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Abstract

Bipartite graph tiling was studied by Zhao [7] who gave the best possible minimum degree
conditions for a balanced bipartite graph on 2ms vertices to contain m vertex disjoint copies
of Ks,s. Let s < t be fixed positive integers. Hladký and Schacht [3] gave minimum degree
conditions for a balanced bipartite graph on 2m(s + t) vertices to contain m vertex disjoint
copies of Ks,t. Their results were best possible, except in the case when m is odd and t > 2s+1.
We give the best possible minimum degree condition in this case.

1 Introduction

If G is a graph on n = sm vertices, H is a graph on s vertices and G contains m vertex disjoint
copies of H, then we say G can be tiled with H. In this language, we state the seminal result of
Hajnal and Szemerédi.

Theorem 1.1 (Hajnal-Szemerédi [2]). Let G be a graph on n = sm vertices. If δ(G) ≥ (s − 1)m,
then G can be tiled with Ks.

For tiling with general H, results of Alon and Yuster [1] and Komlós, Sárközy, and Szemerédi
[4] gave sufficient conditions on the minimum degree of a graph G such that G can be tiled with
H. Specifically, in [4], it is shown that if G is a graph on n vertices with minimum degree at least
(1− 1/χ(H)) n + K for a constant K that only depends on H, then G can be tiled with H. A
more delicate minimum degree condition that involves the so-called critical chromatic number of H
was conjectured by Komlós and solved by Shokoufandeh and Zhao [6]. Finally, Kühn and Osthus
[5] determined exactly when the critical chromatic number or chromatic number is the appropriate
parameter and thus settled the problem (for large graphs).

In this paper we study the tiling problem in bipartite graphs. Denote a bipartite graph G with
partition sets U and V by G[U, V ]. We say G[U, V ] is balanced if |U | = |V |. Zhao proved the
following Hajnal-Szemerédi type result for bipartite graphs.
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Theorem 1.2 (Zhao [7]). For each s ≥ 2, there exists m0 such that the following holds for all
m ≥ m0. If G is a balanced bipartite graph on 2n = 2ms vertices with

δ(G) ≥
{

n
2 + s− 1 if m is even
n+3s
2 − 2 if m is odd,

then G can be tiled with Ks,s.

Zhao proved that this minimum degree condition was tight.

Proposition 1.3 (Zhao [7]). Let s ≥ 2, and n = ms ≥ 64s2. There exists a balanced bipartite
graph, G, on 2n vertices with

δ(G) =

{

n
2 + s− 2 if m is even
n+3s
2 − 3 if m is odd

such that G cannot be tiled with Ks,s.

Hladký and Schacht extended Zhao’s result as follows.

Theorem 1.4 (Hladký-Schacht [3]). Let 1 ≤ s < t be fixed integers. There exists m0 such that the
following holds for all m ≥ m0. If G is a balanced bipartite graph on 2n = 2m(s+ t) vertices with

δ(G) ≥
{

n
2 + s− 1 if m is even
n+t+s

2 − 1 if m is odd,

then G can be tiled with Ks,t.

They proved that this minimum degree condition was tight in all cases except when m is odd
and t > 2s + 1. Note that since we are dealing with balanced bipartite graphs, in any tiling of
G[U, V ] with Ks,t there must be an equal number of copies of Ks,t with s vertices in U as copies
of Ks,t with t vertices in U . This explains why the authors [3] suppose 2n = 2m(s + t) instead of
2n = m(s+ t).

Proposition 1.5 (Hladký-Schacht [3]). Let 1 ≤ s < t be fixed integers. There exists m0 such that
the following holds for all m ≥ m0. There exists a balanced bipartite graph, G, on 2n = 2m(s + t)
vertices with

δ(G) =

{

n
2 + s− 2 if m is even
n+t+s

2 − 2 if m is odd and t ≤ 2s+ 1

such that G cannot be tiled with Ks,t.

Our objective is to give the tight minimum degree condition in the final remaining case, when
m is odd and t > 2s + 1. We will do this in two parts. First in Section 2.3 we prove that when m
is odd and t ≥ 2s+ 1, the following minimum degree condition is sufficient.

Theorem 1.6. Let 1 ≤ s < t be fixed integers with 2s + 1 ≤ t. There exists m0 such that the
following holds for all odd m with m ≥ m0. If G is a balanced bipartite graph on 2n = 2m(s + t)
vertices with

δ(G) ≥ n+ 3s

2
− 1,

then G can be tiled with Ks,t.
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Then in Section 3 we prove that the minimum degree condition in Theorem 1.6 is tight.

Proposition 1.7. Let 1 ≤ s < t be fixed integers with 2s + 1 ≤ t. There exists m0 such that
the following holds for all odd m with m ≥ m0. There exists a balanced bipartite graph, G, on
2n = 2m(s + t) vertices with

δ(G) =

{

n+3s
2 − 3

2 if t is odd
n+3s
2 − 2 if t is even

such that G cannot be tiled with Ks,t.

Let m = 2k + 1 for some k ∈ N and let n = m(s + t). We note that when t = 2s + 1,
n+3s
2 − 1 = (k+ 1)(s+ t)− 3

2 and n+t+s
2 − 1 = (k + 1)(s+ t)− 1. So the value for the lower bound

in Theorem 1.6 is smaller than the value for the lower bound in Theorem 1.4 when t = 2s + 1,
but since δ(G) only takes integer values the minimum degree condition in Theorem 1.6 is not an
improvement until t > 2s + 1.

2 Proof of Theorem 1.6

For disjoint sets A,B ⊆ V (G), we define e(A,B) to be the number of edges with one end in A
and the other end in B and for v ∈ V (G) \ A we write deg(v,A) instead of e({v}, A). Also,

d(A,B) = e(A,B)
|A||B| , δ(A,B) = min{deg(v,B) : v ∈ A} and ∆(A,B) = max{deg(v,B) : v ∈ A}. An

h-star from A to B, is a copy of K1,h with the vertex of degree h, the center, in A and the vertices
of degree 1, the leaves, in B.

The following theorem appears in [7].

