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Abstract

We consider the Item Pricing problem for revenue maximization in the limited supply
setting, where a single seller with n items caters tom buyers with unknown subadditive valuation
functions who arrive in a sequence. The seller sets the prices on individual items, and the price of
a bundle of items is the sum of the prices of the individual items in the bundle. Each buyer buys
a subset of yet unsold items so as to maximize her utility, defined as her valuation of the subset
minus the price of the subset. Our goal is to design pricing strategies, possibly randomized,
that guarantee an expected revenue that is within a small factor α of the maximum possible
social welfare – an upper bound on the maximum revenue that can be generated by any pricing
mechanism.

Much of the earlier work has focused on the unlimited supply setting, where selling items to
some buyer does not affect their availability to the future buyers. Recently, Balcan et. al. [4]
studied the limited supply setting, giving a simple randomized algorithm that assigns a single
randomly chosen price to all items (uniform pricing strategy) in the beginning, and never changes

it (static pricing strategy). They showed that this strategy guarantees an 2O(
√

logn log logn)-

approximation, and moreover, no static uniform pricing strategy can give better than 2Ω(log1/4 n)-
approximation.

We relax the space of strategies considered in two directions: we consider dynamic uniform
strategies, which can change the price upon the arrival of each buyer but the price on all unsold
items is the same at all times, and static non-uniform strategies, which can assign different prices
to different items but can never change it after setting it initially. Dynamic strategies can be
especially useful in online stores, where it is easy to show different prices to different buyers. We
design dynamic and non-uniform pricing strategies that give a poly-logarithmic approximation to
maximum revenue, significantly improving upon the previous 2O(

√

logn log logn)-approximation.
We also give a strengthened lower bound of 2Ω(

√

logn) for approximation factor achieved by
any static uniform pricing strategy. Thus in the limited supply setting, our results highlight a
strong separation between the power of dynamic and non-uniform pricing versus static uniform
pricing. To our knowledge, this is the first non-trivial analysis of dynamic and non-uniform
pricing schemes for revenue maximization.

http://arxiv.org/abs/0905.3191v1


1 Introduction

We consider the following Item Pricing problem. Consider a finite set of items owned by a single
seller, who wishes to sell them to multiple prospective buyers. The seller can price each item
individually, and the price of a set of items is simply the sum of the prices of the individual items
in the set. The buyers arrive in a sequence, and each buyer has her own valuation function v(S),
defined on every subset S of items. We assume that the valuation functions to be subadditive, which
means that v(S) + v(T ) ≥ v(S ∪ T ) for any pair of subsets S, T of items. For some results, we
shall assume the valuations to be XOS, that is, they can be expressed as the maximum of several
additive functions.

If a buyer buys a subset S of items S, her utility is defined as her valuation v(S) of the set minus
the price of the set S. Moreover, we assume the limited supply setting where a buyer can buy only
yet unsold items. We assume that every buyer is selfish and rational, and thus always buy a subset
of items that maximizes her utility. The strategy used by the seller in choosing the prices of the
items is allowed to be randomized, and is referred to as a pricing strategy. The revenue obtained by
the seller is the sum of the amounts paid by each buyer, and our goal is to design pricing strategies
that maximize the expected revenue of the seller. This problem is made difficult by the fact that the
seller has no knowledge of the valuation functions of the buyers, apart from the promise that they
are subadditive. This is, for instance, in contrast to the Bayesian mechanism designs for revenue
maximization, which assume that the valuation functions come from a known prior distribution.
Optimal mechanisms, such as that given by Myerson [18], exist under this knowledge.

Pricing Strategies: A uniform pricing strategy is one where at any point of time, all unsold items
are assigned the same price. The seller may set prices on the items initially and never change them,
so that cost of an (unsold) item is the same for every buyer. We call such a strategy to be a static
pricing strategy. Static pricing is the most widely applied pricing scheme till date. Alternatively,
a seller may set fresh prices on the arrival of each buyer (without knowing the buyer’s valuation
function) – we shall call this a dynamic pricing strategy. Dynamic strategies have become more
widely applicable with the introduction of online stores, since it is quite easy for online stores to
show different prices to different customers. However, a dynamic strategy in which the price of an
item fluctuates a lot may not be desirable in some applications. So we introduce an interesting
subclass of dynamic strategies, called dynamic monotone pricing strategies, where the price of an
item can only decrease with time.

Social Welfare: An allocation of items involves distributing the items among the buyers, and
the social welfare of an allocation the sum of the buyers’ valuations for the items received by
each of them. We denote the maximum social welfare, achieved by any allocation, by OPT. We
measure the performance of a pricing strategy as the ratio of the maximum social welfare against
the smallest expected revenue of the strategy, for any adversarially chosen ordering of the buyers.
(Some of our results, where it will be explicitly stated, shall consider expected revenue under the
assumption that the order in which buyers arrive is uniformly random.) If this ratio is at most α
on any instance (where α can depend on the size of the instance), we say that the strategy achieves
an α-approximation. Note that the maximum social welfare is an upper bound on the revenue the
seller can obtain under any circumstance. In fact, there exists simple instances with n items and a
single buyer where the maximum social welfare is log n, but the revenue can never exceed 1 for any
pricing function [4]. Thus we are comparing the performance of our strategies against a bar that
is significantly higher than the optimal strategy, and we can never hope to achieve anything better
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than a logarithmic approximation. Our general goal is to design pricing strategies that achieve
polylogarithmic approximation.

Related Work: The Item Pricing problem is closely related to the extensive body of literature
in combinatorial auctions [7], which is the setting as described above, except that the buyers need
not be arriving in a sequence but instead may place simultaneous bids on the items. A lot of
recent literature has focused on social welfare maximization. This includes efficient approximation
algorithms for computing maximum social welfare given oracle access to the valuation functions
(eg. [11]), as well as on efficiently computable mechanisms that maximize social welfare and are
truthful (eg. [17, 16, 10, 9]). For the first problem, Feige [11] gave a constant approximation
for subadditive buyers, while for the second problem, Dobzinski et. al. [10, 9] gave logarithmic
approximation when buyers have XOS valuations and subadditive valuations respectively. The
mechanism achieving this approximation is in fact a static uniform pricing strategy.

A fair amount of research has focused on algorithms and truthful mechanisms for revenue
maximization as well, but it has mostly considered the unlimited supply setting [15], where unlimited
number of copies of each item is available to the seller. So one buyer receiving an item does not stop
another buyer receiving the same item. Thus, the order in which buyers arrive has no effect on the
performance of the mechanism, and in fact, the buyers can be handled independently. Some research
has been directed towards developing new truthful mechanisms that maximize revenue [3, 12, 13],
while others have focused on designing strategies for item pricing that maximizes revenue. The item
pricing problem has received special attention because it is and has been the most widely applied
mechanism for a seller wishing to sell items to potential buyers. All the research has focused only
on designing static strategies (eg. [14, 2, 1, 6, 8]), and moreover, some of them have restricted
their attention to finding envy-free pricing, which implies that the buyers come simultaneously,
and the pricing must ensure that two buyers does not seek the same item. Moreover, most of
these works assume severely restricted classes of valuation functions. For example, [14, 2] assume
that all buyers are single-minded bidders. Their strategies were not only static but also uniform.
Unsurprisingly, finding envy-free pricing is hard [8], and their results do not extend to more general
buyer valuations such as XOS or subadditive. In all this work, the performance of a strategy has
been measured as the ratio of the maximum social welfare to the expected revenue obtained.

