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Abstract

The aim of this paper is two-fold. First we analyze the sequence of intensity measures
of a spatial branching point process arising in a multiple target tracking context. We
study its stability properties, characterize its long time behavior and provide a series of
weak Lipschitz type functional contraction inequalities. Second we design and analyze
an original particle scheme to approximate numerically these intensity measures. Under
appropriate regularity conditions, we obtain uniform and non asymptotic estimates and
a functional central limit theorem. To the best of our knowledge, these are the first
sharp theoretical results available for this class of spatial branching point processes.

Keywords : Spatial branching processes, multi-target tracking problems, mean field
and interacting particle systems, w.r.t. time, functional central limit theorems.

1 Introduction

Multi-target tracking problems deal with tracking several targets simultaneously given noisy
sensor measurements. Over recent years, point processes approaches to address these prob-
lems have become very popular. The use of point processes in a multiple-target tracking
context was first proposed in S. Mori et al. [15] as early as in 1986. Using a random sets
formalism, a formalism essentially equivalent to the point process formalism [16], R. Mahler
and his co-authors proposed in two books [11, 12] a systematic treatment of multi-sensor
multi-target filtering problems. However, as mentioned in [16], “... although the random
sets formalism (or the point process formalism) for multitarget tracking has provided a uni-
fied view on the subject of multiple target tracking, it has failed to produce any significant
practical tracking algorithms...”.

This situation has recently changed following the introduction of the PHD (probability
hypothesis density) filter by R. Mahler [13, 14]. The PHD filter is a powerful multi-target
tracking algorithm which is essentially a Poisson type approximation to the optimal multi-
target filter [13, 14, 17]. It has found numerous applications since its introduction. The
PHD filter cannot be computed analytically but it can be approximated by a mixture of
Gaussians for linear Gaussian target models [18] and by non-standard particle methods for
nonlinear non-Gaussian target models [9, 10].
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351 cours de la Libération 33405 Talence cedex, France, Francois.Caron@inria.fr
†Centre INRIA Bordeaux Sud-Ouest & Institut de Mathématiques de Bordeaux , Université Bordeaux,
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Despite their increasing popularity, the theoretical performance of these multi-target
particle methods remain poorly understood. Indeed their mathematical structure is signifi-
cantly different from standard particle filters so the detailed theoretical results for particle
filters provided in [4] are not applicable. Some convergence results have already been es-
tablished in [9, 10] but remain quite limited. Reference [9] presents a basic convergence
result for the PHD filter but does not establish any rate of convergence. In [10] the authors
provide some quantitative bounds and a central limit theorem. However these quantitative
bounds are not sharp and no stability result is provided.

The aim of this work is to initiate a thorough theoretical study of these non-standard
particle methods by first characterizing the stability properties of the “signal” process and
establishing uniform w.r.t. the time index convergence results for its particle approximation.
This “signal” process is a spatial branching point process whose intensity measure always
satisfies a closed recursive equation in the space of bounded positive measures. We will not
consider any observation process in this article. The analysis of the particle approximations
of PHD filters is presented in [7]. It builds heavily upon the present work but is even more
complex as it additionally involves at each time step a nonlinear update of the intensity
measure.

The rest of this paper is organized as follows:
In section 2, we present a spatial branching point process which is general enough to

model a wide variety of multiple target problems. We establish the linear evolution equation
associated to the intensity measures of this process and introduce an original particle scheme
to approximate them numerically. Section 3 summarizes the main results of this paper.
In Section 4, we provide a detailed analysis of the stability properties and the long time
behavior of this sequence of intensity measures, including the asymptotic behavior of the
total mass process, i.e. the integral of the intensity measure over the state space, and the
convergence to equilibrium of the corresponding sequence of normalized intensity measures.
For time-homogeneous models, we exhibit three different types of asymptotic behavior. The
analysis of these stability properties is essential in order to guarantee the robustness of the
model and to obtain reliable numerical approximation schemes. Section 5 is devoted to
the theoretical study of the non-standard particle scheme introduced to approximate the
intensity measures. Our main result in this section is a non-asymptotic convergence for
this scheme. Under some appropriate stability conditions, we additionally obtain uniform
estimates w.r.t. the time parameter.

2 Spatial branching point process and its particle approxi-

mation

2.1 Spatial branching point process for multi-target tracking

Assume that at a given time n there are Nn target states (Xi
n)1≤i≤Nn

taking values in some
measurable state space En enlarged with an auxiliary cemetery point c. The state space En

depends on the problem at hand. It may vary with the time parameter and can include all
the characteristics of a target such as its type, its kinetic parameters as well as its complete
path from the origin. As usual, we extend the measures γn and the bounded measurable
functions fn on En by setting γn(c) = 0 and fn(c) = 0.

Each target has a survival probability en(X
i
n) ∈ [0, 1]. When a target dies, it goes to

the cemetery point c. We also use the convention en(c) = 0 so that a dead target can only
stay in the cemetery. Survival targets give birth to a random strictly positive number of
individuals hin(X

i
n) where

(
hin(X

i
n)
)
1≤i≤Nn

is a collection of independent random variables

such that E
(
hin(xn)

)
= Hn(xn) for any xn ∈ En where Hn is a given collection of bounded
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functions Hn. We have Hn (xn) ≥ 1 for any xn ∈ En as hin(xn) ≥ 1. This branching
transition is called spawning in the multi-target tracking literature. We define Gn = enHn.