Theorem 2.1 (Zhao [7]). For every α > 0 and every positive integer r, there exist β > 0 and
positive integer m1 such that the following holds for all n = mr with m ≥ m1. Given a bipartite
graph G[U, V ] with |U | = |V | = n, if δ(G) ≥ (12 −β)n, then either G can be tiled with Kr,r, or there
exist

U ′
1 ⊆ U, V ′

2 ⊆ V, such that |U ′
1| = |V ′

2 | = ⌊n/2⌋ , d(U ′
1, V

′
2) ≤ α. (1)

If a balanced bipartite graph G[U, V ] on 2n vertices with n divisible by r satisfies (1), we say
G is extremal with parameter α. In this case we set U ′

2 := U \ U ′
1 and V ′

1 := V \ V ′
2 .

If we replace r with s + t in Theorem 2.1, we see that either G can be tiled with Ks+t,s+t or
else we are in the extremal case. If it is the case that G can be tiled with Ks+t,s+t, we split each
copy of Ks+t,s+t into two copies of Ks,t to give the desired tiling. So we must only deal with the
extremal case.

2.1 Pre-processing

Claim 2.2. Let 0 < α ≪ 1, r ∈ N and let m1 ∈ N be given by Theorem 2.1. Let m ≥ m1 and
suppose that G[U, V ] is a balanced bipartite graph on 2n = 2mr vertices such that δ(G) = n

2 + C,
where 0 ≤ C ≤ 3r/2. Suppose further that the deletion of any edge of G will cause the resulting graph
to have minimum degree less than n

2 +C. If G is extremal with parameter α, then d(U ′
2, V

′
1) ≤ 5

√
α.
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Proof. Let γ := 5
√
α and suppose d(U ′

2, V
′
1) > γ. Let X ′ = {u ∈ U ′

2 : deg(u, V ′
2) < (1 − √

α)n2 },
Y ′ = {v ∈ V ′

1 : deg(v, U ′
1) < (1 − √

α)n2 }. Since e(U ′
1, V

′
2) ≤ αn2

4 and e(U ′
1, V ) ≥ |U ′

1|n2 , we have

e(U ′
1, V

′
1) ≥ |U ′

1|n2 − αn2

4 . Thus we can bound the non-edges between U ′
1 and V ′

1 ,

√
α
n

2
|Y ′| ≤ ē(U ′

1, V
′
1) ≤ α

n2

4
,

which gives |Y ′| ≤ √
αn

2 . Similarly we have |X ′| ≤ √
αn

2 . Let U ′′
2 = U ′

2 \ X ′ and V ′′
1 = V ′

1 \ Y ′.
Since d(U ′

2, V
′
1) > γ, we have

e(U ′′
2 , V

′′
1 ) ≥ γ

n2

4
− 2

√
α
n2

4
= 3

√
α
n2

4
. (2)

Let X ′′ = {u ∈ U ′′
2 : deg(u, V ′′

1 ) ≥
√
αn

2+C+1} and Y ′′ = {v ∈ V ′′
1 : deg(v, U ′′

2 ) ≥
√
αn

2+C+1}.
If there is an edge uv ∈ E(X ′′, Y ′′), then deg(u),deg(y) ≥ n

2 + C + 1 which contradicts the edge
minimality of G, so suppose e(X ′′, Y ′′) = 0. Finally, by (2) we have

3
√
α
n2

4
≤ e(U ′′

2 , V
′′
1 ) ≤ e(X ′′, Y ′′) + e(U ′′

2 \X ′′, V ′′
1 ) + e(V ′′

1 \ Y ′′, U ′′
2 ) ≤ 0 + 2(

√
α
n

2
+ C)

n

2
,

which is a contradiction, since n is sufficiently large.

Let 1 ≤ s < t be integers so that 2s + 1 ≤ t, and let 0 < α ≪ 1 (setting α :=
(

1
32t(s+t)

)3

is small enough). Let G[U, V ] be a balanced bipartite graph on 2n = 2m(s + t) vertices, where
m = 2k + 1 and k is a sufficiently large integer with respect to (α5 )

2. Suppose that G is extremal
with parameter (α5 )

2 and edge-minimal with respect to the condition δ(G) ≥ n+3s
2 − 1. By Claim

2.2 we have d(U ′
i , V

′
3−i) ≤ α for i = 1, 2. Then for i = 1, 2, we define

Ui = {u ∈ U : deg(u, V ′
3−i) < α

1

3

n

2
}, Vi = {v ∈ V : deg(v, U ′

3−i) < α
1

3

n

2
},

U0 = U − U1 − U2, and V0 = V − V1 − V2.

As a consequence of these definitions, we have the following.

Claim 2.3. For i = 1, 2

(i) (1− α2/3)
n

2
≤ |Ui|, |Vi| ≤ (1 + α2/3)

n

2
, (ii) |U0|, |V0| ≤ α2/3n,

(iii) (1− 2α1/3)
n

2
< δ(Ui, Vi), δ(Vi, Ui), (iv) (α1/3 − α2/3)

n

2
≤ δ(U0, Vi), δ(V0, Ui),

(v) ∆(Ui, V3−i),∆(V3−i, Ui) ≤ α1/3n

Proof. A proof of (i)-(iv) can be found in [7] and was also used in [3]. So we prove (v) here.
Let i ∈ {1, 2} and note that

|U ′
i \ Ui|α1/3n

2
≤ e(U ′

i \ Ui, V
′
3−i) ≤ e(U ′

i , V
′
3−i) ≤ α

n2

4
(3)

and

|V ′
i \ Vi|α1/3n

2
≤ e(V ′

i \ Vi, U
′
3−i) ≤ e(V ′

i , U
′
3−i) ≤ α

n2

4
. (4)
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Then (3) and (4) imply

|U ′
i \ Ui|, |V ′

i \ Vi| ≤ α2/3n

2
, (5)

which gives ∆(Ui, V3−i) ≤ ∆(Ui, V
′
3−i) + |V3−i \ V ′

3−i| ≤ ∆(Ui, V
′
3−i) + |V ′

i \ Vi| ≤ α1/3n and

∆(Vi, U3−i) ≤ ∆(Vi, U
′
3−i) + |U3−i \ U ′

3−i| ≤ ∆(Vi, U
′
3−i) + |U ′

i \ Ui| ≤ α1/3n.

