteriori that the imaginary part of k−ℓ,w

scales (at least) like w3. For this reason, we expand the integrand
dλ−

w

dk (k)/λ−w(k) up to third order.
From (4.17) and (4.11) we have for k ∈ ∂Drℓ

(kℓ),

dλ−w
dk

(k) =
α′(k)q−0

w

{
1 − q−1

q−0
w +

1

q−0

[
q−12(k) +

α(k)

α′(k)

dq−12
dk

(k)

]
w2 lnw

+
1

q−0

[
q−2 (k) +

α(k)

α′(k)

dq−2
dk

(k)

]
w2

+
1

q−0

[
q−13(k) +

α(k)

α′(k)

dq−13
dk

(k) − δ1
α′(k)

dq−12
dk

(k)

]
w3 lnw

+
1

q−0

[
q−3 (k) +

α(k)

α′(k)

dq−3
dk

(k) − δ1
α′(k)

dq−2
dk

(k)

]
w3 + ε−w,1(k)

}
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and

1

λ−w(k)
=

w

α(k)q−0

{
1 − 1

q−0

(
1 − δ1q

−
0

α(k)
− q−1

)
w − q−12(k)

q−0
w2 lnw

+
1

q−0

[
1

q−0

(
1 − δ1q

−
0

α(k)
− q−1

)2

−
(
q−2 (k) +

δ1q
−
1

α(k)

)]
w2

+
1

q−0

[
2q−12(k)

q−0

(
1 − δ1q

−
0

α(k)
− q−1

)
−
(
q−13(k) −

δ1q
−
12

α(k)

)]
w3 lnw

+
1

q−0

[
2

q−0

(
1 − δ1q

−
0

α(k)
− q−1

)(
q−2 (k) +

δ1q
−
1

α(k)

)
− 1

(q−0 )2

(
1 − δ1q

−
0

α(k)
− q−1

)3

−
(
q−3 (k) − δ1q

−
2

α(k)

)]
w3 + ε−w,2(k)

}
,

for some holomorphic functions ε−w,1(k) and ε−w,2(k) defined on ∂Drℓ
(kℓ), such that

sup
k∈∂Drℓ

(kℓ)

w−3|ε−w,1(k)| −−−→
w→0

0 and sup
k∈∂Drℓ

(kℓ)

w−3|ε−w,2(k)| −−−→
w→0

0.

Hence, we obtain that

dλ−
w

dk (k)

λ−w(k)
=

α′(k)

α(k)

{
1 − 1 − δ1q

−
0

q−0 α(k)
w +

α(k)

q−0 α
′(k)

dq−12
dk

(k)w2 lnw

+
1

q+0

[
α(k)

α′(k)

dq−2
dk

(k) − δ1q
−
1

α(k)
+

1 − δ1q
−
0

q−0 α(k)

(
1 − δ1q

−
0

α(k)
− q−1

)]
w2

+
1

q+0

[
q−12(k)

q−0 α(k)
+
α(k)

α′(k)

(
dq−13
dk

(k) − dq−12
dk

(k)
1

q−0

(
1

α(k)
− q−1

))]
w3 lnw

+
1

q−0

[
α(k)

α′(k)

dq−3
dk

(k) − α(k)

α′(k)q−0

dq−2
dk

(k)

(
1

α(k)
− q−1

)
+

q−2 (k)

α(k)q−0
+
δ1(q

−
1 )2

q−0 α(k)

+

(
1 − δ1q

−
0

α(k)
− q−1

)(
q−1 (1 + δ1q

−
0 )

(q−0 )2α(k)
− (1 − δ1q

−
0 )2

(q−0 )2α(k)2

)]
w3 + η−w (k).

}
, (4.22)

where again η−w (k) is a holomorphic function on ∂Drℓ
(kℓ) such that

sup
k∈∂Drℓ

(kℓ)

w−3|η−w (k)| −−−→
w→0

0.

Note that in this expression, the terms which are factors of α′(k)
α(k)3 and α′(k)

α(k)4 are independant of k. Since

kℓ is a simple zero of the function α, we deduce from the Residue Theorem that

1

2iπ

∫

∂Drℓ
(kℓ)

(k − kℓ)
α′(k)

α(k)3
dk = − α′′(kℓ)

2α′(kℓ)3
, (4.23)

and
1

2iπ

∫

∂Drℓ
(kℓ)

(k − kℓ)
α′(k)

α(k)4
dk =

(
α′′(kℓ)

2

2α′(kℓ)5
− α(3)(kℓ)

6α′(kℓ)4

)
. (4.24)

Thanks to (4.23), (4.24) we get the asymptotic expansion of k−ℓ,w multiplying (4.22) by k − kℓ and

integrating over ∂Drℓ
(kℓ). The imaginary part of k−ℓ,w is obtained noticing that the only complex

number in the expression of k−ℓ,w is q−2 (kℓ) (see Remark 4.8).
�

Remark 4.12. Using the definition of q−2 (kℓ) in Remark 4.8 together with (3.4), (3.7), (3.15) and the
fact that S−1 is symmetric we infer that

Im(q−2 (kℓ)) = −〈S−1(e1 − e2),S2(kℓ)S−1(e1 − e2)〉
2

.
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Moreover since the imaginary part of S2(kℓ) is an integral operator with kernel

(x, y) 7→ k2
ℓ

8

(
(x− y)2 (x− y + 2d)2

(x− y − 2d)2 (x− y)2

)
,

we deduce, expanding the squares, that

Im(q−2 (kℓ)) =
k2

ℓ

8

(
〈xe1 + xe2,S−1(e1 − e2)〉 − 2q−0 d

)2

.

