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BINOCULAR RIVALRY IN A COMPETITIVE NEURAL NETWORK
WITH SYNAPTIC DEPRESSION

ZACHARY P. KILPATRICK∗ AND PAUL C. BRESSLOFF†

Abstract. We study binocular rivalry in a competitive neural network with synaptic depression.
In particular, we consider two coupled hypercolums within primary visual cortex (V1), representing
orientation selective cells responding either to left or right eye inputs. Coupling between hyper-
columns is dominated by inhibition, especially for neurons with dissimilar orientation preferences.
Within hypercolumns, recurrent connectivity is excitatory for similar orientations and inhibitory for
different orientations. All synaptic connections are modifiable by local synaptic depression. When
the hypercolumns are driven by orthogonal oriented stimuli, it is possible to induce oscillations that
are representative of binocular rivalry. We first analyze the occurrence of oscillations in a space-
clamped version of the model using a fast-slow analysis, taking advantage of the fact that depression
evolves much slower than population activity. We then analyze the onset of oscillations in the full
spatially extended system by carrying out a piecewise smooth stability analysis of single (winner-
take-all) and double (fusion) bumps within the network. Although our stability analysis only takes
into account instabilities associated with real eigenvalues, it identifies points of instability that are
consistent with what is found numerically. In particular, we show that in regions of parameter space
where double bumps are unstable and no single bumps exist, binocular rivalry can arise as a slow
alternation between either population supporting a bump.

Key words. neuronal network, hypercolumn, binocular rivalry, synaptic depression, piecewise-
smooth dynamics

AMS subject classifications.

1. Introduction. Binocular rivalry concerns the phenomenon whereby percep-
tion switches back and forth between different images presented to either eye. Due to
the supposed link to activity in the lateral geniculate nucleus (LGN) and the visual
cortex, binocular rivalry continues to be an excellent way to obtain information about
the human visual system [28, 59]. Psychophysical experiments are non-invasive and
can provide a great deal of data about the response of the visual system to different
characteristics of binocular stimuli. Currently, there are several open problems in
binocular rivalry including the relationship between the type of stimuli and result-
ing perception, the neural sites encoding perception, and the neural connections that
facilitate competition of stimuli.

Although binocular rivalry has been studied for hundreds of years, only recently
have experimentalists clarified some of its specific statistical properties [7]. In 1965,
Levelt proposed four characteristics of binocular rivalry, which he had ascertained
empirically: (i) increasing the contrast of the stimulus in one eye increases the pre-
dominance of the stimulus in that eye; (ii) increasing the contrast in one eye does
not affect average dominance time of that eye; (iii) increasing contrast in one eye
increases the rivalry alternation rate; and (iv) increasing the contrast in both eyes in-
creases the rivalry alternation rate [45]. Propositions (i), (iii), and (iv) together imply
that when the contrast of a stimulus to one eye is increased, the length of time the
other eye’s stimulus spends in dominance will decrease. Following Levelt’s study other
independent experiments have verified this observation that the modulated stimulus
will spend less time being suppressed [24, 46]. Bossink and colleagues used an ap-
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paratus and paradigm similar to that of Levelt and found that proposition (ii) did
not hold for various types of stimuli [9]. A recent study also found that proposition
(ii) only holds for a certain range of stimulus contrasts [10]. Interestingly, this is the
proposition that is often contradicted by the results of various modeling studies of
binocular rivalry that use reciprocal inhibition [41, 39, 25].

Recent psychophysical experiments have revealed properties additional to those
supported by Levelt’s work. First, it appears that the switching from one percept to
the next occurs stochastically. Independent studies have verified that there are little
or no correlations between one dominance time and the next [42, 10]. With this in
mind, the relationships determined by Levelt can be considered the average perception
of the subject over many trials. Also, there is a long standing theory that attention to
a particular stimulus can prolong the dominance time of the attended stimulus [29].
Experimental evidence suggests that this correlation may hold true when the subject
practices repeatedly [38, 17]. However, the non–attended stimulus will eventually
appear in the observer’s perception, no matter how strongly attention is focused on
the other. The fact that attention can bias the outcomes of binocular rivalry suggests
that higher level visual areas may play a modulatory role in the phenomenon [66].
Attention may increase the apparent contrast of the attended stimulus or simply boost
the activity of one of two competing neural populations [17]. In addition, experiments
have verified that the “tilt aftereffect” is still observed when vertical and tilted lines
are rivalrous stimuli [64]; the tilt aftereffect is the phenomenon by which staring at a
slightly tilted line will make a vertical line appear to be tilted in the opposite direction
if viewed immediately after. Since the neural substrate of this phenomenon is known
to reside in primary visual cortex (V1), this suggests that binocular rivalry can involve
V1 [34]. Thus, without even recording activity signals from the brain, a great deal
about the neural site of binocular rivalry can be learned from subjects reporting their
perceptual responses to stimuli.

Several different methods of recording neural activity in subjects during binocular
rivalry have also been employed in an effort to isolate the specific sites of its encoding.
In monkeys, single electrode recordings have been employed to track electrical activity
during binocular rivalry tasks [7]. Evidence has been found in the V1, V2, and V4
regions of visual cortex of an elevation in some cells’ firing rates that corresponds well
with the monkey’s reported perception of a stimulus [44]. Thus, it appears that several
areas of visual cortex may be involved. However, single unit recordings have yet to
reveal changes in the firing rate of LGN neurons that correspond to the perceptual
changes of binocular rivalry [43]. In humans, less invasive techniques such as scalp
recording and functional magnetic resonance imaging (fMRI) have helped to localize
brain regions whose activity reflects the experience of binocular rivalry. Visually
evoked potentials measured on the scalp during a binocular rivalry task reveal that
potential waveforms associated with each stimulus possess a timecourse very closely
linked to the subject’s perceptual observation [13]. A number of fMRI studies have
verified there are changes in the blood oxygen level dependent (BOLD) signals in
V1 that correspond to the perceived switching in stimulus dominance [51, 59, 40].
In addition, recent work has used fMRI of the BOLD signal to find correspondance
between the activity in LGN and a human subject’s percepts during binocular rivalry
[28]. However, this may be due to functionally specific feedback connections from V1
to LGN that are possibly imposing activity fluctuations up the visual stream [33]. All
of these results point to a number of possibilities as to the central visual area encoding
binocular rivalry [7]. Some theories even propose that there may be a hierarchy of
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visual areas involved so that there is a competition between either eye’s input as well
as differing patterns [66, 60].

Since we will focus here on modelling binocular rivalry in V1, it is useful to de-
scribe some essential features of the functional architecture of V1. First, each neuron
in V1 has a particular patch of the visual scene to which it responds, known as its clas-
sical receptive field [31, 32]. Stimuli outside a neuron’s receptive field do not directly
affect its activity. Second, most neurons in V1 respond preferentially to stimuli of a
particular eye, right or left, which assigns their ocular dominance [31, 8, 48]. It has
been suggested that neurons with different ocular dominance (one right, one left) may
inhibit one another if they have nearby receptive fields [35]. As signals are relayed
to higher areas of visual cortex, these two pathways are combined to process more
complex stimuli. Third, most neurons in V1 are tuned to respond maximally when a
stimulus of a particular orientation is in their receptive field [31, 16, 8]. This is known
as a neuron’s orientation preference, and the neuron will not be directly affected if a
stimulus is sufficiently different from its preferred orientation. Finally, there is a great
deal of evidence which suggests that, for a discrete patch of visual space, there exists a
corresponding collection of neurons spanning the entire spectrum of orientation pref-
erences that are packed together as a unit in V1, known as a hypercolumn [32, 61, 26].
Despite recent studies that have called into question the reality of the hypercolumn as
a structure [30], there is certainly a periodic map of feature preferences in V1 that can
be modeled quite cleanly with the idea of the hypercolumn [11]. Using multielectrode
and optical imaging techniques, periodicity in orientation preference has been shown
across V1 where each period corresponds to a coarse location in retinotopic space
[32, 8]. Within this hypercolumn, neurons with sufficiently similar orientations will
excite each other and those with sufficiently different orientations will inhibit each
other, which serves to sharpen a particular neuron’s orientation preference [26, 5, 23].
Anatomical evidence suggests that inter-hypercolumn connections excite similar ori-
entations [55, 3]. The functional relationship between stimulus feature preferences
and synaptic connections within V1 suggests that V1 is a likely substrate of many
simple examples of binocular rivalry such as those involving sinusoidal grating stimuli.

As a basic model example of binocular rivalry in V1, suppose that a horizontally
oriented grating is presented to the left eye and a vertically oriented grating is pre-
sented to the right eye. This triggers rivalry due to the combination of orientation
specific and ocular dominant cross-inhibition in V1 [5, 55, 7]. During left eye stim-
ulus dominance, it is proposed that a group of the left eye neurons that respond to
horizontal orientations are firing persistently, while right eye neurons are suppressed
by cross-inhibitory connections. Of course, there may still be some low rate firing of
the right eye neurons, but it will be less than the firing rate of the left eye, horizon-
tally tuned neurons [7]. Following this, some slow adaptive process causes a switch so
that right eye, vertical orientation neurons fire persistently, suppressing the left eye
neurons (see Figure 1.1). The cycle of left eye neural dominance along with right eye
neural suppression followed by right eye neural dominance along with left eye neural
suppression can continue indefinitely. This basic model of reciprocal inhibition paired
with a slow adaptive process has often been used to phenomenologically model the
neural substrate of binocular rivalry [24, 65, 54, 39, 58, 52]. In this paper, we extend
these ideas by analyzing binocular rivalry in a spatially extended coupled hypercol-
umn model of V1 driven by oriented grating stimuli. While other types of stimuli may
employ higher areas of visual cortex as neural substrates of binocular rivalry [66, 60],
the precise connection between neural activity and more complex images such as a
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Fig. 1.1. Primary visual cortex (V1) response to rival grating stimuli consisting of a vertical
(horizontal) grating presented to the right (left) eye. A snapshot in time is shown where the verti-
cal orientation preference neurons fire persistently (polka dots) in the right OD column, while the
horizontal orientation preference neurons in the left OD column are quiescent, even though they are
receiving input. Vertically preferring neurons in the right OD column firing at a high rate project
inhibition (white diamonds) to the horizontally preferring neurons in the left OD column to keep
them from firing. In a winner-take-all (WTA) scenario, the picture would remain unchanged as
time evolves, but in a binocular rivalry situation, a slow adaptive process would eventually cause
the left OD column’s horizontal orientation preference neurons to switch from being suppressed to
dominant.

face or a house are not as well understood [7].

It remains an open question as to which slow adaptive process is most responsible
for the eventual switching of one stimulus dominance to the other [52]. The mecha-
nism of spike frequency adaptation has been suggested, since it can curtail excitatory
activity in a single neuron [67, 39]. Spike frequency adaptation is the process by which
a hyperpolarizing current is switched on due to a build-up of a certain ion, like cal-
cium, within the cell due to repetitive firing [56]. The maximal firing rate of a neuron
is lowered as a result. In the case of binocular rivalry, this may cause the dominant
population to eventually drop its firing rate so that cross-inhibition suppressing the
other population is then low enough for the suppressed populations to rekindle its
firing rate into dominance. Since the recently released population is not adapted, it
can then remain in dominance and suppress the other population for a period of time
roughly equal to the time constant of spike frequency adaptation [67, 39, 47]. Another
proposed switching mechanism is that the inhibitory synapses from one eye’s neurons
to the other’s undergo synaptic depression1. This is the process by which synaptic
resources such as neurotransmitters, vesicles, and scaffolding proteins are exhausted
due to their continuous use [63, 15]. If inhibitory synapses remain repeatedly active,
due to one eye’s neurons suppressing the others, eventually most of those synapses’

1More precisely, synaptic depression tends to be associated only with excitatory synapses, so that
in our simplified model depressing inhibitory connections would have to be mediated by excitatory
connections innervating local interneurons, for example.
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resources will be used up, the effect of inhibition will be weakened and the suppressed
population will escape [39, 52].

Previous modeling efforts have been helpful in determining the neural dynamics
that may result from a specific slow adaptive process acting to produce rivalry. Some
models employ heuristic forms that are unconcerned with the specific adaptive pro-
cess leading to rivalry switching, but they have been useful in delving deeper into
the statistical properties of rivalry oscillations [41, 25]. Other spiking neuron and
firing rate models have employed more specific physiological forms for the slow adap-
tive process that leads to rivalrous switching [67, 39, 58, 66, 49, 52, 20, 53, 47]. In
most cases a firing rate model appears sufficient to capture the elevation in spiking
associated with the dominant stimulus. The dynamics of oscillations in such recip-
rocally inhibitory networks are often divided into two main categories, “escape” and
“release” [65, 54, 52]. Escape is the occurrence of a suppressed neural population kin-
dling activity above some threshold, which then allows it to dominate the population
that was suppressing it. This should be contrasted with release, wherein a dominant
neural population intrinsically reduces its activity below some threshold so that the
suppressed population can be freed. One property that has been observed across all
theoretical models of binocular rivalry is that increasing the stimulus strength to both
populations leads to a decrease (increase) in dominance times when oscillations occur
via escape (release). Levelt proposition (iv) thus suggests that rivalry oscillations
in a network model should arise via an escape mechanism[45, 24, 9, 46, 14]. Laing
and Chow [39] studied a reduced firing rate model of binocular rivalry using spike
frequency adaptation and depression individually or together. (Such a model was
derived from a more detailed, spatially extended spiking neuron model). They found
many paradigms where dominance times depended nonmonotonically on the strength
of input. This indicates a mixture of escape and release mechanisms at work in their
model, depending on the stimulus strength range. Taylor et. al. studied a simpler
model where depression is the only slow adaptive process for switching and the fir-
ing rate function is Heaviside [58]. They found, exclusively, that increasing stimulus
strength decreased dominance time, indicating an escape mechanism. More recently,
Shpiro et. al. have systematically compared the form of rivalry oscillations in a vari-
ety of firing rate models with spike frequency adaptation and/or synaptic depression
[52, 53]. One common relationship they found across most models was that when the
strength of both stimulus inputs was low, if binocular rivalry existed it was through
a release mechanism, whereas at higher stimulus strengths, binocular rivalry type os-
cillations usually appeared via an escape mechanism. These authors also explored
the role of noise in accounting for dominance time statistics. Finally, Curtu et. al.

have carried out a rigorous mathematical analysis of the adaptation–based switching
mechanism in a reciprocal inhibitory model with slow adaptation [20].