We need to define some new sets which were not specified in [7].

Definition 2.4. For i = 1, 2, let

Ũi = {u ∈ Ui : deg(u, V3−i) ≥ s}, Ṽi = {v ∈ Vi : deg(v, U3−i) ≥ s},
Ûi = Ui \ Ũi, and V̂i = Vi \ Ṽi.

Note that the following inequalities are satisfied:

δ(Û1, V0) + δ(Û2, V0) ≥ n+ 3s− 2− (|V1|+ s− 1)− (|V2|+ s− 1) = |V0|+ s and (6)

δ(V̂1, U0) + δ(V̂2, U0) ≥ n+ 3s− 2− (|U1|+ s− 1)− (|U2|+ s− 1) = |U0|+ s. (7)

2.2 Preliminary Claims

The following useful lemma appears in [7].

Lemma 2.5 (Zhao [7], Fact 5.3). Let F [A,B] be a bipartite graph with δ := δ(A,B) and ∆ :=
∆(B,A) Then F contains fh vertex disjoint h-stars from A to B, and gh vertex disjoint h-stars
from B to A (the stars from A to B and those from B to A need not be disjoint), where

fh ≥ (δ − h+ 1)|A|
h∆+ δ − h+ 1

, gh ≥ δ|A| − (h− 1)|B|
∆+ hδ − h+ 1

.

We now prove three claims that we will need in the main proof.

Claim 2.6. Let i ∈ {1, 2} and {A,B} = {Ui, V3−i}. Let 0 ≤ c ≤ α1/3n, B0 ⊆ B and A0 = {v ∈
A : deg(v,B0) ≥ s+ c}. If |A0| ≥ n

4 then there is a set SA of at least c+1
8sα1/3 vertex disjoint s-stars

from A0 to B0.

Proof. Let SA be a maximum set of vertex disjoint s-stars from A0 to B0 and let fs = |SA|. We
apply Lemma 2.5 to the graph G[A0, B0]. Recall, by Claim 2.3, that ∆(B,A) ≤ α1/3n. Then

fs ≥
(c+ 1)|A0|

sα1/3n+ c+ 1
≥ (c+ 1)n4

2sα1/3n
=

c+ 1

8sα1/3
.

Note that since n = (2k + 1)(s + t), we can write δ(G) ≥ n+3s
2 − 1 = k(s+ t) + 2s + t

2 − 1.

Claim 2.7. Let i ∈ {1, 2} and {A,B} = {Ui, V3−i}. Let |A| = k(s+ t) + z and |B| = k(s+ t) + y.
Suppose y ≥ z and y ≥ t+1

2 . Then there is a set SB of y vertex disjoint s-stars with centers CB ⊆ B
and leaves LA ⊆ A. Furthermore if z ≥ 1, then there is a set SA of z vertex disjoint s-stars from
A \ LA to B \ CB.
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Proof. Let β := 32sα1/3 and recall that by the choice of α we have 1
t ≫ β ≫ 2α1/3. We show

that the desired set SB exists by applying Lemma 2.5 to the graph G[A,B]. We have δ(A,B) ≥
k(s+ t)+ 2s+ t

2 − 1− (n− |B|) = y+ s− t
2 − 1 and ∆(B,A) ≤ α1/3n by Claim 2.3. Let gs = |SB|,

then

gs ≥
(y − t

2 + s− 1)(k(s + t) + z)− (s− 1)(k(s + t) + z + y − z)

α1/3n+ s(y − t
2 + s− 1)− s+ 1

=
(y − t

2)(k(s + t) + z)− (s− 1)(y − z)

α1/3n+ s(y − t
2) + s2 − 2s+ 1

≥ (y − t
2)

n
3

2α1/3n
(since y ≤ α2/3n

2
and − α2/3n

2
≤ z, by Claim 2.3)

≥ y (since y ≥ t+ 1

2
and α ≪ 1).

Thus the desired set SB exists.
Suppose z ≥ 1. Let c := 1

2y if y ≥ 1/β, and let c := 0 if y < 1/β. Let B0 = B \ CB and
A0 = {v ∈ A \ LA|deg(v,B0) ≥ s+ c} and Ā = (A \ LA) \ A0. Suppose that |Ā| ≥ n

16 . Then there
exists u ∈ CB such that if y < 1/β,

deg(u,A) ≥ e(Ā, CB)

|CB |
≥
(

y − t
2 + s− 1− (s− 1)

)

n
16

y
=

(

y − t
2

)

n
16

y
>

βn

32
≥ α1/3n

and if y ≥ 1/β,

deg(u,A) ≥ e(Ā, CB)

|CB|
>

(

y − t
2 + s− 1− (s+ 1

2y)
)

n
16

y
=

(y
2 − t

2 − 1
)

n
16

y
>

n

64
≥ α1/3n,

each contradicting Claim 2.3. So |Ā| < n
16 and thus |A0| ≥ |A|−|LA|− n

16 ≥ k(s+t)−sα2/3 n
2− n

16 ≥ n
4 .

Now let SA be a maximum set of disjoint s-stars from A0 to B0 and let fs = |SA|. By Lemma 2.6
we have fs ≥ c+1

8sα1/3 . Recall that 1 ≤ z ≤ y. If y ≥ 1/β, then fs ≥ y
16sα1/3 ≥ z and if y < 1/β, then

fs ≥ 1
8sα1/3 ≥ 1

β ≥ z. So the desired set SA exists.

Claim 2.8. Suppose |U0|, |V0| ≥ s. If |Û1| ≥ n
8 and |Û2| ≥ n

8 (see Definition 2.4), then there is a

Ks,t =: K1 with s vertices in V0, ⌈t/2⌉ vertices in U1 and ⌊t/2⌋ vertices in U2. Likewise, if |V̂1| ≥ n
8

and |V̂2| ≥ n
8 then there is a Ks,t =: K2 with s vertices in U0, ⌈t/2⌉ vertices in V1 and ⌊t/2⌋ vertices

in V2.

