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Abstract. The Restricted Isometry Constants (RIC) of a matrix A measures how close to an isometry is the
action of A on vectors with few nonzero entries, measured in the `2 norm. Specifically, the upper and lower RIC of
a matrix A of size n ×N is the maximum and the minimum deviation from unity (one) of the largest and smallest,

respectively, square of singular values of all
(N
k

)
matrices formed by taking k columns from A. Calculation of the

RIC is intractable for most matrices due to its combinatorial nature; however, many random matrices typically have
bounded RIC in some range of problem sizes (k, n,N). We provide the best known bound on the RIC for Gaussian
matrices, which is also the smallest known bound on the RIC for any large rectangular matrix. Improvements over
prior bounds are achieved by exploiting similarity of singular values for matrices which share a substantial number of
columns.
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1. Introduction. Interest in parsimonious solutions to underdetermined systems of equations
has seen a spike with the introduction of compressed sensing [11, 7, 6]. Much of the analysis in
this new topic has relied upon a new matrix quantity, the Restricted Isometry Constant (RIC), also
referred to as the Restricted Isometry Property (RIP) constant. Let A be a matrix of size n × N
and define the set of N -vectors with at most k nonzero entries as

(1.1) χN (k) := {x ∈ RN : ‖x‖`0 ≤ k}.

Upper and lower RICs of A, U(k, n,N ;A) and L(k, n,N ;A) respectively, are defined as [8, 1]

(1.2) U(k, n,N ;A) := min
c≥0

c subject to (1 + c)‖x‖22 ≥ ‖Ax‖22 ∀x ∈ χN (k).

(1.3) L(k, n,N ;A) := min
c≥0

c subject to (1− c)‖x‖22 ≤ ‖Ax‖22, ∀x ∈ χN (k);

RICs differ from standard singular values squared in their combinatorial nature. U(k, n,N ;A)
and L(k, n,N ;A) measure the maximum and the minimum deviation from unity (one) of the largest
and smallest, respectively, square of the singular values of all

(
N
k

)
submatrices of A of size n × k

constructed by taking k columns from A. The RICs can be equivalently defined as

(1.4) U(k, n,N ;A) := max
K⊂Ω,|K|=k

λmax (A∗KAK)− 1

and

(1.5) L(k, n,N ;A) := 1− min
K⊂Ω,|K|=k

λmin (A∗KAK)

where Ω := {1, 2, . . . , N}, AK is the restriction of the columns of A to a support set K ⊂ Ω with
cardinality k (|K| = k), and λmax (B) and λmin (B) are the smallest and largest eigenvalues of B
respectively.
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2 B. BAH AND J. TANNER

The standard notion of General Position is L(n, n,N ;A) < 1, and Kruskal rank [19] is the largest
k such that L(k, n,N ;A) < 1.

Many of the theorems in compressed sensing rely upon a“sensing matrix” having suitable bounds
on its RIC. Unfortunately, computing the RICs of a matrix A is in general NP-hard, [22]. Efforts
are underway to design algorithms which compute accurate bounds on the RICs of a matrix, [10, 17]
but to date these algorithms have a limited success, with the bounds only effective for k ∼ n1/2.
Lacking the ability to efficiently calculate the RICs of a given matrix, efforts are underway to
compute probabilistic bounds for various random matrix ensembles. These efforts have followed
three research programs:

• Determination of the largest ensemble of matrices such that as the problem sizes (k, n,N)
grow, the RICs U(k, n,N ;A) remains bounded and the L(k, n,N ;A) bounded away from 1
[21].

• Computing as accurate bounds as possible for particular ensembles, such as the Gaussian
ensemble [8, 1], where the entries of A are drawn i.i.d. from the standard Gaussian Normal
N (0, 1/n). (In part as a model for i.i.d. mean zero ensembles.)

• Computing as accurate bounds as possible for the partial Fourier ensemble [24], where A is
formed from random rows, j, or samples, tl, of a Fourier matrix with entries Fj,l = e2πijtl .
(In part as a model for matrices possessing a fast matrix vector product.)

This manuscript focuses on the second of these research programs, accurate bounds for the
Gaussian/Wishart ensemble. Candès and Tao derived the first set of RIC bounds for the Gaussian
ensemble using a union bound over all

(
N
k

)
submatrices and bounding the singular values of each

submatrix using concentration of measure bounds [7]. Blanchard, Cartis and Tanner derived the
second set of RIC bounds for the Gaussian ensemble, similarly using a union bound over all

(
N
k

)
submatrices, but achieved substantial improvements by using more accurate bounds on the proba-
bility density function of Wishart matrices [1]. These bounds are presented here in Theorem 2.8 and
Theorem 2.10 respectively. This manuscript presents yet further improved bounds for the Gaussian
ensemble, see Theorem 2.3 and Figure 2.1, by exploiting dependencies in the singular values of sub-
matrices with overlapping support sets, say, AK and AK′ with |K ∩ K ′| � 1. These are the first
RIC bounds that exploits this structure. In addition to asymptotic bounds for large problem sizes,
we present bounds valid for finite values of (k, n,N).

The manuscript is organised as follows: Our improved asymptotic bounds are stated in Section
2.1 and their derivation described in Section 2.2. Prior bounds are presented in Section 2.3 and are
compared with those in Theorem 2.3. Bounds valid for finite values are presented in Section 2.4.
A brief discussion on sparse approximation and compressed sensing and the implications of these
bounds for compressed sensing is given in Section 2.5. Proof of technical lemmas used or assumed
in our discussion come in the Appendix.