Since in view of (3.3) the operator S depends on d, it is possible to prove that the mapping d 7→
〈xe1+xe2,S−1(e1−e2)〉−2q−0 d is analytic in (1,+∞). Hence Im(q−2 (kℓ)) vanishes for at most countably
many isolated points. Thus, either we choose d > 1 so that Im(q−2 (kℓ)) 6= 0 or one can perform a higher
order asymptotic expansion to get a non zero coefficient that multiplies some power of w. Indeed,

there exists n ∈ N (n ≥ 3) such that Im(k−ℓ,w) = c
(n)
ℓ wn + o(wn) with c

(n)
ℓ 6= 0 because, otherwise, the

resonance k−ℓ,w would be purely real. In any case, from the application point of view, what matters is

that Im(k−ℓ ) << Im(k+
ℓ ) as w tends to zero.

To conclude this section, we examine to behavior of the operator S−1
w (k) in two different regions of

the complex domain D+
r0

. We first focus in the resonance zone where the contribution of the singular
part is large with respect to the regular part. Close the resonances, we give an asymptotic expansion of
S−1

w (k) as a Laurent series, as well as an asymptotic expansion in terms of w.

Theorem 4.13. Let k ∈ D+
r0

be a frequency close to the resonances. Then there exists a holomorphic

operator Hw(k) : [H1/2(Γ)]2 → [H̃−1/2(Γ)]2 and finite dimensional operators ∆±
ℓ,w : [H1/2(Γ)]2 →

[H̃−1/2(Γ)]2 (for ℓ = 0, . . . , ℓ0) such that

S−1
w (k) =

ℓ0∑

ℓ=0

∆+
ℓ,w

k − k+
ℓ,w

+

ℓ0∑

ℓ=0

∆−
ℓ,w

k − k−ℓ,w
+ Hw(k), (4.25)

where

∆±
ℓ,w = −

〈
· ,L−1

w

(
k±ℓ,w

)
(e1 ± e2)

〉

2dλ±
w

dk

(
k±ℓ,w

) L−1
w (k±ℓ,w)

[
θw

(
k±ℓ,w

)
(e1 ± e2)

]
. (4.26)

Moreover, the following asymptotic expansions hold:

∆±
ℓ,w =

〈
· ,S−1(e1 ± e2)

〉

2(q±0 )2α′(kℓ)
S−1(e1 ± e2)w + Λ±

ℓ,w,

where Λ±
ℓ,w are compact operators from [H1/2(Γ)]2 to [H̃−1/2(Γ)]2, satisfying

w−1‖Λ±
ℓ,w‖ −−−→

w→0
0.

Proof. According to Theorem 4.2, Proposition 4.9 and Theorem 4.10, it is clear that S−1
w (k) expands

as (4.25) close to the resonances, and that for each ℓ = 0, . . . , ℓ0,

∆±
ℓ,w = lim

k→k±

ℓ,w

(k − k±ℓ,w)S−1
w (k).

Using the expression of S−1
w (k) in (4.13) and the fact that L−1

w (k) and θw(k) are holomorphic in a
neighborhood of k±ℓ,w, we infer that

∆±
ℓ,w = −L−1

w

(
k±ℓ,w

)
θw

(
k±ℓ,w

)
(e1 ± e2)

〈
·,L−1

w

(
k±ℓ,w

)
(e1 ± e2)

〉
lim

k→k±

ℓ,w

(k − k±ℓ,w)

2λ±w(k)

= −

〈
· ,L−1

w

(
k±ℓ,w

)
(e1 ± e2)

〉

2dλ±
w

dk

(
k±ℓ,w

) L−1
w (k±ℓ,w)

[
θw

(
k±ℓ,w

)
(e1 ± e2)

]
,

where we used expression (4.18) for F−1
w (k) in the first equality.
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We now derive the asymptotic expansion of ∆−
ℓ,w. According to (4.11) we have that

L−1
w

(
k±ℓ,w

)
= S−1 − S−1S1S−1w + Λ̃±

ℓ,w, (4.27)

where Λ̃±
ℓ,w is a compact operator from [H1/2(Γ)]2 to [H̃−1/2(Γ)]2 such that

w−1‖Λ̃±
ℓ (w)‖ −−−→

w→0
0.