After this branching transition, the system consists of a random number N̂n of individuals
(X̂i

n)1≤i≤N̂n
. Each of them evolves randomly X̂i

n = xn  Xi
n+1 according to a Markov

transition Mn+1(xn, dxn+1) from En into En+1. We use the convention Mn+1(c, c) = 1, so
that any dead target remains in the cemetery state.

At the same time, an independent collection of new targets is added to the current
configuration. This additional point process is modeled by a spatial Poisson process with
a prescribed intensity measure µn+1 on En+1. It is used to model new targets entering the
state space.

At the end of this transition, we obtain Nn+1 = N̂n + N ′
n+1 targets (Xi

n+1)1≤i≤Nn+1 ,
where N ′

n+1 is a Poisson random variable with parameter given by the total mass µn+1(1) of

the positive measure µn+1, and (XN̂n+i
n+1 )1≤i≤N ′

n+1
are independent and identically distributed

random variables with common distribution µn+1 = µn+1/µn+1(1) where µn+1(1) :=
∫
En+1

µn+1(dx).

Example. To illustrate the model, we present here a simple yet standard example [18]
of a target evolving in a two-dimensional surveillance region S ⊂ R

2. In this case, we set
En = E = S ×R

2. All the targets are assumed to be of the same type. The state of a target
Xn = [pxn, p

y
n, vxn, v

y
n]

T
consists of its position (pxn, p

y
n) ∈ S and velocity (vxn, v

y
n) ∈ R

2 and is
assumed to evolve according to a linear Gaussian model

Xn = AXn−1 + Vn (2.1)

where A is a known transition matrix and Vn ∼ N (0,Σ) is a sequence of i.i.d zero-mean
normal random variables of covariance Σ; i.e. Mn(xn−1, dxn) = M(xn−1, xn)dxn with

M(xn−1, xn) = |2πΣ|−1/2 exp

(
−1

2
(xn −Axn−1)

TΣ−1 (xn −Axn−1)

)
.

In the example, we assume that µn (x) = µ (x), en(x) = s > 0 and hn(xn) = h ∈ {1, 2} with
P (h = 1) = 1 − P (h = 2) = α. Hence for this model, each target Xn−1 survives at time
n − 1 with a probability s. Each survival target has one offspring with probability α which
evolves according to (2.1) or two offspring with probability 1 − α which, conditional upon
Xn−1, independently evolve according to (2.1). Additionally, a random number of targets
distributed according to a Poisson distribution of parameter µ (1) appear. These targets are
independent and distributed in E as µ = µ/µ (1).

2.2 Sequence of intensity distributions

At every time n, the intensity measure of the point process Xn :=
∑Nn

i=1 δXi
n
associated to

the targets is given for any bounded measurable function f on En ∪ {c} by the following
formula:

γn(f) := E (Xn(f)) with Xn(f) :=

∫
f(x) Xn(dx)

To simplify the presentation, we suppose that the initial configuration of the targets is a
spatial Poisson process with intensity measure µ0 on the state space E0.

Given the construction defined in section 2.1, it follows straightforwardly that the inten-
sity measures γn on En satisfy the following recursive equation.

Lemma 2.1 For any n ≥ 0, we have

γn+1(dx
′) =

∫
γn(dx) Qn+1(x, dx

′) + µn+1(dx
′) (2.2)
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with the initial condition γ0 = µ0 where µn+1 is the intensity measure of the spatial point
process associated to the birth of new targets at time n+ 1 while the integral operator Qn+1

from En into En+1 is defined by

Qn+1(xn, dxn+1) := Gn(xn) Mn+1(xn, dxn+1). (2.3)

Proof:
For any bounded measurable function f on En+1 ∪ {c}, we have

γn+1 (f) = E




N̂n∑

i=1

f
(
Xi

n+1

)

+ E




N̂n+N ′
n+1∑

i=N̂n

f
(
Xi

n+1

)



where, thanks to the Poisson assumption, we have

E




N̂n+N ′
n+1∑

i=N̂n

f
(
Xi

n+1

)

 = µn+1 (1)µn+1 (f) = µn+1(f)

and

E




N̂n∑

i=1

f
(
Xi

n+1

)

 = E


E




N̂n∑

i=1

f
(
Xi

n+1

)
∣∣∣∣∣∣
Fn






= E


E




N̂n∑

i=1

Mn+1 (f)
(
X̂i

n

)
∣∣∣∣∣∣
Gn






= E

(
Nn∑

i=1

en
(
Xi

n

)
Hn(X

i
n)Mn+1 (f)

(
Xi

n

)
)

= γn (enHnMn+1 (f))

where Fn denotes the σ-field generated by (X̂i
n)1≤i≤N̂n

and Gn the σ-field generated by(
Xi

n

)
1≤i≤Nn

.