More recently, Balcan, Blum and Mansour [4] considered static pricing strategies with the
objective of revenue maximization, in the limited supply setting, with subadditive buyer valuations.
In the unlimited supply setting, they designed a pricing strategy that achieve revenue which is
logarithmic approximation to the maximum social welfare even for general valuations. The strategy,
again, was a uniform strategy. This result was also proved independently in [5]. However, in the
limited supply setting, they could only get a 2O(

√
logn log logn) factor approximation using a static

uniform strategy. Crucially, they ruled out the existence of static uniform strategies that achieve
anything better than a 2Ω((log n)1/4) approximation, even if the buyer valuations are XOS, and the
ordering of buyers is assumed to be chosen uniformly at random. Thus their result distinguished
the limited and unlimited supply settings. This impossibility of getting a good (polylogarithmic)
approximation is a consequence of being restricted to static uniform strategies, and it remains
impossible even if the seller knew the buyer valuations, and had unlimited computational power.
Further, almost all mechanisms in these related problems have only used a single price for all
items. It is, therefore, natural to consider dropping one of these restrictions, namely, look at
dynamic uniform strategies and static non-uniform strategies, both of which use multiple prices,
and attempt to find better guarantees on the revenue.
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Type of Pricing

Strategy

Subadditive buyer valuations ℓ-XOS buyer valuations

Algorithm a Lower Bound b Algorithm a Lower Bound b

Dynamic Uni-
form Pricing

O(log2 n)
[Thm. 4.1] c

Ω

(

(

logn
log logn

)2
)

[Thm. 4.2]

O(log2 n)
[Thm. 4.1] c

Ω

(

(

logn
log logn

)2
)

[Thm. 4.2]

Dynamic Mono-
tone Uniform
Pricing

O(log2 n)
[Thm. 5.1] d e

Ω

(

(

logn
log logn

)2
)

[Thm. 4.2]

O(log2 n)
[Thm. 5.1] d e

Ω

(

(

logn
log logn

)2
)

[Thm. 4.2]

Static Uniform
Pricing

2O(
√
logn log logn)

[BBM08 [4]] c
2Ω(

√
logn)

[Thm. 3.1]
2O(

√
logn log logn)

[BBM08 [4]] c
2Ω(

√
logn)

[Thm. 3.1]

Static Non-
uniform Pricing

2O(
√
logn log logn)

[BBM08 [4]] c
Ω (log n)
[BBM08 [4]]

O
(

m log l log3 n
)

[Thm. 6.2] c
Ω (log n)
[BBM08 [4]]

aAll algorithms assume that the seller knows OPT up to a constant factor. This assumption can be removed by
worsening the approximation ratio by a factor of logOPT(log logOPT)2.

bAll lower bounds are in the full information setting, where the seller knows the buyers’ valuations, the number
and arrival order of buyers, has unbounded computational power, and can even force the arrival order of buyers!

cBuyers arrive in an adversarial order. Thus the algorithm satisfies the upper bound for any order of buyers,
including the order that minimizes expected revenue.

dBuyers arrive in a uniform random order, that is, every permutation of buyers is equally likely. The bound is on
the expected revenue under this assumption.

eThis algorithm also assumes that the seller knows the number of buyers m up to a constant factor, and it is
deterministic. The assumption can be removed by making it randomized, and worsening the approximation ratio by
a factor of logm(log logm)2.

Our Results and Techniques The table below summarizes our results on the Item Pricing

problem in the limited supply setting, along with relevant earlier work. Our contributions are
labeled with the relevant theorem numbers.

We strengthen the hardness result of Balcan et. al. [4] by constructing instances with XOS
valuations where uniform pricing functions cannot achieve any better than a 2Ω(

√
logn) approxima-

tion, even if the seller knew the buyer valuations, and had unlimited computational power. Our
basic construction is essentially similar to one given in [4]. We further extend our construction so
that all buyers have the same XOS valuation function, so that the revenue is small for any order of
buyers. Alternatively, we can extend it so that every buyer has an XOS buyer valuation (possibly
different from the other buyers) that can be expressed as the maximum of three additive functions.

In contrast, we design a simple randomized dynamic uniform pricing strategy such that its
expected revenue is O(log2 n) approximation of the optimal social welfare, when the valuation
functions are subadditive. The strategy randomly chooses a threshold at the beginning, and then
in each round, randomly chooses a price above the threshold (but less than OPT) and puts this
price on each unsold item. By using a fresh random price (from a suitable set of prices) in each
round, we guarantee, in expectation, to collect a large fraction of the revenue that can be obtained
in that round from the remaining items.

The dynamic uniform pricing strategy described above achieves a high revenue, but requires
random fluctuation in the price of an unsold item. This may not be a desirable property in some
applications. We design a dynamic monotone uniform pricing strategy where the price of any
unsold items only decreases over time. We show that if the ordering of buyers is assumed to be
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uniformly random, that is, all permutations of buyers are equally likely, then the expected revenue
is an O(log2 n) approximation of the optimal social welfare. The strategy is in fact deterministic
provided the seller knows estimates of OPT and m up to a constant factor. Deterministic strategies
giving good approximation in such limited information settings are rare. We emphasize here that
our lower bound for static uniform pricing holds for any ordering of buyers.

We show that the performance of our dynamic uniform pricing strategies are almost optimal
among all dynamic uniform strategies, by showing that even if the seller knew the buyer valuations,
had unlimited computational power, and could even force a particular ordering of the buyers,
there exists instances with XOS valuations where the seller can achieve a revenue of at most
OPT(log log n)2/ log2 n if she is restricted to choosing a uniform dynamic pricing.

All our algorithms as well as the algorithms in [4] assume that OPT is known to the seller up to
a constant factor. Moreover, our dynamic monotone strategy assumes that the number of buyers m
is known to the seller up to a constant factor. As Balcan et. al. [4] pointed out, for any parameter
that is assumed to be known up to a constant factor, if the seller instead knows an upper bound of
H and a lower bound of L on the optimum, then this assumption can be removed by guessing OPT

with a suitable distribution, worsening the approximation ratio by a factor of Θ(H/L). If the seller
instead knows that OPT ≥ 1, but knows no upper bound, then the assumption can be removed by
worsening the approximation ratio by a factor of Θ(log x(log log x)2) in the approximation, where
x is the said parameter.

Finally, we give a static non-uniform strategy that gives an O(m log ℓ log3 n)-approximation
if the buyers’ valuations are XOS valuations that can be expressed as the maximum of ℓ additive
components. Note that when the order of buyers is adversarial, the hard instance for static uniform
pricing has only two buyers, and their valuation functions are the maximum of o(log n) additive
functions components. In particular, our strategy gives polylogarithmic (in n) approximation when
the number of buyers are small (polylogarithmic in n), and has XOS valuations which are the
maximum of quasi-polynomial (in n) additive components. It is worth noting that our lower bound
for dynamic uniform strategies also satisfies these properties.

2 Preliminaries

In the Item Pricing problem, we are given a single seller with a set I of n items that she wishes
to sell. There are m buyers, each with their own valuation function defined on all subsets of I. A
buyer with valuation function v values a subset of items S ⊆ I at v(S). The buyers arrive in a
sequence, and each buyer visits the seller exactly once. The seller is allowed to set a price on each
item, and the price of a subset of items is the sum of the prices of items in that subset. For every
item sold to the buyers, the seller receives the price of that item. Note that an item can be sold at
most once. So a seller can only offer those items to a buyer that has not been sold to any previous
buyer. The revenue obtained by the seller is the sum of the prices of all the sold items.

Each buyer buys a subset of the items shown to her that maximizes her utility, which is defined
as the value of the subset minus the price of the subset. This is clearly the behavior that is most
beneficial to the buyer. The Item Pricing problem is to design (possibly randomized) pricing
strategies for the seller that maximizes the expected revenue of the seller.

Unless noted otherwise, all our algorithmic results will assume that the seller has no knowledge
of the order of arrival of the buyers, total number of buyers, or the valuation functions of buyers.
We refer to a setting as the full-information setting if all these parameters are known to the seller.
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Valuation Functions: Throughout this paper, we will assume that the buyer valuation function
v is subadditive, which means that v(S) + v(T ) ≥ v(S ∪ T ) ∀S ⊆ I, T ⊆ I. Unless explicitly stated
otherwise, this will be the only assumption on the buyer valuation functions. For some results, we
shall assume the buyer valuations to be more restrictive than subadditive.

Definition 2.1 A subadditive valuation function v is called an XOS valuation if it can be expressed
as v(S) = max{a1(S), a2(S) . . . aℓ(S)} ∀S ⊆ I on all subsets of items S, where a1, a2 . . . aℓ are non-
negative additive functions. The functions a1, a2, ..., aℓ are referred to as the additive valuation
components of the XOS valuation v. We say that v is an ℓ-XOS function if it can be expressed
using at most ℓ additive valuation components.

We note that a 1-XOS function is simply an additive function, that all XOS valuations are
subadditive, and that not all subadditive valuations can be expressed as XOS valuations.

Pricing Strategies: We will study the power of some natural classes of pricing strategies.

Definition 2.2 A pricing strategy is said to be static if the seller initially sets prices on all items,
and never changes the prices in the future. A pricing strategy is said to be dynamic if the seller
is allowed to change prices at any point in time. A dynamic pricing strategy is also said to be
monotone if the price of every item is non-increasing over time.

Definition 2.3 A pricing strategy is said to be uniform if at all points in time, all unsold items
are assigned the same price.