In this paper, we extend previous modeling studies by analyzing binocular ri-
valry in V1 using a spatially extended firing rate model with depressing synapses.
In particular, we consider a competitive neural network model of binocular rivalry
in which a pair of hypercolumns for the left and right eyes, respectively, are coupled
together with depressing local and cross-inhibitory synapses [5, 11], see Figure 1.1.
Laing and Chow [39] considered a similar coupled hypercolumn model to ours, which
includes both adaptation and depression in a network of spiking neurons. However,
they only carried out a rigorous analysis on a reduced rate-based system with adap-
tation. Rivalry effects in a spatially extended model with spike frequency adaptation
have also been examined in a prior study by Loxley and Robinson [47], in which rival-
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rous stimuli are presented to a single one–dimensional network. While there has been
some previous work studying synaptic depression as the sole mechanism for rivalry
[58, 52], none has studied the onset of rivalry oscillations by analyzing bifurcations
of stationary bump solutions in a spatially extended system. In our model, we take
the firing rate function to be a Heaviside, since this allows for analytical tractability.
However, we also investigate numerically to what extent our results persist when the
firing rate function is taken to be a smooth sigmoid. The choice of a Heaviside is
also motivated by the result found in [58], namely, that a depressing network with
a Heaviside firing rate supports only escape rivalry mechanisms, which has more bi-
ological support [45, 46]. A Heaviside firing rate function also leads to interesting
dynamical phenomena, due to the resultant piecewise–smooth nature of the system.
It could be argued that the dynamics of networks with Heaviside nonlinearities are
unrealistic from a neurophysiological perspective. However, many studies of neuronal
networks involving the high–gain limit of the sigmoid function, including Amari’s [2],
have proven useful in developing analytic relationships between parameters and the
behaviors of standing and traveling wave solutions (see [19] for review). Moreover, it is
possible to extend results obtained in networks with Heaviside nonlinearities to those
with sigmoidal nonlinearities, using singular perturbation methods [50] or fixed point
theorems [22]. One final point regarding Heaviside nonlinearities is that non–generic
behavior witnessed in this case may indicate that dynamical behavior observed in
a corresponding network with sigmoid firing rate functions may be singular in the
high-gain limit. Specifically, we have previously found that the range in which linear
stability analysis is valid for standing bumps in networks with nonlinear adaptation
becomes vanishingly small as the sigmoid gain is taken to infinity [12, 37].

The structure of the paper is as follows. We introduce the model in §2 and analyze
a space clamped version of the model in §3. Similar to a previous study with both
adaptation and depression [39], we derive explicit formulae for the relation between
dominance times and the parameters of the model. Thus, we are able to compare
the results of our model with the Levelt propositions given above. In particular, we
show that in our model rivalry oscillations occur exclusively via an escape mechanism
resulting in dominance times that are consistent with Levelt proposition (iv). We
also study the effects of additive noise on the statistics of dominance times, and show
that the latter is more consistent with experimental data when the depression vari-
ables rather than the activity variables are noise–driven. In §4, we analyze binocular
rivalry in the full spatially extended model by considering dynamical instabilities of
stationary bump solutions. We consider the existence of both winner-take-all (WTA)
solutions, represented by a single bump of activity persisting in a single population,
and solutions where both populations support persistent bumps. We then analyze the
linear stability of these solutions by taking into account the piecewise–smooth nature
of the neural field equations arising from the use of a Heaviside firing rate function.
As in previous studies [12, 37], it is necessary to keep track of the sign of perturbations
of the bump boundary in order to characterize instabilities accurately. Finally, in §5
we simulate the spatially extended system using a numerical approximation scheme,
and compare with the results of our stability analysis.

2. Coupled hypercolumn model. We consider a neuronal network subdivided
into two distinct populations (hypercolumns), one responding to the left eye and the
other to the right eye, see Figure 1.1. (A similar network architecture was considered
by Laing and Chow [39]). Each eye’s local and cross-population synapses experience
synaptic depression [63, 62]. This is an extension of recent work, which has considered
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synaptic depression in a single population [12, 37]. Thus, the network in the most
general form is described by the system of equations

τ
∂uL(θ, t)

∂t
= −uL(θ, t) + wl ∗ (qLf(uL)) + wc ∗ (qRf(uR)) + IL(θ), (2.1a)

τ
∂uR(θ, t)

∂t
= −uR(θ, t) + wl ∗ (qRf(uR)) + wc ∗ (qLf(uL)) + IR(θ), (2.1b)

∂qj(θ, t)

∂t
=

1 − qj(θ, t)

α
− βqj(θ, t)f(uj(θ, t)), j = L,R, (2.1c)

where

wm ∗ (qjf(uj)) =

∫ π/2

−π/2

wm(θ, θ′)qj(θ
′, t)f(uj(θ

′, t))dθ′, j = L,R, m = l, c.

Equations (2.1a) and (2.1b) describe the evolution of the synaptic current or drive
uL(θ, t) and uR(θ, t) of neurons with orientation preference θ ∈ [−π/2, π/2] responding
either to left (L) or right (R) eye inputs Ij(θ), j = L,R. The nonlinear function f
represents the mean firing rate of a local population and is usually taken to be a
smooth, bounded monotonic function such as a sigmoid [68, 50, 22]

f(u) =
1

1 + e−η(u−κ)
, (2.2)

with gain η and threshold κ. However, in order to explicitly compute solutions of
interest, it will be convenient to consider the high gain limit η → ∞ of (2.2) such that
f becomes a Heaviside function [2, 50, 18, 19, 27, 36]

f(u) = Θ(u− κ) =

{

0 if u < κ
1 if u > κ.

(2.3)

The strength of connections between neurons within a single eye’s population (lo-
cal) and from one population to another (cross) are specified by the weight function
wl(θ, θ

′) and wc(θ, θ
′) respectively. A typical weight distribution within the hypercol-

umn or “ring” model is a harmonic function dependent on the difference in orientations
[5, 11, 69]. Thus, for our studies of simple grating based binocular rivalry, we will
employ the functions

wm(θ, θ′) = wm(θ − θ′) = wm
0 + wm

2 cos(2(θ − θ′)), m = l, c, (2.4)

where wm
0 is the mean strength of connectivity and wm

2 is the orientation specific
strength. The harmonic function cos(2(θ − θ′)) of orientation preference difference
is well matched to experimental studies of synaptic interaction of nearby neurons
based on their orientation preference [23]. Depressing synapses are incorporated into
the model in the form of a presynaptic scaling factor qj(θ, t) evolving according to
equation (2.1c). The factor qj(θ, t) can be interpreted as a measure of available
presynaptic resources, which are depleted at a rate βqf [62, 57, 4], and are recovered
on a timescale specified by the constant α. Specifically, we will study the effect of slow
short term synaptic depression (experimentally shown to recover over 5-10s [63, 15]).
Slow short term synaptic depression has been implicated as a mechanism for contrast
adaptation in V1, due to its comparable recovery timescale of 5-10s [63]. Thus, there
is evidence for participation of this slower depression in processes of V1 in addition
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to faster short term synaptic depression, which recovers on timescales of roughly 200-
800ms [1, 63]. Finally, we fix the temporal scale of the network by setting τ = 1.
The membrane time constant is typically around 10ms, while the range of synaptic
connections and specifically the size of a hypercolumn within the visual cortex is on
the order of 1mm.

3. Oscillations in the space-clamped system. In this section we analyze
oscillations in a space–clamped (θ–independent) version of our model. That is, we
take the inputs IL and IR from both eyes to be homogeneous in the variable θ. While
stimuli used in binocular rivalry experiments often have a preferred orientation to
either eye, it is indeed possible to evoke the rivalry percept without such a specification
[6]. Taking the weight functions to be given by the simple sum of harmonics (2.4)
and specifying that solutions be homogeneous in θ, the system (2.1) becomes

u̇L(t) = −uL(t) + w̄lqL(t)f(uL(t)) + w̄cqR(t)f(uR(t)) + IL,

u̇R(t) = −uR(t) + w̄lqR(t)f(uR(t)) + w̄cqL(t)f(uL(t)) + IR, (3.1)

q̇j(t) = (1 − qj(t))/α− βqj(t)f(uj(t)), j = L,R,

where

w̄m =

∫ π/2

−π/2

wm(θ′)dθ′, m = l, c (3.2)

denotes the average strength of connectivity for either weight function. We will pre-
scribe that w̄c < 0 so the cross connections are “inhibition-dominated,” as this has
been a suggested mechanism of binocular rivalry [35]. An extensive numerical study
of equilibria of a system similar to (3.1) has been carried out when f is sigmoidal
[52]. Thus, for the majority of this section, we will proceed analytically by examining
the behavior of the system (3.1) in the case that f is the Heaviside function (2.3).
In this case, we can compute any equilibria explicitly. Moreover, a fast-slow analysis
can be used to determine the residence times spent with either the left or right eye
being dominant. In addition, we explore the effects that including additive noise in
the equations for the activity variables uL,R as well as the depression variables qL,R.
It has been shown that including noise in reciprocally inhibitory networks with slow
adaptation can lead to oscillation dominance times with gamma distribution statistics,
as witnessed in psychophysical experiments of binocular rivalry [46, 52, 49]. Finally,
we briefly study the equilibria and oscillations of the space–clamped system in the
case of a smooth sigmoid firing rate function. We do not develop extensive analyt-
ical expressions relating parameters to steady states and switching times as in the
Heaviside case, but we are able to study numerically how the steepness of the sigmoid
affects the underlying dynamics.

3.1. Equilibria of network with Heaviside firing rate. We will follow along
similar lines to Laing and Chow [39], who used Heaviside functions to analyze binoc-
ular rivalry in a coupled hypercolumn model with spike frequency adaptation rather
than synaptic depression. The dynamics of the system (3.1) can be characterized in
terms of some simple parametric inequalities, specifying whether the system oscillates
or settles into a steady state. A similar analysis was carried out by Taylor et. al.

in a version of the network (3.1) without any local connections and a fixed synaptic
depression strength [58]. Here, we will study the effect that including a local connec-
tivity term w̄l has upon the network dynamics. Of course, we are interested in the
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parameter regimes in which the system oscillates, since this is indicative of binocular
rivalry. In these parameter regimes, we will compare the model with experimentally
determined relations of input strength to dominance times [45, 9]. We also extend
the work of [58] by examining dominance time dependence upon synaptic depression
strength β and time constant α.

There are several different possible steady states, whose existence mainly de-
pends on the strength of the input to either population. First, the off–state given by
(uL, uR, qL, qR) = (IL, IR, 1, 1) occurs when IL, IR < κ, which implies that the input
is not strong enough to activate either population. Second, the both-on or fusion state

uj =
w̄l + w̄c

1 + αβ
+ Ij , qj =

1

1 + αβ
, j = L,R, (3.3)

occurs when IL, IR > κ − (w̄l + w̄c)/(1 + αβ). This case is more likely for very
strong depression (β large), since cross inhibition will be weak, or when the local
connections are strong and excitation-dominated. The third type of equilibrium is
the winner-take-all (WTA), where one population dominates the other. For example,
if the left eye population is dominant then

uL = w̄l
1 + αβ

+ IL, uR = w̄c
1 + αβ

+ IR,

qL = 1
1 + αβ

, qR = 1,

(3.4)

which can be transformed to the right eye dominant case by interchanging L and R.
For the steady state (3.4) to exist, we require

IL > κ−
w̄l

1 + αβ
, IR < κ−

w̄c

1 + αβ
,

This will occur in the presence of weak depression (β small) and strong cross-inhibition
such that depression cannot exhaust the dominant hold one population has on the
other.

The local stability of each equilibrium can be determined by calculating the gen-
eral Jacobian for the system (3.1) in the case that f(u) ≡ Θ(u− κ) and uL, uR 6= κ:

J (uL, uR, qL, qR) =









−1 0 w̄lΘ(uL − κ) w̄cΘ(uR − κ)
0 −1 w̄cΘ(uL − κ) w̄lΘ(uR − κ)
0 0 −(α−1 + βΘ(uL − κ)) 0
0 0 0 −(α−1 + βΘ(uR − κ))









.

(3.5)

It is straightforward to show that the eigenvalues of this Jacobian for a general equi-
librium (excluding cases where uL = κ or uR = κ) are

λ = −1, −(α−1 + βΘ(uL − κ)), −(α−1 + βΘ(uR − κ)), (3.6)

which are all negative, regardless of the values uL and uR. Therefore, all steady
states of the system (3.1) are stable. It follows that a limit cycle corresponding to
a binocular rivalry state cannot arise from the destabilization of an equilibrium via
a standard Hopf bifurcation. Indeed, we find that a limit cycle corresponding to an
oscillating rivalrous state surrounds a stable fusion state as illustrated in Figure 3.1.
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Fig. 3.1. Equilibria of the left population uL as a function of the input amplitude IL = IR to
both populations. Solid lines represent stable states, whereas circles represent maximum and mini-
mum of rivalry oscillations. (a) For no local connections, w̄l = 0, we find a bistable region, where
rivalry coexists with a stable fusion state. Lower fixed point is the suppressed population of the WTA
solution left of the black square and a fusion state to the right. (b) When local connections are non-
zero, w̄l = 0.4, there are regions of off/WTA bistability, WTA/fusion bistability, and fusion/rivalry
bistability. Other parameters are κ = 0.05, α = 500, β = 0.01, and w̄c = −1.