These intensity measures typically do not admit any closed-form expression. A natural
way to approximate them numerically is to use a particle interpretation of the associated
sequence of probability distributions given by

ηn(dx) := γn(dxn)/γn(1) with γn(1) :=

∫

En

γn(dx)

To avoid unnecessary technical details, we further assume that the potential functions Gn

are chosen so that for any x ∈ En

0 < gn,− ≤ Gn(x) ≤ gn,+ < ∞ (2.4)

for any time parameter n ≥ 0. Note that this assumption is satisfied in most realistic multi-
target scenarios such as the example discussed at the end of section 2.1. Indeed the condition
gn,− ≤ Gn(x) essentially states that there exists en,− > 0 such that en (x) ≥ en,− for any
x ∈ En as Hn (x) ≥ 1. The condition Gn(x) ≤ gn,+ states that there exists Hn,+ < ∞ such
that Hn (x) ≤ Hn,+ for any x ∈ En as en (x) ≤ 1. In the unlikely scenario where (2.4) is
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not satisfied then the forthcoming analysis can be extended to more general models using
the techniques developed in section 4.4 in [4]; see also [3]. We denote by P(En) the set of
probability measures on the state space En.

To describe these particle approximations, it is important to observe that the pair process
(γn(1), ηn) ∈ (R+ × P(En)) satisfies an evolution equation of the following form

(γn(1), ηn) = Γn(γn−1(1), ηn−1) (2.5)

We let Γ1
n and Γ2

n be the first and the second component mappings from (R+×P(En)) into
R+, and from (R+ ×P(En)) into P(En). The mean field particle approximation associated
with the equation (2.5) relies on the fact that it is possible to rewrite the mapping Γ2

n+1 in
the following form

Γ2
n+1(γn(1), ηn) = ηnKn+1,(γn(1),ηn) (2.6)

where Kn+1,(m,η) is a Markov kernel indexed by the time parameter n, a mass parameter
m ∈ R+ and a probability measure η on the space En. In the literature on mean field particle
systems, Kn,(m,η) is called a McKean transition. The choice of such Markov transitions
Kn,(m,η) is not unique and will be discussed in section 5.1.

Before concluding this section, we note that

γn+1(dx
′) = (γnQn+1)(dx

′) :=

∫
γn(dx) Qn+1(x, dx

′) (2.7)

when µn = 0. In this particular situation, the solution of the equation (2.2) is given by the
following Feynman-Kac path integral formulae

γn(f) = γ0(1) E


f(Xn)

∏

0≤p<n

Gp(Xp)


 (2.8)

where Xn stands for a Markov chain taking values in the state spaces En with initial dis-
tribution η0 = γ0/γ0(1) and Markov transitions Mn (see for instance section 1.4.4.in [4]).
These measure-valued equations have been studied at length in [4].

2.3 Mean field particle interpretation

The transport formula presented in (2.6) provides a natural interpretation of the probability
distributions ηn as the laws of a process Xn whose elementary transitions Xn  Xn+1 de-
pends on the distribution ηn = Law(Xn) as well as on the current mass γn(1). In contrast to
the more traditional McKean type nonlinear Markov chains presented in [4], the dependency
on the mass process induces a dependency of the whole sequence of measures ηp, from the
origin p = 0 up to the current time p = n.

From now on, we will always assume that the mappings
(
m,
(
xi
)
1≤i≤N

)
∈
(
R+ × EN

n

)
7→ Kn+1,(m, 1

N

∑N
i=1 δxi)

(x,An+1)

are measurable w.r.t. the product sigma fields on (R+ × EN
n ), for any n ≥ 0, N ≥ 1, and

1 ≤ i ≤ N , and any measurable subset An+1 ⊂ En+1. In this situation, the mean field

particle interpretation of (2.6) is an EN
n -valued sequence ξ

(N)
n =

(
ξ
(N,i)
n

)
1≤i≤N

defined as





γNn+1(1) = γNn (1) ηNn (Gn) + µn+1(1)

P

(
ξ
(N)
n+1 ∈ dx

∣∣∣ F (N)
n

)
=

∏N
i=1 Kn+1,(γN

n (1),ηNn )(ξ
(N,i)
n , dxi)

(2.9)

5



with the pair of occupation measures
(
γNn , ηNn

)
defined below

ηNn :=
1

N

N∑

i=1

δ
ξ
(N,i)
n

and γNn (dx) := γNn (1) ηNn (dx)

In the above displayed formula, F (N)
n stands for the σ-field generated by the random sequence

(ξ
(N)
p )0≤p≤n, and dx = dx1 × . . . × dxN stands for an infinitesimal neighborhood of a point

x = (x1, . . . , xN ) ∈ EN
n . The initial system ξ

(N)
0 consists of N independent and identically

distributed random variables with common law η0. As usual, to simplify the presentation,
we will suppress the parameter N when there is no possible confusion, so that we write ξn
and ξin instead of ξ

(N)
n and ξ

(N,i)
n .

In the above discussion, we have implicitly assumed that the quantities µn(1) are known
and that it is easy to sample from the probability distribution µn(dx) := µn(dx)/µn(1).
In practice, we often need to resort to an additional approximation scheme to approximate
µn(1) and µn. This situation is discussed in section 6. This additional level of approximation
has essentially a minimal impact on the properties of the particle approximation scheme
which can be analyzed using the same tools.