2.1 Notation

For a buyer B with a valuation function v, we use Φ(B, I, p) to denote a set of items that the buyer
B may buy when presented with set I of items, each of which are priced at p. Since v(S)− p|S| is
the utility if the buyer buys the set S, so Φ(B, I, p) = argmaxS⊆Jv(S)− p|S| maximizes the utility.
Note that there may be multiple possible sets that maximize the utility. In this paper, when we
make a statement involving Φ(B, I, p), the statement shall hold for any choice of these sets. We shall
denote the maximum utility as U(B, I, p); note that in contrast to Φ(B, I, p), the value U(B, I, p)
is uniquely defined. When the underlying buyer B is clear from the context, we shall denote these
two values as Φ(I, p) and U(I, p) respectively. Moreover, if the set of available items I is also clear
from the context, then we shall denote these two values as Φ(p) and U(p) respectively. For any set
S and a buyer with valuation function v, we define Hv(S) = maxS′⊆S v(S

′) as the maximum utility
the buyer can get if all items in S are offered to her at zero price.

Definition 2.4 We say that a set of items S is supported at a price p with respect to some buyer B
with valuation function v, if B buys the entire set S when the set S is presented to B at a uniform
pricing of p on each item.

The following lemma follows easily from the fact that the valuation functions are subadditive,
and was proved by Balcan et. al. [4].

Lemma 2.1 Let S be a set of items that is supported at price p. with respect to a buyer B with
valuation function v. Then v(S′) ≥ p|S′| for all S′ ⊆ S.
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Proof: Suppose not. Then there exists S′ ⊂ S with v(S′) < p|S′|. By subadditivity of v, we
know v(S′)+ v(S \S′) ≥ v(S), and hence v(S \S′) ≥ v(S)− v(S′). Then the utility for B of buying
the set (S \ S′) is at least v(S)− v(S′)− p|S/S′|. But

(

v(S)− v(S′)− p|S/S′|
)

− p|S′|+ p|S′| = (v(S)− p|S|)− v(S′) + p|S′| > v(S) − p|S|,

contradicting the assumption that buyer picks set S at price p.

2.2 Optimal Social Welfare and Revenue Approximation

We now define optimal social welfare, the measure against which we evaluate the performance of
our pricing strategies.

Definition 2.5 An allocation of a set S of items to buyers B1, B2 . . . Bm with valuations v1, v2 . . . vm,
respectively, is an m-tuple (T1, T2, . . . , Tm) such that Ti ⊆ S for 1 ≤ i ≤ m, and Ti ∩ Tj = ∅ for
1 ≤ i, j ≤ m. The social welfare of an allocation is defined as

∑m
i=1 vi(Ti), and an allocation is

said to be a social welfare maximizing allocation if it maximizes
∑m

i=1 vi(Ti). The optimal social
welfare OPT is defined as the social welfare of a social welfare maximizing allocation.

Clearly, OPT is an upper bound on the revenue that any pricing strategy can get. Let R be the
revenue obtained by the strategy, which is the sum of the amounts paid by all the buyers.

Definition 2.6 A pricing strategy is said to achieve an α-approximation if the expected revenue of
the strategy E[R] is at least OPT/α.

Unless stated otherwise, the expected revenue is computed with adversarial ordering of the
buyers, that is, the ordering that minimizes the expected revenue of the strategy. In other words,
we require a strategy to work well irrespective of the order of buyers in which they arrive.

Note that OPT is not a tight upper bound on the maximum revenue that can be achieved by
any pricing strategy, even with full knowledge of buyer valuations and unbounded computational
power. In fact, the following example was given in Balcan et. al. [4]: if there is a single buyer with

valuation function v(S) =
∑|S|

i=1 1/i, then for any pricing of the n items, the revenue is at most 1,
while OPT = Θ(log n). This shows that nothing better than a logarithmic approximation can be
achieved in the absence of any other assumption on the buyer valuations.

2.3 The Single Buyer Setting with Uniform Pricing Strategies

Balcan et. al. [4] considered the setting where there is an unlimited supply of each item, so that no
buyer is affected by items bought before her arrival. In particular, if there is only a single buyer,
then there is no distinction between limited and unlimited supply, as long as the buyer never wants
more than one copy of the same item. For the single buyer case, Balcan et. al. [4] gave an O(log n)
approximation, and in the process proved some lemmas that will be useful for our algorithmic
results in the limited supply setting as well.

Suppose a set S is being shown to a buyer B with valuation function v. The optimal social
welfare in this single buyer instance is Hv(S). We consider setting a uniform price, that is, the
same price on all items. The following lemma states that the number of items bought monotonically
decreases as the price on the items is increased. It was proved by Balcan et. al. [4].
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Lemma 2.2 (Lemma 6 of [4]) Suppose a buyer B is offered a set S of items using a uniform
pricing. Then for any p > p′ ≥ 0, if B buys Φ(p) if all items are priced at p, and Φ(p′) if all items
are priced at p′, then |Φ(p)| ≤ |Φ(p′)|. Thus there exist prices ∞ = q0 > q1 > . . . > ql > ql+1 = 0
and integers 0 = n0 < n1 < . . . < nl ≤ |S| such that when items in S are uniformly priced at
p ∈ [qt+1, qt) there is a subset S′ ⊆ S of size nt that is supported at price p, and the utility U(p) of
the buyer B satisfies

U(p) = U(qt) + nt(qt − p) (1)

Since the empty set maximizes utility when the price is q1, we get that U(q1) = 0. Moreover,
the utility at price ql+1 = 0 is U(ql+1) = Hv(S). Thus we get that Hv(S) =

∑l
t=1 nt(qt − qt+1).

The following lemma is a slight variation of Lemma 8 of [4].

Lemma 2.3 Suppose a set S is being shown to a buyer B, with valuation function v, using a
uniform price. Let H ′ be any number such that H ′ ≥ Hv(S). Let γ > 1, and let p[t] = H ′/γt.

Then, for any k ≥ 0, we have
∑k

t=1 p[t]|Φ(p[t])| ≥ 1
γ−1

(

Hv(S)− |S|H′

γk

)

.

Proof: Since Hv(S) =
∑l

t=1 nt(qt − qt+1), it can be seen as an integral of the following step
function f from ql+1 = 0 to q1: in the range [qt+1, qt), f takes the value nt. So we can upper bound
Hv(S) by an upper integral of f . Note that |f(p) ≤ Φ(p)| ≤ |S|, and also that f is a decreasing
function. Since p[0] = H ′ ≥ H ≥ q1, we get

Hv(S) =

l
∑

t=1

nt(qt − qt+1) =

∫ q1

0
f(x)dx

≤
∫ p[k]

0
f(x)dx+

k−1
∑

t=0

(p[t]− p[t+ 1])f(p[t+ 1])

≤
∫ p[k]

0
|S|dx+

k−1
∑

t=0

(γ − 1)p[t+ 1]|Φ(p[t+ 1])|

= (γ − 1)

k
∑

t=1

p[t]|Φ(p[t])|+ |S|p[k]

Thus we get that
∑k

t=1 p[t]|Φ(p[t])| = 1
γ−1

(

Hv(S)− |S|H ′/γk
)

.

Briefly, Lemma 2.3 will be used as follows: if one of {H ′,H ′/2,H ′/4 . . . H ′/2k} is chosen uni-
formly at random and set as the uniform price for all items in S, then for a sufficiently large choice of
k, the revenue obtained is Ω(Hv(S)/k). This will happen when the right-hand-side of the equation
in the lemma evaluates to Ω(Hv(S)). We shall frequently use this lemma, and with H ′ = Θ(H),
our choice of k will be logarithmic in the number of items.

2.4 Optimizing with Unknown Parameters

Almost all our algorithms use the following lemma, which was implicitly mentioned in the Appendix
of [4]. It tells us that strategies can be allowed to assume that it approximately knows the value of
some parameters, as long as the parameters are not too large, since these assumptions can be re-
moved by guessing the value of these parameters and getting it correct with inverse-polylogarithmic

7



probability. The lemma below is applicable to the Item Pricing problem with multiple buyers,
and to both static and dynamic pricing strategies.

Lemma 2.4 Consider a pricing strategy S that gives an α-approximation in expected revenue,
provided the seller knows the value of some parameter x to within a factor of 2. Then if the seller
instead only knows that L ≤ x < H, there exists a pricing strategy S ′ that gives an O(α log(H/L))
approximation in expected revenue, where L and H are powers of 2. If the seller instead only knows
that x ≥ 1 but no upper bound, then for any constant ǫ > 0, there exists a pricing strategy S ′′ that
gives an O(α log x(log log x)1+ǫ) approximation in expected revenue.