Proof. Without loss of generality we will only prove the first statement. Let

ℓ := s

( |U2|
⌊t/2⌋

)

/

(
⌈

(α1/3 − α2/3)n/2
⌉

⌊t/2⌋

)

and recall that |U1|, |U2| ≤ (1 + α2/3)n2 by Claim 2.3. Thus we have

ℓ ≤ s

( |U2|
(α1/3 − α2/3)n2 − ⌊t/2⌋

)⌊t/2⌋

≤ s

(

(1 + α2/3)n2
(α1/3 − α2/3)n3

)⌊t/2⌋

≤ s

(

3(1 + α2/3)

2(α1/3 − α2/3)

)⌊t/2⌋

. (8)
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Case 1. |V0| ≥ ℓ
( |U1|
⌈t/2⌉

)

/
(⌈(α1/3−α2/3)n/2⌉

⌈t/2⌉

)

. Recall that δ(V0, Ui) ≥ (α1/3 −α2/3)n/2 for i = 1, 2 by

Claim 2.3 and suppose that there is no K⌈t/2⌉,ℓ with ⌈t/2⌉ vertices in U1 and ℓ vertices in V0. We
count the ⌈t/2⌉-stars from V0 to U1 in two ways which gives

|V0|
(
⌈

(α1/3 − α2/3)n/2
⌉

⌈t/2⌉

)

< ℓ

( |U1|
⌈t/2⌉

)

contradicting the lower bound for |V0|. Consequently there is a complete bipartite graph K ′ =
K⌈t/2⌉,ℓ with ⌈t/2⌉ vertices in U1 and ℓ vertices in V0. If there is no K⌊t/2⌋,s with s vertices in
V (K ′) ∩ V0 and ⌊t/2⌋ vertices in U2, then a similar counting argument gives

ℓ

(
⌈

(α1/3 − α2/3)n/2
⌉

⌊t/2⌋

)

< s

( |U2|
⌊t/2⌋

)

contradicting the definition of ℓ.

Case 2. |V0| < ℓ
( |U1|
⌈t/2⌉

)

/
(⌈(α1/3−α2/3)n/2⌉

⌈t/2⌉

)

. By (8), we have

|V0| < ℓ

(

3(1 + α2/3)

2(α1/3 − α2/3)

)⌈t/2⌉

≤ s

(

3(1 + α2/3)

2(α1/3 − α2/3)

)t

.

Let p := δ(Û1, V0), and note that p ≥ s by (6). We claim that there is a complete bipartite graph
K ′ := K⌈t/2⌉,p with ⌈t/2⌉ vertices in Û1 and p vertices in V0. Let c be the number of p-stars with

centers in Û1 and leaves in V0. We have c ≥ |Û1| ≥ n
8 and if no p-subset of V0 is in ⌈t/2⌉ of such

stars, i.e. K ′ does not exist, we have c ≤ (⌈t/2⌉ − 1)
(|V0|

p

)

which contradicts the fact that |V0| is
O(1) and n is sufficiently large (with respect to α, t, and consequently |V0|). From (6) we have
δ(Û2, V0) ≥ |V0|−p+s, so every vertex u ∈ Û2 has at least s neighbors in V (K ′)∩V0. Repeating the
argument above by counting s-stars with centers in Û2 and leaves in V (K ′)∩V0 gives K

′′ := Ks,⌊t/2⌋.
Now choose K1 ⊆ K ′ ∪K ′′ having the property that |V0 ∩ V (K1)| = s, |U1 ∩ V (K1)| = ⌈t/2⌉, and
|U2 ∩ V (K1)| = ⌊t/2⌋ as desired.

2.3 Extremal Case

Recall that t ≥ 2s+1, n = (2k+1)(s+ t) for some sufficiently large k ∈ N, and δ(G) ≥ n+3s
2 − 1 =

k(s + t) + 2s + t
2 − 1. We start with the partition given in Section 2.1 and we call U0 and V0 the

exceptional sets. Let i ∈ {1, 2}. We will attempt to update the partition by moving a constant
number (depending only on t) of special vertices between U1 and U2, denote them by X, and
special vertices between V1 and V2, denote them by Y , as well as partitioning the exceptional
sets as U0 = U1

0 ∪ U2
0 and V0 = V 1

0 ∪ V 2
0 . Let U∗

1 , U∗
2 , V

∗
1 and V ∗

2 be the resulting sets after
moving the special vertices. Our goal is to obtain two graphs, G1 := G[U∗

1 ∪ U1
0 , V

∗
1 ∪ V 1

0 ] and
G2 := [U∗

2 ∪ U2
0 , V

∗
2 ∪ V 2

0 ] so that G1 satisfies

|U∗
1 ∪ U1

0 | = ℓ1(s+ t) + as+ bt, |V ∗
1 ∪ V 1

0 | = ℓ1(s+ t) + bs+ at

and G2 satisfies

|U∗
2 ∪ U2

0 | = ℓ2(s+ t) + bs+ at, |V ∗
2 ∪ V 2

0 | = ℓ2(s+ t) + as+ bt,
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for some nonnegative integers a, b, ℓ1, ℓ2. We tile G1 as follows. We find a copies of Ks,t, each with
t vertices in U∗

1 , so that each special vertex in X ∩ U∗
1 is in a unique copy (some copies may not

contain any special vertex). Also, we find b copies of Ks,t, each with t vertices in V ∗
1 so that each

special vertex in Y ∩V ∗
1 is in a unique copy (some copies may not contain any special vertex). Note

that we only move vertices which will make this step possible. Deleting these a+ b copies of Ks,t

from G1 gives us a balanced bipartite graph on 2ℓ1(s+t) vertices. As noted in [7] and [3], this graph
can easily be tiled: By Claim 2.3 there are at most α2/3 n

2 exceptional vertices in U1
0 (resp. V 1

0 ),

each with degree at least (α1/3 − α2/3)n2 to V1 (resp. U1), so they may greedily be incorporated
into unique copies of Ks+t,s+t. The remaining graph is still balanced, divisible by s+ t, and almost
complete, thus can be tiled.

So if we are able to split G into graphs G1 and G2 as detailed above, we will conclude that G
can be tiled. However, if it is not possible to carry out this goal, then we will use an alternate
method which is explained in Case 2.

Proof of Theorem 1.6. There are two main cases.
Case 1. max{|U1|, |U2|, |V1|, |V2|} ≥ k(s + t) + t+1

2 . Without loss of generality, suppose |U1| =
max{|U1|, |U2|, |V1|, |V2|}.