2.4 Notation

For the convenience of the reader, we end this introduction with some notation used in the
present article. We denote by M(E) the set of measures on some measurable state space
(E, E) and we recall that P(E) is the set of probability measures. We also denote B(E) the
Banach space of all bounded and measurable functions f equipped with the uniform norm
‖f‖ and Osc1(E) the convex set of E-measurable functions f with oscillations osc(f) ≤ 1
where osc(f) = sup

(x,y)∈E2

|f (x)− f (y)|.

We let µ(f) =
∫

µ(dx) f(x) be the Lebesgue integral of a function f ∈ B(E) with
respect to a measure µ ∈ M(E). We recall that a bounded integral kernel M(x, dy) from a
measurable space (E, E) into an auxiliary measurable space (E′, E ′) is an operator f 7→ M(f)
from B(E′) into B(E) such that the functions x 7→ M(f)(x) :=

∫
E′ M(x, dy)f(y) are E-

measurable and bounded for any f ∈ B(E′). The kernel M also generates a dual operator
µ 7→ µM from M(E) into M(E′) defined by (µM)(f) := µ(M(f)). A Markov kernel is
a positive and bounded integral operator M with M(1) (x) = 1 for any x ∈ E. Given a
pair of bounded integral operators (M1,M2), we let (M1M2) be the composition operator
defined by (M1M2)(f) = M1(M2(f)). For time-homogenous state spaces, we denote by
Mk = Mk−1M = MMk−1 the k-th composition of a given bounded integral operator M ,
with k ≥ 0, with the convention M0 = Id the identity operator. We also use the notation

M ([f1 −M(f1)] [f2 −M(f2)]) (x) := M ([f1 −M(f1)(x)] [f2 −M(f2)(x)]) (x)

for some bounded functions f1, f2.
We also denote the total variation norm on M(E) by ‖µ‖tv = supf∈Osc1(E) |µ(f)|. When

the bounded integral operator M has a constant mass, that is M(1) (x) = M(1) (y) for any
(x, y) ∈ E2, the operator µ 7→ µM maps M(E) into M(E′). In this situation, we let β(M)
be the Dobrushin coefficient of a bounded integral operator M defined by the following
formula

β(M) := sup {osc(M(f)) ; f ∈ Osc1(E)}
Given a positive function G on E, we let ΨG : η ∈ P(E) 7→ ΨG(η) ∈ P(E) be the
Boltzmann-Gibbs transformation defined by

ΨG(η)(dx) :=
1

η(G)
G(x) η(dx)

6



We recall that ΨG(η) can be expressed in terms of a Markov transport equation

ηSη = ΨG(η) (2.10)

for some selection type transition Sη(x, dy). For instance, for any ǫ ≥ 0 s.t. G(x) > ǫ for
any x, we notice that

Ψ(G−ǫ)(η) =
η(G)

η(G) − ǫ

(
Ψ(G)(η)−

ǫη

η(G)

)

so we can take

Sη(x, dy) :=
ǫ

η(G)
δx(dy) +

(
1− ǫ

η(G)

)
Ψ(G−ǫ)(η)(dy) (2.11)

For ǫ = 0, we have Sη(x, dy) = ΨG(η)(dy). We can also choose

Sη(x, dy) := ǫG(x) δx(dy) + (1− ǫG(x)) ΨG(η)(dy) (2.12)

for any ǫ ≥ 0 that may depend on the current measure η, and s.t. ǫG(x) ≤ 1. For instance,
we can choose 1/ǫ to be the η-essential supremum of G.

3 Statement of the main results

At the end of section 2.2, we have seen that the evolution equation (2.2) coincides with that
of a Feynman-Kac model (2.8) for µn = 0. In this specific situation, the distributions γn
are simply given by the recursive equation

γn = γn−1Qn =⇒ ∀0 ≤ p ≤ n γn = γpQp,n with Qp,n = Qp+1 . . . Qn−1Qn (3.1)

For p = n, we use the convention Qn,n = Id. In addition, the nonlinear semigroup associated
to this sequence of distributions is given by

ηn(f) = Φp,n(ηp)(f) := ηpQp,n(f)/ηpQp,n(1) = ηp (Qp,n(1)Pp,n(f))/ηpQp,n(1) (3.2)

with the Markov kernel Pp,n(xp, dxn) = Qp,n(xp, dxn)/Qp,n(xp, En). The analysis of the
mean field particle interpretations of such models has been studied in [4]. Various prop-
erties including contraction inequalities, fluctuations, large deviations and concentration
properties have been developed for this class of models. In this context, the fluctuations
properties as well as Lr-mean error estimates, including uniform estimates w.r.t. the time
parameter are often expressed in terms of two central parameters:

qp,n = sup
x,y

Qp,n(1)(x)

Qp,n(1)(y)
and β(Pp,n) = sup

x,y∈Ep

‖Pp,n(x, .)− Pp,n(y, .)‖tv (3.3)

with the pair of Feynman-Kac semigroups (Pp,n, Qp,n) introduced in (3.1) and (3.2).
We also consider the pair of parameters (g−(n), g+(n)) defined below

g−(n) = inf
0≤p<n

inf
Ep

Gp ≤ sup
0≤p<n

sup
Ep

Gp = g+(n)