Proof: We construct a pricing strategy by approximately guessing the value of x, up to the
nearest power of 2, using a suitable distribution, at the beginning, and using this estimate in the
given pricing strategy. Our revenue is assured only when our guess is correct, and we count only
that revenue in our analysis.

In the case where L and H are given, we guess x from the set {L, 2L, 4L . . . H}, so that our
guess of x is correct within a factor of 2, with probability at least Ω(1/ log(H/L)). Since the given
pricing strategy gives an expected revenue of Ω(OPT/α) when the guess is correct within a factor
of 2, we get an expected revenue of at least Ω(OPT/α log(H/L)).

In the second case, where the seller only knows that x ≥ 1, then we guess that x = 2i

with probability 1
c(i log1+ǫ i)

, where c =
∑∞

i=1 1/i log
1+ǫ i, which is finite. If x is between 2i and

2i+1, then the probability of guessing x correctly within a factor of 2 is at least Ω(1/i log1+ǫ i) =
Ω(1/(log x(log log x)1+ǫ)), so the expected revenue is at least Ω(OPT/(α log x(log log x)1+ǫ)).

3 Improved Lower Bounds for Static Uniform Pricing

We show some lower bounds for static uniform pricing. The core of our construction is the same as
the lower bound construction in Balcan et. al. [4], but with improved parameters, and our lower
bound almost matches the upper bound in [4]. We are also able to strengthen our construction to
the case of identical buyers as well as to the case where each buyer uses simple XOS functions with
only 3 additive components. The following theorem summarizes our lower bound results about
static uniform pricing.

Theorem 3.1 There exists a set of buyers with XOS valuations, such that if the seller is restricted
to a static uniform pricing strategy, then even in the full information setting, for any choice of price,
the revenue produced is at most OPT/2Ω(

√
logn), where n is the number of items. Additionally, one of

the following (but not both) can also be ensured, with the revenue still being at most OPT/2Ω(
√
logn):

• The valuations of all the buyers can be expressed as 3-XOS functions.

• All buyers have identical valuation function.

We now present the proof of Theorem 3.1. We first construct an instance with two buyers whose
valuations consist of only three additive components each, such that if buyer 1 arrives before buyer
2, then the revenue obtained will satisfy the required upper bound. This part of our construction is
very similar to that given in [4], with some changes in the parameter that allows us to improve the

lower bound result from 2log
1/4 n to 2Ω(

√
logn). We shall then extend this construction to instances
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where no ordering of buyers gives a high revenue, where all buyers have identical valuations and
finally where all buyers have 3-XOS valuations.

A hard two-player instance: Let X > 1 and Y < 1 be two parameters that shall be fixed
later. Consider an instance of the problem as described below. Let no be a positive parameter,
and as we shall see, the number of items will be between n0 and 2n0. There are two buyers with
buyer valuations v1 and v2. Let S0, S1, · · · , S6k+2 be a partition of items, where k =

⌊√
log n0/3

⌋

.
There is a subset S′

i ⊆ Si of items of high valuation for each i. |Si| = n0/X
i and |S′

i| = n0/X
i+1.

Buyer 1 does not value the items in Si \ S′
i, that is, v1(Si \ S′

i) = 0. Buyer 1 values the items in
S′
i equally, such that v1(S

′
i) = cY i. Similarly, buyer 2 values the items in S′

i equally, such that
v2(S

′
i) = Y i − Y i+1, and values the items in Si \ S′

i equally such that v2(Si \ S′
i) = Y i+1. Finally,

the valuation function of each buyer consists of three additive components which are additive inside
the set S0 ∪ S3 ∪ · · · ∪ S6k, S1 ∪ S4 ∪ · · · ∪ S6k+1, and S2 ∪ S5 ∪ · · · ∪ S6k+2 respectively. Here Y
is a constant 1/2, X equals (1/Y )k = 2θ(

√
logn), so X6k = (1/Y )6k

2

> 2− logn0 = 1/n0. And c is
a parameter to be determined later. We shall show that in this instance, if buyer 1 comes before
buyer 2, we achieve the required lower bound on the revenue, with an appropriate choice of c.

Below, ui(S) denotes the utility of buyer i at price p when she buys the set S. For convenience,
we let Ti denote ∪j∈ζiSj, where ζi = {j|6k + 2 ≥ j ≥ i, (j − i) is divisible by 3}. Similarly we
define T ′

i as ∪j∈ζiS
′
j. We have the following when j ∈ {1, 2} and i ≤ 3k:

vj(Ti) ≥
k
∑

ℓ=0

vj(Si+3ℓ)

= vj(Si)(1 + Y 3 + · · ·+ Y 3k)

=

(

1− o

(

1

X2

))

vj(Si)

1− Y 3

p|Ti| ≤ p

∞
∑

ℓ=0

n0

Xi+3ℓ

= p|Si|
∞
∑

ℓ=0

(
1

X3j
)

=

(

1 + o

(

1

X2

))

p |Si|

It is also clear that vj(Ti) <
∑∞

ℓ=0 vj(Si)Y
3ℓ = vj(Si)/(1 − Y 3) and p|Ti| > p|Si|. So we have

vj(Ti) = (1 ± o(1/X2))vj(Si)/(1 − Y 3) and p|Ti| = (1 ± o(1/X2))p|Si|. Similarly, we also have
vj(T

′
i ) = (1± o(1/X2))vj(S

′
i)/(1− Y 3) and p |T ′

i | = (1± (1/X2))p |S′
i|. Use these facts we get that

v2(Ti+1) = (1± o(1/X2))v2(Si+1)/(1− Y 3)

= (1± o(1/X2))(v2(Si)− v2(S
′
i))/(1 − Y 3)

= (1± o(1/X2))(v2(Ti)− v2(T
′
i ))

= (1± o(1/X2))v2(Ti \ T ′
i )

Therefore, when the price p is non-trivially large, that is, p|Ti \ T ′
i | > 1/X2 ≥ v2(Ti \ T ′

i )/X
2, we

have u2(Ti+1) > u2(Ti \ T ′
i ) since both sets have essentially the same valuation, and the former has
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significantly fewer items and hence costs less. The following facts will be useful for the rest of the
proof. There exists ai, bi, and ci such that:

u1(T
′
i+1) > u1(T

′
i ) ⇔ p > ai =

(1±O(1/X))cXi+1Y i

n0(1 + Y + Y 2)

u2(Ti+1 \ T ′
i+1) > u2(Ti) ⇔ p > bi =

(1±O(1/X))XiY i(1 + Y )

n0(1 + Y + Y 2)

p|Ti| > 1/X ⇔ p > ci =
Xi−1

n0

We shall ensure the following constraints:

u1(T
′
i+1) > u1(T

′
i ) ⇒ u2(Ti+1 \ T ′

i+1) > u2(Ti) (2)

p|Ti+1| > 1/X ⇒ u1(T
′
i+1) > u1(T

′
i ) (3)

Equation 2 implies that the first buyer prefers T ′
i+1 than T ′

i only if she can ensure that the second
buyer will not buy the set Ti even if T ′

i+1 is taken away. Equation 3 indicates that when the price
is non-trivially high such that the set Ti+1 will give high revenue, the first buyer will buy T ′

i+1 and
prevent the second buyer from buying Ti. Therefore, we shall have ci+1 > ai > bi > ci and thus
the parameter c satisfies that:

1 + Y + Y 2

X
> c >

Y

X

Recall that Y = 1/2, we have 1 + Y + Y 2 = 1.75. So we let c = 1/X and Equation 2 and 3 are
guaranteed and we have ci+1 > ai > bi > ci. We now consider various possibilities for the choice of
p:

• If the single price p is in the range [ci, ai], then buyer 1 will buy all items in T ′
i , and buyer

2 will buy all items in Ti+1 since u2(Ti+1) > u2(Ti \ T ′
i ) > u2(Ti−1). Therefore, the profit is

p|Ti+1|+ p|T ′
i | < 2/X < OPT/(X/2). This is true for all i < k.

• If the single price p is in the range [ai, ci+1], then buyer 1 will buy all items in T ′
i+1, and

buyer 2 will buy all items in Ti+2 since u2(Ti+2) > u2(Ti+1 \ T ′
i+1) > u2(Ti). So the profit is

p|Ti+2|+ p|T ′
i+1| < 2/X < OPT/(X/2). This is true for all i < k − 1.

• For p > ck, the only items that can be sold is Tk ∪ Tk+1 ∪ Tk+2, and the revenue is at most
v1(T

′
k) + v2(Tk) ≤ 2(Y k) = 2/X < OPT/(X/2).