Case 1.1. |V2∪V0| ≥ k(s+ t)+s. We apply Claim 2.7 to G[U1, V2] with A = V2 and B = U1 to
obtain |U1| − (k(s+ t) + s) vertex disjoint s-stars with centers CU ⊆ U1 and leaves in V2 and a set
of max{0, |V2| − (k(s + t) + s)} vertex disjoint s-stars with centers CV ⊆ V2 and leaves in U1. We
move the vertices in CU to U2 and the vertices in CV to V1. If |V2| < k(s+ t)+s, we choose V ′

0 ⊆ V0

so that |(V2∪V0)\V ′
0)| = k(s+ t)+s otherwise we set V ′

0 = ∅. Then G1 := G[U1 \CU , V1∪CV ∪V ′
0 ]

satisfies
|U1| − |CU | = k(s + t) + s, |V1|+ |V ′

0 |+ |CV | = k(s+ t) + t,

and G2 := G−G1 satisfies

|U2 ∪ U0|+ |CU | = k(s + t) + t, |V2|+ |V0 \ V ′
0 | − |CV | = k(s + t) + s.

Thus G1 and G2 can be tiled, which completes the tiling of G.
Case 1.2. |V2 ∪ V0| < k(s + t) + s.
This implies |V1| > k(s + t) + t. So we apply Claim 2.7 to G[V1, U2] with A = U2 and B = V1

to obtain a set of |V1| − k(s + t) vertex disjoint s-stars with centers CV ⊆ V1 and leaves in U2.
Likewise we apply Claim 2.7 to G[U1, V2] with A = V2 and B = U1 to obtain a set of |U1|− k(s+ t)
vertex s-stars with centers CU ⊆ U1 and leaves in V2. We move the vertices in CU to U2 and the
vertices in CV to V2. Then G1 := G[U1 \ CU , V1 \ CV ] satisfies

|U1| − |CU | = k(s+ t), |V1| − |CV | = k(s + t)

and G2 := G−G1 satisfies

|U2 ∪ U0|+ |CU | = (k + 1)(s + t), |V2 ∪ V0|+ |CV | = (k + 1)(s + t).

Thus G1 and G2 can be tiled, which completes the tiling of G.
Case 2. max{|U1|, |U2|, |V1|, |V2|} ≤ k(s+ t) + t

2 . Note that this implies |U0|, |V0| ≥ s.

Case 2.1. max{|Ũ1|, |Ũ2|, |Ṽ1|, |Ṽ2|} ≥ n
4 (see Definition 2.4). Without loss of generality we

can assume |Ũ1| = max{|Ũ1|, |Ũ2|, |Ṽ1|, |Ṽ2|}. Set h := ⌈t/(2s)⌉. Since |Ũ1| > n
4 and 1

8sα1/3 ≥
(h−1)(s+ t), we can apply Claim 2.6 to G[Ũ1, V2] with c = 0 to obtain a set of (h−1)(s+ t) vertex
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disjoint s-stars with centers CU ⊆ Ũ1 and leaves in V2. We first move the vertices in CU from Ũ1

to U2. Then since
t

2
= s

t

2s
≤ sh ≤ s

t+ 2s − 1

2s
=

t

2
+ s− 1

2
,

we can choose sets U ′
0 ⊆ U0 with |U ′

0| = k(s + t) + ⌊t/2⌋ − |U1| + sh − ⌊t/2⌋ and V ′
0 ⊆ V0 with

|V ′
0 | = k(s + t) + ⌊t/2⌋ − |V1|+ s+ ⌈t/2⌉ − sh so that G1 := G[(U1 ∪ U ′

0) \ CU , V1 ∪ V ′
0 ] satisfies

|U1|+ |U ′
0| − |CU | = (k − h+ 1)(s + t) + hs, |V1|+ |V ′

0 | = (k − h+ 1)(s + t) + ht,

and G2 := G−G1 satisfies

|U2|+ |U0 \ U ′
0|+ |CU | = k(s+ t) + ht, |V2|+ |V0 \ V ′

0 | = k(s+ t) + hs.

Thus G1 and G2 can be tiled, which completes the tiling of G.
Case 2.2. max{|Ũ1|, |Ũ2|, |Ṽ1|, |Ṽ2|} < n

4 . Thus for i = 1, 2, we have

|Ûi|, |V̂i| ≥ (1− α2/3)
n

2
− n

4
≥ n

8
.

So we may apply Claim 2.8 to obtain the two special copies of Ks,t, K1 and K2. Note that
|Ui \ V (K1)|, |Vi \ V (K2)| ≤ k(s+ t) for i = 1, 2. Let U ′

0 = U0 \ V (K2) and V ′
0 = V0 \ V (K1). We

remove the graphs K1 and K2, then we partition the vertices U ′
0 = U1

0 ∪ U2
0 and V ′

0 = V 1
0 ∪ V 2

0 so
that G1 := G[(U1 ∪ U1

0 ) \ V (K1), (V1 ∪ V 1
0 ) \ V (K2)] satisfies

|U1| − ⌈t/2⌉+ |U1
0 | = k(s + t), |V1| − ⌈t/2⌉+ |V 1

0 | = k(s + t)

and G2 = G−G1 −K1 −K2 satisfies

|U2| − ⌊t/2⌋ + |U2
0 | = k(s+ t), |V2| − ⌊t/2⌋+ |V 2

0 | = k(s+ t).

Thus G1 and G2 can be tiled, so along with K1 and K2, this completes the tiling of G.

3 Tightness

In this section we will prove Proposition 1.7. We will need to use the graphs P (m, p), where
m, p ∈ N, introduced by Zhao in [7].

Lemma 3.1. For all p ∈ N there exists m0 such that for all m ∈ N, m > m0, there exists a balanced
bipartite graph, P (m, p), on 2m vertices, so that the following hold:

(i) P (m, p) is p-regular

(ii) P (m, p) does not contain a copy of K2,2.