We also write g−/+(n) to refer to both parameters. The first main objective of this article is
to extend some of these properties to models where µn is non necessarily null. We illustrate
our estimates in three typical scenarios

1) G = g−/+ = 1 2) g+ < 1 and 3) g− > 1 (3.4)

7



arising in time homogeneous models

(En, Gn,Mn, µn, g−(n), g+(n)) = (E,G,M,µ, g−, g+) (3.5)

These three scenarios correspond to the case where, independently from the additional spon-
taneous births, the existing targets die or survive and spawn in such a way that either their
number remains constant (G = g−/+ = 1), decreases (g+ < 1) or increases (g− > 1).

Our first main result concerns three different types of long time behavior for these three
types of models. This result can basically be stated as follows.

Theorem 3.1 For time homogeneous models (3.5), the limiting behavior of (γn(1), ηn) in
the three scenarios (3.4) is as follows:

1. When G(x) = 1 for any x ∈ E, we have

γn(1) = γ0(1) + µ(1) n and ‖ηn − η∞‖tv = O

(
1

n

)

when M is chosen so that

∑

n≥0

sup
x∈E

‖Mn(x, .)− η∞‖tv < ∞ for some invariant measure η∞ = η∞M . (3.6)

2. When g+ < 1, there exists a constant c < ∞ such that

∀f ∈ B(E), |γn(f)− γ∞(f)| ∨ |ηn(f)− η∞(f)| ≤ c gn+ ‖f‖

with the limiting measures

γ∞(f) :=
∑

n≥0

µQn(f) and η∞(f) := γ∞(f)/γ∞(1) (3.7)

3. When g− > 1 and there exist k ≥ 1 and ǫ > 0 such that Mk(x, .) ≥ ǫ Mk(y, .) for any
x, y ∈ E then the mapping Φ = Φn−1,n introduced in (3.2) has a unique fixed point
η∞ = Φ(η∞) and

lim
n→∞

1

n
log γn(1) = log η∞(G) and ‖ηn − η∞‖tv ≤ c e−λn

for some finite constant c < ∞ and some λ > 0.

A more precise statement and a detailed proof of the above theorem can be found in
section 4.2.

Our second main result concerns the convergence of the mean field particle approxi-
mations presented in (2.9). We provide rather sharp non asymptotic estimates including
uniform convergence results w.r.t. the time parameter. Our results can be basically stated
as follows.

Theorem 3.2 For any n ≥ 0, and any N ≥ 1, we have γn(1) and γNn (1) ∈ In with the
compact interval In defined below

In := [m−(n),m+(n)] where m−/+(n) :=

n∑

p=0

µp(1)g−/+(n)
(n−p) (3.8)

8



In addition, for any r ≥ 1, f ∈ Osc1(En), and any N ≥ 1, we have

√
N E

(∣∣[ηNn − ηn
]
(f)
∣∣r
) 1

r ≤ ar bn with bn ≤
n∑

p=0

bp,n (3.9)

where ar < ∞ stands for a constant whose value only depends on the parameter r and bp,n
is the collection of constants given by

bp,n := 2 (1 ∧mp,n) qp,n


qp,n β(Pp,n) +

∑

p<q≤n

cq,n∑
p<r≤n cr,n

β(Pq,n)


 (3.10)

with the pair of parameters

mp,n = m+(p)‖Qp,n(1)‖/
∑

p<q≤n

cq,n and cp,n := µpQp,n(1)

Furthermore, the particle measures γNn are unbiased, and for the three scenarios (3.4)
with time homogenous models s.t. Mk(x, .) ≥ ǫ Mk(y, .), for any x, y ∈ E and some pair of
parameters k ≥ 1 and ǫ > 0, the constant bn in (3.9) can be chosen so that supn≥0 bn < ∞;
in addition, we have the non asymptotic variance estimates for some d < ∞, any n ≥ 1 and
for any N > 1

E

([
γNn (1)

γn(1)
− 1

]2)
≤ d

n+ 1

N − 1

(
1 +

d

N − 1

)n−1

(3.11)

The non asymptotic estimates stated in the above theorem extend the one presented
in [3, 4] for Feynman-Kac type models (2.8) where µn = 0. For such models, the Lr-mean
error estimates (3.9) are satisfied with the collection of parameters bp,n := 2q2p,n β(Pp,n),
with p ≤ n. The extra terms in (3.10) are intimately related to µn whose effects in the
semigroup stability depend on the nature of Gn. We refer to theorem 3.1, section 4.2 and
section 4.3, for a discussion on three different behaviors in the three cases presented in (3.4).

A direct consequence of this theorem is that it implies the almost sure convergence
results:

lim
N→∞

ηNn (f) = ηn(f) and lim
N→∞

γNn (f) = γn(f)

for any bounded function f ∈ B(En).
Our last main result is a functional central limit theorem. We let WN

n be the centered
random fields defined by the following formula

ηNn = ηNn−1Kn,(γN
n (1),ηNn−1)

+
1√
N

WN
n . (3.12)

We also consider the pair of random fields

V η,N
n :=

√
N [ηNn − ηn] and V γ,N

n :=
√
N [γNn − γn]

For n = 0, we use the convention WN
0 = V η,N

0 .