Thus we get an Ω(X) = 2Ω(
√
logn) gap between revenue and the optimal social welfare. Since

the total number of items n = | ∪1≤i≤k Si| is between n0 and 2n0, the construction and proof of
lower bound for the 2 player instance is complete.

Extensions of the two-player instance: We now complete the proof of Theorem 3.1 by ex-
tending the above two-player instance.. We present three hard instances such that

1. Instance 1: The 2Ω(
√
logn) lower bound holds even if the buyers come in random order;

2. Instance 2: The lower bound holds even if the seller can choose the order of the buyers;
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3. Instance 3: The lower bound still holds if all the buyers have identical valuation functions.

The construction of each of the latter instances is based on the previous instance. Instance 1 is
almost identical to one of the scenarios used in Balcan et al. [4].

Instance 1: Consider a setting where there are m buyers. One of them has the same valuation
function as buyer 2. The other m − 1 of them share the same valuation function as buyer 1.
Each of the other m − 1 buyers has its own shadow copy of T ′

i . Then the profit is at most
1 + (m − 1)/X if the special buyer comes first and at most m/X otherwise. So the expected
revenue is (1/m)(1 + (m− 1)/X) + (m − 1)/m(m/X) < 1/m +m/X. The optimal social welfare
is OPT > 1. Let m =

√
X and we have the 2

√
X = 2Ω(

√
logn) lower bound.

Instance 2: Now consider another instance in which we replicate (items only, not the buyers) m
copies of this setting such that each buyer is the buyer 2 in exactly 1 replicate. For each buyer,
there is an additive component for each combination of the additive components in all m copies.
Suppose the first buyer buys Ti in the replicate in which she is the buyer 2 and buys T ′

j in all other
replicate.

• If j 6= i, then each of the other m− 1 buyers will buy Si in the replicate in which she is the
buyer 2 and her own shadow copies of T ′

j . It follows from our choice of parameters that j 6= i
implies each copy of the Ti and T ′

j provides at most 1/X revenue. So the total revenue is at

most m2/X.

• If j = i, then each of the other m − 1 buyers will buy Ti+1 in the replicate in which she is
buyer 2 and her own shadow copies of T ′

i . In this case, the revenue obtained from Ti is at
most 1 and each copy of T ′

i and Tj provides at most 1/X. So the total revenue is at most
1 + (m2 − 1)/X.

It is clear that the optimal social welfare is OPT > m, thus giving a gap of 1/m + m/X =
2
√
X = 2Ω(

√
logn).

Instance 3: Finally, consider a setting where all buyers are identical and share the same valuation
function v(S) = max1≤i≤m vi(S), where {vi|1 ≤ i ≤ m} are the buyer valuation functions as
defined in Instance 2. Each of the buyer comes and buys some Si in one of the replicate and S′

j

in the all other replicates. We say the buyer occupies the replicate which contains Si in this case.
Note that a copy of Si is also available in some unoccupied replicate, and buying the copy in the
unoccupied replicate does not effect the behavior of the buyers who come after her. So for each
of the possible scenario, there is equivalent scenario in which each buyer occupies an unoccupied
replicate. Therefore, we have the same 2Ω(

√
logn) lower bound as in the previous setting.

This completes the proof of Theorem 3.1.

4 Dynamic Uniform Pricing Strategies

We now present a dynamic uniform pricing strategy that achieves an O(log2 n)-approximation to
the revenue when buyer valuations are subadditive. This improves upon the previous best known
approximation factor of 2O(

√
logn log logn) [4] for the Item Pricing problem. Our strategy makes

the assumption that the seller knows OPT, the maximum social welfare, to within a constant
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factor. However, this assumption can easily be eliminated by using Lemma 2.4, worsening the
approximation ratio of the strategy by a poly-logarithmic factor.

We will also establish an almost matching lower bound result which shows that no dynamic
uniform pricing strategy can achieve o(log2 n/ log log2 n)-approximation even when buyers are re-
stricted to XOS valuations, the seller knows the value of OPT, buyer valuation functions, and is
allowed to specify the order of arrival of the buyers!

4.1 A Dynamic Uniform Pricing Algorithm

The algorithm follows a simple strategy. Let k = ⌈log n⌉+1, and let pi = OPT/2i (recall that OPT
denotes the maximum social welfare). The algorithm starts at time 0 by choosing a threshold value
p∗ from the set {p1, p2 . . . pk+1}, uniformly at random. Upon arrival of any buyer, the algorithm
chooses a price p̂ uniformly at random from the set {p1, p2 . . . , p∗}, and assigns the price p̂ to all
items that are yet unsold.

Theorem 4.1 If the buyer valuations are subadditive, then the expected revenue obtained by the
dynamic strategy above is Ω(OPT/ log2 n).

The following lemma is key to the proof of Theorem 4.1. It says that if the threshold is
“correctly” chosen, then our dynamically reset prices give a large fraction of the maximum possible
revenue.

Lemma 4.1 Suppose when the ith buyer Bi arrives, there remains a set Lj
i of unsold items such

that vi(L
j
i ) ≥ pj|Lj

i |, where vi is the valuation function of Bi. Then if the seller picks a price
from {p1, p2, · · · , pj+1} uniformly at random, and prices all items at this single price, it receives an

expected revenue of at least pj |Lj
i |/2(j + 1) from this buyer.

Proof of Lemma 4.1. Let I ′ be the set of unsold items when the buyer Bi arrives. Since this is
a single buyer setting with uniform pricing, Lemma 2.2 applies. Thus the number of items sold is
a non-increasing function of the price set on all items, and equation (1) is applicable.

Now if the uniform price chosen by the seller is pj+1, then buying the set Lj
i would give Bi a

utility of at least vi(L
j
i )− pj+1|Lj

i | ≥ pj |Lj
i | − pj+1|Lj

i | since vi(L
j
i ) ≥ pj|Lj

i | by the assumption of
the lemma. Thus

U(Bi, I
′, pj+1) ≥ pj |Lj

i | − pj+1|Lj
i | =

pj|Lj
i |

2
(4)

Suppose qs > pj+1 ≥ qs+1, for some s ≤ l. Then, since U(Bi, I
′, q0) = U(Bi, I

′, q1) = 0, and also
that q1 ≤ OPT, so

U(Bi, I
′, pj+1) = U(Bi, I

′, qs) +
(

U(Bi, I
′, pj+1)− U(Bi, I

′, qs)
)

=

s−1
∑

t=1

(

U(Bi, I
′, qt+1)− U(Bi, I

′, qt)
)

+ ns(qs − pj+1)

=

s−1
∑

t=1

nt(qt − qt+1) + ns(qs − pj+1)
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The above sum can be seen as an integral of the following step function f from pj+1 to q1: in
the range [qt+1, qt), f takes the value nt. So we can upper bound it by an upper integral of f . Note
that |f(p) ≤ Φ(Bi, I

′, p)| ≤ |S|, and also that f is a decreasing function. Thus we get

U(Bi, I
′, pj+1) ≤

j
∑

t=0

|Φ(Bi, I
′, pt+1)|(pt − pt+1)

=

j
∑

t=0

|Φ(Bi, I
′, pt+1)|pt+1

=

j+1
∑

t=1

|Φ(Bi, I, pt)|pt

Combining with equation 4, we get

j+1
∑

t=1

|Φ(Bi, I, pt)|pt ≥
pj|Lj

i |
2

(5)

Thus the expected revenue obtained from Bi is

j+1
∑

t=1

|Φ(Bi, I, pt)|pt
j + 1

≥ pj|Lj
i |

2(j + 1)
,

completing the proof of the lemma. �

Proof of Theorem 4.1. Let (T1, T2, . . . Tm) be an optimal allocation of items to buyersB1, B2 . . . Bm,
who has valuation functions v1, v2 . . . vm respectively, such that

∑m
i=1 vi(Ti) = OPT is the maximum

social welfare. Also, let T j
i be the subset of Ti that would be bought by Bi if it were shown only

the items in Ti, and all items were uniformly priced at pj . Now consider the case when p∗ = pj+1.