From (3.2), we have that

θw

(
k−ℓ,w

)
(e1 − e2) =

(
α
(
k−ℓ,w

)

w
− δ1

)
(e1 − e2),

and we use the Taylor expansion of k 7→ α(k) around kℓ together with Theorem 4.11 to obtain

θw

(
k−ℓ,w

)
(e1 − e2) =

1

w

{
− w

q−0
+ o(w)

}
(e1 − e2). (4.28)

Moreover, from (4.17) and (4.27), we deduce that

dλ−w
dk

(
k−ℓ,w

)
=
α′(k−ℓ,w

)
q−0

w

(
1 − q−1

q−0
w + o(w)

)
, (4.29)

and using again a Taylor expansion of k 7→ α′(k) around kℓ together with Theorem 4.11 leads to

dλ−w
dk

(
k−ℓ,w

)
=
α′(kℓ)q

−
0

w

{
1 −

[
q−1
q−0

+
(1 − δ1q

−
0 )a′′(kℓ)

q−0 α
′(kℓ)2

]
w + o(w)

}
. (4.30)

Hence, gathering (4.27), (4.28), (4.29) and (4.30), we obtain the expected asymptotic of ∆−
ℓ,w.

We proceed similarly for ∆+
ℓ,w. Indeed, from (3.2) we have

θw

(
k+

ℓ,w

)
(e1 + e2) =

{
α
(
k+

ℓ,w

)

w
+

2

π

(
ln k+

ℓ,w + lnw
)

+ 2δ − δ1

}
(e1 + e2),

and thus, using a Taylor expansion of k 7→ α(k) and k 7→ ln k around kℓ together with Theorem 4.11,
we see

θw

(
k+

ℓ,w

)
(e1 + e2) =

1

w

{
− w

q+0
+ o(w)

}
(e1 + e2). (4.31)

Moreover, from (4.16), we deduce

dλ+
w

dk

(
k+

ℓ,w

)
=

1

w

{
α′(k+

ℓ,w

)
q+0 +

[
2q+0
k+

ℓ,wπ
− q+1 α

′(k+
ℓ,w

)
]
w + o(w)

}
, (4.32)

and a Taylor expansion of k 7→ α′(k) and k 7→ 1/k around kℓ together with Theorem 4.11 leads to

dλ+
w

dk

(
k+

ℓ,w

)
=

α′(kℓ)q
+
0

w

{
1 − 2α′′(kℓ)

πα′(kℓ)2
w lnw

−
[
α′′(kℓ)

α′(kℓ)2

(
1

q+0
+ 2

(
ln kℓ

π
+ δ − δ1

2

))
− 2

πkℓα′(kℓ)
+
q+1
q+0

]
w + o(w)

}
. (4.33)

Hence, gathering (4.27), (4.31), (4.32) and (4.33), we obtain the expected asymptotic of ∆+
ℓ,w. �

In the non resonance zone, the contribution of the singular part is negligible. The following result
gives an asymptotic expansion of S−1

w (k) in terms of w in this region D+
r0

\ Z, i.e., when α(k) 6= 0.



ENHANCEMENT OF ELECTROMAGNETIC FIELDS 21

Theorem 4.14. If k ∈ D+
r0

\ Z, then

S−1
w (k) = S−1 − S−1(e1 + e2)

2q+0
〈· ,S−1(e1 + e2)〉 −

S−1(e1 − e2)

2q−0
〈· ,S−1(e1 − e2)〉

+

{
− S−1S1S−1 +

[S−1(e1 + e2)

2(q+0 )2

(
1

α(k)
− q+1

)
+

S−1S1S−1(e1 + e2)

2q+0

]
〈· ,S−1(e1 + e2)〉

+

[S−1(e1 − e2)

2(q−0 )2

(
1

α(k)
− q−1

)
+

S−1S1S−1(e1 − e2)

2q−0

]
〈· ,S−1(e1 − e2)〉

+
S−1(e1 + e2)

2q+0
〈· ,S−1S1S−1(e1 + e2)〉 +

S−1(e1 − e2)

2q−0
〈· ,S−1S1S−1(e1 − e2)〉

}
w + ξw(k),

where ξw(k) is a holomorphic operator from [H1/2(Γ)]2 to [H̃−1/2(Γ)]2 such that

w−1‖ξw(k)‖ −−−→
w→0

0 for every k ∈ D+
r0

\ Z.

Proof. Fix k ∈ D+
r0

\ Z. We use the expression (4.13) for S−1
w (k) and (4.18) for F−1

w (k) to prove that

S−1
w (k) = L−1

w (k) − 〈·,L−1
w (k)(e1 − e2)〉

2λ−w(k)
L−1

w (k)θw(k)(e1 − e2)

−〈·,L−1
w (k)(e1 + e2)〉

2λ+
w(k)

L−1
w (k)θw(k)(e1 + e2).