Theorem 3.3 The sequence of random fields (WN
n )n≥0 converges in law, as N tends to

infinity, to the sequence of n independent, Gaussian and centered random fields (Wn)n≥0

with a covariance function given for any f, g ∈ B(En) and n ≥ 0 by

E(Wn(f)Wn(g))

= ηn−1Kn,(γn−1(1),ηn−1)

(
[f −Kn,(γn−1(1),ηn−1)(f)][g −Kn,(γn−1(1),ηn−1)(g)]

)
) .

(3.13)
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In addition, the pair of random fields V γ,N
n and V η,N

n converge in law as N → ∞ to a pair
of centered Gaussian fields V γ

n and V η
n defined by

V γ
n (f) :=

n∑

p=0

γp(1) Wp(Qp,n(f)) and V η
n (f) := V γ

n

(
1

γn(1)
(f − ηn(f))

)

The details of the proof of theorem 3.2 and theorem 3.3 can be found in section 5.2. The
proof of the non-asymptotic variance estimate (3.11) is given in section 5.2.1 dedicated to
the convergence of the unnormalized particle measures γNn . The Lr-mean error estimates
(3.9) and the fluctuation theorem 3.3 are proved in section 5.2.2. Under additional regularity
conditions, we conjecture that it is possible to obtain uniform estimates for theorem 3.3 but
have not established it here.

The rest of the article is organized as follows.
In section 4, we analyze the semigroup properties of the total mass process γn(1) and the

sequence of probability distributions ηn. This section is mainly concerned with the proof of
theorem 3.1. The long time behavior of the total mass process is discussed in section 4.1,
while the asymptotic behavior of the probability distributions is discussed in section 4.2.
In section 4.3, we develop a series of Lipschitz type functional inequalities for uniform
estimates w.r.t. the time parameter for the particle approximation. In section 5, we present
the McKean models associated to the sequence (γn(1), ηn) and their mean field particle
interpretations. Section 5.2 is concerned with the convergence analysis of these particle
approximations. In section 5.2.1, we discuss the convergence of the approximations of γn(1),
including their unbiasedness property and the non asymptotic variance estimates presented
in (3.11). The proof of the Lr-mean error estimates (3.9) is presented in section 5.2.2. The
proof of the functional central limit theorem 3.3 is a more or less direct consequence of the
decomposition formulae presented in section 5.2 and is just sketched at the end of this very
section.

4 Semigroup analysis

The purpose of this section is to analyze the semigroup properties of the intensity measure
recursion (2.2). We establish a framework for the analysis of the long time behavior of these
measures and their particle approximations (2.9). First, we briefly recall some estimate of the
quantities (qp,n, β(Pp,n)) in terms of the potential functions Gn and the Markov transitions
Mn. Further details on this subject can be found in [4], and in references therein.

We assume here that the following condition is satisfied for some k ≥ 1, some collection
of numbers ǫp ∈ (0, 1)

(M)k Mp,p+k(xp, .) ≥ ǫp Mp,p+k(yp, .) with Mp,p+k = Mp+1Mp+2 . . .Mp+k (4.1)

for any time parameter p and any pair of states (xp, yp) ∈ E2
p . It is well known that the

mixing type condition (M)k is satisfied for any aperiodic and irreducible Markov chains on
finite spaces, as well as for bi-Laplace exponential transitions associated with a bounded drift
function and for Gaussian transitions with a mean drift function that is constant outside
some compact domain. We introduce the following quantities

δp,n := sup
∏

p≤q<n

(Gq(xq)/Gq(yq)) and δ(k)p := δp+1,p+k (4.2)

where the supremum is taken over all admissible pair of paths with transitions Mq where an
admissible path (xp−1, xp+1, ..., xn−1) is such that

∏
p≤q<nM q

(xq−1, dxq) > 0. Under the
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above conditions, we have [4, p. 140]

β(Pp,p+n) ≤
⌊n/k⌋−1∏

l=0

(
1− ǫ2p+lk/δ

(k)
p+lk

)
and qp,p+n ≤ δp,p+k/ǫp (4.3)

For time-homogeneous Feynman-Kac models we set ǫ := ǫk and δk := δ0,k, for any k ≥ 0.
Using this notation, the above estimates reduce to [4, p. 142]

qp,p+n ≤ δk/ǫ and β(Pp,p+n) ≤
(
1− ǫ2/δk−1

)⌊n/k⌋
(4.4)

4.1 Description of the models

The next proposition gives a Markov transport formulation of Γn introduced in (2.5).