2. RIC Bounds. We focus our attention on bounding the RIC for the Gaussian ensemble in
the setting of proportional-growth asymptotics.

Definition 2.1 (Proportional-Growth Asymptotics). A sequence of problem sizes (k, n,N) is
said to follow proportional-growth asymptotics if,

(2.1)
k

n
= ρn → ρ and

n

N
= δn → δ for (δ, ρ) ∈ (0, 1)2 as (k, n,N)→∞.

In this asymptotic we provide quantitative values, above which it is exponentially unlikely that
the RIC will exceed. In Section 2.4 we show how our derivation of these bounds can also supply
probabilities for specified bounds and finite values of (k, n,N).

2.1. Improved RIP Bounds. The probability density functions (pdf) of the RIC for the
Gaussian ensemble is currently unknown, but asymptotic probabilistic bounds have been proven.
Our bounds, and earlier ones, for the RIC of the Gaussian ensemble built upon the bounds of the
pdf’s of the extreme eigenvalues of Gaussian (Wishart) matrices due to Edelman [14, 13]. All earlier
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bounds on the RIC have been derived using union bounds that consider each of the
(
N
k

)
submatrices

of size n × k individually [1, 7]. We consider groups of submatrices where the columns of the
submatrices in a group are from at most m ≥ k distinct columns of A. We present our improved
bounds in Theorem 2.3, preceded by the definition of the terms used in it given in Definition 2.2.
Plots of these bounds are displayed in Figure 2.1.

Definition 2.2. Let (δ, ρ) ∈ (0, 1)2, γ ∈ [ρ, δ−1], and denote the Shannon Entropy with base e
logarithms as H(p) := p ln(1/p) + (1− p) ln(1/(1− p)). Let

ψmin (λ, γ) := H (γ) +
1

2

[
(1− γ) lnλ+ γ ln γ + 1− γ − λ

]
,(2.2)

ψmax (λ, γ) :=
1

2

[
(1 + γ) lnλ− γ ln γ + 1 + γ − λ

]
.(2.3)

Define λmin(δ, ρ; γ) and λmax(δ, ρ; γ) as the solution to (2.4) and (2.5) respectively:

δψmin
(
λmin(δ, ρ; γ), γ

)
+H(ρδ)− δγH (ρ/γ) = 0, for λmin(δ, ρ; γ) ≤ 1− γ,(2.4)

δψmax (λmax(δ, ρ; γ), γ) +H(ρδ)− δγH (ρ/γ) = 0, for λmax(δ, ρ; γ) ≥ 1 + γ.(2.5)

Let λmin(δ, ρ) := max
γ

λmin(δ, ρ; γ) and λmax(δ, ρ) := min
γ
λmax(δ, ρ; γ) and define

(2.6) LBT (δ, ρ) := 1− λmin(δ, ρ) and UBT (δ, ρ) := λmax(δ, ρ)− 1.

That for each (δ, ρ; γ), (2.4) and (2.5) have a unique solution λmin(δ, ρ; γ) and λmax(δ, ρ; γ)
respectively was proven in [1]. That λmin(δ, ρ; γ) and λmax(δ, ρ; γ) have unique maxima and minima
respectively over γ ∈ [ρ, δ−1] is established in Lemma 2.6.

Theorem 2.3. Let A be a matrix of size n×N whose entries are drawn i.i.d. from N (0, 1/n).
Let δ and ρ be defined as in (2.1), and LBT (δ, ρ) and UBT (δ, ρ) be defined as in Definition 2.2. For
any fixed ε > 0, in the proportional-growth asymptotic,

P(L(k, n,N) < LBT (δ, ρ) + ε)→ 1 and P(U(k, n,N) < UBT (δ, ρ) + ε)→ 1

exponentially in n.
In the spirit of reproducible research, software and web forms that evaluate LBT (δ, ρ) and

UBT (δ, ρ) are publicly available at [25].

Fig. 2.1. UBT (δ, ρ) (left panel) and LBT (δ, ρ) (right panel) from Definition 2.2 for (δ, ρ) ∈ (0, 1)2.
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Sharpness of the bounds can be probed by comparison with empirically observed lower bounds
on the RIC for finite dimensional draws from the Gaussian ensemble. There exist efficient algorithms
for calculating lower bounds of RIC, [12, 16]. These algorithms perform local searches for submatrices
with extremal eigenvalues. The new bounds in Theorem 2.3, see Figure 2.1, can be compared with
empirical data displayed in Figure 2.2.

Fig. 2.2. Empirically observed lower bounds on RIC for A Gaussian. Observed lower bounds of L(k, n,N ;A)
(left panel) and U(k, n,N ;A) (right panel). Although there is no computationally tractable method for calculating the
RICs of a matrix, there are efficient algorithms which perform local searches for extremal eigenvalues of submatrices;
allowing for observable lower bounds on the RICs. Algorithm for observing L(k, n,N), [12], and U(k, n,N), [16],
were applied to hundreds of A drawn i.i.d. N (0, 1/n) with n = 400 and N increasing from 420 to 8000.

To further demonstrate the sharpness of our bounds, we compute the maximum and minimum
“sharpness ratios” of the bounds in Theorem 2.3 to empirically observed lower bounds; for each ρ,
the maximum and minimum of the ratio is taken over all δ ∈ [0.05, 0.9524], these are the same δ
values used in Figure 2.2. These ratios are shown in the left panel of Figure 2.3, and are below 1.57
of the empirically observed lower bounds on L(k, n,N) and U(k, n,N) observed with n = 400.