Since α(k) 6= 0, we get that

〈·,L−1
w (k)(e1 − e2)〉

2λ−w(k)
=

w

2α(k)q−0

{
〈·,S−1(e1 − e2)〉 +

[
1

q−0

(
q−1 − 1 − δ1q

−
0

α(k)

)
〈·,S−1(e1 − e2)〉

−〈·,S−1S1S−1(e1 − e2)〉
]
w + ξ−w (k)

}
,

and

〈·,L−1
w (k)(e1 + e2)〉

2λ+
w(k)

=
w

2α(k)q+0

{
〈·,S−1(e1 + e2)〉 −

2

πα(k)
〈·,S−1(e1 + e2)〉w lnw

−
[(

1

q+0

(
1

α(k)
− q+1

)
+

2

α(k)

(
ln k

π
+ δ − δ1

2

))
〈·,S−1(e1 + e2)〉

+〈·,S−1S1S−1(e1 + e2)〉
]
w + ξ+w (k)

}
.

where ξ±w (k) are holomorphic operators from [H1/2(Γ)]2 to [H̃−1/2(Γ)]2 such that

w−1‖ξ±w (k)‖ −−−→
w→0

0 for every k ∈ D+
r0

\ Z.

Formula (3.2) for θw(k) and the asymptotic expansion (4.11) of L−1
w (k) complete the proof of the

theorem. �

5. Asymptotic of the field u

We first derive an asymptotic expansion of the field u(x;w) far from the resonances, i.e., when α(k) 6= 0.
We distinguish the far field from the near field.

Theorem 5.1. Let k ∈ D+
r0

\ Z. Then for every y ∈ Ωe, one has

u(y) = ue(y) +
iue(0)

α(k)
H

(1)
0 (k|y|)w + ρw(y),
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for some function ρw ∈ H1
loc(Ωe) such that w−1ρw → 0 in H1

loc(Ωe). Moreover, if y = (wy1 ± wd,wy2)
for some y1 ∈ Γ and y2 > 0, then

u(wy1 ± wd,wy2) = ue(wy1 ± wd,wy2) −
2ue(0)

πα(k)
w lnw

−2ue(0)

πα(k)

[
δ +

ln k

π
+

ln |(y1 ± d, y2)|
π

]
w + ρw(y1, y2),

where ρw ∈ H1(B+
1 ) satisfies w−1ρw → 0 in H1(B+

1 ).

Proof. Let y ∈ Ωe be fixed. One has

Ge(wt, 0; y) = − i

2
H

(1)
0 (k|y − (wt, 0)|)

= − i

2
H

(1)
0 (k|y|) −

+∞∑

n=1

ηn(y)(wt)n, (5.1)

uniformly with respect to t ∈ [−4, 4] and the functions ηn(y) are in C∞(Ωe). Using (2.4) we deduce

ue(wt, 0) =

∫

Ωe

Ge(wt, 0; z)f(z) dz

= − i

2

∫

Ωe

H
(1)
0 (k|z|)f(z) dz −

+∞∑

n=1

ηn(wt)n, (5.2)

uniformly with respect to t ∈ [−4, 4], where the coefficients ηn are defined by

ηn :=

∫

Ωe

ηn(y)f(y) dy.

Using (2.7) together with the integral equations (2.9)-(2.10), and after a change of variables we get

u(y) = ue(y) −
〈(

Ge(w · −wd, 0; y)
Ge(w · +wd, 0; y)

)
,S−1

w (k)

(
ue(w · −wd, 0)
ue(w · +wd, 0)

)〉
. (5.3)

From Theorem 4.13 we have

S−1
w (k)(e1 ± e2) =

S−1(e1 ± e2)

q±0 α(k)
w + o(w) in [H̃−1/2(Γ)]2,

and thus the integral equations (2.9) and (2.10) imply

S−1
w (k)

(
ue(w · −wd, 0)
ue(w · +wd, 0)

)
= − i

2

(∫

Ωe

H
(1)
0 (k|z|)f(z) dz

) S−1(e1 + e2)

q+0 α(k)
w

−η1S−1(xe1 + xe2)w

+η1

S−1(e1 + e2)

2q+0
〈(xe1 + xe2),S−1(e1 + e2)〉w

+η1

S−1(e1 − e2)

2q−0
〈(xe1 + xe2),S−1(e1 − e2)〉w + o(w) (5.4)

in [H̃−1/2(Γ)]2. We now use (5.1) together with (5.4) to deduce

u(y) = ue(y)

+

(
− i

2
H

(1)
0 (k|y|) +O(w)

){
i

2

(∫

Ωe

H
(1)
0 (k|z|)f(z) dz

) 〈S−1(e1 + e2), e1 + e2〉
q+0 α(k)

w

+η1〈S−1(xe1 + xe2), e1 + e2〉w

−η1

〈S−1(e1 + e2), e1 + e2〉
2q+0

〈(xe1 + xe2),S−1(e1 + e2)〉w

−η1

〈S−1(e1 − e2), e1 + e2〉
2q−0

〈(xe1 + xe2),S−1(e1 − e2)〉w + o(w)

}
.
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The terms O(w) and o(w) are uniform in C1
loc(Ωe). In view of the symmetry of S−1, we have that

〈S−1(e1 − e2), e1 + e2〉 = 0, and consequently,

u(y) = ue(y) +
H

(1)
0 (k|y|)
2α(k)

(∫

Ωe

H
(1)
0 (k|z|)f(z) dz

)
w + ρw(y), (5.5)

where w−1ρw(y) → 0 in H1
loc(Ωe).