Proposition 4.1 For any n ≥ 0, we have the recursive formula




γn+1(1) = γn(1) ηn(Gn) + µn+1(1)

ηn+1 = ΨGn
(ηn)Mn+1,(γn(1),ηn)

(4.5)

with the collection of Markov transitions Mn+1,(m,η) indexed by the parameters m ∈ R+ and
the probability measures η ∈ P(En) given below

Mn+1,(m,η)(x, dy) := αn (m, η)Mn+1(x, dy) + (1− αn (m, η)) µn+1(dy) (4.6)

with the collection of [0, 1]-parameters αn (m, η) defined below

αn (m, η) =
mη(Gn)

mη(Gn) + µn+1(1)

Proof:
Observe that for any function f ∈ B(En+1), we have that

ηn+1(f) =
γn(GnMn+1(f)) + µn+1(f)

γn(Gn) + µn+1(1)
=

γn(1) ηn(GnMn+1(f)) + µn+1(f)

γn(1) ηn(Gn) + µn+1(1)

from which we find that

ηn+1 = αn (γn(1), ηn) Φn+1(ηn) + (1− αn (γn(1), ηn)) µn+1

From these observations, we prove (4.5). This ends the proof of the proposition.

We let Γn+1 be the mapping from R+ × P(En) into R+ × P(En+1) given by

Γn+1(m, η) =
(
Γ1
n+1(m, η),Γ2

n+1(m, η)
)

(4.7)

with the pair of transformations:

Γ1
n+1(m, η) = m η(Gn) + µn+1(1) and Γ2

n+1(m, η) = ΨGn
(η)Mn+1,(m,η)

We also denote by (Γp,n)0≤p≤n the corresponding semigroup defined by

∀0 ≤ p ≤ n Γp,n = Γp+1,nΓp+1 = ΓnΓn−1 . . .Γp+1

with the convention Γn,n = Id.
The following lemma collects some important properties of the sequence of intensity

measures γn.
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Lemma 4.2 For any 0 ≤ p ≤ n, we have the semigroup decomposition

γn = γpQp,n +
∑

p<q≤n

µqQq,n and γn =
∑

0≤p≤n

µpQp,n (4.8)

In addition, we also have the following formula

γn(1) =

n∑

p=0

µp(1)
∏

p≤q<n

ηq(Gq) (4.9)

Proof:

The first pair of formulae are easily proved using a simple induction, and recalling that
γ0 = µ0. To prove the last assertion, we use an induction on the parameter n ≥ 0. The
result is obvious for n = 0. We also have by (2.2)

γn+1(1) = γnQn+1(1) + µn+1(1) = γn(Gn) + µn+1(1)

This implies

γn+1(1) = γn(1) ηn(Gn) + µn+1(1)

= γn−1(1) ηn−1(Gn−1) ηn(Gn) + µn(1) ηn(Gn) + µn+1(1)

= . . .

= γ0(1)
n∏

p=0

ηp(Gp) +
n+1∑

p=1

µp(1)
∏

p≤q≤n

ηq(Gq)

Recalling that γ0(dx0) = µ0(dx0), we prove (4.9). This ends the proof of the lemma.

Using lemma 4.2, one proves that the semigroup Γp,n satisfies the pair of formulae de-
scribed below

Proposition 4.3 For any 0 ≤ p ≤ n, we have

Γ1
p,n(m, η) = m ηQp,n(1) +

∑

p<q≤n

µqQq,n(1) (4.10)

Γ2
p,n(m, η) = αp,n (m, η) Φp,n(η) + (1− αp,n (m, η))

∑

p<q≤n

cq,n∑
p<r≤n cr,n

Φq,n(µq)

(4.11)

with the collection of parameters cp,n := µpQp,n(1) and the [0, 1]-valued parameters αp,n (m, η)
defined below

αp,n (m, η) =
mηQp,n(1)

mηQp,n(1) +
∑

p<q≤n cq,n
≤ α⋆

p,n(m) := 1 ∧
[
m

∥∥∥∥∥
Qp,n(1)∑
p<q≤n cq,n

∥∥∥∥∥

]
(4.12)

One central question in the theory of spatial branching point processes is the long time
behavior of the total mass process γn(1). Notice that γn(1) = E(Xn(1)) is the expected size
of the n-th generation. For time homogeneous models with null spontaneous branching µn =
µ = 0, the exponential growth of these quantities are related to the logarithmic Lyapunov
exponents of the semigroup Qp,n. The prototype of these models is the Galton-Watson
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branching process. In this context three typical situations may occur: 1) γn(1) remains
constant and equals to the initial mean number of individuals. 2) γn(1) goes exponentially
fast to 0, 3) γn(1) grows exponentially fast to infinity,

The analysis of spatial branching point processes with µn = µ 6= 0 considered here is
more involved. Loosely speaking, in the first situation discussed above the total mass process
is generally strictly increasing; while in the second situation the additional mass injected in
the system stabilizes the total mass process. Before giving further details, by lemma 4.2 we
observe γn(1) ∈ In, for any n ≥ 0, with the compact interval In defined in 3.8.

We end this section with a more precise analysis of the effect of µ in the three scenarios
(3.4).

In the further developments of this section, we illustrate the stability properties of the
sequence of probability distributions ηn in these three scenarios.