Fig. 2.3. Left panel: The maximum and minimum, over δ, sharpness ratios,
UBT (δ,ρ)
U(k,n,N ;A)

and
LBT (δ,ρ)
L(k,n,N ;A)

as a

function of ρ; with the maximum and minimum taken over all δ ∈ [0.05, 0.9524], the same δ values used in Figure
2.2. Right panel: The maximum and minimum, over δ, improvement ratios over the previous best known bounds,
UBCT (δ,ρ)

UBT (δ,ρ)
and

LBCT (δ,ρ)

LBT (δ,ρ)
as a function of ρ; with the maximum and minimum also taken over δ ∈ [0.05, 0.9524].
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2.2. Discussion on the Construction of Improved RIC Bounds. The bounds in Theorem
2.3 improve upon the earlier results of [1] by grouping matrices AK and AK′ which share a significant
number of columns from A. This is manifest in Definition 2.2 through the introduction of the free
parameter γ which is associated with the size of group considered. In this section we first discuss
the way in which we construct these groups and the sense in which the bounds in Theorem 2.3 are
optimal for this construction. Equipped with a suitable construction of groups, we discuss the way
in which this grouping is employed to improve the RIC bounds from [1].

2.2.1. Construction of groups. We construct our groups of AK by selecting a subset Mi

from 1, 2, . . . , N of cardinality |Mi| = m ≥ k and setting Gi :=
⋃
K⊂Mi,|K|=kK. The group Gi

has
(
m
k

)
members, with any two members sharing at least 2k − m elements. Hence, the quantity

γ = m/n in Definition 2.2 is associated with the cardinality of the groups Gi. In order to calculate
bounds on the RIC of a matrix, we need a collection of groups whose union includes all

(
N
k

)
sets

of cardinality k from Ω := {1, 2, . . . , N}; that is, we need {Gi}ui=1 such that G :=
⋃u
i=1 Gi with

|G| =
(
N
k

)
. From simple counting, the minimum number of groups Gi needed for this covering is at

least r :=
(
N
k

)(
m
k

)−1
. Although the construction of a minimal covering is an open question [18], even

a simple random construction of the Gi’s requires typically only a polynomial multiple of r groups,
hence achieving the optimal large deviation rate.

Lemma 2.4 ([18]). Set r =
(
N
k

)(
m
k

)−1
and draw u := rN sets Mi each of cardinality m, drawn

uniformly at random from the
(
N
m

)
possible sets of cardinality m. With G defined as above,

(2.7) P

(
|G| <

(
N

k

))
< C(k/N)N−1/2e−N(1−ln 2)

where C(p) ≤ 5
4 (2πp(1− p))(−1/2).

Proof. Select one set K ⊂ Ω of cardinality |K| = k prior to the draw of the sets Mi. The
probability that it is not contained in one set Mi is 1/r, and with each Mi drawn independently,
the probability that it is not contained in any of the u sets Mi is (1 − r−1)u ≤ e−u/r. Applying a
union bound over all

(
N
k

)
sets K yields

P

(
|G| <

(
N

k

))
<

(
N

k

)
e−u/r.

Noting from Stirling’s Inequality that

(2.8)
16

25
(2πp(1− p)N)(−1/2)eNH(p) ≤

(
N

pN

)
≤ 5

4
(2πp(1− p)N)(−1/2)eNH(p),

with H(p) ≤ ln 2 for p ∈ [0, 1], and substituting in the selected value of u completes the proof. Note
that an exponentially small probability can be obtained with u just larger than rNH(δρ), but the
smaller polynomial factor is negligible for our purposes.

Corollary 2.5. Given Lemma 2.4, as n → ∞ in the proportional-growth asymptotics, the
probability that all the

(
N
k

)
k-subsets of 1, 2, . . . , N are covered by G converges to one exponentially

in n.

2.2.2. Decreasing the combinatorial term. We illustrate the way the groups Gi are used to
improve the RIC bound on the upper RIC bound U(k, n,N ;A); the bounds for L(k, n,N ;A) following
by a suitable replacement of maximizations/minimizations and sign changes. All previous bounds
on the RIC for the Gaussian ensemble have overcome the combinatorial maximization/minimization
by use a union bound over all

(
N
k

)
sets K ⊂ Ω and then using a tail bound on the pdf of the extreme

eigenvalues of A∗KAK ; for some λ∗max > 0,

P

(
max

K⊂Ω,|K|=k
λmax(A∗KAK) > λ∗max

)
≤
(
N

k

)
P (λmax(A∗KAK) > λ∗max)
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That the random variables λmax(A∗KAK) are treated as independent is the principal deficiency of

this bound. To exploit dependencies of this variable for K and K
′

with significant overlap we exploit
the groupings Gi, which, at least for m moderately larger than k, contain sets with significant overlap.
For the moment we assume the groups {Gi}ui=1 cover all K ⊂ Ω, and replace the above maximization
over K with a double maximizations

P

(
max

K⊂Ω,|K|=k
λmax(A∗KAK) > λ∗max

)
= P

(
max

i=1,...,u
max

K⊂Gi,|K|=k
λmax(A∗KAK) > λ∗max

)
.

The outer maximization can be bounded over all u sets Gi, again, using a simple union bound;
however, with a smaller combinatorial term. The dependencies between λmax(A∗KAK) for K ⊂ Gi
can be incorporated in the bound by replacing the maximization over K ⊂ Gi by λmax(A∗Mi

AMi)
where Mi is the subset of cardinality m containing all K ⊂ Gi,

(2.9) P

(
max

i=1,...,u
max

K⊂Gi,|K|=k
λmax(A∗KAK) > λ∗max

)
≤ uP (λmax(A∗MAM ) > λ∗max) .