We now treat the asymptotic of the field u close to the cavities. By (3.6), we know that for each
y ∈ Ωe, we have that

H
(1)
0 (k|(wy1 ± wd,wy2)|) =

2i

π
lnw + 2i

[
δ +

ln k

π
+

ln |(y1 ± d, y2)|
π

]
+ o(w). (5.6)

This estimate holds pointwise and in H1(B+
1 ) as well. Then, we substitute the Green function Ge(w ·

−wd, 0; y) by its asymptotic expansion (5.6) in (5.3) to complete the proof.
�

Remark 5.2. When the frequency k ∈ D+
r0
\Z is far from the resonances, the field u behaves in a similar

way to the case of a single cavity, studied in [8]. The asymptotic response is that of two independent
cavities without interaction.

Remark 5.3. By (5.1), it is clear that η1(y) = − i
2Dx1

[
H

(1)
0 (k|y|)

]
in the sense of distributions. More-

over, since the Hankel function H
(1)
0 has a logarithmic singularity at zero, the map y 7→ H

(1)
0 (k|y|) be-

longs to W 1,p
loc (Ωe) for any p ∈ [1, 2). Hence, if f is more regular, e.g. f ∈W 1,p′

(Ωe), with p′ = p/(p−1),

with compact support in Ωe, then ue is more regular as well (in particular ue ∈ H3
loc(Ωe)) and ∂ue

∂x1
is a

continuous function. It can be extended by continuity at the origin by setting

∂ue

∂x1
(0) := −

∫

Ωe

η1(z)f(z) dz,

We now derive an asymptotic expansion of the field u close to the resonances k±ℓ,w, distinguishing
again two regions of the plane: the far and the near fields.

Theorem 5.4. Let k ∈ D+
r0

be a frequency close to the resonances.
1) Far field: for every y ∈ Ωe,

u(y) = ue(y) +

ℓ0∑

ℓ=0

κ+
ℓ,w(y)

k − k+
ℓ,w

+

ℓ0∑

ℓ=0

κ−ℓ,w(y)

k − k−ℓ,w
+ Uw(k, y), (5.7)

where k 7→ Uw(k, y) is a holomorphic function in D+
r0

for every y ∈ Ωe, and Uw(k, ·) ∈ H1
loc(Ωe) for

every k ∈ D+
r0

. Moreover,

κ+
ℓ,w(y) =

iue(0)

α′(kℓ)
H

(1)
0 (kℓ|y|)w + ρ+

ℓ,w(y),

and

κ−ℓ,w(y) =
i

4α′(kℓ)

∂ue

∂x1
(0)Dx1

[H
(1)
0 (kℓ|y|)]

( 〈xe1 + xe2,S−1(e1 − e2)〉
q−0

− 2d

)2

w3 + ρ−ℓ,w(y),

for some ρ±ℓ,w(y) ∈ H1
loc(Ωe) such that w−1ρ+

ℓ,w → 0 and w−3ρ−ℓ,w → 0 in H1
loc(Ωe).

2) Near field: if further y = (wy1 ±wd,wy2) for some y1 ∈ Γ and y2 > 0, the formula (5.7) is still valid
and we have

κ+
ℓ,w(wy1 ± wd,wy2) = − 2ue(0)

πα′(kℓ)
w lnw

−2ue(0)

α′(kℓ)

(
δ +

ln kℓ

π
+

ln |(y1 ± d, y2)|
π

)
w + ρ+

ℓ,w(y1, y2),
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κ−ℓ,w(wy1 ± wd,wy2)

= −〈Γ±(·, y1, y2),S−1(e1 − e2)〉
2πq−0 α

′(kℓ)

∂ue

∂x1
(0)

(
2d− 〈xe2 + xe2,S−1(e1 − e2)〉

q−0

)
w2

+ρ−ℓ,w(y1, y2),

where Γ± are defined in (5.8)-(5.9), and ρ±ℓ,w ∈ H1(B+
1 ) satisfy w−1ρ+

ℓ,w → 0 and w−3ρ−ℓ,w → 0 in

H1(B+
1 ).

Proof. From the integral equation (2.7) and Theorem 4.13, we deduce that expression (5.7) holds with

κ±ℓ,w(y) :=

〈(
Ge(w · −wd, 0; y)
Ge(w · +wd, 0; y)

)
,∆±

ℓ,w

(
ue(w · −wd, 0)
ue(w · +wd, 0)

)〉
,

and

Uw(, k, y) :=

〈(
Ge(w · −wd, 0; y)
Ge(w · +wd, 0; y)

)
,Hw(k)

(
ue(w · −wd, 0)
ue(w · +wd, 0)

)〉
.

From (5.1) and (5.2) together with the asymptotic of ∆+
ℓ,w, we obtain the expected expression for

κ+
ℓ,w(y). Using the asymptotic expansion of H

(1)
0 (k|(wy1 ±wd,wy2)|) in (5.6) we derive the asymptotic

of κ+
ℓ,w(wy1 ± wd,wy2).