It can be seen that as the amplitude of the inputs IL = IR is varied, the system
(3.1) exhibits bistability between fusion/rivalry states, between off/WTA states, and
between WTA/fusion states (when w̄l 6= 0). Such bistability has seldom been observed
in other models of binocular rivalry. We point out here, that these two bistable regimes
were not observed in the study of the network (3.1) by Taylor et. al., due to their
setting w̄l = 0. In [52], it was shown that Wilson’s model [66] of binocular rivalry
supports a WTA/rivalry bistable state. Their bifurcation analysis of the Laing and
Chow model did not exhibit bistability, perhaps owing to the fact that it included
no recurrent excitation. Since the occurrence of oscillations cannot be studied using
standard bifurcation theory, we will follow Laing and Chow [39] by assuming that
we are in a regime where oscillations exist and characterize the dominance times
by exploiting the separation in timescales between synaptic depression and neural
activity, that is, α≫ 1.

In order to appropriately study rivalry in the space–clamped system (3.1), it is
important to understand the mechanism that will generate switching between one
population dominating and then the other. As we have discussed, reciprocally in-
hibitory networks support oscillations resulting from two main types of mechanism,
escape and release [65, 54, 20]. The competitive network with synaptic depression
(3.1) that we study only supports oscillations generated by escape when the firing
rate function is Heaviside, assuming the activity terms uL,R act much quicker than
the depression terms qL,R. This should be clear in the case w̄l = 0, but we wish to
show this as well in the case w̄l > 0. We argue the network does not support release
by a contradiction argument in the case where IL = IR (this easily extends to the
case where IL 6= IR). In oscillations generated by either escape or release, when the
left population dominates

uL ≈ w̄lqL + IL > κ and uR ≈ w̄cqL + IR < κ,

where we assume uL and uR relax to a slow manifold quite quickly. During oscillations
generated by release, we expect a switch in dominance to occur by uL dropping below
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threshold, allowing the release of uR. At this point,

w̄lqL + IL = κ =⇒ IL = κ− w̄lqL,

implying IL < κ since w̄l > 0. Thus, IR = IL < κ as well, but for uR to now spring
above threshold, we must have IR > κ, which is a contradiction. Thus, the system
(3.1) will not support oscillations generated by a release mechanism in the case of a
Heaviside firing rate and slow depression dynamics. Based on this result, and previous
work, it seems that firing rate models of binocular rivalry must employ either spike
frequency adaptation or a sigmoidal firing rate function with synaptic depression to
generate oscillations through a release mechanism [20]. Thus, we have extended the
results of [58] to show there is a broader class of competitive neural network models
with synaptic depression that does not support release. In light of this, we perform our
analysis of the relationship of dominance times to parameter under the assumption
that the oscillation is generated by an escape mechanism.

Suppose that the system has settled onto a limit cycle as pictured in Figure 3.2,
and that it is at the point where uL has just escaped suppression by uR. Since both
uL and uR equilibrate quickly compared with qL and qR, it follows that

uL(t) = w̄lqL(t) + IL, uR(t) = w̄cqL(t) + IR. (3.7)

We can also solve explicitly for qL(t) and qR(t) using the equations

q̇L = (1 − qL)/α− βqL, q̇R = (1 − qR)/α. (3.8)

Assuming the initial conditions qL(0) = qs
L and qR(0) = qd

R, we have

qL(t) =
1

1 + αβ
+

(

qs
L −

1

1 + αβ

)

e−(1+αβ)t/α, (3.9)

qR(t) = 1 − (1 − qd
R)e−t/α, (3.10)

for t ∈ (0, TL), where TL is the dominance time of the left eye. Therefore, when the
left eye population is suppressing the right eye population, the dynamics of the input
currents is explicitly

uL(t) = w̄l

(

1

1 + αβ
+

(

qs
L −

1

1 + αβ

)

e−(1+αβ)t/α

)

+ IL, (3.11)

uR(t) = w̄c

(

1

1 + αβ
+

(

qs
L −

1

1 + αβ

)

e−(1+αβ)t/α

)

+ IR. (3.12)

At the time t = TL, the synaptic drive uR will escape from uL’s dominance by reaching
threshold, that is, uR(TL) = κ. This generates the equation

κ = w̄c

(

1

1 + αβ
+

(

qs
L −

1

1 + αβ

)

e−(1+αβ)TL/α

)

+ IR. (3.13)

Note that although uL(TL) > κ, uL will drop below threshold much more rapidly
than the timescale of the qj ’s due to cross inhibition. Hence, we can make the ap-
proximation T ∗

L ≈ TL where uL(T ∗
L) = κ.

In the next phase of the oscillation

uL(t) = w̄cqR(t) + IL, uR(t) = w̄lqR(t) + IR, (3.14)



12

1200 1400 1600 1800

 0.2

0

0.2

0.4

t

qL qR

uRuL

1200 1400 1600 1800
 0.2

0

0.2

0.4

t

qL

qR

uL
uR(a) (b)

Fig. 3.2. Oscillatory solutions of the space-clamped system (3.1) for a Heaviside activation
function (2.3). (a) Plot against time of the activities uL (solid black) and uR (dashed black) with
the depression variables qL (solid grey) and qR (dashed grey) when inputs are the same to both
populations so that IL = IR = 0.24. This leads to an oscillation wherein the dominance times
(TL = TR ≈ 210) are equivalent for each percept. (b) Plot against time of the activities uL, uR and
depression variables qL, qR when inputs are different so that IL = 0.30 and IR = 0.24. This leads
to an oscillation wherein the dominance times (TL ≈ 170, TR ≈ 105) are different for each percept.
Other parameters are w̄l = 0, w̄c = −1, κ = 0.05, α = 500, and β = 0.01.

with

q̇L = (1 − qL)/α, q̇R = (1 − qR)/α− βqR. (3.15)

Assuming the new set of initial conditions qL(TL) = qd
L and qR(TL) = qs

R, we now
have

qL(t) = 1 − (1 − qd
L)e(TL−t)/α, (3.16)

qR(t) =
1

1 + αβ
+

(

qs
R −

1

1 + αβ

)

e−(1+αβ)(TL−t)/α, (3.17)

for t ∈ (TL, TL + TR), where TR is the dominance time of the right eye. Therefore,
when the right eye population is suppressing the left eye population, the dynamics of
the input currents is approximately described by

uL(t) = w̄c

(

1

1 + αβ
+

(

qs
R −

1

1 + αβ

)

e−(1+αβ)(TL−t)/α

)

+ IL, (3.18)

uR(t) = w̄l

(

1

1 + αβ
+

(

qs
R −

1

1 + αβ

)

e−(1+αβ)(TL−t)/α

)

+ IR. (3.19)

Finally, at t = TL +TR, uL will escape from uR’s dominance such that uL(TL +TR) =
κ. This generates the equation

κ = w̄c

(

1

1 + αβ

(

qs
R −

1

1 + αβ

)

e−(1+αβ)TR/α

)

+ IL. (3.20)

At this point, uR > κ, but uR will rapidly drop below threshold so that uR(T ∗
R) = κ

with T ∗
R ≈ TR.

Using (3.9), (3.10), (3.16) and (3.17) we have four equations for the four unknown
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initial conditions of the depression variables:

qs
L = 1 − (1 − qd

L)e−TR/α, (3.21)

qs
R = 1 − (1 − qd

R)e−TL/α, (3.22)

qd
L =

1

1 + αβ
+

(

qs
L −

1

1 + αβ

)

e−(1+αβ)TL/α, (3.23)

qd
R =

1

1 + αβ
+

(

qs
R −

1

1 + αβ

)

e−(1+αβ)TR/α. (3.24)

We can solve these explicitly for qs
L and qs

R in terms of the parameters α, β and the
dominance times TL, TR as

qs
L =

(

1 − e−TR/α +
1

1 + αβ

(

1 − e−(1+αβ)TL/α
)

e−TR/α

)

(

1 − e−(1+αβ)TL/αe−TR/α
) (3.25)

qs
R =

(

1 − e−TL/α +
1

1 + αβ

(

1 − e−(1+αβ)TR/α
)

e−TL/α

)

(

1 − e−(1+αβ)TR/αe−TL/α
) . (3.26)

Substituting equations (3.25) and (3.26) into equations (3.13) and (3.20) then gives

κ = w̄c

(

1

1 + αβ
+

((

1 − e−TR/α +
1

1 + αβ

(

1 − e−(1+αβ)TL/α
)

e−TR/α

)

×

(

1 − e−(1+αβ)TL/αe−TR/α
)−1

−
1

1 + αβ

)

e−(1+αβ)TL/α

)

+ IR, (3.27)

κ = w̄c

(

1

1 + αβ
+

((

1 − e−TL/α +
1

1 + αβ

(

1 − e−(1+αβ)TR/α
)

e−TL/α

)

×

(

1 − e−(1+αβ)TR/αe−TL/α
)−1

−
1

1 + αβ

)

e−(1+αβ)TR/α

)

+ IL. (3.28)

A numerical root finding algorithm can be used to solve for the dominance times
TL and TR in terms of the parameters α, β, κ, w̄c and the input strengths IL and IR.
We show examples of the dependence of these dominance times on a common drive
strength to both populations IL = IR = IB and a modulation of input IL, while
keeping IR constant in Figure 3.3. Taylor et. al. only studied the effect changing
input strengths has on dominance times in the case IL = IR = IB [58]. Recall that
Levelt proposition (iv) states increasing contrast (stimulus strength) to both eyes
increases alternation rate, which is corroborated by TL = TR = TB being a decreasing
function of IB in Figure 3.3a. Also, both propositions (i) and (iii) are in agreement
with Figure 3.3b, since increasing IL leads to lower values of both TL and TR and
the ratio TL/(TL + TR) increases as well. However, the Levelt proposition (ii) states
increasing input to one eye does not change that eye’s average dominance, but we
find in Figure 3.3b that TL decreases slightly. Indeed, previous experiments have
produced results at odds with proposition (ii), finding the statement may depend on
specific contrast ranges of stimuli [9]. Comparing with Laing and Chow’s analysis of
a firing rate model with depression and adaptation, we see qualitative similarity with
dominance times being a decreasing function of input strength for symmetric and
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Fig. 3.3. Dominance times calculated from equations (3.27) and (3.28) plotted against input
amplitude. (a) Effect of changing the amplitude of both inputs IL = IR = I on the dominance times
of both percepts. In this case, dominance times are identical. (b) Effect of changing input to left eye
(IL) on dominance times of left population uL (dashed curve) and right population (solid curve)
when IR = 0.24. Other parameters are as in Figure 3.2.
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Fig. 3.4. Dominance times calculated from equations (3.27) and (3.28) plotted against (a)
synaptic depression strength β and (b) time constant α. Parameter values are κ = 0.05, IL = IR =
0.25, w̄c = −1, α = 500, and β = 0.01 unless otherwise stated.

asymmetric inputs [39]. We find this relation holds for IL > IR as well. Interestingly
as our analytical results indicate, the dominance times do not depend at all on the
strength of local connections w̄l, which we verified numerically as well. In [52], it was
also shown that recurrent connections are not needed at all in order to produce the
competition dynamics of rivalry in a network with synaptic depression. We extend
[58] by also allowing synaptic depression strength β and time constant α to vary as
shown in Figure 3.4. When α is fixed, and β is varied, we find dominance times
decrease as depression strength increases in Figure 3.4a. Thus, stronger depression
leads to quicker switching between dominant populations, as one might expect. When
β is fixed and α is varied, we find dominance times decrease as the depression time
constant is increased in Figure 3.4b. This arises from the fact that the timescale of
recovery from depression is set by α, but the timescale of depression activation is set
by the parameter β.
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3.2. Noise–generated oscillations. Recordings from the brain and reports by
subjects during binocular rivalry tasks show dominance time statistics that may be
fit to a gamma distribution [46]. In addition, statistical analysis of such data shows
little correlation between one dominance time and the next [41, 42, 46]. This suggests
that the switching between one eye’s dominance and the next may be largely driven
by a stochastic process. Some previous models have accounted for this by presuming
that the input arriving at the network encoding rivalry is stochastic, so the noise is
extrinsic [41, 25]. Recent modeling efforts have examined and compared the effects of
dominance switching due to additive noise term in the activity variable of a firing rate
model versus a deterministic slow adapting variable [49, 52]. Laing and Chow’s spiking
neuron model of binocular rivalry contained no stochastic process, but statistics of
resulting dominance times in the model appeared noisy due to the aperiodicity of
the high–dimensional system’s trajectories [39]. We follow up on firing rate studies
with additive noise by comparing the effects of including a noise term in the activity
variables of our system and the depression variable on dominance times.

To account for the random behavior in the model, we employ the following equa-
tion for independent input noise to each variable [52]

ṅj(t) = −
nj(t)

ν
+ γ

√

2/νµ(t), j = L,R (3.29)

where µ(t) is white noise with zero mean and unit variance. Thus, the trajectory nj(t)
will follow an Ornstein–Uhlenbeck process with standard deviation γ and timescale
ν. We either apply this noise to the two activity variables uL,R or the two depression
variables qL,R. When we include this term as additive noise to only the activity
variables, uL,R, we replace each of their deterministic governing equations in (3.1)
with

u̇j(t) = −uj(t) + w̄lqj(t)Θ(uj(t) − κ) + w̄cqk(t)Θ(uk(t) − κ) + Ij(t) + nj(t),

j = L,R and j 6= k. (3.30)

This mimics the input drive to both neural populations being noisy. In addition we
examine the effect of including an additive noise term in the depression variables,
qL,R, by employing the following equation for their dynamics in place of their original
deterministic equation in (3.1)

q̇j(t) = (1 − qj(t))/α− βqj(t)Θ(uj(t) − κ) + nj(t), j = L,R. (3.31)

We also impose the conditions qj(t) ∈ [0, 1] for all t and j = L,R, which ensures that
each synaptic strength retains its proper sign and that the variables qj(t) cannot act to
impose dynamic facilitation. To numerically simulate the stochastic system modified
by either equations (3.30) or (3.31) we employ the Euler–Maruyama method.