Selecting m = k recovers the usual union bound with u equal to
(
N
k

)
. Larger values of m decrease

the combinatorial term at the cost of increasing λmax(A∗MAM ). The efficacy of this approach depends
on the interplay between these two competing factors. In the proportional-growth asymptotic, this
interplay is observed through the optimization over m

n = γ ∈ [ρ, δ−1]. Definition 2.2 uses the
tail bounds on the extreme eigenvalues of Wishart Matrices derived by Edelman [13] to bound
P (λmax(A∗MAM ) > λ∗max). The previously best known bound on the RIC for the Gaussian ensemble
is recovered by selecting γ = ρ in Definition 2.2, [1]. The innovation of the bounds in Theorem 2.3
follows from there always being a unique γ > ρ such that λmax(δ, ρ; γ) is less than λmax(δ, ρ; ρ).

Lemma 2.6. Given that λmin(δ, ρ; γ) and λmax(δ, ρ; γ) are solutions to (2.4) and (2.5) respec-
tively. For any fixed (δ, ρ) there exist a unique γmin ∈ [ρ, δ−1] which minimizes λmax(δ, ρ; γ) and
a unique γmax ∈ [ρ, δ−1] which maximizes λmin(δ, ρ; γ). Furthermore, γmin and γmax are strictly
larger than ρ.

Fig. 2.4. Left panel: The relationship between the new bound UBT (δ, ρ), Theorem 2.3, and the previous smallest
bound UBCT (δ, ρ), Theorem 2.10, where in the two bounds λmax(δ, ρ; γ) is evaluated at γ = γmin and γ = ρ
respectively. Right panel: The relationship between the new bound LBT (δ, ρ), Theorem 2.3, and the previous smallest
bound LBCT (δ, ρ), Theorem 2.10, where in the two bounds λmin(δ, ρ; γ) is evaluated at γ = γmax and γ = ρ
respectively.

.

The optimal choices of γ−ρ for UBT (ρ, δ) and LBT (ρ, δ) in (ρ, δ) ∈ (0, 1)2 is displayed in Figure
2.5. The proof of Lemma 2.6 is presented in Appendix 3.1.
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Fig. 2.5. Optimal choice of γ − ρ for UBT (δ, ρ) (left panel) and LBT (δ, ρ) (right panel).

2.3. Prior RIP Bounds. There have been two previous quantitative bounds for the RIC of
the Gaussian ensemble in the proportional-growth asymptotics. The first bounds on the RIC of the
Gaussian ensemble were supplied in [7] by Candès and Tao using union bounds and concentration
of measure bounds on the extreme eigenvalues of Wishart Matrices from [20]. These bounds are
stated in Theorem 2.8 with Definition 2.7 defining some of the terms used in the theorem and plots
of these bounds are displayed in Figure 2.6.

Definition 2.7. Let (δ, ρ) ∈ (0, 1)2 and define:

UCT (δ, ρ) :=
[
1 +
√
ρ+ (2δ−1H(δρ))1/2

]2
− 1

and

LCT (δ, ρ) := 1−max

{
0,
[
1−√ρ− (2δ−1H(δρ))1/2

]2}
.

Theorem 2.8 (Candés and Tao [7]). Let A be a matrix of size n×N whose entries are drawn
i.i.d. from N (0, 1/n). Let δ and ρ be defined as in (2.1), and LCT (δ, ρ) and UCT (δ, ρ) be defined as
in Definition 2.7. For any fixed ε > 0, in the proportional-growth asymptotic,

P(L(k, n,N) < LCT (δ, ρ) + ε)→ 1 and P(U(k, n,N) < UCT (δ, ρ) + ε)→ 1

exponentially in n.
The bounds in Theorem 2.3 follow the construction of the second bounds on the RIC for the

Gaussian ensemble, presented in [1]. Removing the optimization of γ ∈ [ρ, δ−1] in Definition 2.2
and fixing γ = ρ recovers the bounds on L(k, n,N ;A) and the first of two bounds on U(k, n,N ;A)
presented in [1]. The first bound on U(k, n,N ;A) in [1] suffer from excessive overestimation when
δρ ≈ 1/2 due to the combinatorial term. In fact, this overestimation is so severe that for some (δ, ρ)
with δρ ≈ 1/2, smaller bounds are obtained at (δ, 1). This overestimation is somewhat ameliorated
by noting the monotonicity of U(k, n,N ;A) in k, obtaining the improved bound, see (2.12). These
bounds are stated in Theorem 2.10 with Definition 2.9 defining some of the terms used in the theorem
and plots of these bounds are displayed in Figure 2.7.

Definition 2.9. Let (δ, ρ) ∈ (0, 1)2, and denote the Shannon Entropy with base e logarithms as
H(p) := p ln(1/p) + (1− p) ln(1/(1 − p)). Let ψmin(λ, ρ) and ψmax(λ, ρ) be defined as in (2.2) and
(2.3) respectively. Define λmin(δ, ρ) and λmax(δ, ρ) as the solution to (2.10) and (2.11) respectively:

(2.10) δψmin(λmin(δ, ρ), ρ) +H(ρδ) = 0 for λmin(δ, ρ) ≤ 1− ρ,
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(2.11) δψmax(λmax(δ, ρ), ρ) +H(ρδ) = 0 for λmax(δ, ρ) ≥ 1 + ρ.