We now treat κ−ℓ,w(y). By (5.1) and (5.2), one has for every y ∈ ΩE ,
(
Ge(w · −wd, 0; y)
Ge(w · +wd, 0; y)

)
= − i

2
H

(1)
0 (k|y|)(e1 + e2)

+
[
− η1(y)(xe1 + xe2) + η1(y)d(e1 − e2)

]
w

+
[
2η2(y)d(xe1 − xe2) − η2(y)(x

2e1 + x2e2) − η2(y)d
2(e1 + e2)

]
w2

+o(w2) in [H1/2(Γ)]2,

and (
ue(w · −wd, 0)
ue(w · +wd, 0)

)
= − i

2

(∫

Ωe

H
(1)
0 (k|z|)f(z) dz

)
(e1 + e2)

+
[
− η1(xe1 + xe2) + η1d(e1 − e2)

]
w

+
[
2η2d(xe1 − xe2) − η2(x

2e1 + x2e2) − η2d
2(e1 + e2)

]
w2

+o(w2) in [H1/2(Γ)]2.

Using the symmetric structure of the problem (see Remark 4.7) we infer that




〈e1 + e2,L−1
w (k−ℓ,w)(e1 − e2)〉 = 0,

〈xe1 − xe2,L−1
w (k−ℓ,w)(e1 − e2)〉 = 0,

〈x2e1 + x2e2,L−1
w (k−ℓ,w)(e1 − e2)〉 = 0,

hence by (4.26),
∆−

ℓ,w(e1 + e2) = ∆−
ℓ,w(xe1 − xe2) = ∆−

ℓ,w(x2e1 + x2e2) = 0.

Since

L−1
w (k−ℓ,w)θw(k−ℓ,w)(e1 − e2) =

(
α(k−ℓ,w)

w
− δ1

)
L−1

w (k−ℓ,w)(e1 − e2).

Using again (4.26) we obtain

〈e1 + e2,∆
−
ℓ,w(e1 − e2)〉 = 〈xe1 − xe2,∆

−
ℓ,w(e1 − e2)〉

= 〈x2e1 + x2e2,∆
−
ℓ,w(e1 − e2)〉 = 0,

and

〈e1 + e2,∆
−
ℓ,w(xe1 + xe2)〉 = 〈xe1 − xe2,∆

−
ℓ,w(xe1 + xe2)〉

= 〈x2e1 + x2e2,∆
−
ℓ,w(xe1 + xe2)〉 = 0.
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Consequently, since ∆−
ℓ,w is of order w (see Theorem 4.13) we have

κ−ℓ,w(y) = η1 η1(y)
〈
−(xe1 + xe2) + d(e1 − e2),∆

−
ℓ,w

[
− (xe1 + xe2) + d(e1 − e2)

]〉
w2 + o(w3)

and we obtain the desired result using the asymptotic expansion of ∆−
ℓ,w in Theorem 4.13 together with

Remark 5.3. Using now the asymptotic expansion

Ge(wt, 0;wy1 ± wd,wy2) =
lnw

π
+

[
δ +

ln k

π
+

ln |(y1 ± d− t, y2)|
π

]
+ o(w),

and defining

Γ−(x1, y1, y2) :=

(
ln |(y1 − x1, y2)|
ln |(y1 − x1 + 2d, y2)|

)
, (5.8)

and

Γ+(x1, y1, y2) :=

(
ln |(y1 − x1, y2)|
ln |(y1 − x1 − 2d, y2)|

)
, (5.9)

we derive the asymptotic of κ−ℓ,w(wy1 ± wd,wy2).

Finally we argue exactly as in the proof of Theorem 5.1 to get the asymptotics in H1
loc(Ωe) for the far

field, and in H1(B+
1 ) for the near field. �

Remark 5.5. Applying the Helmholtz operator ∆ + k2 to κ±ℓ,w implies, according to Remark 5.3, that
{

(∆ + k2)κ+
ℓ,w = c+ℓ wδ0,

(∆ + k2)κ−ℓ,w = c−ℓ w
3Dx1

δ0,

in (C∞
c (Ωe))

′
, where c±ℓ are the constants defined by

c+ℓ := −2ue(0)

α′(kℓ)
,

and

c−ℓ := − 1

2α′(kℓ)

∂ue

∂x1
(0)

(
2d− 〈xe2 + xe2,S−1(e1 − e2)〉

q−0

)2

.

These equations essentially say that at the frequency k+
ℓ,w, the spatial singularity sensed in the far field

is that of a Dirac mass, which is the macroscopic manifestation of a dipole placed on a metallic plane.
On the other hand, when the other resonance k−ℓ,w is excited, the spatial singularity is the derivative in
the x1-direction of a Dirac mass; this is exactly the asymptotic response of a quadripole placed on the
metallic plane.

Remark 5.6. The asymptotic of the field close to the resonances shows that the field u concentrates
on the top of the cavities as their width w shrinks. Indeed,using Theorems 4.11 and 5.4, we infer that
when k is close to k+

ℓ,w, then

κ+
ℓ,w(wy1 ± wd,wy2)

k − k+
ℓ,w

=
2ue(0)

π
lnw

+2ue(0)

(
δ +

ln kℓ

π
+

ln |(y1 ± d, y2)|
π

)
+ o(1),

while if k is close to k−ℓ,w, then

κ−ℓ,w(wy1 ± wd,wy2)

k − k−ℓ,w

=
4

πw

〈Γ±(·, y1, y2),S−1(e1 − e2)〉(
2dq−0 − 〈xe2 + xe2,S−1(e1 − e2)〉

) ∂ue

∂x1
(0) + o(1).