We summarize the results of including additive noise in the deterministic system
(3.1) by plotting distributions of dominance times along with the data series’ autocor-
relations. In parameter ranges where the deterministic version of the system would
only support a WTA solution, we found that additive noise in either the activity or
depression variables was sufficient to generate stochastic oscillations in the system.
Following simulations of (3.1) along with either (3.30) or (3.31) for a sufficiently long
period, we compute the lengths of time of all dominance durations. Population j is
dominant if uj > uk (j 6= k). The autocorrelation coefficient is then also calculated for
this series of dominance times for various lags. In Figure 3.5 we compare the effects of
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Fig. 3.5. Distribution of dominance durations for stochastic variations of the deterministic
system (3.1). (a) Additive noise is included in the activity variables uL,R by replacing the equations
for them with (3.30). Exponentially filtered white noise has variance γ = 0.11. Note the distribution
has a peak around T = 200 (b) Additive noise is included in the depression variables qL,R by replacing
the equations for them with (3.31). Exponentially filtered white noise has variance γ = 0.01. In both
panels, system was simulated for 5 × 106 time units. Other parameters are κ = 0.05, w̄l = 0.04,
w̄c = −1, α = 500, β = 0.01, and ν = 50.
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Fig. 3.6. Autocorrelations for the time series of dominance durations shown in Figure 3.5 when
(a) noise is added to activity variables uL,R and (b) noise is added to depression variables qL,R.

additive noise on the activity versus the depression variables. When additive noise is
included in activity variables uL,R, we find this can generate a peak in the dominance
duration distribution at T ≈ 200 (2 seconds) with a long tail at higher dominance
times. However, there is a sharp peak in distributions near T = 0 as well. This arises
from activity falling below threshold and then being kicked back above by additive
noise prior to its relaxation to a suppressed state. We do not find this same behavior
when additive noise is included in the depression variables qL,R (see Figure 3.5b). In
fact, there is a peak in the dominance duration distribution at T ≈ 200 and an even
longer tail at higher dominance times. Yet, there is no peak in dominance times close
to T = 0. This is perhaps due to additional temporal filtering occurring due to the
longer time constant α of the depression variables. Thus, the distribution generated
here could be more feasibly fit to a gamma distribution as in previous experimental
and modeling studies of binocular rivalry [46, 39, 49, 52]. In Figure 3.6, we picture the
autocorrelation statistics of the time series of dominance durations used to construct
the histograms in Figure 3.5. We do find correlations for nonzero lag in dominance
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times of the network with noise in the activity variables. However, there is little to
no correlation for nonzero lag in the dominance times of the network with noise in
the depression variables. When the neural activity variables are noise driven, there is
still reliable memory in the system due to the presence of the wholly deterministic de-
pression variables. The interplay between noise driven oscillations versus oscillations
generated by slow adaptive variables in competitive neural networks is an ongoing
area of research [41, 25, 49].

3.3. Equilibria of network with smooth sigmoid firing rate. One potential
question regarding the study of the system (3.1) with a Heaviside firing rate function
regards just how representative is its dynamics of firing rate models with a smooth
sigmoidal firing rate function (2.2). We probe this question now by using numerical
methods to characterize the bifurcation structure of the network for finite gain η. A
previous study in [52] of a similar competitive neural network with depression and a
smooth sigmoid firing rate found that in addition to an off, WTA, fusion, and escape
rivalry state, the network could support release rivalry for low levels of input. By
release rivalry, we mean that oscillations are generated by a release mechanism where
the dominant population falls below threshold prior to the suppressed population
rising above threshold (see Figure 3.7a for example). This generates dominance times
in rivalry that increase as the strength of input is increased, which is in fact contrary
to the general results of experimental recordings and psychophysical data of binocular
rivalry [45, 9, 46]. In [52], the effect that the strength of inputs and depression had
upon the stability of steady states was examined, but the effect of varying the strength
of the gain of the firing rate function was not. To follow up on this previous study,
we examine the role that the gain of the firing rate function has upon the dynamics
of the competitive neural network with synaptic depression (3.1).
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Fig. 3.7. Oscillatory solutions of the space-clamped system (3.1) for a smooth sigmoid activa-
tion function (2.2). (a) Plot against time of the activities uL (solid black) and uR (dashed black)
where switching during oscillations is induced by a release mechanism. Here, the strength of the
inputs are IL = IR = 0.1 and the gain of the sigmoid is η = 15. (b) Plot against time of the
activities uL, uR where switching during oscillations is induced by an escape mechanism. Here, the
strength of inputs are IL = IR = 0.25 and the gain of the sigmoid is η = 65. Other parameters are
w̄l = 0.4, w̄c = −1, κ = 0.05, α = 500, and β = 0.01.

First, we find that the system (3.1) in the case of a smooth sigmoid firing rate
function supports both a rivalry and escape mechanism for generating oscillations.
In Figure 3.7a, we picture a numerical simulation of the system (3.1), which occurs
for sufficiently weak input and gain. Notice that the dominant population’s activity
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Fig. 3.8. Equilibria of the left population uL as a function of the gain η of the smooth sigmoid
activation function (2.2). Solid lines represent stable states, dashed line represent unstable states,
and circles represent maximum and minimum of rivalry oscillations. (a) For lower input IL =
IR = 0.1 to both populations, increasing the gain leads to a destabilization of the off state through
a supercritical Hopf bifurcation. The resultant limit cycle is generated through a release mechanism
as shown in Figure 3.7a. Eventually, this limit cycle vanishes for high gain (η ≈ 30) and WTA
equilibria remain as η → ∞. (b) For higher input to both populations IL = IR = 0.25 a fusion
state exists for all levels of gain, but a limit cycle generated by an escape mechanism (see Figure
3.7b) arise for high gain (η ≈ 60). This rivalry/fusion bistable state remains as η → ∞. Other
parameters are κ = 0.05, α = 500, β = 0.01, w̄l = 0.4, and w̄c = −1.

falls below threshold prior to the suppressed population’s rising above threshold. The
opposite is true in Figure 3.7b, where escape rivalry oscillations are pictured. This
occurs for sufficiently large input and gain. Next, in Figure 3.8 we summarize the
two possible bifurcation scenarios when gain η is the varied parameter. As shown in
Figure 3.8a, for weak input (IL = IR = 0.1), we find that when the gain is weak,
only a stable off state exists. However, as the gain is increased, a limit cycle arises
through a supercritical Hopf bifurcation, which is the onset of rivalry through a release
mechanism. At sufficiently high gain (η ≈ 30), the limit cycle vanishes and only a
WTA solution exists. This behavior persists as η → ∞. Therefore, for a sufficiently
large gain, the behavior of the system (3.1) with a smooth sigmoid firing rate (2.2) is
quite similar to that when it has a Heaviside firing rate (2.3). In Figure 3.8b, we show
that for strong input, the system possesses only a fusion state for low gain, but at a
critical higher gain (η ≈ 60), we find there is an escape rivalry/fusion bistable state,
which is the same general structure the network has as η → ∞. Thus, the bistable
state is a generic behavior of the system (3.1), so there must be a separatrix between
the fusion and rivalry state.

4. Oscillations in the coupled hypercolumn model. Let us now return to
the full spatially extended coupled hypercolumn model (2.1). In a previous study, we
showed that stable stationary bumps of activity can exist in a scalar neural field model
with lateral inhibition for sufficiently weak synaptic depression [12, 37]. Additionally,
it has been shown that a single ring (or hypercolumn) model with synaptic depression
can support stable stationary bumps as well as a rotating bumps [69]. We extend these
results here by considering two coupled rings (hypercolumns) with synaptic depression
driven by stimuli with different orientations. A related study based on networks with
spike frequency adaptation is considered elsewhere [47]. We consider the system (2.1)
in the case of the Heaviside firing rate function (2.3) and inputs IL(θ) and IR(θ) given
by functions peaked at a specific orientation, which are meant to represent stationary
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grating stimuli [6, 66]. For concreteness, we take

IL(θ) = I0
L cosp(θ − π/4), IR(θ) = I0

R cosp(θ + π/4), (4.1)

where π/4 and −π/4 are the stimulus orientations and p is an even integer power that
determines the sharpness of the inputs with respect to orientation. (We set p = 6).
The particular choice of stimulus orientations simplifies our calculations, since the
associated neural field equations are reflection symmetric. That is they are equivariant
with respect to the transformation L → R and θ → −θ. As a further simplification,
we also take the left and right input strengths to be the same, I0

L = I0
R = I0. Note,

however, that our analysis can be extended to take into account more general stimulus
orientations and asymmetric input strengths I0

L 6= I0
R. Finally, we take both the local

and cross populations’ weight functions wl, wc to be the harmonic weight function
(2.4). Our analysis then proceeds by studying the existence and linear stability of
nontrivial stationary solutions corresponding to either single bump or double bump
solutions. A stationary solution (uL, uR, qL, qR) = (UL(θ), UR(θ), QL(θ), QR(θ)) of
equations (2.1) satisfies the system of equations (for f(u) ≡ Θ(u− κ))

UL(θ) = wl ∗ (QLΘ(UL − κ)) + wc ∗ (QRΘ(UR − κ)) + IL(θ)

UR(θ) = wl ∗ (QRΘ(UR − κ)) + wc ∗ (QLΘ(UL − κ)) + IR(θ) (4.2)

Qj(θ) = 1 −
αβΘ(Uj(θ) − κ)

1 + αβΘ(Uj(θ) − κ)
, j = L,R.

Introduce the excited or superthreshold regions R[Uj ] = {θ|Uj(θ) > κ} of the left
(j = L) and right (j = R) populations. These will vary, depending on whether we
study a single or double bump. A single bump solution is equivalent to a winner-
take-all (WTA) scenario where only a single hypercolumn contains superthreshold
bump activity, for example, R[UL] = (θ1, θ2) and R[UR] = ∅. On the other hand, in
the case of a double bump solution both hypercolumns exhibit superthreshold bump
activity. Exploiting the reflection symmetry, this means that R[UL] = (θ1, θ2) and
R[UR] = (−θ1,−θ2).

4.1. Existence of single bumps. For a single bump or winner-take-all (WTA)
solution, only one neural activity variable will have an associated non-empty excited
region, so we pick the left population such that R[UL] = (θ1, θ2), whereas the right
population UR will always remain below threshold so that R[UR] = ∅. Threshold
crossing points are then defined as UL(θ1) = UL(θ2) = κ. We could just as easily
have picked the right population due to the reflection symmetry of the network. As
we have prescribed, the system (4.2) becomes

UL(θ) =

∫ θ2

θ1

wl(θ − θ′)QL(θ′)dθ′ + IL(θ), (4.3)

UR(θ) =

∫ θ2

θ1

wc(θ − θ′)QL(θ′)dθ′ + IR(θ), (4.4)

Qj(θ) = 1 −
αβΘ(Uj(θ) − κ)

1 + αβΘ(Uj(θ) − κ)
, j = L,R. (4.5)
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Substituting equations (4.5) into (4.3) and (4.4) yields

UL(θ) =
1

1 + αβ

∫ θ2

θ1

wl(θ − θ′)dθ′ + IL(θ), (4.6)

UR(θ) =
1

1 + αβ

∫ θ2

θ1

wc(θ − θ′)dθ′ + IR(θ). (4.7)

Plugging in the sum of harmonics weight function (2.4) for wl and wc, we analytically
calculate the single bump solution

UL(θ) =
1

1 + αβ

[

wl
0(θ2 − θ1) +

wl
2

2
(sin(2(θ − θ1)) − sin(2(θ − θ2)))

]

+ IL(θ)(4.8)

UR(θ) =
1

1 + αβ

[

wc
0(θ2 − θ1) +

wc
2

2
(sin(2(θ − θ1)) − sin(2(θ − θ2)))

]

+ IR(θ).

(4.9)

Applying the threshold conditions UL(θ1) = UL(θ2) = κ and noting the reflection
symmetry of the system, we have

κ =
1

1 + αβ

[

wl
0∆θ +

wl
2

2
sin(2∆θ)

]

+ I0 cosp(∆θ/2), (4.10)

which provides us with an implicit equation relating the bump width ∆θ = θ2 − θ1
to all other parameters. Note that we have used the fact that the threshold crossing
points are symmetric about π/4, that is, θ1 = π/4−∆θ/2 and θ2 = π/4+∆θ/2. One
additional constraint on the solution (4.9) is that it always remains below threshold.
For sufficiently strong inputs, the maximum of UR will occur at the peak of the input
IR, so that we need only check if UR(−π/4) < κ which we compute as

UR(−π/4) =
1

1 + αβ

[

wc
0(∆θ) +

wc
2

2
(sin(2θ2 + π/2) − sin(2θ1 + π/2))

]

+ I0

=
1

1 + αβ
[wc

0(∆θ) − wc
2 sin(∆θ)] + I0. (4.11)

This yields

wc
0(∆θ) − wc

2 sin(∆θ) < (1 + αβ)(κ− I0) (4.12)

for the subthreshold condition. Thus, for a single bump solution to exist, the threshold
condition (4.10) and the subthreshold condition (4.12) must be satisfied. Equation
(4.10) can be solved numerically using a root finding algorithm. Following this, we can
find whether the inequality (4.12) is satisfied by direct computation. The variation
of the width of the bump ∆θ with the input strength I0 and depression strength β is
shown in Figure 4.1; the stability of the bump is calculated below.