Define LBCT (δ, ρ) and UBCT (δ, ρ) as

(2.12) LBCT (δ, ρ) := 1− λmin(δ, ρ) and UBCT (δ, ρ) := min
ν∈[ρ,1]

λmax(δ, ν)− 1.

Fig. 2.6. UCT (δ, ρ) (left panel) and LCT (δ, ρ) (right panel) from Definition 2.7 for (δ, ρ) ∈ (0, 1)2.

Fig. 2.7. UBCT (δ, ρ) (left panel) and LBCT (δ, ρ) (right panel) from Definition 2.9 for (δ, ρ) ∈ (0, 1)2.

Theorem 2.10 (Blanchard, Cartis, and Tanner [1]). Let A be a matrix of size n × N whose
entries are drawn i.i.d. from N (0, 1/n). Let δ and ρ be defined as in (2.1), and LBCT (δ, ρ) and
UBCT (δ, ρ) be defined as in Definition 2.9. For any fixed ε > 0, in the proportional-growth asymp-
totic,

P(L(k, n,N ;A) < LBCT (δ, ρ) + ε)→ 1 and P(U(k, n,N ;A) < UBCT (δ, ρ) + ε)→ 1

exponentially in n.
Figures 2.6 and 2.7 show that the bounds in Theorem 2.10 are a substantial improvement to

those in Theorem 2.8. The bounds presented here in Definition 2.2 and Theorem 2.3 are a further
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improvement over those in [1], as implied by Lemma 2.6.
Corollary 2.11. Let LBT (δ, ρ) and UBT (δ, ρ) be defined as in Definition 2.2 and LBCT (δ, ρ)

and UBCT (δ, ρ) be defined as in Definition 2.9. For any fixed (δ, ρ) ∈ (0, 1)2,

LBT (δ, ρ) < LBCT (δ, ρ) UBT (δ, ρ) < UBCT (δ, ρ).

The right panel of Figure 2.3 shows the ratio of the previously best known bounds, Definition
2.9 to the new bounds, Definition 2.2; for each ρ, the ratio is maximized over δ ∈ [0.05, 0.9524].

2.4. Finite N Interpretations. The method of proof used to obtain the proportional-growth
asymptotic bounds in Definition 2.2 also provides, albeit less elegant, bounds valid for finite values
of (k, n,N) and specified probabilities of the bound being satisfied. For a specified problem instance
(k, n,N) and ε, bounds on the probabilities P

(
U(k, n,N) > UBT (δ, ρ) + ε

)
and P

(
L(k, n,N) > LBT (δ, ρ) + ε

)
are given in Propositions 2.12 and 2.13 respectively.

Proposition 2.12. Let A be a matrix of size n × N whose entries are drawn i.i.d. from
N (0, 1/n). Define UBT (δ, ρ) as in Definition 2.2. Then for any ε > 0,

P
(
U(k, n,N) > U(δn, ρn) + ε

)
≤ p′max

(
n, λmax(δn, ρn)

)
exp

(
nε · d

dλ
ψU

(
λmax(δn, ρn)

))

+
5

4
(2πk(1− k/N))−1/2 exp(−N(1− ln 2)),(2.13)

where

(2.14) p′max(n, λ) :=

(
8

π

)1/2
2n−7/2

√
γλ

(
5

4

)3(
nN(γ − ρ)

γδ(1− ρδ)

)1/2

,

and

ψU (λ, γ) := δ−1

[
H(ρδ)− δγH

(
ρ

γ

)
+ δψmax(λ, γ)

]
for ψmax(λ, γ) define in (2.3).

Proposition 2.13. Let A be a matrix of size n × N whose entries are drawn i.i.d. from
N (0, 1/n). Define LBT (δ, ρ) as in Definition 2.2. Then for any ε > 0,

P
(
L(k, n,N) > L(δn, ρn) + ε

)
≤ p′min

(
n, λmin(δn, ρn)

)
exp

(
nε · d

dλ
ψL

(
λmin(δn, ρn)

))

+
5

4
(2πk(1− k/N))−1/2 exp(−N(1− ln 2)),(2.15)

where

(2.16) p′min(n, λ) :=

(
5

4

)3
e
√
λ

π
√

2

(
nN(γ − ρ)

γδ(1− ρδ)

)1/2

,

and

ψL(λ, γ) := δ−1

[
H(ρδ)− δγH

(
ρ

γ

)
+ δψmin(λ, γ)

]
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for ψmin(λ, γ) define in (2.2).

The proofs of Propositions 2.12 and 2.13 are presented in Appendix 3.2 and also serve as the
proof of Theorem 2.3 which follows by taking the appropriate limits. From Propositions 2.12 and
2.13 we calculated bounds for a few example values of (k, n,N) and ε. Table 2.1 shows bounds
on P

(
U(k, n,N) > UBT (δ, ρ) + ε

)
for a few values of (k, n,N) with two different choices of ε. It

is remarkable that these probabilities are already close to zero for these small values of (k, n,N)
and even for ε� 1. Table 2.2 shows bounds on P

(
L(k, n,N) > LBT (δ, ρ) + ε

)
for the same values

of (k, n,N) as in Table 2.1, but with even smaller values for ε. Again, it is remarkable that these
probabilities are extremely small, even for relatively small values of (k, n,N) and ε.

k n N ε Prob
100 200 2000 10−3 2.9× 10−2

200 400 4000 10−3 9.5× 10−3

400 800 8000 10−3 2.9× 10−3

100 200 2000 10−10 3.2× 10−2

200 400 4000 10−10 1.1× 10−2

400 800 8000 10−10 4.0× 10−3

Table 2.1
Prob is an upper bound of P

(
U(k, n,N) > UBT (δ, ρ) + ε

)
for the specified (k, n,N) and ε.

k n N ε Prob
100 200 2000 10−5 2.8× 10−18

200 400 4000 10−5 9.1× 10−32

400 800 8000 10−5 2.8× 10−58

Table 2.2
Prob is an upper bound of P

(
L(k, n,N) > LBT (δ, ρ) + ε

)
for the specified (k, n,N) and ε.