Let Rj be the revenue in this case. Let Zj
i ⊆ T j

i be a random variable that denotes the subset of

items in T j
i that are sold before buyer Bi comes. Then Rj ≥∑m

i=1 p
∗|Zj

i | =
∑m

i=1 pj|Z
j
i |/2

Note that vi(T
j
i \ Zj

i ) ≥ pj|T j
i \ Zj

i | by Lemma 2.1. So, by Lemma 4.1, conditioned on the set

Zj
i , the expected revenue received from Bi is at least

(

pj |T j
i \ Zj

i |
)

/2(j+1). Thus, conditioned on

the sets Zj
i for all i, we have

E[Rj|Zj
i ∀1 ≤ i ≤ m] ≥ Ω

(

m
∑

i=1

(

pj|Zj
i |+

pj|T j
i \ Zj

i |
j

))

= Ω

(

m
∑

i=1

pj|T j
i |

j

)

Since the value on the right-hand side above is independent of the variables Zj
i on which the

expectation of Rj is conditioned on, we get

E[Rj ] = Ω(
m
∑

i=1

pj|T j
i |

j
)

Thus the expected revenue R =
∑k

j=0R
j of our dynamic strategy is given by
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E[R] =
1

k + 1

k
∑

j=0

E[Rj ] = Ω





k
∑

j=0

m
∑

i=1

pj |T j
i |

k2



 = Ω





m
∑

i=1

k
∑

j=0

pj |T j
i |

k2



 (6)

Since k = ⌈log n⌉, and OPT ≥ Hvi(Ti), from Lemma 2.3 and Equation (6), it follows that

k
∑

j=0

pj|T j
i | ≥ Ω

(

vi(Ti)−
|Ti|OPT

2n

)

Thus we have

E[R] = Ω

(

1

k2

(

m
∑

i=1

vi(Ti)−
m
∑

i=1

|Ti|OPT
2n

))

= Ω

(

1

k2

(

OPT− OPT

2

))

= Ω

(

OPT

log2 n

)

�

4.2 Lower Bound for Dynamic Uniform Pricing

We shall now construct a family of instances of the problem, where the buyers have distinct XOS
valuations, with O(log n/ log log n) additive components in each valuation function, such that no
dynamic uniform strategy can achieve an o(log2 n/ log log2 n)-approximation, even in the full infor-
mation setting, and when the seller can even specify the order in which the buyers should arrive.

Theorem 4.2 There exists a set of buyers with XOS valuations, such that if the seller is restricted
to using a dynamic uniform pricing strategy, then even when the seller has full information of buyer
valuation functions and can even choose the order of arrival of the buyers, the revenue produced is
O((log log n)2/ log2 n) times OPT, where n is the number of items.

Proof: Let B1, B2 . . . Bm denote the buyers. Our construction will use three integer parameters
k, F, and Y , to be specified later. These parameters will satisfy the conditions that k > 1, F > 1,
Y > 4, and m ≥ 2Y ≥ 4k. Let f(i) = (i+ 1)F/Y i. Then, f(0) > f(1) > . . . > f(k) > f(k + 1).

For each buyer Bi, we create 2(k + 1) disjoint sets of items Si0, Si1 . . . Sik and S′
i0, S

′
i1 . . . S

′
ik

such that |Sij| = |S′
ij| = Y j items each. Let Si = ∪0≤j≤kSij and S′

i = ∪0≤j≤kS
′
ij. We call the items

in Si as shared and those in S′
i as private. The private items of Bi are valued by buyer i only, and

has zero value to all other buyers.
The valuation function vi of buyer Bi is constructed as an XOS valuation with (k+2) additive

functions vi0, vi1 . . . vi(k+1) in its support, that is, vi = max0≤j≤k+1 vij . For 0 ≤ j ≤ k, the valuation
function vij has positive value only for private items, and is defined as

vij(x) =

{

f(j) if x ∈ S′
ij

0 otherwise

The valuation function vi(k+1) has positive values only for shared items:
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vi(k+1)(x) =

{

f(j) if x ∈ Sij for 0 ≤ j ≤ k
f(j + 1) if x ∈ Sℓj for 1 ≤ ℓ ≤ m, ℓ 6= i, and 0 ≤ j ≤ k

This completes the description of the instance. Note that vi(S
′
ij) = f(j)|S′

ij | = (j + 1)F , and
that

vi(Si) =

k
∑

j=0

f(j)|Sij | =
k
∑

j=0

(j + 1)F = Ω(k2F )

Thus if we allocate each set Si to buyer Bi for i = 1, 2 . . . m, the social welfare obtained is
Ω(mk2F ), and hence OPT is Ω(mk2F ).

Consider now the arrival of some buyer Bi at time t. By our construction of the valuation
function, Bi will either buy only shared items or buy only private items, but not both. If the buyer
Bi were to buy shared items, and the price of each item is set at f(j) ≥ p > f(j + 1), then Bi

would pick up all remaining items in





⋃

0≤t≤j

Sit





⋃





⋃

1≤ℓ 6=i≤m

⋃

0≤t≤(j−1)

Sℓt





Since
∑

0≤t≤j Y
t ≤ 2Y j, the total price that Bi would pay to the seller is bounded by

f(j)(2Y j + 2mY j−1) = 2(j + 1)F + 2m(j + 1)F/Y = 2(1 +m/Y )(j + 1)F

We now consider the maximum revenue generated if Bi were to buy a subset of its private items.
Note that when Bi arrives, all private items of Bi are still unsold. Suppose Bi were to buy private
items. What is the maximum revenue we can get? For this, note that if the price of each item is
(j + 1)F/jY j , then the utility from buying S′

ij is

(j + 1)F − (j + 1)F/j = (j + 1)(j − 1)F/j = (j − 1/j)F,

and the utility from buying S′
i(j−1) is

jF − (j + 1)F/jY > (j − 1/j2)F > (j − 1/j)F , since Y > 2j.

So at this price, the set S′
i(j−1) is preferred by Bi than S′

ij, and since the items in sets S′
it for

t > j have less value than the price, they are not even considered. For a greater price, the utility
of S′

i(j−1) must continue to dominate that of S′
ij , since the former has fewer items. So at most

Y j−1 items are bought when the price is at least (j +1)F/jY j , for all j ≥ 1. This implies that the
revenue obtained from Bi when she buys from her private items is at most Y j((j+1)F/jY j) < 2F .

Consider any ordering of buyers. If the price is ever set at more than f(0), then no item is sold
in that round, while if the price set is f(k + 1) or lower, all items are sold in that round and the
revenue generated is at most 2mY kf(k+1) = 2m(k+2)/Y . Consider the first time when the price
set in a round is at most f(j) but greater than f(j − 1), for some 0 ≤ j ≤ k. We call this round a
j-good sale, and let Bi be the buyer. In a j-good sale, Bi may buy all remaining items in Sit for
all 0 ≤ t ≤ j, plus all items in Slt for all 1 ≤ ℓ ≤ m, ℓ 6= i and 0 ≤ t ≤ j − 1, thus giving a revenue
of at most
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2(1 +m/Y )(j + 1)F ≤ O((m/Y )kF )

However, consider any time when a price in the range (f(j − 1), f(j)] appears again, and let
Bl, ℓ 6= i be the buyer who faces this price. If Bl were to buy shared items, the only items that
are valued higher than the price and still remaining are those in Sℓj, since Bi took away whatever
was remaining of Sℓt for all t < j. Note that the only reason the shared items could have given Bi

a better utility was that the shared items had additive valuation, while the private items had XOS
valuation, so she got no benefit in picking up multiple sets of private items. However, since only
one feasible set Sℓj of the shared items is left, this advantage has vanished, and the revenue from
Bℓ is the same as the revenue if there were no shared items at all. As discussed above, the revenue
from Bℓ in this case is at most 2F .

Finally, since a j-good sale can happen at most once for any 1 ≤ j ≤ (k + 1), the total revenue
generated fro all j-good sales is O

(

(mk2F )/Y
)

. The remaining rounds each give a revenue of at
most 2F , contributing in total O(mF ) to the revenue. Thus the revenue obtained by any dynamic
uniform strategy, for any ordering of buyers, is O

(

(1 + k2/Y )mF
)

.
Now since the maximum social welfare is Ω(k2mF ), the approximation factor achieved is

bounded from below by Ω
(

(k2Y )/(k2 + Y )
)

. For any k > 10, if we set Y = k2 and m = 2Y ,

then n = Θ(Y k+1) = kΘ(k), and the approximation factor is Ω(k2). As k = Θ(log n/ log log n), we
get that the smallest approximation factor that can be achieved is Ω

(

(log n/ log log n)2
)

.

5 Dynamic Monotone Uniform Pricing Strategies

We now present a simple strategy that uses a monotonically decreasing uniform pricing for the items.
When the number of buyers m is at least 2 log n, the strategy gives an O(log2 n)-approximation
to the revenue provided the buyers arrive in a uniformly random order, that is, all permutations
of the buyers are equally likely to be the arrival order. As a corollary of this result, we conclude
that if the buyers are identical, no matter the order in which they arrive, this pricing scheme gives
an O(log2 n)-approximation. The strategy assumes that the seller knows the number of buyers m
(and also OPT), and is deterministic. Knowing estimates of m and OPT up to constant factors are
also sufficient for the performance of our strategy.