In both cases, we can see that the field blows up as w → 0. The concentration pattern scales like lnw
close to the resonance k+

ℓ,w, and like 1/w close to the resonance k−ℓ,w.
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Remark 5.7. Thanks to the expressions of the Green functions Gi, it is possible to prove by arguments
simlar to those used in the proof of Theorem 5.4 and Remarks 5.5 and 5.6, that close to the resonances,
the field u is asymptotically very large inside each cavity. Indeed, we can use the representation (2.8)
to show (as in the proof of (5.1) ) that for every y ∈ C1 ∪ C2,

u(y) =

ℓ0∑

ℓ=0

γ+
ℓ,w(y)

k − k+
ℓ,w

+

ℓ0∑

ℓ=0

γ−ℓ,w(y)

k − k−ℓ,w
+ V w(k, y),

where k 7→ V w(k, y) is a holomorphic function for all y ∈ C1 ∪ C2, and V w(k, ·) ∈ H1(C1 ∪ C2) for all
k ∈ D+

r0
. Moreover, the functions γ±ℓ,w admit the following expansions:

γ+
ℓ,w(y) :=

2ue(0)

hα′(kℓ)

+∞∑

n=0

(−1)n cos
(

nπ
h (y2 + h)

)

k2
ℓ −

(
nπ
h

)2 +O(w lnw) for every y ∈ C1 ∪ C2,

while

γ−ℓ,w(y) := − w

hα′(kℓ)

( 〈xe1 + xe2,S−1(e1 − e2)〉
q−0

− 2d

) +∞∑

n=0

(−1)n cos
(

nπ
h (y2 + h)

)

k2
ℓ −

(
nπ
h

)2
∂ue

∂x1
(0) +O(w2)

if y ∈ C1, and

γ−ℓ,w(y) :=
w

hα′(kℓ)

( 〈xe1 + xe2,S−1(e1 − e2)〉
q−0

− 2d

) +∞∑

n=0

(−1)n cos
(

nπ
h (y2 + h)

)

k2
ℓ −

(
nπ
h

)2
∂ue

∂x1
(0) +O(w2)

if y ∈ C2. Thus, using again Theorem 4.11, we infer that at a frequency k close to k+
ℓ,w, one has

γ+
ℓ,w(y)

k − k+
ℓ,w

=
a+

ℓ (y)

w

(
1 +O(w lnw)

)
for every y ∈ C1 ∪ C2,

while at a frequency k close to k−ℓ,w,

γ−ℓ,w(y)

k − k−ℓ,w
=





a−ℓ (y)

w2

(
1 +O(w)

)
if y ∈ C1,

−a
−
ℓ (y)

w2

(
1 +O(w)

)
if y ∈ C2,

where a±ℓ (y) are functions defined by

a+
ℓ (y) := −2ue(0)

h

+∞∑

n=0

(−1)n cos
(

nπ
h (y2 + h)

)

k2
ℓ −

(
nπ
h

)2 ,

and

a−ℓ (y) :=
4

k2
ℓh

∂ue

∂x1
(0)

( 〈xe1 + xe2,S−1(e1 − e2)〉
q−0

− 2d

)−1 +∞∑

n=0

(−1)n cos
(

nπ
h (y2 + h)

)

k2
ℓ −

(
nπ
h

)2 .

The expressions highlight the symmetric or antisymmetric nature of the modes and the field en-
hancement inside the cavities. Indeed, when the resonance k+

ℓ,w is activated, the field u has the same
sign in both cavities: this is the symmetrical mode. In that case, the amplification factor scales like
1/w, which is in agreement with [7]. On the other hand, the field u has opposite signs in the cavities
when the resonance k−ℓ,w is excited, and the amplification factor, much larger, scales like 1/w2: this is
the anti-symmetrical mode. Finally, we remark that the field is independent of y1 inside the cavities,
and that it increases as y2 tends to the top of the cavities.

6. Appendix

Useful formulae. The following formulae can be found, e.g., in [1].

• H
(1)
0 (z) =

{
1 +

2i

π

[
ln
(z

2

)
+ γ
]}(+∞∑

n=0

(−z2/4)n

(n!)2

)
− 2i

π

+∞∑

n=1

(
n∑

m=1

1

m

)
(−z2/4)n

(n!)2
, where γ is

the Euler constant;



ENHANCEMENT OF ELECTROMAGNETIC FIELDS 27

•
+∞∑

n=0

1

r2 − n2
=

1

2r2
+

π

2r
cot(πr);

•
+∞∑

n=1

cos(nθ)

n
= − ln 2 − ln

∣∣∣∣ sin
(
θ

2

)∣∣∣∣ ;

•
+∞∑

n=1

cos(nθ)

n2
=
θ2

4
− π|θ|

4
+
π2

6
.