2.5. Implications for Sparse Approximation and Compressed Sensing. .

The RIC were introduced by Candés and Tao [7] as a technique to prove that in certain con-
ditions the sparsest solution of an underdetermined system of equations Ax = b (A of size n × N
with n < N) can be found using linear programming. The RIC is now a widely used technique
in the study of sparse approximation algorithms, allowing the analysis of sparse approximation al-
gorithms without specifying the measurement matrix A. For instance, in [5] it was proven that if
max(L(k, n,N ;A), U(k, n,N ;A)) <

√
2 − 1 then if Ax = b has a unique k-sparse solution as its

sparsest solution, then arg min ‖z‖1 subject to Az = b will be this k-sparse solution. A host of other
RIC based conditions have been derived for this and other sparsifying algorithms. However, the
values of (k, n,N) when these conditions on the RIC are satisfied can only be determined once the
measurement matrix A has been specified [2].

The RIC bounds for the Gaussian ensemble discussed here allow one to state values of (k, n,N)
when sparse approximation recovery conditions are satisfied; and from these, guarantee the recovery
of k-sparse vectors from (A, b). Unfortunately, all existing sparse approximation bound on the RICs
are sufficiently small that they are only satisfied for ρ� 1, typically on the order of 10−3. Although
the bounds presented here are a strict improvement over the previously best known bounds, and
for some (δ, ρ) achieve as much as a 20% decrease, see Figure 2.3, the improvements for ρ � 1 are
meager, approximately 0.5− 1%. This limited improvement for compressed sensing algorithms is in
large part due to the previous bounds being within 30% of empirically observed lower bounds on
RIC for n = 400 when ρ < 10−2, [1].
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In [3], using RIC bounds from [1], lower bounds on the phase transitions for exact recovery of
k − sparse signals for three greedy algorithms and l1 −minimisation were presented. These curves
are functions ρspS (δ) for Subspace Pursuit (SP) [9], ρcspS (δ) for Compressive Sampling Matching Pur-

suit (CoSaMP) [23], ρihtS (δ) for Iterative Hard Thresholding (IHT) [4] and ρl1S (δ) for l1 −minimisation
[15]. Figure 1 in [3] shows a plot of these phase transition curves. Figure 2.8 shows the new phase
transition curves based on our new bounds. The curves in the left Panel are approximately 0.5−1%
higher than those presented in [1].

Fig. 2.8. Left panel: The lower bounds on the exact recovery phase transition for Gaussian random matrices
for l1 − regularization, IHT, SP and CoSaMP implied by the RIC bounds in Theorem 2.3; Right panel: The inverse
of the phase transition lower bounds.

3. Appendix. Here we present the proofs of the key theorems and lemmas stated in the paper.
For other theorems and lemmas, especially technical lemmas used without stating in our analysis,
you are referred to the Appendix of [1].

3.1. Proof of Lemma 2.6. We start by showing that λmax(δ, ρ; γ) has a unique minimum for
each fixed δ, ρ and γ ∈ [ρ, δ−1]. Equation (2.5) gives the implicit relation between λmax and γ as

δψmax (λmax, γ) +H(ρδ)− δγH (ρ/γ) = 0, for λmax ≥ 1 + γ,

where

ψmax(λmax, γ) =
1

2

[
(1 + γ) ln (λmax)− γ ln γ + 1 + γ − λmax

]
.

Therefore,
d

dγ
(λmax) =

λmax

λmax − (1 + γ)
ln

[
λmax · (γ − ρ)2

γ3

]
is equal to zero when

(3.1) λmax · (γ − ρ)2 = γ3.

Let γmin satisfy (3.1). Since λmax ≥ 1 + γ > 0, d
dγ (λmax) is negative for γ ∈ [ρ, γmin), is zero at

γmin and is positive for γ ∈ (γmin, δ
−1), equation (2.5) has a unique minima over γ ∈ [ρ, δ−1], and

the γ that obtains the minima is strictly greater than ρ.
Similarly, we show that λmin(δ, ρ; γ) has a unique maximum for each fixed δ, ρ and γ ∈ [ρ, δ−1].

Equation (2.4) gives the implicit relation between λmin and γ as

δψmin
(
λmin, γ

)
+H(ρδ)− δγH (ρ/γ) = 0, for λmin ≤ 1− γ,
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where

ψmin
(
λmin, γ

)
:= H (γ) +

1

2

[
(1− γ) ln

(
λmin

)
+ γ ln γ + 1− γ − λmin

]
.

Therefore,
d

dγ

(
λmin

)
=

λmin

(1− γ)− λmin
ln

[
γ3 · λmin

(1− γ)2 · (γ − ρ)2

]
is equal to zero when

(3.2) γ3 · λmin = (1− γ)2(γ − ρ)2.