Proof of Proposition 1.7. Let G[U, V ] be a balanced bipartite graph on 2n vertices satisfying the
following conditions. Let n = (2k+1)(s+ t) for some sufficiently large k (as determined by Lemma
3.1 with p = s − 1). Partition U into U = U0 ∪ U1 ∪ U2 and partition V into V = V0 ∪ V1 ∪ V2

where, |U1| = |V2| = k(s + t) +
⌊

t+1
2

⌋

, |V1| = |U2| = k(s + t) +
⌈

t+1
2

⌉

and |U0| = |V0| = s − 1.
Let G[Ui, Vi] be complete for i ∈ {1, 2}, G[U1, V2] ∼= P

(

k(s+ t) +
⌊

t+1
2

⌋

, s− 1
)

and G[U2, V1] ∼=

9



P
(

k(s+ t) +
⌈

t+1
2

⌉

, s− 1
)

. Let G[U0, V1∪V2] be complete, G[V0, U1∪U2] be complete and G[U0, V0]
be empty. Note that

δ(G) =

{

n+3s
2 − 3

2 if t is odd
n+3s
2 − 2 if t is even.

Finally we reiterate the following properties of G[U1, V2] and G[U2, V1]. For i = 1, 2,

∆(Ui, V3−i) = ∆(Vi, U3−i) = s− 1 (9)

and
G[Ui, V3−i] is K2,2-free. (10)

For i ∈ {1, 2} and A ∈ {Ui, Vi}, let AD := V3−i if A = Ui and let AD := U3−i if A = Vi. We
call AD the diagonal set of A. Let AN := Vi if A = Ui and AN := Ui if A = Vi. We call AN the
non-diagonal set of A. Finally, we let AM := V0 if A = Ui and AM := U0 if A = Vi. We call AM

the opposite middle set of A.
Suppose K ∼= Ks,t is a subgraph of G. We say K is a crossing Ks,t if V (K)∩ (U1 ∪ V1) 6= ∅ and

V (K) ∩ (U2 ∪ V2) 6= ∅. Let W = {U1, U2, V1, V2}.
Claim 3.2. If K is a crossing Ks,t, then

(i) V (K) must intersect some member of W in exactly one vertex, and

(ii) there is a unique A0 ∈ {U0, V0} such that V (K) ∩A0 6= ∅.

Furthermore, if |V (K) ∩A| = 1 for some A ∈ W, then

(iii) V (K) ∩AD 6= ∅, and

(iv) either |V (K)∩AN | ≥ 2 and V (K)∩ (AN )D = ∅, or V (K)∩AN = ∅ and |V (K)∩ (AN )D| ≥ 2.

Proof. (i) Suppose not. Then without loss of generality, suppose that |V (K) ∩ V1| ≥ 2. By (10)
we have, |V (K)∩U2| ≤ 1 and thus V (K)∩U2 = ∅. Since K is crossing, we have V (K)∩V2 6= ∅
and thus |V (K) ∩ V2| ≥ 2. By (10) we have, |V (K) ∩ U1| ≤ 1 and thus V (K) ∩ U1 = ∅. This
is a contradiction, since K ∼= Ks,t and |V (K) ∩ U | ≤ |U0| = s− 1.

(ii) Suppose first that V (K)∩U0 = ∅ = V (K)∩V0. By Claim 3.2 (i), we can assume without loss
of generality that |V (K)∩U1| = 1. Then either |V (K)∩U2| = t−1 or |V (K)∩U2| = s−1. If
|V (K)∩U2| = t− 1, then by (9) we must have V (K)∩V1 = ∅ which implies |V (K)∩V2| = s,
contradicting (9). If |V (K) ∩ U2| = s− 1, then since t ≥ 2s+ 1 we have |V (K) ∩ V1| ≥ s+ 1
or |V (K) ∩ V2| ≥ s + 1, both of which contradict (9). Thus there exists A0 ∈ {U0, V0} such
that V (K) ∩A0 6= ∅. Finally since G[U0, V0] is empty, A0 must be unique.

(iii) Suppose that V (K) ∩ AD = ∅. Since |V0| = s − 1, we have V (K) ∩ AN 6= ∅ and since K is
crossing, we have V (K)∩ (AN )D 6= ∅. Then by (9), we have |V (K)∩AN |, |V (K)∩ (AN )D| ≤
s−1. Thus |V (K)∩U | ≤ 2s−1 and |V (K)∩V | ≤ 2s−2, contradicting the fact that K ∼= Ks,t

and t ≥ 2s+ 1.

(iv) We first show that it is not possible for either |V (K) ∩ AN | = 1 or |V (K) ∩ (AN )D| = 1. If
|V (K)∩AN | = 1, then by (9) and |U0| = |V0| = s−1, we have |V (K)∩U |, |V (K)∩V | ≤ 2s−1,
contradicting the fact that K ∼= Ks,t and t ≥ 2s + 1. So suppose |V (K) ∩ (AN )D| = 1. If
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V (K) ∩ U0 = ∅, then |V (K) ∩ U | = 2 and since t ≥ 3 we must have s = 2. Then by (9) we
have |V (K) ∩ V | ≤ 3 contradicting the fact that K ∼= Ks,t and t ≥ 2s+ 1. If V (K) ∩U0 6= ∅,
then V (K) ∩ V0 = ∅. So |V (K) ∩ U | ≤ s+ 1 and by (9), |V (K) ∩ V | ≤ 2s − 2 contradicting
the fact that K ∼= Ks,t and t ≥ 2s+ 1.

Now suppose V (K) ∩AN 6= ∅ and V (K) ∩ (AN )D 6= ∅. Thus, by the previous paragraph we
have |V (K) ∩AN |, |V (K) ∩ (AN )D| ≥ 2, contradicting (10).

So suppose that V (K) ∩ AN = ∅ = V (K) ∩ (AN )D. Then it must be the case that |V (K) ∩
(AN )M | = s− 1 and consequently |V (K) ∩AD| = t, contradicting (9).

Let A ∈ W. We say K is crossing from A if either |V (K) ∩ A| = 1 and |V (K) ∩ AD| ≥ 2, or
|V (K)∩A| = 1, |V (K)∩AD| = 1 and V (K)∩AM 6= ∅. We say that a crossing Ks,t from A is Type
1 if |V (K) ∩ (AN )M | = s− 1, |V (K) ∩AN | = t− p and |V (K) ∩AD| = p for some 2 ≤ p ≤ s− 1.
We say that a crossing Ks,t from A is Type 2 if |V (K)∩ (AN )D| = t− 1, |V (K)∩AM | = s− p, and
|V (K) ∩AD| = p for some 1 ≤ p ≤ s− 1.