4.2. Stability of single bumps. To study the stability of the single bump
solution, we cannot use the technique of Taylor expanding equations (2.1) about a
bump solution in the case of a smooth sigmoid firing rate (2.2) and then taking the
high–gain limit of the associated Evans function [18]. This is due to a result we have
recently shown [37], which is that the size of perturbation in which the Evans func-
tion approach is valid become vanishingly small in the high–gain limit. Thus, even
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Fig. 4.1. Single bumps in coupled hypercolumns. (Left) Plots relating single bump width ∆θ to
the amplitude of input I0 for different values of κ using equation (4.10) and constrained by inequality
(4.12). Bumps do not satisfy the subthreshold condition (4.12) for a particular value of κ to the
right of the associated curve, even though (4.10) may be solvable. Other parameters are wl

0
= 0,

wl
2

= 0.4, wc
0

= −1, wc
2

= 0.5, α = 500, β = 0.01. (Right) Bump profile when κ = 0.05 and I0 = 0.3.

in a version of the system (2.1) with a steep but smooth firing rate function, stabil-
ity results obtained for bumps using linear theory that employs an Evans function
approach will be valid in a tiny region of phase space. Therefore, we utilize a more
careful treatment of local stability that considers the fact that the system (2.1) is
piecewise–smooth [37, 12]. It should be stated up front that this approach can only
characterize the stability of perturbations with real eigenvalues, which allows us to
state sufficient conditions for instability. In practice, we find this characterizes the
dynamics evolving from a perturbed standing bump solution quite well (see numerical
results in §5).

We begin by letting uj(θ, t) = Uj(θ) + εψj(θ, t) and qj(θ, t) = Qj(θ) + εϕj(θ, t)
for j = L,R, where ψj and ϕj denote smooth perturbations and ε≪ 1. Substituting
into the full system (2.1), imposing the single bump solutions (4.3), (4.4), and (4.5),
and dividing through by ε gives

∂ψL(θ, t)

∂t
= −ψL(θ, t) +

1

ε
wl ∗ (QL[Θ(UL + εψL − κ) − Θ(UL − κ)])

+wl ∗ (ϕLΘ(UL + εψL − κ)), (4.13)

∂ψR(θ, t)

∂t
= −ψR(θ, t) +

1

ε
wc ∗ (QL[Θ(UL + εψL − κ) − Θ(UL − κ)])

+wc ∗ (ϕLΘ(UL + εψL − κ)), (4.14)

∂ϕj(θ, t)

∂t
= −

ϕj(θ, t)

α
−
β

ε
Qj [Θ(Uj + εψj − κ) − Θ(Uj − κ)]

−βϕjΘ(Uj + εψj − κ), (4.15)

for j = L,R. Denote the perturbations of the bump boundaries by ε∆L
±(t) such that

uL(θ1 + ε∆L
−(t), t) = uL(θ2 + ε∆L

+(t), t) = κ. (4.16)

Taylor expanding these threshold conditions to first order in ε, we find that

∆L
−(t) ≈ −

ψL(θ1, t)

|U ′
L(θ1)|

, ∆L
+(t) ≈

ψL(θ2, t)

|U ′
L(θ2)|

. (4.17)
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Following [12, 37], we can smooth out discontinuities in equations (4.15) by in-
troducing the infinitesimal fields

ΦLm(θ, t) =

∫ θ2+ε∆L

+

θ1+ε∆L

−

wm(θ − θ′)ϕL(θ′, t)dθ′, (4.18)

for m = l, c. Therefore, even though O(1/ε) pointwise changes in ϕL(x, t) may occur,
the bump solution may still be stable, as the region over which O(1/ε) changes occur
may shrink to zero. This possibility is accounted for, since the dynamics of the field
ΦLm(x, t) (m = l, c) will remain O(1) when ϕL(x, t) is O(1/ε) over an infinitesimal
interval.

If we now differentiate equation (4.18) with respect to time, we find

∂ΦLm(θ, t)

∂t
=

∫ θ2+ε∆L

+

θ1+ε∆L

−

wm(θ − θ′)
∂ϕL(θ′, t)

∂t
dθ′ (4.19)

+εwm(θ − θ2 − ε∆L
+(t))ϕL(θ2 + ε∆L

+(t), t)∆̇L
+(t)

−εwm(θ − θ1 − ε∆L
−(t))ϕL(θ1 + ε∆L

−(t), t)∆̇L
−(t), m = l, c,

where ∆̇L
± = d∆L

±/dt. We can now substitute equation (4.15) for ∂ϕL/∂t. Note that
the final term in equation (4.15) involves a Heaviside function, which will be only be
nonzero when the stationary bump UL plus the perturbation εψL is greater than the
threshold κ. This region is precisely defined by the interval (θ1 +ε∆L

−, θ2 +ε∆L
+) over

which the integral in (4.19) is taken. This implies that the resulting term

∫ θ2+ε∆L

+

θ1+ε∆L

−

wm(θ − θ′)ϕL(θ′, t)Θ(UL(θ′, t) + εψL(θ′, t) − κ)dθ′ = ΦLm(θ, t).

Therefore, by modifying equations (4.13), (4.14), and (4.15) with the auxilary variable
definition given in (4.18) we have the alternative system of equations

∂ψL(θ, t)

∂t
= −ψL(θ, t) + ΦLl(θ, t) (4.20)

+
1

ε

∫ θ2+ε∆L

+(t)

θ1+ε∆L

−

(t)

wl(θ − θ′)QL(θ′)dθ′ −
1

ε

∫ θ2

θ1

wl(θ − θ′)QL(θ′)dθ′,

∂ψR(θ, t)

∂t
= −ψR(θ, t) + ΦLc(θ, t) (4.21)

+
1

ε

∫ θ2+ε∆L

+(t)

θ1+ε∆L

−

(t)

wc(θ − θ′)QL(θ′)dθ′ −
1

ε

∫ θ2

θ1

wc(θ − θ′)QL(θ′)dθ′,

∂ΦLm(θ, t)

∂t
= −(α−1 + β)ΦLm(θ, t) (4.22)

−
β

ε

∫ θ2+ε∆L

+(t)

θ1+ε∆L

−

(t)

wm(θ − θ′)QL(θ′)[Θ(UL + εψL − κ) − Θ(UL − κ)]dθ,

+εwm(θ − θ2 − ε∆L
+(t))ϕL(θ2 + ε∆L

+(t), t)∆̇L
+(t)

−εwm(θ − θ1 − ε∆L
−(t))ϕL(θ1 + ε∆L

−(t), t)∆̇L
−(t), m = l, c.
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We can now linearize the system of equations (4.20), (4.21), and (4.22) by expanding
in powers of ε and collecting all O(1) terms. Note that it is important to keep track
of the signs of ∆L

± when approximating the various integrals due to the discontinuous
nature of QL(θ). We thus obtain the pseudo–linear system of equations:

∂ψL(θ, t)

∂t
= −ψL(θ, t) + ΦLl(θ, t) + γSwl(θ − θ1)ψL(θ1, t)G(ψL(θ1, t))

+γSwl(θ − θ2)ψL(θ2, t)G(ψL(θ2, t)), (4.23)

∂ψR(θ, t)

∂t
= −ψR(θ, t) + ΦLc(θ, t) + γSwc(θ − θ1)ψL(θ1, t)G(ψL(θ1, t)),

+γSwc(θ − θ2)ψL(θ2, t)G(ψL(θ2, t)) (4.24)

∂ΦLm(θ, t)

∂t
= −(α−1 + β)ΦLm(θ, t) (4.25)

−β(γSwm(θ − θ1)ψL(θ1, t)G(ψL(θ1, t))Θ(ψL(θ1, t)),

+γSwm(θ − θ2)ψL(θ2, t)G(ψL(θ2, t))Θ(ψL(θ2, t))), m = l, c,

where G is the step function

G(∆) =

{

1 if ∆ > 0
(1 + αβ)−1 if ∆ < 0

, (4.26)

and

(γS)
−1

= |U ′

L(θk)| =
∣

∣

∣

1

1 + αβ

[

wl(θk − θ1) − wl(θk − θ2)
]

+ I ′L(θk)
∣

∣

∣, (4.27)

for k = 1, 2.
Equations (4.23)-(4.25) imply that the local stability of the stationary bump

solution depends upon the spectral properties of a pseudo–linear operator. In a
previous study, we solved a similar problem by assuming that solutions were non-
oscillatory, which generated a simpler spectral problem dependent on the sign of
perturbations [12]. Here, we make a similar assumption, namely, that the pertur-
bations ψL(θ1, t) and ψL(θ2, t) (equivalently ∆L

− and ∆L
+) do not switch sign. In

other words, we assume equations (4.23)–(4.25) have separable solutions of the form
(ψL(θ, t), ψR(θ, t),ΦLl(θ, t),ΦLc(θ, t)) = eλt(ψL(θ), ψR(θ),ΦLl(θ),ΦLc(θ)), where λ is
real2. The step functions Θ, G are then time-independent so there is a common factor
eλt that cancels everywhere. We thus obtain an eigenvalue problem of the form

(λ+ 1)ψL(θ) = γSwl(θ − θ1)ψL(θ1)G(ψL(θ1))

(

1 −
βΘ(ψL(θ1))

λ+ α−1 + β

)

+γSwl(θ − θ2)ψL(θ2)G(ψL(θ2))

(

1 −
βΘ(ψL(θ2))

λ+ α−1 + β

)

(4.28)

(λ+ 1)ψR(θ) = γSwc(θ − θ1)ψL(θ1)G(ψL(θ1))

(

1 −
βΘ(ψL(θ1))

λ+ α−1 + β

)

+γSwc(θ − θ2)ψL(θ2)G(ψL(θ2))

(

1 −
βΘ(ψL(θ2))

λ+ α−1 + β

)

. (4.29)

2Restricting our stability analysis to real λ means that we can only derive sufficient conditions for
the instability rather than stability of a single or double bump solution. Moreover, we cannot establish
the existence of limit cycle oscillations in terms of standard Hopf bifurcation theory. Nevertheless,
numerical simulations will establish that destabilization of a (double) bump solution can lead to
oscillatory solutions suggestive of binoculary rivalry, see §5.
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Note that we have assumed λ 6= −(α−1 + β) so that we can use equation (4.25) to
solve for ΦLl(θ) and ΦLc(θ) in terms of ψL(θ1) and ψL(θ2); the case λ = −(α−1 + β)
does not contribute to any instabilities.

It is possible to show that the solutions for λ can be identified with the spectra of
a set of compact linear operators acting in the space of bounded continuous functions
on the interval [θ1, θ2], along the lines of Guo and Chow [27, 12]. However, here we
will simply calculate λ directly from the set of equations (4.28) and (4.29). In one
class of solutions, we need only restrict the function ψL(θ) to vanish on the boundary,
ψL(θ1) = ψL(θ2) = 0, so that ψR(θ) is unrestricted and λ = −1. This belongs to the
essential spectrum, since λ = −1 has infinite multiplicity, and does not contribute
to any instabilities. The discrete spectrum is then obtained by setting θ = θ1 and
θ = θ2 in equation (4.28), which determines both the eigenvalues λ and the pair
ψL(θ1), ψL(θ2) (up to a scale factor). Once these are known, the eigensolutions ψL(θ)
and ψR(θ) on θ ∈ [−π/2, π/2) are fully determined by equations (4.28) and (4.29).
Note that the resulting eigenvalue equation is qualitatively similar to one derived in
the linearization of a single bump in a single network with synaptic depression [12, 37].
One major difference here is that the input to the network is inhomogeneous so that
translation invariance is lost. Hence, we no longer expect a zero eigenvalue associated
with uniform shifts. We distinguish four classes of eigensolution to equations (4.28)
and (4.29): (i) ψL(θ1) > 0 and ψL(θ2) < 0; (ii) ψL(θ1) < 0 and ψL(θ2) > 0; (iii)
ψL(θ1) > 0 and ψL(θ2) > 0; (iv) ψL(θ1) < 0 and ψL(θ2) < 0. The four types of per-
turbation correspond, respectively, to a leftward shift, a rightward shift, an expansion,
and a contraction of the bump in the left eye hypercolumn. As the eigenvalue prob-
lem is qualitatively similar to our previous work, we merely summarize the stability
properties for each class of perturbation.

(i) ψL(θ1) > 0;ψL(θ2) < 0 : As has been shown in the spatially extended
network with synaptic depression and no input, increasing the strength of synaptic
depression β will lead to a destabilization of standing bumps through the shift per-
turbation. In fact, in all parameter regimes we have studied, this is the particular
perturbation that destabilizes first3. In the case of a stimulus driven system, we find
that inputs serve to move the onset of destabilization to a higher value of β. As
before, we can study stability merely on the bump boundaries by setting θ = θ1, θ2,
which, along with our perturbation sign assumptions, yields

(

Γβ(λ) − γSwl(0)
(

λ+ α−1
)

−γS

(

λ+ α−1
)

wl(∆θ)
−γS

(

λ+ α−1
)

wl(∆θ) Γβ(λ) − γSwl(0)
(

λ+ α−1
)

) (

ψL(θ1)
ψ(θ2)

)

= −
γSαβλ

1 + αβ

(

wl(∆θ)ψL(θ2)
wl(0)ψL(θ2)

)

. (4.30)

As in the case without inputs, we assume β ≪ 1 and carry out a perturbation ex-
pansion in β. First, setting β = 0 in equation (4.30) shows that the lowest or-
der solution is ψ−

0 = −ψ+
0 with λ0 = −α−1 as a degenerate eigenvalue and λ0 =

−1 + γS(wl(0)−wl(∆θ)), which will always be negative, since γ−1
S > wl(0)−wl(∆θ).

All eigensolutions pickup O(β) corrections as β is then increased from zero, but we

3More precisely, shift perturbations are the dominant instability associated with real eigenvalues.
Our analysis cannot determine possible instabilities associated with complex eigenvalues. However,
numerical simulations suggest that single bump solutions are stable for sufficiently small β and
destabilize at the point where an eigenvalue associated with shift perturbations crosses the origin,
see §5.
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will show that the valid eigenvalue originating from −α−1 eventually becomes posi-
tive, signifying traveling pulse solutions. See [69] for a recent study of traveling pulse
solutions in a ring model with synaptic depression.

(ii) ψL(θ1) < 0;ψL(θ2) > 0 : Due to reflection symmetry of the original
system, when wl is an even function, the spectrum of rightward shifts is identical to
that of leftward shifts.