Let γmax satisfy (3.2). Since 0 < λmin ≤ 1 + γ, d
dγ

(
λmin

)
is positive for γ ∈ [ρ, γmax), zero at γmax

and negative for γ ∈ (γmax, δ
−1), equation (2.4) has a unique maxima over γ ∈ [ρ, δ−1], and the γ

that obtains the maxima is strictly greater than ρ.
�

3.2. Proof of main results, Theorem 2.3 and Propositions 2.12 and 2.13. Here we give
a proof similar to that given in [1] but we take great care at the non-exponential terms necessary
for the calculations of bounds of probabilities for finite values of (k, n,N) in Section 2.4. We present
the proof for UBT (δ, ρ) in detail and sketch the proof of LBT (δ, ρ) which follows similarly.

The following lemma of the bound on the probability distribution function of the maximum
eigenvalue of a Wishart matrix due to Edelman, [1, 3, 13] is central to our proof.

Lemma 3.1. ([13], presented in this form in [1]) Let AM be a matrix of size n×m whose entries
are drawn i.i.d. from N (0, 1/n). Let fmax(m,n;λ) denote the distribution function for the largest
eigenvalue of the derived Wishart matrix A∗MAM , of size m×m. Then fmax(m,n;λ) satisfies:

(3.3) fmax(m,n;λ) ≤
[
(2π)

1
2 (nλ)−

3
2

(
nλ

2

)n+m
2 1

Γ
(
m
2

)
Γ
(
n
2

)]e−nλ2 =: gmax(m,n;λ).

It is helpful at this stage to rewrite Lemma 3.1, separating the exponential and polynomial parts
(with respect to n) of gmax(m,n;λ) as thus:

Lemma 3.2. Let γn = m/n→∈ [ρn, δ
−1
n ] and define

(3.4) ψmax(λ, γ) :=
1

2

[
(1 + γ) lnλ− γ ln γ + 1 + γ − λ

]
.

Then

(3.5) fmax(m,n;λ) ≤ gmax(m,n;λ) ≤ pmax(n, λ; γ) exp
(
n · ψmax(λ, γ)

)
where pmax(n, λ; γ) is a polynomial in n, λ and γ, given by

(3.6) pmax(n, λ; γ) =

(
8

π

)1/2

γ−1n−7/2λ−3/2.

Proof. Let γn = m
n and 1

n ln[gmax(m,n;λ)] = Φ1(m,n;λ) + Φ2(m,n;λ) + Φ3(m,n;λ) where

Φ1(m,n;λ) =
1

2n
ln(2π)− 3

2n
ln(nλ), Φ2(m,n;λ) =

1

2

[
(1 + γ) ln(

nλ

2
)− λ

]
and Φ3(m,n;λ) = − 1

n
ln
(

Γ
(m

2

)
Γ
(n

2

))
.

We simplify Φ3(m,n;λ) by using the second Binet’s log gamma formulae [26]

(3.7) ln (Γ(z)) ≥ (z − 1/2) ln z − z + ln
√

2π.
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Thus we have

Φ2(m,n;λ) + Φ3(m,n;λ) ≤ 1

2

[
(1 + γn) lnλ− γn ln γn + 1 + γn − λ

]
− n−1 ln

(
πγnn

2/2
)
.

Incorporating Φ1(m,n;λ) and −n−1 ln
(
πγnn

2/2
)

into pmax(n, λ; γ) and defining the exponent
(3.4) as

ψmax(λ, γ) := lim
n→∞

1

n
ln (gmax(m,n;λ)) =

1

2

[
(1 + γ) lnλ− γ ln γ + γ + 1− λ

]
completes the proof.

The upper RIC bound UBT (δ, ρ) is obtained by a) construct the groups Gi according to Lemma
2.4, taking a union bound over all u = rN groups, and bounding the extreme eigenvalues within a
group by the extreme eigenvalues of the Wishart matrices A∗Mi

AMi
,, see (2.9). In preparation for

bounding the right hand side of (2.9) we compute a bound on rNgmax(m,n;λ).
From Lemma 3.2 and equation (2.8) we have

(3.8) 2λN

(
N

k

)(
m

k

)−1

gmax(m,n;λ) ≤ p′max(n, λ)enψU (λ,γ)

where

ψU (λ, γ) := δ−1

[
H(ρδ)− δγH

(
ρ

γ

)
+ δψmax(λ, γ)

]
and

(3.9) p′max(n, λ) := 2λ

(
5

4

)3(
nN(γ − ρ)

γδ(1− ρδ)

)1/2

pmax(n, λ; γ).

The proof of proposition 2.12 then follows.
Proof. (Proof of Proposition 2.12)
For ε > 0 with λmax(δ, ρ) = min

γ
λmax(δ, ρ; γ) being the optimal solution to (2.5),

P
(
U(k, n,N) > U(δn, ρn) + ε

)
= P

(
U(k, n,N) > λmax(δn, ρn)− 1 + ε

)
= P

(
1 + U(k, n,N) > λmax(δn, ρn) + ε

)
= N

(
N

k

)(
m

k

)−1 ∫ ∞
λmax(δn,ρn)+ε

fmax(m,n;λ)dλ

≤ N
(
N

k

)(
m

k

)−1 ∫ ∞
λmax(δn,ρn)+ε

gmax(m,n;λ)dλ(3.10)

To bound the final integral in (3.10) we write gmax(m,n;λ) as a product of two separate functions