Let k = log n + 1, and let γ = 2
k
m ≥ 1. Thus γm > 2n. The strategy gives a good guarantee

only when m ≥ log n + 1. The strategy is as follows: When the tth buyer arrives, the seller prices
all unsold items uniformly at

p[t] =
OPT

2γt
.

Thus the price decreases with time. For m = ω(log n), the relative decrease in the price for
consecutive buyers is

p[t]− p[t+ 1]

p[t]
=

(

1− 1

γ

)

= Θ(
log n

m
),

which tends to zero, and so the price decreases smoothly with time.

Theorem 5.1 Suppose m ≥ log n + 1, and suppose that the buyer valuations are subadditive. If
the ordering of buyers in which they arrive is uniformly random (that is, all permutations are

16



equally likely), then the expected revenue of the dynamic monotone uniform pricing scheme above

is Ω(OPT
log2 n

).

Proof: Let (T1, T2, . . . Tm) be an optimal allocation of items to buyers B1, B2 . . . Bm, who has
valuation functions v1, v2 . . . vm respectively, such that

∑m
i=1 vi(Ti) = OPT is the maximum social

welfare. Also, let T j
i be the subset of Ti that would be bought by Bi if it were shown only the items

in Ti, and all items were uniformly priced at OPT/γj = 2p[j].
Fix a buyer Bi. Let Ri be a random variable that denotes the revenue obtained by the seller

from Bi. Let R′
i be a random variable that denotes the revenue obtained by the seller by selling

items in Ti. Then, if R is a random variable that denotes the total revenue obtained by our strategy,

we have R =
∑m

i=1 Ri and R ≥∑m
i=1 R

′
i, so R ≥∑m

i=1
Ri+R′

i
2 .

Fix a permutation π of all buyers except Bi. We shall say that the event π occurs if these
buyers arrive in the relative order given by π, with Bi arriving somewhere in between. We shall
now compute E[Ri +R′

i|π].
Let πj denote the permutation of all the buyers formed by inserting Bi after the (j − 1)th but

before the jth position in π, whichever exists, for 1 ≤ j ≤ m. That is Bi comes in as the jth buyer
in πj . Let Zj

i denote the number of items that were sold before the arrival of Bi when the arrival

sequence of buyers is πj. Note that Zj
i is no longer a random variable once πj is fixed, and neither

are Ri and R′
i. Also note that Pr [πj|π] = 1/m. Thus,

E[R′
i|π] ≥

1

m

m
∑

j=1

p[j − 1]|Zj
i | ≥

1

m

m
∑

j=1

p[j]|Zj
i | (7)

Let Sj
i be the set of items bought by Bi when the permutation of buyers is πj, let U j

i be the

utility derived by Bi in this process, and let Rj
i be the revenue obtained from Bi in the process.

For 1 ≤ j < m, note that when the permutation is πj , then when Bi arrives, the set Sj+1
i is also

available, and Bi prefers S
j
i over this set at price p[j]. Thus

U j
i = vi(S

j
i )− p[j]|Sj

i |
≥ vi(S

j+1
i )− p[j]|Sj+1

i | = vi(S
j+1
i )− p[j + 1]|Sj+1

i | − (γ − 1)p[j + 1]|Sj+1
i |

= U j+1
i − (γ − 1)Rj+1

i

This implies that Rj+1
i ≥ 1

γ−1 (U
j+1
i − U j

i ), for 1 ≤ j < m. Also note that vi(S
1
i )− p[0]|S1

i | ≤ 0,

since no bundle of items can have value greater than p[0] = OPT. So vi(S
1
i ) − p[1]|S1

i | − (γ −
1)p[1]|S1

i | = U1
i − (γ − 1)R1

i ≤ 0, or R1
i ≥ 1

γ−1U1
i . Thus, adding the terms Rt

i, we find that the
terms telescope, and

j
∑

t=1

Rt
i ≥

1

γ − 1

(

j
∑

t=2

(

U j
i − U j−1

i

)

+ U1
i

)

=
1

γ − 1
U j
i

By Lemma 2.1, we have vi(T
j
i \ Zj

i ) ≥ 2p[j]|T j
i \ Zj

i |. So the utility of T j
i \ Zj

i to buyer Bi at

price p[j] is (2p[j] − p[j])|T j
i \ Zj

i | = p[j]|T j
i \ Zj

i |, which is at most U j
i . Thus

j
∑

t=1

Rt
i ≥

1

γ − 1
U j
i =

p[j]|T j
i \ Zj

i |
γ − 1
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Using the above equation, we get

m

m
∑

j=1

Rj
i ≥

m
∑

j=1

j
∑

t=1

Rt
i =

1

γ − 1

m
∑

j=1

p[j]|T j
i \ Zj

i |

⇒
m
∑

j=1

Rj
i ≥

m
∑

j=1

p[j]|T j
i \ Zj

i |
(γ − 1)m

≥ Ω

(

p[j]|T j
i \ Zj

i |
log n

)

The last inequality follows from the fact that γ − 1 = Θ
(

logn
m

)

.

Note that E[Ri|π] = 1
m

∑m
j=1R

j
i . Combining with equation (7), we get that

E[Ri +R′
i|π] =

1

m
Ω





m
∑

j=1

p[j]

(

|T j
i \ Zj

i |
log n

+ |Zj
i |
)





≥ 1

m
Ω





m
∑

j=1

p[j]|T j
i |

log n



 = Ω





1

m log n





m
∑

j=1

OPT

γj
|T j

i |









Using Lemma 2.3, we get that

m
∑

j=1

OPT

γj
|T j

i | ≥
1

γ − 1

(

vi(Ti)−
|Ti|OPT

γm

)

≥ 1

γ − 1

(

vi(Ti)−
|Ti|OPT

2n

)

Again using the fact that γ − 1 = Θ
(

logn
m

)

, we get that

E[Ri +R′
i|π] ≥ Ω

(

1

log2 n

(

vi(Ti)−
|Ti|OPT

2n

))

Since the right-hand-side of the above equation is independent of π, we conclude that E[Ri +

R′
i] ≥ Ω

(

1
log2 n

(

vi(Ti)− |Ti|OPT
2n

))

. Thus we get that the expected revenue is

E[R] =
1

2
E[Ri +R′

i] ≥ Ω

(

1

log2 n

(

m
∑

i=1

vi(Ti)−
m
∑

i=1

|Ti|OPT
2n

))

= Ω

(

1

log2 n

(

OPT− OPT

2

))

= Ω

(

OPT

log2 n

)

6 Static Non-Uniform Pricing

Another approach to get around the weak performance barrier for static uniform pricing, is to
consider static non-uniform pricing, which allows the seller to post different prices for different items
but the prices remain unchanged over time. In Section 3 we showed that there exist instances with
identical buyers where no static uniform pricing can achieve better than 2Ω(

√
logn)-approximation

even in the full information setting. Surprisingly, this hardness result breaks down if we consider
non-uniform pricing using only two distinct prices.
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6.1 Full Information Setting

We first introduce the (p,∞)-strategies, i.e. the seller posts price p for a subset of the items and
posts ∞ for all other items. The intuition is by using this strategy the seller can prevent the buyers
from buying certain items (high utility but low revenue) and thus achieve better revenue. The proof
of the theorem below depends on the performance of the following dynamic monotone strategy. Let
k = ⌈log n⌉+1 and m′ = ⌊m/(k + 1)⌋. Recall that pi = OPT/2i for i = 1, 2, · · · , k. The seller posts
a single price p1 for the first m′ buyers, then she posts a single price p2 for the next m′ buyers, and
so on and so forth. We call each time period that the seller posts a fixed price a phase, and we
call this strategy the k-phase monotone uniform strategy. The proof of Theorem 5.1 can be easily
modified to show that this strategy gives O(log2 n)-approximation as well.

Theorem 6.1 In the full information setting, if m ≥ log n + 1, and all buyers share the same
subadditive valuation function, then there exists a (p,∞)-strategy which obtains revenue at least
Ω(OPT/ log3 n).

Proof: Given that the k-phase dynamic monotone uniform strategy for identical buyers ob-
tains revenue at least Ω(OPT/ log2 n), at least one of the k = ⌈log n+ 1⌉ phases contributes 1/k
fraction of the revenue. Without loss of generality, assume the ith phase contributes at least
Ω(OPT/k log2 n) = Ω(OPT/ log3 n) revenue. Recall that m′ = ⌊m/(k + 1)⌋. Suppose T is the set
of items unsold at the beginning of phase i.