(iii) ψL(θ1) > 0;ψL(θ2) > 0 : In this case, if we set θ = θ1, θ2, we have
ψL(θ1) = ψL(θ2) > 0, so equations (4.28) and (4.29) become

(λ+ α−1 + β)(λ+ 1) = (λ+ α−1)(1 + αβ)ΩI , (4.31)

where

ΩI =
wl(0) + wl(∆θ)

wl(0) − wl(∆θ) + (1 + αβ)I ′L(θ1)
(4.32)

and we have substituted for γS using equation (4.27). It then follows that λ = λ±
with

λ± =
1

2

[

ΩI(1 + αβ) −
(

1 + α−1 + β
)]

±
1

2

√

[ΩI(1 + αβ) − (1 + α−1 + β)]
2

+ 4(ΩI − 1) (α−1 + β). (4.33)

The associated eigenmode corresponds to a pure expansion of the bump.
(iv) ψL(θ1) < 0;ψL(θ2) < 0 : In this final case, if we set θ = θ1, θ2 and note

ψL(θ1) = ψL(θ2) then equations (4.28) and (4.29) imply λ = λ0 with

λ0 = ΩI − 1. (4.34)

The associated eigenmode corresponds to a pure contraction of the bump.
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Fig. 4.2. Eigenvalues associated with shift perturbations of single bump (cases (i) and (ii)). (a)
Maximal nonzero real eigenvalues plotted as a function of β for I0 = 0.24. Bump is unstable with
respect to shifts for sufficiently large β. (b) Maximal nonzero real eigenvalue plotted as a function
of I0 for β = 0.01. Bump is unstable with respect to shifts for sufficiently weak input I0. Other
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We illustrate the above analysis by considering stationary single bumps in the
coupled hypercolumn network with a harmonic weight function (2.4). In particular,
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we plot eigenvalues for the destabilizing perturbations for the stimulus driven bump,
which is stable as β → 0. In Figure 4.2, we plot the maximal real eigenvalue associated
with the shift perturbation (cases (i) and (ii)) as a function of β and as a function
of I0. The bump destabilizes to shift perturbations for sufficiently strong depression
β. However, large inputs I0 can keep the bump stable for larger values of β. In
Figure 4.3, we plot the eigenvalues of the expansion and contraction perturbations as
a function of β and I0. In the case of contractions, there is a single negative branch
of eigenvalues. In the case of expansions, there are two negative branches for fixed
I0 and sufficiently small β, which annihilate at the left edge of a forbidden region
in which eigenvalues given by equation (4.33) are complex so that stability cannot
be determined. At the other end of the forbidden region, a pair of positive branches
emerges for sufficiently large β. By fixing β and varying I0, we see that eigenvalues
are slightly less sensitive to the input strength and remain the same sign over wide
range. We find that the lower branch of the expansion mode and the branch of the
contraction mode never meet, as opposed to our previous study of a network without
inhomogeneous input [12, 37].

4.3. Existence of double bump. For a double bump or fusion solution, neural
activity variables will both have associated non-empty excited regions R[UL] = (θ1, θ2)
and R[UR] = (−θ2,−θ1) and thus threshold crossing points UL(θ1) = UL(θ2) = κ and
UR(−θ2) = UR(−θ1) = κ. Therefore, by prescribing the double bump solution in
both populations, equations (4.2) become

UL(θ) =

∫ θ2

θ1

wl(θ − θ′)QL(θ′)dθ′ +

∫ −θ1

−θ2

wc(θ − θ′)QR(θ′)dθ′ + IL(θ), (4.35)

UR(θ) =

∫ −θ1

−θ2

wl(θ − θ′)QR(θ′)dθ′ +

∫ θ2

θ1

wc(θ − θ′)QL(θ′)dθ′ + IR(θ), (4.36)

Qj(θ) = 1 −
αβΘ(Uj(θ) − κ)

1 + αβΘ(Uj(θ) − κ)
, j = L,R. (4.37)

Substituting equations (4.37) into (4.35) and (4.36) yields
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Fig. 4.4. Double bumps in coupled hypercolumns. (Left) Plots relating bump width ∆θ to the
amplitude of input strength I0 for different values of κ using equations (4.42) and (4.43). Other
parameters are κ = 0.05, α = 500, β = 0.01, p = 6. (Right) Double bump profile when κ = 0.05 and
I0 = 0.4.

UL(θ) =
1

1 + αβ

[

∫ θ2

θ1

wl(θ − θ′)dθ′ +

∫ −θ1

−θ2

wc(θ − θ′)dθ′

]

+ IL(θ), (4.38)

UR(θ) =
1

1 + αβ

[

∫ −θ1

−θ2

wl(θ − θ′)dθ′ +

∫ θ2

θ1

wc(θ − θ′)dθ′

]

+ IR(θ). (4.39)

Employing the sum of harmonics weight function (2.4), we can analytically calculate
the double bump solutions

UL(θ) =
1

1 + αβ

[

(wl
0 + wc

0)(θ2 − θ1) +
wl

2

2
(sin(2(θ − θ1)) − sin(2(θ − θ2)))

+
wc

2

2
(sin(2(θ + θ2)) − sin(2(θ + θ1)))

]

+ IL(θ), (4.40)

UR(θ) =
1

1 + αβ

[

(wl
0 + wc

0)(θ2 − θ1) +
wl

2

2
(sin(2(θ + θ2)) − sin(2(θ + θ1)))

+
wc

2

2
(sin(2(θ − θ1)) − sin(2(θ − θ2)))

]

+ IR(θ). (4.41)

Applying the threshold conditions

κ =
1

1 + αβ

[

(wl
0 + wc

0)(∆θ) +
wl

2

2
sin(2(∆θ)) +

wc
2

2
(sin(2(θ2 + θ1)) − sin(4θ1))

]

+I0 cosp(∆θ/2), (4.42)

κ =
1

1 + αβ

[

(wl
0 + wc

0)(∆θ) +
wl

2

2
sin(2(∆θ)) +

wc
2

2
(sin(4θ2) − sin(2(θ2 + θ1)))

]

+I0 cosp(∆θ/2), (4.43)

where ∆θ = θ2 − θ1, the width of each bump. Therefore, we have a system of implicit
expressions that relate the threshold crossing points θ1, θ2 to all other parameters.
The system prescribed by (4.42) and (4.43) can be solved numerically using a root
finding algorithm. The variation of the width of each bump ∆θ with the input strength
I0 and depression strength β is shown in Figure 4.4; the stability of these bumps is
calculated below.
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4.4. Stability of the double bump. As in §4.2, we cannot calculate the stabil-
ity of the double bump here using a standard Evans function approach, and we must
account for the piecewise smooth nature of the dynamics more carefully. One caveat
of this analysis is that we may only calculate the form of perturbations to the bump
with a real eigenvalue characterizing their temporal evolution. While this may appear
to be a barrier to calculating the stability boundary the particular perturbation that
leads to the oscillatory instability leading to rivalry, we are in fact able to characterize
this boundary quite well with perturbations possessing real eigenvalues. We explain
this issue further below as well as show examples of instabilities in §5.

Due to the similarity our stability analysis of the double bump has with that of the
single bump, we relegate this calculation to the Appendix. After changing variables
and accounting for the sign of perturbations at the bump boundaries, we obtain the
following pseudo–linear system characterizing the evolution of perturbations of the
double bump solution:

∂ψL(θ, t)

∂t
= −ψL(θ, t) + ΦLl(θ, t) + ΦRc(θ, t) + γDwl(θ − θ1)ψL(θ1, t)GL,1(t)

+γDwl(θ − θ2)ψL(θ2, t)GL,2(t) + γDwc(θ + θ1)ψR(−θ1, t)GR,1(t)

+γDwc(θ + θ2)ψR(−θ2, t)GR,2(t) (4.44)

∂ψR(θ, t)

∂t
= −ψR(θ, t) + ΦRl(θ, t) + ΦLc(θ, t) + γDwl(θ + θ1)ψR(−θ1, t)GR,1(t)

+γDwl(θ + θ2)ψR(−θ2, t)GR,2(t) + γDwc(θ − θ1)ψ1(θ1, t)GL,1(t)

+γDwc(θ − θ2)ψL(θ2, t)GL,2(t) (4.45)

and

∂ΦLm(θ, t)

∂t
= −(α−1 + β)ΦLm(θ, t)

−β(γDwm(θ − θ1)ψL(θ1, t)GL,1(t)Θ(ψL(θ1, t))

+γDwm(θ − θ2)ψL(θ2, t)GL,2(t)Θ(ψL(θ2, t))), (4.46)

∂ΦRm(θ, t)

∂t
= −(α−1 + β)ΦRm(θ, t)

−β(γDwm(θ + θ1)ψR(−θ1, t)GR,1(t)Θ(ψR(−θ1, t))

+γDwm(θ + θ2)ψR(−θ2, t)GR,2(t)Θ(ψR(−θ2, t))), (4.47)

where GL,j(t) = G(ψL(θj , t)), GR,j(t) = G(ψR(−θj , t)) and

(γD)
−1

= |U ′

L(θk)|

=
1

1 + αβ

∣

∣

∣wl(θk − θ1) − wl(θk − θ2) + wc(θk + θ2) − wc(θk + θ1) + I ′L(θk)
∣

∣

∣

= |U ′

R(−θk)| (4.48)

=
1

1 + αβ

∣

∣

∣
wl(θk − θ2) − wl(θk − θ1) + wc(θk + θ1) − wc(θk + θ2) + I ′R(−θk)

∣

∣

∣
,

for k = 1, 2.
Equations (4.44)–(4.47) imply that the local stability of the stationary bump

solution depends upon the spectral properties of a pseudo-linear operator. As in
§4.2, we assume that equations (4.44)–(4.47) have separable solutions of the form
(ψL, ψR,Φ1l,Φ2l,ΦLc,ΦRc)(θ, t) = eλt(ψL, ψR,ΦLl,ΦRl,ΦLc,ΦRc)(θ), where λ is real.
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Under this assumption, the step functions Θ, G are time-independent so that eλt

cancels everywhere. Further simplification can be achieved by assuming that λ 6=
−(α−1 + β) so that we can eliminate the auxiliary fields ΦLl,ΦRl,ΦLc,ΦRc. The
resulting eigenvalue problem can be analyzed along similar lines to single bumps.
That is, one particular class of solutions consists of functions ψL(θ) and ψR(θ) that
vanish on the bump boundaries so that ψL(θ1) = ψL(θ2) = ψR(−θ2) = ψR(−θ1) = 0
and λ = −1. This determines the essential spectrum. The discrete spectrum is then
found by setting θ = ±θ1,±θ2, which yields a four dimensional matrix equation for
the quantities ψL(θj), ψR(−θj), j = 1, 2. Specifying the sign of these quantities thus
yields sixteen classes of perturbation corresponding to all possible combinations of
the perturbations for each individual bump: expansion, contraction, left-shift, and
right-shift. However, there are only in fact seven qualitatively different cases due to
symmetry considerations. We summarize these in Figure 4.5: (i) expand and contract
(rivalry); (ii) same-shift; (iii) different-shift; (iv) expand both; (v) contract both;
(vi) expand and shift; (vii) contract and shift. It is straightforward to numerically
compute the eigenvalues associated with each perturbation after assigning the values
for G and Θ due to the signs each of the four points ψL(θ1), ψL(θ2), ψR(−θ1), and
ψR(−θ2). We shall briefly summarize our findings for the eigenvalues associated with
each perturbation followed by some specific examples.

(i) Expand and contract (rivalry): eg. ψL(θ1,2) > 0 and ψR(−θ1,2) < 0.
In the study of binocular rivalry, we are most interested in this perturbation, which
expands one bump and contracts the other. For sufficiently small inputs I0, we find
that the double bump is unstable with respect to this class of perturbation as β → 0.
There are then three possibilities which we have found numerically: it destabilizes to
the winner take all solution (single bump), which occurs for weak synaptic depres-
sion; destabilizes to damped oscillations which eventually return to the double bump
solution; or it destabilizes to an indefinite rivalrous state of persistent oscillations,
which occurs for sufficiently strong depression. Finally, if the input strength I0 is
large enough, we find that this is sufficient to stabilize the double bump solution with
respect to rivalry perturbations, as expected. When the double bump is linearly sta-
ble to rivalry perturbations, there can coexist a state where the system persistently
oscillates between either population possessing superthreshold activity. However, the
initial conditions of the system must be sufficiently far away from the double bump
solution.

(ii) Same-shift: eg. ψL(θ1) < 0, ψL(θ2) > 0, ψR(−θ2) < 0, ψR(−θ1) > 0.
We find that eigenvalues associated with this perturbation are always negative for
sufficiently strong cross inhibition (wc

0 < 0). However, as the amplitudes of the
parameters wc

0 and wc
2 are reduced, it is possible to destabilize the double bump

solution with respect to this perturbation, which numerically results in traveling pulse-
like solutions in both hypercolumns that eventually settle back into the double bump
solution.

(iii) Different-shift: eg. ψL(θ1) < 0, ψL(θ2) > 0, ψR(−θ2) > 0, ψR(−θ1) < 0.
We find that eigenvalues associated with this perturbation are always negative for
sufficiently strong cross inhibition (wc

0 < 0). However, as with case (ii), when the
amplitude of the parameters wc

0 and wc
2 are reduced, it is possible to destabilize the

double bump solution, resulting in traveling pulse-like solutions in both hypercolumns
that eventually settle back into the double bump solution.

(iv) Expand-both: eg. ψL(θ1) > 0, ψL(θ2) > 0, ψR(−θ2) > 0, ψR(−θ1) > 0.
Similar to cases (ii) and (iii), we find that this perturbation is stabilized by strong
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Fig. 4.5. Illustration of different types of perturbation of a stationary double-bump solution.
(Top) expand and contract; (Middle, left) right-shift both; (Middle, right) left-shift and right-shift;
(Bottom, left) expand both; (Bottom, right) contract both.

cross-inhibition, but can lead to instability when wc
0 and wc

2 are sufficiently small in
amplitude. However, due to periodicity, the spread of activity eventually settles back
into the double bump solution.