A

t− p

s− 1

A
V

A
D2 ≤ p ≤ s− 1

(Type 1 crossing Ks,t from A)

t− 1

s− p 1 ≤ p ≤ s− 1

A

A
D

(AV )D

(Type 2 crossing Ks,t from A)

Figure 1

Claim 3.3. Every crossing Ks,t is either Type 1 or Type 2.

Proof. (See Figure 1) Let K be a crossing Ks,t and without loss of generality suppose K is crossing
from U1. Let p := |V (K)∩V2|. By Claim 3.2 (iii) and (9) we have 1 ≤ p ≤ s− 1. Suppose K is not
Type 1. If V (K)∩U2 = ∅, then |V (K)∩U0| = s−1 which implies V (K)∩V0 = ∅ by Claim 3.2 (ii).
SinceK is not Type 1, it must be the case that |V (K)∩V2| = 1 and |V (K)∩V1| = t−1 in which case
K is not crossing from U1, contradicting our assumption. So we suppose that V (K) ∩ U2 6= ∅. By
Claim 3.2 (iv) we have |V (K)∩U2| ≥ 2 and V (K)∩V1 = ∅, which implies that |V (K)∩V0| = s−p.
So by Claim 3.2 (ii), we have V (K) ∩ U0 = ∅ and thus |V (K) ∩ U2| = t− 1, so K is Type 2.

Suppose for a contradiction that G can be tiled withKs,t. Let F be a tiling of G which minimizes
the number of crossing Ks,t’s.

Claim 3.4. For i = 1, 2, if there is a crossing Ks,t of Type 2 from Ui or Vi, then there is no
crossing Ks,t of Type 2 from U3−i or V3−i.

Proof. Without loss of generality suppose K1 is a crossing Ks,t of Type 2 from U1. Suppose that
K2 is a crossing Ks,t of Type 2 from U2 (See Figure 2). For i ∈ {1, 2}, let

Ki
∗ := G[Ui ∩ (V (K1) ∪ V (K2)), V (K3−i) ∩ (V0 ∪ Vi)].
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q1 s− q1

t− 1

s− p1 p1

t− 1

U1

V1

U2

V2 s− p1

s− q1

t− 1

t− 1

p1

q1

U1

V1

U2

V2

Figure 2: Two cases in the proof of Claim 3.4.

We have K1
∗
∼= Ks,t

∼= K2
∗ , neither of K

1
∗ ,K

2
∗ are crossing, and V (K1)∪ V (K2) = V (K1

∗ ) ∪ V (K2
∗ ).

Thus we obtain a tiling with fewer crossing Ks,t’s, contradicting the minimality of F .
Now, suppose K1 is a crossing Ks,t of Type 2 from U1 and K2 is a crossing Ks,t of Type 2 from

V2 (See Figure 2). Specify an element L1 ∈ F , such that V (L1) ⊆ U1 ∪ V1 and |V (L1) ∩ V1| = t
and specify an element L2 ∈ F , such that V (L2) ⊆ U2 ∪V2 and |V (L2)∩U2| = t. Choose arbitrary
vertices v′ ∈ V (K1) ∩ V0 and u′ ∈ V (K2) ∩ U0. We now define four subgraphs of G. Let

K1
∗ : = G[V (L1) ∩ V1, (V (K1) ∪ V (K2)) ∩ ((U1 ∪ U0) \ {u′})],

L1
∗ : = G[V (L1) ∩ U1, (V (K2) ∩ V1) ∪ {v′}],

K2
∗ : = G[V (L2) ∩ U2, (V (K1) ∪ V (K2)) ∩ ((V2 ∪ V0) \ {v′})], and

L2
∗ : = G[V (L2) ∩ V1, (V (K1) ∩ U2) ∪ {u′}].

All of K1
∗ ,K

2
∗ , L

1
∗, L

2
∗ are isomorphic to Ks,t, none of K1

∗ ,K
2
∗ , L

1
∗, L

2
∗ are crossing, and V (K1

∗ ) ∪
V (K2

∗ ) ∪ V (L1
∗) ∪ V (L2

∗) = V (K1) ∪ V (K2) ∪ V (L1) ∪ V (L2). Thus we obtain a tiling with fewer
crossing Ks,t’s, contradicting the minimality of F .

For i ∈ {1, 2}, let Fi be the set of all copies of Ks,t in F which touch Ui ∪ Vi. And let U∗
i

(resp. V ∗
i ) be all the vertices in U (resp. V ) which touch elements of Fi. Precisely, let Fi = {K ∈

F : V (K) ∩ (Ui ∪ Vi) 6= ∅} for i = 1, 2, and let

U∗
i = (∪K∈FiV (K)) ∩ U and V ∗

i = (∪K∈FiV (K)) ∩ V.

Note that Ui ⊆ U∗
i and Vi ⊆ V ∗

i . We will use the following claim to show that all of the remaining
possible configurations of crossing Ks,t’s lead to contradictions.

Claim 3.5. For all i ∈ {1, 2}, either
max{|U∗

i |, |V ∗
i |} ≥ k(s + t) + 2t or min{|U∗

i |, |V ∗
i |} ≥ (k + 1)(s + t).