Consider the following (p,∞)-strategy. The seller posts price p = pi+1 for each item in T , and
posts ∞ for all other items. Then when the first m′ buyers come, they will behave the same as
the m′ buyers in phase i in the dynamic strategy scenario. So the revenue collected is at least
Ω(OPT/ log3 n).

6.2 Buyers with ℓ-XOS Valuations

The above theorem shows a clear gap between the power of uniform pricing and the power of
non-uniform pricing in the full information setting. However, it crucially uses the knowledge of the
valuation function and the fact that all buyers are identical; information that is usually not known
to the seller. Hence strategies in the limited information setting are more desirable in practice.

Fortunately, we find that considering static non-uniform pricing is also beneficial in the limited
information setting. We first note that if the buyer order is randomized, then it is quite easy to
get an O

(

m log n logOPT(log logOPT)2
)

approximation using static uniform pricing, even with
general valuations, and without the assumption of knowing OPT. This can be done as follows: Just
focus on selling items to the first buyer. If Bi is the first buyer, and the algorithm knew the value
vi(Ti), then using the single buyer (unlimited supply setting) algorithm in [4], the algorithm gets
Ω(vi(Ti)/ log n) in expectation from the first buyer, and we do not care what it gets from the other

buyers. Thus the expected revenue of the algorithm is 1
m

(
Pm

i=1
vi(Ti)

logn

)

= OPT
m logn . This algorithm

would have to guess vi(Ti) ≤ OPT of the first buyer Bi, up to a constant factor, and can do so by
incurring an additional factor of O(logOPT(log logOPT)2) as described in Lemma 2.4.

However, if we require a strategy to give guarantees on expected revenue against any order
of buyers, and in particular an adversarial ordering, then static uniform pricing cannot give a
better bound than 2Ω(

√
logn) even when there are only two buyers, with 3-XOS valuations. This is

evident from the proof of Theorem 3.1. We now show a static non-uniform strategy which achieves
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polylogarithmic approximation if we assume the valuation functions are ℓ-XOS functions where ℓ
is quasi-polynomial in n and the number of buyers is polylogarithmic, for all ordering of buyers.

Let k = ⌈2 log n⌉. With probability half, the seller assigns a single price p randomly drawn
from {p1, p2, · · · , pk} to all items. With probability half, the seller assigns one of p1, p2, · · · , pk+1

uniformly at random for each item. The price assignment remains unchanged over time.

Theorem 6.2 For m buyers with ℓ-XOS valuations functions, the expected revenue of the above

strategy is Ω
(

OPT
m log ℓ log3 n

)

.

Suppose the XOS valuation function of the ith buyer is vi(S) = max1≤j≤ℓ ai,j(S). For each
m-tuple z = (z1, z2, · · · , zm) ∈ [ℓ]m, define az to be an additive function such that for each item
g ∈ I, az(g) = max1≤i≤m ai,zi(g). For each z and each 1 ≤ i ≤ k, let Γz,i denote the set of items g
such az(g) ∈ [pi, pi−1). We say such a set Γz,i is large if its size is at least 16m log ℓ and we say it
is small otherwise. Define Az and Bz as follows:

Az =
⋃

Γz,i≥16m log ℓ
1≤i≤k

Γz,i , Bz =
⋃

Γz,i<16m log ℓ
1≤i≤k

Γz,i .

In the case where the seller posts one of p1, p2, · · · , pk+1 uniformly at random for each item, let
Πi denote the set of items which are priced pi/2.

The following two lemmas are crucial to the proof of Theorem 6.2.

Lemma 6.1 If the seller posts a single price p randomly drawn from {p1, p2, · · · , pk} for all items,
then the expected revenue is at least Ω(az(Bz)/m log ℓ log n) for any z ∈ [ℓ]m.

Proof: Let Ri denote the revenue if the seller posts a single price pi. When the seller posts a
single price pi for all items, the buyers will buy at least one item if Bz ∩ Γz,i is not empty. Note
that |Bz ∩ Γz,i| < m log ℓ, we have Ri ≥ az(Bz ∩ Γz,i)/m log ℓ. Since k = ⌈2 log n⌉, the expected
revenue is at least

1

k

k
∑

i=1

Ri ≥
k
∑

i=1

az(Bz ∩ Γz,i)

km log ℓ
=

az(Bz)

km log ℓ
= Ω

(

az(Bz)

m log ℓ log n

)

.

Lemma 6.2 If the seller posts one of p1, p2, · · · , pk+1 uniformly at random for each item, then
with probability at least 3/4 we have for every z ∈ [ℓ]m, |Πi ∩ Γz,i| ≥ |Az ∩ Γz,i| /2k.

Proof: If Γz,i is small then |Az ∩ Γz,i| = 0 and the given equation is trivially true. Now suppose
Γz,i is large, that is, |Γz,i| ≥ 16m log ℓ. Note that each item in Γz,i has probability 1/k of being
priced pi/2. Using Chernoff bounds and we get that the probability that less than 1/2k fraction of
Γz,i are priced pi/2 is at most 1/22m log ℓ = 1/ℓ2m. There are at most ℓm distinct m-tuples z. For
each z there are at most k = ⌈2 log n⌉ sets Γz,i. So the total number of different Γz,i is at most
ℓmk < ℓ2m/4. By using union bound we finish the proof of this lemma.

We can now complete the proof of Theorem 6.2.
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Proof of Theorem 6.2. If there exists some vector z such that az(Bz) ≥ OPT/320 log2 n then
we know from Lemma 6.1 that the expected revenue is at least Ω(OPT/m log ℓ log n). Now let us
assume az(Bz) < OPT/320 log2 n for any z.

By Lemma 6.2, it suffices to prove that the expected revenue is high if for each z ∈ [ℓ]m

|Πi ∩ Γz,i| ≥ |Az ∩ Γz,i| /2k. Suppose T = (T1, T2, · · · , Tm) is the allocation that maximizes the
social welfare, then OPT =

∑m
i=1 vi(Ti). There exists m-tuple z′ ∈ [ℓ]m such that ai,z′i(Ti) = vi(Ti)

and thus

OPT =
m
∑

i=1

ai,z′i(Ti) ≤ az′(I) = az′(Az′) + az′(Bz′) .

By our assumption az′(Az′) ≥ OPT − OPT/320 log2 n ≥ OPT/2 and hence az′(Az′ ∩ Γz′,j) ≥
OPT/2k for some j ∈ [k]. Let Z denote the set Πj ∩ Γz′,j and we have |Z| ≥

∣

∣Γz′,j

∣

∣ /2k. Since
k = ⌈2 log n⌉, we have

pj |Z| ≥ pj
∣

∣Γz′,j

∣

∣

2k
≥ az′(Γz′,j)

4k
≥ OPT

8k2
≥ OPT

40 log2 n
.

Suppose the ith buyer buys the set Si for 1 ≤ i ≤ m and let S denote the union of all Si.
If |S ∩ Z| ≥ |Z| /2 then the revenue is at least (pj/2) |S ∩ Z| ≥ (pj/2)(|Z| /2) = Ω(OPT/ log2 n).
Otherwise, |Z \ S| ≥ |Z| /2. Let ui(Si) denote the utility of set Si to the ith buyer. We have

m
∑

i=1

ui(Si) ≥
m
∑

i=1

ui(Z \ S) ≥ az′(Z \ S)− pj
2
|Z \ S| ≥ pj

2
|Z \ S| ≥ OPT

160 log2 n
.

Hence
∑m

i=1 vi(Si) ≥
∑m

i=1 ui(Si) = Ω(OPT/ log2 n). Note that there exists an m-tuple z′′ ∈ [l]m

such that ai,z′′i (Si) = vi(Si). So

az′′(Bz′′) + az′′(Az′′) = az′′(I) ≥
m
∑

i=1

ai,z′′i (Si) ≥
OPT

160 log2 n
.

By our assumption, az′′(Bz′′) < OPT/320 log2 n, so az′′(Az′′) = Ω(OPT/ log2 n). Note that an item
g is bought if and only if its price is less than ai,z′′i (g) for some i. So all items in Γz′′,i ∩ Πi are
bought and with high probability the revenue is at least

k
∑

i=1

pi
2

∣

∣Γz′′,i ∩Πi

∣

∣ ≥
k
∑

i=1

pi
∣

∣Γz′′,i ∩Az′′
∣

∣

4k
= Ω

(

az′′(Az′′)

k

)

= Ω

(

OPT

log3 n

)

.

Hence the proof is complete, the expected revenue is at least Ω(OPT/m log ℓ log3 n).
�
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