(v) Contract-both: eg. ψL(θ1) < 0, ψL(θ2) < 0, ψR(−θ2) < 0, ψR(−θ1) < 0.
Due to the underlying symmetry of the system, we can in fact compute the eigenvalue
associated with this perturbation explicitly. Noting the sign restrictions and the fact
that we must have ψL(θ1) = ψL(θ2) = ψR(−θ2) = ψR(−θ1) < 0 then

λ = −1 +
γD

1 + αβ
(wl(0) + w−

l + wc(2θ1) + w+
c ), (4.49)

which we find to always be negative, so long as wc
0 ≤ 0. Thus, the bump will always be

stable with respect to contractions. In fact, this seems to be what allows the system to
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Fig. 4.6. Eigenvalues associated with expand and contract (rivalry) perturbations of double
bump (case i). (a) Maximal nonzero eigenvalue plotted as a function of β for fixed I0 = 0.45. (b)
Maximal nonzero real eigenvalues plotted as a function of I0 for β = 0.01. Other parameters are
κ = 0.05, wl
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Fig. 4.7. Eigenvalues associated with other perturbations of double bump (cases ii-v). (Left)
Maximal real eigenvalues of the expand-both (solid black), contract-both (dashed black), same-shift
(solid grey), and different-shift (dashed grey) perturbations plotted as a function of β for fixed I0 =
0.45. (Right) Maximal real eigenvalues of each perturbation plotted as a function of I0 for β = 0.01.
Other parameters are κ = 0.05, wl
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settle back into the double bump solution after a long excursion due to a destabilizing
perturbation, since there are flows that treat the double bump as an attractor.

(vi) Expand-shift: eg. ψL(θ1) > 0, ψL(θ2) > 0, ψR(−θ2) < 0, ψR(−θ1) > 0.
We find no eigensolutions of this form for any parameters.

(vii) Contract-shift: eg. ψL(θ1) < 0, ψL(θ2) < 0, ψR(−θ2) < 0, ψR(−θ1) > 0.
We find no eigensolutions of this form for any parameters.

We illustrate the stability analysis of the stationary double bump solution by
plotting eigenvalues calculated for each perturbation to bumps in a network with the
harmonic weight function (2.4). Specifically, we plot the eigenvalues for each pertur-
bation for a stimulus driven double bump that is unstable to rivalry perturbations as
β → 0. In Figure 4.6, we plot the maximal nonzero real eigenvalue for rivalry pertur-
bation as a function of β and I0. For fixed I0, as β increases from zero the positive
real eigenvalue decreases as a function of β. For sufficiently large β, this positive
eigenvalue vanishes, and the double bump solution is predicted to be stable to rivalry
perturbations. For fixed β, double bumps are unstable to rivalry perturbations for
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sufficiently weak inputs, but stabilize beyond a critical value of I0. In Figure 4.7, we
plot the maximal eigenvalues of all other perturbations to the bump, showing they
are negative for a wide range of input strengths I0 and depression strengths β. They
are all quite insensitive to variations in these parameters.

5. Numerical simulations. We now study the full system (2.1) using a nu-
merical approximation scheme. To evolve the system in time, we use a fourth order
Runge-Kutta method with 1000-2000 spatial grid points and a time step of dt = 0.01.
The integral terms in equations (2.1a) and (2.1b) are approximated using Simpson’s
rule. We systematically checked whether taking finer grids changed stability results,
and it does not. Such checks are essential to studying stability of bumps as grids that
are too coarse can drastically alter stability results [27].

In much of parameter space, we find that our existence and stability analysis
characterizes very well the type of solutions that the system (2.1) will relax to over long
times as well as the nature of various local instabilities. Thus, if we take as an initial
condition a stationary bump solution that is stable with respect to perturbations
associated with real eigenvalues, and then vary a bifurcation parameter such as β
or I0, we find that the dominant instability, as predicted by our piecewise smooth
analysis, corresponds well with the numerical solution seen initially to evolve away
from the stationary solution. However, one interesting feature we find in numerical
simulations of the network is that solutions that destabilize initially can eventually
return to a stationary solution. This is due to two features of the underlying system
and associated stationary solution. First, the bump is stable with respect to certain
perturbations in our piecewise linear stability analysis. Therefore, even though the
solution may move away from a stationary bump when one perturbation is applied,
it may follow a trajectory in phase space which is eventually close to the stationary
bump solution again. This phenomenon is aided by the second effect, which is that
the variables qj(θ, t) as defined by equation (2.1c) reduce their value at a location
quite quickly when superthreshold activity of uj(θ, t) sweeps over that location in
the network. Thus, qj(θ, t) will be lower than the value prescribed by the stationary
solutions on the regions immediately exterior to the original bump location following
the bump. This effect will last for long periods of time since α is large. Therefore, in
some situations there will not be enough resources in the regions about the bump’s
original location to reignite the instability once the activity profile returns to the
general proximity of the bump. We shall witness this phenomenon in both single and
double bump instabilities.

For our first numerical example, we take the initial condition to be a single bump
solution specified by (4.8) which is predicted to be unstable to shift perturbations.
After a brief period, we perturb the system by adding a rightward shift perturbation
of uL(θ, t) defined as

ψshift
L (θ, t) = χ(t)(wl(θ − θ2) − wl(θ − θ1)), (5.1)

where χ(t) is a time–dependent function determining when and how long the pertur-
bation is applied. As shown in Figure 5.1a, the resulting dynamics initially evolves
to a propagating solution similar to a traveling pulse. However, due to the input
and periodic boundaries of the system, the profile does not evolve to a translation-
ally invariant traveling pulse as in our previous studies of a network with synaptic
depression [36, 12]. In fact, activity then changes its direction of propagation. Fol-
lowing its excursion, the activity profile eventually settles back into the stationary
single bump solution. As mentioned, the trajectory of the variable uL(θ, t) is such
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Fig. 5.1. Numerical simulation of a single bump destabilized by a rightward shift perturbation.
(Left) Simulation in the network (2.1) with a Heaviside firing rate function (2.3). Plot of uL(θ, t) for
an initial condition taken to be a stationary bump specified by equation (4.8). Solution is perturbed

at t = 5 by a rightward shift ψshift
L

(θ, t) such that χ(t) = 0.02 for t ∈ [5, 5.1) and zero otherwise.
Activity initially propagates rightward and then back leftward until settling back into the single bump
profile. (Right) Simulation in the network (2.1) with a smooth sigmoidal firing rate function (2.2)
with gain η = 20. System is allowed to evolve for 500 time units from the single bump solution of
the nearby system with a Heaviside function (2.3) until it settles into its own single bump solution.

The system is then perturbed at t = 500 by a rightward shift ψshift
L

(θ, t) such that χ(t) = 0.02 for
t ∈ [500, 500.1) and zero otherwise. Activity relaxes back to the single bump solution immediately.
Other parameters are κ = 0.05, wl

0
= 0, wl

2
= 0.4, wc

0
= −1, wc

2
= 0.5, α = 500, β = 0.01, I0 = 0.24.

Each t time unit corresponds to 10ms.

that it relaxes back to the bump solution through a stable flow. Since the piecewise–
smooth boundary of the variables qj(θ, t) have been disrupted by nonlinear effects of
the evolving solution, the bump will be an attracting state for virtually all reasonable
flows over long time. It appears the single bump is a marginally stable steady state
in the infinite dimensional system (2.1). Thus, even though the bump is unstable to
shift perturbations, it always restabilizes in the long time limit. It is then reasonable
to ask whether such trajectories found in the system (2.1) with a Heaviside firing rate
function (2.3) are non–generic or if it is possible to find similar behavior in the system
with a smooth sigmoid firing rate function (2.2). When simulating the nearby system
with a sigmoid with high gain, we find similar dynamics. Once the system settles into
a single bump solution, small perturbations lead to similar excursions followed by a
return to the original steady steady. We found, however, there is a critical size of per-
turbation that leads to such an excursion. Smaller perturbations lead to the solutions
immediately relaxing back to a single bump. We found this was not a grid size effect,
as reducing the grid size did not alter the size of perturbation necessary to destabilize
the bump. Therefore, as we have found in previous work for networks with smooth
sigmoids with large gain, bumps may be stable to extremely small perturbations, but
not necessarily stable for slightly larger perturbations that are still relatively small
[37]. However, we did find this effect eventually vanishes when the smooth sigmoid
has moderate gain. When we simulate the nearby system with a sigmoid with gain
η = 20, we find the bump simply behaves as a stable structure, so that even large
perturbations decay. This is shown in Figure 5.1b, where a shifted bump relaxes back
to the original stable structure.

For our next numerical example, we take the initial condition to be a double
bump solution specified by (4.40) and (4.41), which is predicted to be unstable to
rivalry perturbations. After a brief period, we perturb the system by adding a rivalry
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Fig. 5.2. Numerical simulation of a double bump destabilized by a rivalry perturbation. Plot
of uL(θ, t) (left) and uR(θ, t) (right) for an initial condition taken to be a double bump specified
by equations (4.40) and (4.41). Solution is perturbed at t = 5 by a rivalry shift ψriv

L (θ, t) and

ψriv
R (θ, t) respectively such that χ(t) = 0.02 for t ∈ [5, 5.1) and zero otherwise. Activity settles into

a slow oscillation where dominance switches between either population roughly every two seconds.
Parameters are κ = 0.05, wl

0
= 0, wl

2
= 0.4, wc

0
= −1, wc

2
= 0.5, α = 500, β = 0.01, I0 = 0.45.

Each t time unit corresponds to 10ms.

perturbation of uL(θ, t) and uR(θ, t) defined as

ψriv
L (θ, t) = χ(t)(wl(θ − θ2) + wl(θ − θ1)), (5.2)

ψriv
R (θ, t) = −χ(t)(wl(θ + θ2) + wl(θ + θ1)). (5.3)

As shown in Figure 5.2, the resulting dynamics can evolve to a slow oscillation in the
activity of both populations for sufficiently weak inputs I0. First the right popula-
tion’s activity uR(θ, t) exhibits a relatively invariant bump of activity until synaptic
depression exhausts the inhibitory synapses and the left population’s activity uL(θ, t)
is released from suppression. Then the left population’s activity dominates for a pe-
riod until the right population is released. This cycle continues indefinitely. Thus,
even though the linear stability analysis predicts the rivalry perturbation having an
associated positive real eigenvalue (see Figure 4.6), nonlinear effects of the system
take over and the system oscillates. As we alluded to in §4.4, the spatially extended
system supports a fusion/rivalry bistable state, just as the space clamped system of
§3. Thus, even in cases where the double bump solution is linearly stable, some initial
conditions evolve to a rivalry solution similar to that pictured in Figure 5.2. Inter-
estingly, Buckthought et. al. and colleagues have recently provided psychophysical
evidence for such a form of bistability [14]. By showing subjects binocular stimuli
with increasingly dissimilar orientations, they found a region of hysteresis, wherein
the subject perceived either rivalry or fusion, depending on their initial perception.
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Fig. 5.3. Numerical simulation of a double bump destabilized by a rivalry perturbation in system
(2.1) with a sigmoid firing rate (2.2) with gain η = 30. Plot of uL(θ, t) (left) and uR(θ, t) (right)
for an initial condition taken to be a double bump specified by equation (4.40) and (4.41) for the
nearby system with a Heaviside firing rate (2.3). Activity evolves eventually into a slow oscillation
where dominance switches between either population roughly every two seconds. Other parameters
are κ = 0.05, wl

0
= 0, wl

2
= 0.4, wc

0
= −1, wc

2
= 0.5, α = 500, β = 0.01, I0 = 0.45. Each t time

unit corresponds to 10ms.

Admittedly, the stimuli used to induce the effect never differed more than 30 degrees
whereas ours differ by 90 degrees, but they observed such bistability nonetheless. To
study the effect that the gain of the firing rate function has upon such rivalry solu-
tions, we study rivalry oscillations in the system (2.1) with the smooth sigmoid firing
rate function (2.2) with gain η = 30. By allowing the system to evolve from the double
bump solution of the nearby Heaviside system, we find that it eventually settles into
rivalry oscillations. This is illustrated in Figure 5.3, which shows rivalry oscillations
that switch between population dominance roughly every 2 seconds (200 time units).
Thus, the dynamics we find in the system (2.1) with a Heaviside firing rate function
(2.3) persists in the case of a sigmoid firing rate function with large but finite gain.

In Figure 5.4, we show an example of a perturbation evolving to a damped oscil-
lation. Even though our stability analysis predicts that the double bump is unstable
with respect to rivalry perturbations, the solution eventually returns to the stationary
double bump. As we have mentioned double bumps can be stable to all other pertur-
bations aside from the rivalry perturbation. Therefore, nonlinear effects can dominate
the system in the long time limit and the solution may flow along a trajectory which
has the double bump as an attractor. As mentioned, resources as defined by qj(θ, t)
in the periphery of the original bump locations are exhausted so that there is not suf-
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Fig. 5.4. Numerical simulation of a double bump destabilized by a rivalry perturbation in
system (2.1) with a Heaviside firing rate (2.3). Plot of uL(θ, t) (left) and uR(θ, t) (right) for an
initial condition taken to be a double bump specified by equation (4.40) and (4.41). Solution is
perturbed at t = 5 by a rivalry shift ψriv

L (θ, t) and ψriv
R (θ, t) respectively such that χ(t) = 0.02 for

t ∈ [5, 5.1) and zero otherwise. Activity evolves to a damped oscillation temporarily and then settles
back into the stationary double bump. Parameters are κ = 0.05, wl
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= 0, wl

2
= 0.4, wc

0
= −1,

wc
2

= 0.5, α = 500, β = 0.02, I0 = 0.4. Each t time unit corresponds to 10ms.

ficient excitation to continue the oscillation. In addition, we cannot trust the stability
analysis we have carried out beyond the point that the original threshold conditions
are violated. To our knowledge, no studies have addressed these types of nonlinear
effects at work in restabilizing bumps in spatially extended systems. It remains an
open problem as to how best to characterize the onset of such an oscillation.