- one of λ and another of n and γn, as gmax(m,n;λ) = ϕ(n, γn)λ−
3
2λ

n
2 (1+γn)e−

n
2
λ

where

ϕ(n, γn) = (2π)
1
2 (n)−

3
2

(n
2

)n
2 (1+γn) 1

Γ
(
n
2 γn

)
Γ
(
n
2

) .
With this and using the fact that λmax(δn, ρn) > 1+γn and that λ

n
2 (1+γn)e−

n
2 λ is strictly decreasing

in λ on [λmax(δn, ρn),∞) we can bound the integral in (3.10) as follows.
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∫ ∞
λmax(δn,ρn)+ε

gmax(m,n;λ)dλ ≤ ϕ(n, γn)[λmax(δn, ρn) + ε]
n
2 (1+γn)

e−
n
2 (λmax(δn,ρn)+ε)

∫ ∞
λmax(δn,ρn)+ε

λ−
3
2 dλ

= [λmax(δn, ρn)]
3
2 gmax

[
m,n;λmax(δn, ρn) + ε

] ∫ ∞
λmax(δn,ρn)+ε

λ−
3
2 dλ

= 2λmax(δn, ρn)gmax
[
m,n;λmax(δn, ρn) + ε

]
(3.11)

Thus (3.10) and (3.11) together gives

P
(
U(k, n,N) > U(δn, ρn) + ε

)
≤ 2λmax(δn, ρn)rNgmax

[
m,n;λmax(δn, ρn) + ε

]
≤ p′max

(
n, λmax(δn, ρn)

)
exp

[
n · ψU (λmax(δn, ρn) + ε)

]
≤ p′max

(
n, λmax(δn, ρn)

)
exp

[
nε · d

dλ
ψU

(
λmax(δn, ρn)

)]
,(3.12)

where r =
(
N
k

)(
m
k

)−1
, and the last inequality is due to ψU (λ) being strictly concave.

The following is a corollary to Proposition 2.12:
Corollary 3.3. Let (δ, ρ) ∈ (0, 1)2 and let A be a matrix of size n × N whose entries are

drawn i.i.d. from N (0, 1/n). Define UBT (δ, ρ) = λmax(δ, ρ) − 1 where λmax(δ, ρ; γ) is the solution
of (2.5) for each γ ∈ [ρ, δ−1] and λmax(δ, ρ) := min

γ
λmax(δ, ρ; γ). Then for any ε > 0, in the

proportional-growth asymptotics

P
(
U(k, n,N) > UBT (δ, ρ) + ε

)
→ 0

exponentially in n.
Proof. From (3.12), since d

dλψU (λmax(δn, ρn)) < 0 is strictly bounded away from zero and all
the limits of (δn, ρn) are smoothly varying functions we conclude, for any ε > 0

lim
n→∞

P
(
U(k, n,N) > UBT (δ, ρ) + ε

)
→ 0.

Thus we finish the proof for UBT (δ, ρ). We sketch the similar proof for Proposition 2.13 and
LBT (δ, ρ). Bounds on the probability distribution function of the minimum eigenvalue of a Wishart
matrix are given in the following lemma.

Lemma 3.4. ([13], presented in this form in [1]) Let AM be a matrix of size n×m whose entries
are drawn i.i.d. from N (0, 1/n). Let fmin(m,n;λ) denote the distribution function for the smallest
eigenvalue of the derived Wishart matrix A∗MAM , of size m×m. Then fmin(m,n;λ) satisfies:

(3.13) fmin(m,n;λ) ≤ (
π

2nλ
)

1
2

(
nλ

2

)n−m
2
[

Γ
(
n+1

2

)
Γ
(
m
2

)
Γ
(
n−m+1

2

)
Γ
(
n−m+2

2

)]e−nλ2 =: gmin(m,n;λ)

Again an explicit expression of fmin(m,n;λ) in terms of exponential and polynomial parts leads to
the following Lemma.

Lemma 3.5. Let γn = m/n and define

(3.14) ψmin(λ, γ) := H (γ) +
1

2

[
(1− γ) lnλ+ γ ln γ + 1− γ − λ

]
.

Then

(3.15) fmin(m,n;λ) ≤ gmin(m,n;λ) ≤ pmin(n, λ) exp
(
n · ψmax(λ, ρ, δ; γ)

)
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where pmin(n, λ; γ) is a polynomial in n, λ and γ, given by

(3.16) pmin(n, λ; γ) =
e

2π
√

2λ
.

The proof of Lemma 3.5 follows that of Lemma 3.2 and is omitted for brevity. Equipped with
Lemma 3.5 a large deviation analysis yields

(3.17) 2λN

(
N

k

)(
m

k

)−1

gmax(m,n;λ) ≤ p′min(n, λ)enψL(λ,γ)

where

ψL(λ, γ) := δ−1

[
H(ρδ)− δγH

(
ρ

γ

)
+ δψmin(λ, γ)

]
,

and

(3.18) p′min(n, λ) := 2λ

(
5

4

)3(
nN(γ − ρ)

γδ(1− ρδ)

)1/2

pmin(n, λ).

With Lemma 3.5 and (3.17), Proposition 2.13 follows similarly to the proof of Proposition 2.12
stated earlier in this section. The bound LBT (δ, ρ) is a corollary of Proposition 2.13.

Corollary 3.6. Let (δ, ρ) ∈ (0, 1)2 and let A be a matrix of size n × N whose entries are
drawn i.i.d. from N (0, 1/n). Define LBT (δ, ρ) := 1 − λmin(δ, ρ) where λmin(δ, ρ; γ) is the solution
of (2.4) for each γ ∈ [ρ, δ−1] and λmin(δ, ρ) := min

γ
λmin(δ, ρ; γ). Then for any ε > 0, in the

proportional-growth asymptotic

P
(
L(k, n,N) > LBT (δ, ρ) + ε

)
→ 0

exponentially in n.
�
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