Proof. Suppose that max{|U∗
i |, |V ∗

i |} < k(s + t) + 2t. Then since Ui ⊆ U∗
i and Vi ⊆ V ∗

i , we have

k(s + t) + s < |U∗
i |, |V ∗

i | < k(s+ t) + 2t, (11)

and thus
||U∗

i | − |V ∗
i || < 2t− s. (12)

By definition G[U∗
i , V

∗
i ] can be tiled, thus there exists nonnegative integers ℓ, a, b such that |U∗

i | =
ℓ(s + t) + as + bt and |V ∗

i | = ℓ(s + t) + at + bs. By choosing ℓ to be maximal, we have a = 0 or
b = 0. If ℓ ≤ k − 1, then in order to satisfy the lower bound in (11) we must have a ≥ 3 or b ≥ 3.
Since a = 0 or b = 0, we have ||U∗

i | − |V ∗
i || ≥ 3t − 3s ≥ 2t − s, which contradicts (12). If ℓ = k,

then in order to satisfy the lower bound in (11), we must have a ≥ 2 or b ≥ 2, but then we violate
the upper bound. So ℓ ≥ k + 1 and we have min{|U∗

i |, |V ∗
i |} ≥ (k + 1)(s + t).
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We will also use the following facts. For i = 1, 2, we have

|Vi ∪ V0|+ s, |Ui ∪ U0|+ s ≤ k(s + t) +
t+ 2

2
+ 2s − 1 < (k + 1)(s + t). (13)

which in particular implies

|Vi ∪ V0|+ t, |Ui ∪ U0|+ t < k(s+ t) + 2t. (14)

t− p

s− 1

p

U1

V1

U2

V2

(Case 1.0)

s− 1

pt− p

s− 1

t− q q

U1

V1

U2

V2

(Case 1.1.i)

s− 1

s− 1

p

q t− q

t− p

U1

V1

U2

V2

(Case 1.1.ii)

s− 1

t− 1

t− p p

q1s− q1

U1

V1

U2

V2

(Case 1.2.i)

s− 1

p

s− q1

t− p

t− 1

q1

U1

V1

U2

V2

(Case 1.2.ii)

Figure 3: Case 1

Let i ∈ {1, 2} and let Xi = {K ∈ F : K is crossing from Ui and K is Type 2} and Yi = {K ∈
F : K is crossing from Vi and K is Type 2}. Since |U0| = |V0| = s− 1, Claim 3.2 (ii) implies,

0 ≤ |Xi|, |Yi| ≤ s− 1. (15)

Case 0. There are no crossing Ks,t’s. So |U∗
1 | ≤ |U1 ∪ U0| and |V ∗

1 | ≤ |V1 ∪ V0|. Then by (13) we
have |U∗

1 |, |V ∗
1 | < (k + 1)(s + t), contradicting Claim 3.5.

Case 1. There is a crossing Ks,t of Type 1. Without loss of generality, suppose K1 is a crossing
Ks,t of Type 1 from U1 and let p := |V (K1) ∩ V2|. Since U0 \ V (K1) = ∅, there can be no other
crossing Ks,t’s of Type 1 from U1 or U2 and no crossing Ks,t’s of Type 2 from V1 or V2. By Claim
3.3, we must only consider five subcases:

Case 1.0. K1 is the only crossingKs,t. So |U∗
1 | ≤ |U1∪U0| and |V ∗

1 | ≤ |V1∪V0|+p < |V1∪V0|+s.
Then by (13) we have |U∗

1 |, |V ∗
1 | < (k + 1)(s + t), contradicting Claim 3.5.

Case 1.1.i. There is a crossing Ks,t of Type 1 from V1. Let K2 be a crossing Ks,t from V1

and let q := |V (K2) ∩ U2|. Since V0 \ V (K2) = ∅, K1 and K2 are the only crossing Ks,t’s. So
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|U∗
1 | ≤ |U1 ∪U0|+ q < |U1 ∪U0|+ s and |V ∗

1 | ≤ |V1 ∪ V0|+ p < |V1 ∪ V0|+ s. Then by (13) we have,
|U∗

1 |, |V ∗
1 | < (k + 1)(s + t), contradicting Claim 3.5.

Case 1.1.ii. There is a crossing Ks,t of Type 1 from V2. Let K2 be a crossing Ks,t from V2

and let q := |V (K2) ∩ U1|. Since V0 \ V (K2) = ∅, K1 and K2 are the only crossing Ks,t’s. So
|V ∗

1 | ≤ |V1 ∪ V0|+ p+ 1 ≤ |V1 ∪ V0|+ s and |U∗
1 | ≤ |U1 ∪ U0|+ t− q < |U1 ∪ U0|+ t. Then by (13)

and (14) we have |V ∗
1 | < (k + 1)(s + t) and |U∗

1 | < k(s + t) + 2t, contradicting Claim 3.5.
Case 1.2.i. 1 ≤ |X1|. By Claim 3.4, since there exists a crossing Ks,t of Type 2 from U1, there

can be no crossing Ks,t’s of Type 2 from U2. So |U∗
2 | ≤ |U2 ∪ U0| + |X1| + 1 ≤ |U2 ∪ U0| + s and

|V ∗
2 | ≤ |V2 ∪ V0| + t− p < |V2 ∪ V0| + t. Then by (13) and (14) we have |U∗

2 | < (k + 1)(s + t) and
|V ∗

2 | < k(s + t) + 2t, contradicting Claim 3.5.
Case 1.2.ii. 1 ≤ |X2|. By Claim 3.4, since there exists a crossing Ks,t of Type 2 from U2, then

there can be no crossing Ks,t’s of Type 2 from U1. So |U∗
1 | ≤ |U1 ∪ U0|+ |X2| < |U1 ∪ U0|+ s and

|V ∗
1 | ≤ |V1 ∪ V0|+ p < |V1 ∪ V0|+ s. Then by (13) we have |U∗

1 |, |V ∗
1 | < (k+1)(s+ t), contradicting

Claim 3.5.

s− p1

t− 1

p1

U1

V1

U2

V2 s− p1

t− 1

t− 1p1

s− q1 q1

U1

V1 V2

U2

Figure 4: Case 2

Case 2. There are no crossing Ks,t’s of Type 1. By Claim 3.3, there can only be crossing Ks,t’s
of Type 2. Without loss of generality suppose that 1 ≤ |X1|. Then there can be no crossing Ks,t

of Type 2 from U2 or V2. So |U∗
2 | ≤ |U2 ∪ U0|+ |X1| < |U2 ∪ U0|+ s and |V ∗

2 | ≤ |V2 ∪ V0|+ |Y1| <
|V2 ∪ V0|+ s. Then by (13) we have |U∗

2 |, |V ∗
2 | < (k + 1)(s + t), contradicting Claim 3.5.
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[4] J. Komlós, G. N. Sárközy and E. Szemerédi, Proof of the Alon-Yuster conjecture, Discrete
Math., 235, (2001), 255-269.

14
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