Finally, in Figure 5.5, we show an example of a coupled hypercolumn network
driven by stimuli of two different strengths so that IL 6= IR. We take our initial
condition to be the quiescent state uL(θ, 0) = uR(θ, 0) = 0 and qL(θ, t) = qR(θ, 0) = 1.
In this case, we see that the dominance times are different for the left and right
populations, just as we found in the space-clamped system (see Figure 3.2). Since
the right population receives a stronger input (IR = 0.45) than the left population
(IL = 0.4), superthreshold bump-like activity exists in the right population for a
longer period than the left. Also, note that the transient bump in the right population
is wider than that in the left.

6. Discussion. In this paper, we analyzed the onset of binocular rivalry oscilla-
tions in a coupled hypercolumn model with synaptic depression. In order to facilitate
our analysis we took the firing rate function to be a Heaviside (2.3). However, it was
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Fig. 5.5. Numerical simulation of an asymmetric rivalry solution. Plot of uL(θ, t) (left) and
uR(θ, t) (right) for an initial condition taken to be the quiescent state uL(θ, 0) = uR(θ, 0) = 0 and
qL(θ, t) = qR(θ, 0) = 1. Activity evolves to a damped oscillation temporarily and then settles back
into the stationary double bump. Parameters are κ = 0.05, wl
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2
= 0.5,

α = 500, β = 0.01, I0L = 0.4, I0R = 0.45. Each t time unit corresponds to 10ms.

then necessary to take the piecewise nature of the system into account when analyzing
the stability of stationary solutions. We first calculated the period of rivalry oscilla-
tions arising in the space-clamped version of our model. When the input to the left
and right eye populations were varied, we found that the corresponding changes in
dominance times matched very well with some of the observations of binocular rivalry
made by Levelt [45]. Then, by studying the effects of additive noise in the model, we
found realistic statistics for dominance duration distributions when noise is included
in the equations for the depression variables. In the spatially extended version of
our model, we analyzed the onset of oscillations in neural activity due to orientation
biased stimuli using local stability determined by the spectrum of a pseudo–linear
operator. For winner-take-all or single bump solutions, we found that the dominant
instability was usually a shifting of the bump boundary, which in numerical simula-
tions led to traveling pulse type solutions. For fusion or double bump solutions, we
found that the dominant instability was an expansion of one bump and a contraction
of the other, which in simulations often led to rivalry type oscillations. In numerical
simulations, we found that the local stability analysis predicted the point at which
bump solutions destabilized, but the long time behavior of the simulation is beyond
the scope of our analysis.

In future work, it would be interesting to develop tools to analyze the long time
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behavior of oscillations in the spatially extended system so we could compute the
dominance times of each population. In addition, the fact that piecewise smooth
analysis predicts that a bump can be stable to one sign of perturbation and unstable to
another sign of perturbation was borne out in the results of our numerical simulations.
It appears this behavior allows the bump to be a starting and stopping point for
homoclinic trajectories in the infinite dimensional system (2.1). In a sense, the bump
is marginally stable. This was not an issue when we studied instabilities of bumps in
a network with synaptic depression without periodic boundaries [12]. We would like
to explore this notion more exactly using tools developed for the study of piecewise
smooth dynamical systems [21].
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Appendix. To calculate the stability of the double bump and derive the set of
equations (4.44)–(4.47), we begin by letting uj(θ, t) = Uj(θ) + εψj(θ, t) and qj(θ, t) =
Qj(θ) + εϕj(θ, t) for j = L,R, where ψj and ϕj denote smooth perturbations and
ε ≪ 1. Substituting into the full system (2.1), imposing the stationary solutions
(4.35), (4.36), and (4.37), and dividing through by ε then gives

∂ψL(θ, t)

∂t
= −ψL(θ, t) +

1

ε
wl ∗ (QL[Θ(UL + εψL − κ) − Θ(UL − κ)])

+wl ∗ (ϕLΘ(UL + εψL − κ)) + wc ∗ (ϕRΘ(UR + εψR − κ))

+
1

ε
wc ∗ (QR[Θ(UR + εψR − κ) − Θ(UR − κ)]), (6.1)

∂ψR(θ, t)

∂t
= −ψR(θ, t) +

1

ε
wl ∗ (QR[Θ(UR + εψR − κ) − Θ(UR − κ)])

+wl ∗ (ϕRΘ(UR + εψR − κ)) + wc ∗ (ϕLΘ(UL + εψL − κ))

+
1

ε
wc ∗ (QL[Θ(UL + εψL − κ) − Θ(UL − κ)]), (6.2)

∂ϕj(θ, t)

∂t
= −

ϕj(θ, t)

α
−
β

ε
Qj [Θ(Uj + εψj − κ) − Θ(Uj − κ)] − βϕjΘ(Uj + εψj − κ)

(6.3)

for j = L,R. Denote the perturbations of the bump boundaries by ε∆L
±(t) and ε∆R

±

such that

uL(θ1 + ε∆L
−(t), t) = uL(θ2 + ε∆L

+(t), t) = κ, (6.4)

uR(−θ1 + ε∆R
−(t), t) = uR(−θ2 + ε∆R

+(t), t) = κ, (6.5)

for an initial time interval t ∈ [0, T ). We are especially interested in perturbations that
violate these threshold conditions eventually (after time T ), since this is precisely what
occurs in the case of rivalry oscillations. Taylor expanding these threshold conditions
to first order in perturbations, we find that

∆L
−(t) ≈ −

ψL(θ1, t)

|U ′
L(θ1)|

, ∆L
+(t) ≈

ψL(θ2, t)

|U ′
L(θ2)|

,

∆R
−(t) ≈

ψR(−θ1, t)

|U ′
R(−θ1)|

, ∆R
+(t) ≈ −

ψR(−θ2, t)

|U ′
R(−θ2)|

. (6.6)
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As in the single bump case, we can smooth out discontinuities in equations (6.3)
by introducing the fields

ΦLm(θ, t) =

∫ θ2+ε∆L

+

θ1+ε∆L

−

wm(θ − θ′)ϕL(θ′, t)dθ′, (6.7)

ΦRm(θ, t) =

∫ −θ1+ε∆R

−

−θ2+ε∆R

+

wm(θ − θ′)ϕR(θ′, t)dθ′, (6.8)

for m = l, c. Thus, as in the single bump case, even though O(1/ε) pointwise changes
in ϕL(θ, t) and ϕR(θ, t) may occur, the bump solution may still be stable, since the
region over which O(1/ε) changes occur may shrink to zero. We account for this
possibility, since the dynamics of the fields ΦLm(θ, t) and ΦRm(θ, t) (m = l, c) will
remain O(1) when ϕL(θ, t) and ϕR(θ, t) are O(1/ε) over an infinitesimal interval.

If we now differentiate equations (6.7) and (6.8) with respect to time, we find

∂ΦLm(θ, t)

∂t
=

∫ θ2+ε∆L

+

θ1+ε∆L

−

wm(θ − θ′)
∂ϕL(θ′, t)

∂t
dθ′ (6.9)

+εwm(θ − θ2 − ε∆L
+(t))ϕL(θ2 + ε∆L

+(t), t)∆̇L
+(t)

−εwm(θ − θ1 − ε∆L
−(t))ϕL(θ1 + ε∆L

−(t), t)∆̇L
−(t), m = l, c,

∂ΦRm(θ, t)

∂t
=

∫ −θ1+ε∆R

−

−θ2+ε∆R

+

wm(θ − θ′)
∂ϕR(θ′, t)

∂t
dθ′ (6.10)

+εwm(θ + θ1 − ε∆R
−(t))ϕR(−θ1 + ε∆R

−(t), t)∆̇R
−(t)

−εwm(θ + θ2 − ε∆R
+(t))ϕR(−θ2 + ε∆R

+(t), t)∆̇R
+(t), m = l, c,

(6.11)

where ∆̇j
± = d∆j

±/dt (j = L,R). We can now substitute equations (6.3) for ∂ϕj/∂t
(j = L,R). Note that the final term in equation (6.3) for j = L (j = R) involves a
Heaviside function which will only be nonzero when the stationary bumps UL (UR)
plus the perturbation εψL (εψR) is greater than the threshold κ. This region is
precisely defined by the interval (θ1+ε∆

L
−, θ2+ε∆

L
+) (interval (−θ2+ε∆

R
+,−θ1+ε∆

R
−))

over which the integral in equation (6.9) (equation (6.10)) is taken. This implies that

∫ θ2+ε∆L

+

θ1+ε∆L

−

wm(θ − θ′)ϕL(θ′, t)Θ(UL(θ′, t) + εϕL(θ′, t) − κ)dθ′ = ΦLm(θ, t)

∫ −θ1+ε∆R

−

−θ2+ε∆R

+

wm(θ − θ′)ϕR(θ′, t)Θ(UL(θ′, t) + εϕR(θ′, t) − κ)dθ′ = ΦRm(θ, t).

Thus, by modifying equations (6.1), (6.2), and (6.3) with the auxiliary variables
given in (6.9) and (6.10), we have the alternative system of equations

∂ψL(θ, t)

∂t
= −ψL(θ, t) + ΦLl(θ, t) + ΦRc(θ, t) (6.12)

+
1

ε

∫ θ2+ε∆L

+(t)

θ1+ε∆L

−

(t)

wl(θ − θ′)QL(θ′)dθ′ −
1

ε

∫ θ2

θ1

wl(θ − θ′)QL(θ′)dθ′

+
1

ε

∫ −θ1+ε∆R

−

(t)

−θ2+ε∆R

+
(t)

wc(θ − θ′)QR(θ′)dθ′ −
1

ε

∫ −θ1

−θ2

wc(θ − θ′)QR(θ′)dθ′
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∂ψL(θ, t)

∂t
= −ψR(θ, t) + ΦRl(θ, t) + ΦLc(θ, t) (6.13)

+
1

ε

∫ −θ1+ε∆R

−

(t)

−θ2+ε∆R

+
(t)

wl(θ − θ′)QR(θ′)dθ′ −
1

ε

∫ −θ1

−θ2

wl(θ − θ′)QR(θ′)dθ′

+
1

ε

∫ θ2+ε∆L

+(t)

θ1+ε∆L

−

(t)

wc(θ − θ′)QL(θ′)dθ′ −
1

ε

∫ θ2

θ1

wc(θ − θ′)QL(θ′)dθ′

∂ΦLm(θ, t)

∂t
= −(α−1 + β)ΦLm(θ, t) (6.14)

−
β

ε

∫ θ2+ε∆L

+(t)

θ1+ε∆L

−

(t)

wm(θ − θ′)QL(θ′)[Θ(UL + εψL − κ) − Θ(UL − κ)]dθ,

+εwm(θ − θ2 − ε∆L
+(t))ϕL(θ2 + ε∆L

+(t), t)∆̇L
+(t)

−εwm(θ − θ1 − ε∆L
−(t))ϕL(θ1 + ε∆L

−(t), t)∆̇L
−(t), m = l, c,

∂ΦRm(θ, t)

∂t
= −(α−1 + β)ΦRm(θ, t) (6.15)

−
β

ε

∫ −θ1+ε∆R

−

(t)

−θ2+ε∆R

+
(t)

wm(θ − θ′)QR(θ′)[Θ(UR + εψR − κ) − Θ(UR − κ)]dθ,

−εwm(θ + θ2 − ε∆R
+(t))ϕR(−θ2 + ε∆R

+(t), t)∆̇R
+(t)

+εwm(θ + θ1 − ε∆R
−(t))ϕR(−θ1 + ε∆R

−(t), t)∆̇R
−(t), m = l, c.

We can now linearize the system of equations (6.12), (6.13), (6.14), and (6.15) by
expanding in powers of ε and collecting all O(1) terms. Again it is important to keep
track of the signs of ∆L

± and ∆R
± when approximating the various integrals due to the

discontinuous nature of QL(θ) and QR(θ). We thus obtain the following pseudo–linear
system:

∂ψL(θ, t)

∂t
= −ψL(θ, t) + ΦLl(θ, t) + ΦRc(θ, t) + γDwl(θ − θ1)ψL(θ1, t)GL,1(t)

+γDwl(θ − θ2)ψL(θ2, t)GL,2(t) + γDwc(θ + θ1)ψR(−θ1, t)GR,1(t)

+γDwc(θ + θ2)ψR(−θ2, t)GR,2(t) (6.16)

∂ψR(θ, t)

∂t
= −ψR(θ, t) + ΦRl(θ, t) + ΦLc(θ, t) + γDwl(θ + θ1)ψR(−θ1, t)GR,1(t)

+γDwl(θ + θ2)ψR(−θ2, t)GR,2(t) + γDwc(θ − θ1)ψ1(θ1, t)GL,1(t)

+γDwc(θ − θ2)ψL(θ2, t)GL,2(t) (6.17)

and

∂ΦLm(θ, t)

∂t
= −(α−1 + β)ΦLm(θ, t)

−β(γDwm(θ − θ1)ψL(θ1, t)GL,1(t)Θ(ψL(θ1, t))

+γDwm(θ − θ2)ψL(θ2, t)GL,2(t)Θ(ψL(θ2, t))), (6.18)

∂ΦRm(θ, t)

∂t
= −(α−1 + β)ΦRm(θ, t)

−β(γDwm(θ + θ1)ψR(−θ1, t)GR,1(t)Θ(ψR(−θ1, t))

+γDwm(θ + θ2)ψR(−θ2, t)GR,2(t)Θ(ψR(−θ2, t))), (6.19)
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where GL,j(t) = G(ψL(θj , t)), GR,j(t) = G(ψR(−θj , t)) and

(γD)
−1

= |U ′

L(θk)|

=
1

1 + αβ

∣

∣

∣
wl(θk − θ1) − wl(θk − θ2) + wc(θk + θ2) − wc(θk + θ1) + I ′L(θk)

∣

∣

∣

= |U ′

R(−θk)| (6.20)

=
1

1 + αβ

∣

∣

∣wl(θk − θ2) − wl(θk − θ1) + wc(θk + θ1) − wc(θk + θ2) + I ′R(−θk)
∣

∣

∣,

for k = 1, 2.
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