Generalized Rouché theorem. In this section, we review the main results of [12]. Let G and H be
two Banach spaces and let L(G,H) be the set of all bounded operators from G to H. Let U be an open
set in C. Suppose that A(k) is an operator-valued function from U to L(G,H); k0 is a characteristic
value of A(k) if

• A(k) is holomorphic in some neighborhood of k0, except possibly for k0;
• there exists a holomorphic function φ(k), from a neighborhood of k0 to G, such that φ(k0) 6= 0,
A(k)φ(k) is holomorphic at k0, and A(k0)φ(k0) = 0.

The function φ(k) in the above definition is called a root function of A(k) associated to k0, and φ(k0)
is called an eigenvector. The closure of the space of eigenvectors corresponding to k0 is denoted by
KerA(k0).

Let φ0 be an eigenvector corresponding to k0. The rank of φ0 is the largest integer m such that
there exists a complex neighborhood V (k0) of k0, and two holomorphic functions φ : V (k0) → G and
ψ : V (k0) → H satisfying

A(k)φ(k) = (k − k0)
mψ(k), φ(k0) = φ0 and ψ(k0) 6= 0.

Suppose that n = dimKerA(k0) < +∞ and the ranks of all vectors in KerA(k0) are finite. A system

of eigenvectors φj
0 (j = 1, . . . , n) is called a canonical system of eigenvectors of A(k0) if the rank of φj

0

is the maximum of the ranks of all eigenvectors in some direct complement in KerA(k0) of the linear

space spanned by the vectors φ1
0, . . . , φ

j−1
0 . Then we define the null multiplicity of the characteristic

value of k0 to be the sum of the ranks of φj
0 (j = 1, . . . , n), which is denoted by N(A(k0)).

Suppose that A−1(k) exists and is holomorphic in some neighborhood of k0, except possibly at this
point itself. Then the number

M(A(k0)) := N(A(k0)) −N(A−1(k0))

is called the multiplicity of the characteristic value k0.
Suppose that the Laurent expansion of A(k) at k0 is given by

A(k) =
∑

j≥−s

(k − k0)
jAj .

If the operators Aj (j = −s, . . . ,−1) are finite dimensional, then A(k) is called finitely meromorphic at
k0. If the operator A0 is a Fredholm one, then A(k) is said to be of Fredholm type at k0.

If A(k) is holomorphic and invertible at k0, then k0 is called a regular point of A(k). A point k0 is
called a normal point of A(k) if A(k) is finitely meromorphic and of Fredholm type at k0, and if there
exists some neighborhood V (k0) of k0 in which all the points except k0 are regular points of A(k).

Lemma 6.1. Every normal point k0 of A(k) is a normal point of A−1(k).

An operator-valued function A(k) which is finitely meromorphic and of Fredholm type in V (k0) and

continuous on ∂V (k0) is called normal with respect to ∂V (k0) provided it is invertible in V (k0), except
for a finite number of points of V (k0) which are normal points of A(k).

Suppose that A(k) is normal with respect to ∂V (k0) and let ki (i = 1, . . . , σ) be its characteristic
values and poles lying in V (k0), we set

M(A(k), ∂V (k0)) :=

σ∑

i=1

M(A(k)).

The generalization of Rouché’s Theorem is stated below:
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Theorem 6.2. Let A(k) be an operator-valued function which is normal with respect to ∂V (k0). If
S(k) is an operator-valued function which is finitely meromorphic in V (k0), continuous at ∂V (k0) and
satisfying

‖A−1(k)S(k)‖L(G,G) < 1 for k ∈ ∂V (k0),

then A(k) + S(k) is normal with respect to ∂V (k0) as well, and

M(A(k), ∂V (k0)) = M(A(k) + S(k), ∂V (k0)).

The generalization of Steinberg’s Theorem is given by

Theorem 6.3. Suppose that A(k) is an operator-valued function which is finitely meromorphic and of
Fredholm type in V (k0). If A(k) is invertible at one point of V (k0), then A(k) has a bounded inverse
for all k ∈ V (k0), except possibly for certain isolated points.

We finally state a generalization of Rouché’s Theorem which is also called generalized argument
principle.

Theorem 6.4. Suppose that the operator-valued function A(k) is normal with respect to ∂V (k0). Let

f(k) be a scalar function which is holomorphic in V (k0) and continuous in V (k0). Then we have

1

2iπ
tr

∫

∂V (k0)

f(k)A−1(k)
dA(k)

dk
dk =

σ∑

j=1

M(A(kj)f(kj)),

where kj (j = 1, . . . , σ) are all the poles or characteristic values of A(k) in V (k0).

Here tr denotes the trace of the operator which is the sum of all its nonzero eigenvalues. We mention
the following property of the trace

tr

∫

∂V (k0)

A(k)B(k) dk = tr

∫

∂V (k0)

B(k)A(k) dk,

where A(k) and B(k) are operator-valued functions which are finitely meromorphic in V (k0), and V (k0)
contains no pole of A(k) and B(k) other than k0.
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