1. When G(x) = 1 for any x ∈ E, the total mass process γn(1) grows linearly w.r.t. the
time parameter and we have

γn(1) = m−(n) = m+(n) = γ0(1) + µ(1) n (4.13)

Note that the estimates in (4.12) take the following form

αp,n (γp(1), ηp) ≤ α⋆
p,n(γp(1)) := 1 ∧ γ0(1) + µ(1) p

µ(1) (n− p)
→(n−p)→∞ 0

2. When g+ < 1, the total mass process γn(1) is uniformly bounded w.r.t. the time
parameter. More precisely, we have that

m−/+(n) = gn−/+ γ0(1) +
(
1− gn−/+

) µ(1)

1− g−/+

This yields the rather crude estimates

γ0(1) ∧
µ(1)

1− g−
≤ γn(1) ≤ γ0(1) ∨

µ(1)

1− g+
(4.14)

We end this discussion with an estimate of the parameter αp,n(m) given in (4.12).
When the mixing condition (M)k stated in (4.1) is satisfied for some k and some fixed
parameters ǫp = ǫ, using (4.4) we prove that

∑

p<r≤n

µQr,n(1)

Qp,r(Qr,n(1))
≥ ǫµ(1)

δk

∑

p<r≤n

1

Qp,r(1)
≥ ǫµ(1)

δk

g
−(n−p)
+ − 1

1− g+

from which we conclude that for any n > p and any m ∈ Ip

α⋆
p,n(m) ≤ 1 ∧

[
m g

(n−p)
+

δk (1− g+)

ǫµ(1)(1 − g
(n−p)
+ )

]

≤ 1 ∧
[
m g

(n−p)
+ δk/(ǫµ(1))

]

≤ 1 ∧
[(

γ0(1) ∨
µ(1)

1− g+

)
g
(n−p)
+ δk/(ǫµ(1))

]
→(n−p)→∞ 0 (4.15)

3. When g− > 1, the total mass process γn(1) grows exponentially fast w.r.t. the time
parameter and we can easily show that

g− > 1 =⇒ γn(1) ≥ m−(n) = γ0(1) g
n
− + µ(1)

gn− − 1

g− − 1
(4.16)
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4.2 Asymptotic properties

This section is concerned with the long time behavior of the semigroups Γp,n in the three
scenarios discussed in (4.13), (4.14), and (4.16). Our results are summarized in theorem 3.1.
We consider time-homogeneous models (En, Gn,Mn, µn) = (E,G,M,µ).

1. When G(x) = 1 for any x ∈ E, we have seen in (4.13) that γn(1) = γ0(1) +
µ(1) n. In this particular situation, the time-inhomogeneous Markov transitions
Mn,(γn−1(1),ηn−1) := Mn introduced in (4.5) are given by

Mn(x, dy) =

(
1− µ(1)

γ0(1) + nµ(1)

)
M(x, dy) +

µ(1)

γ0(1) + nµ(1)
µ(dy)

This shows that ηn = Law(Xn) can be interpreted as the distribution of the states Xn

of a time inhomogeneous Markov chain with transitions Mn and initial distribution
η0. If we choose in (2.6) Kn+1,(γn(1),ηn) = Mn+1, the N -particle model (2.9) reduces

to a series of N independent copies of Xn. In this situation, the mapping Γ2
0,n is given

by

Γ2
0,n(γ0(1), η0) :=

γ0(1)

γ0(1) + nµ(1)
η0M

n +
nµ(1)

γ0(1) + nµ(1)

1

n

∑

0≤p<n

µMp

The above formula shows that for a large time horizon n, the normalized distribution
flow ηn is almost equal to 1

n

∑
0≤p<n µM

p. Let us assume that the Markov kernel M is
chosen so that (3.6) is satisfied for some invariant measure η∞ = η∞M . In this case,
for any starting measure γ0, we have

‖ηn − η∞‖tv ≤ γ0(1)

γ0(1) + nµ(1)
τn +

nµ(1)

γ0(1) + nµ(1)

1

n

∑

0≤p<n

τp = O

(
1

n

)

with τn = supx∈E ‖Mn(x, .)−η∞‖tv. For instance, suppose the mixing condition (M)k
presented in (4.1) is met for some k ≥ 1 and ǫ > 0. In this case, the above upper
bound is satisfied with τn = (1− ǫ)⌊n/k⌋.

2. Consider the case where g+ < 1. In this situation, the pair of measures (3.7) are well
defined. Furthermore, for any f ∈ B(E) with ‖f‖ ≤ 1, we have the estimates

|γn(f)− γ∞(f)| ≤ γ0(1) η0Q
n(1) +

∑

p≥n

µQp(1)

≤ gn+ [γ0(1) + µ(1)/(1 − g+)] −→n→∞ 0

In addition, using the fact that γn(1) ≥ µ(1), we find that for any f ∈ Osc1(E)

|ηn(f)− η∞(f)| ≤ 1

γn(1)
|γn[f − η∞(f)]− γ∞[f − η∞(f)]|

≤ gn+ [γ0(1)/µ(1) + 1/(1 − g+)] −→n→∞ 0

3. Consider the case where g− > 1. We further assume that the mixing condition (M)k
presented in (4.1) is met for some k ≥ 1 and some fixed parameters ǫp = ǫ > 0. In
this situation, it is well known that the mapping Φ = Φn−1,n introduced in (3.2) has
a unique fixed point η∞ = Φ(η∞), and for any initial distribution η0, we have

‖Φ0,n(η0)− η∞‖tv ≤ a e−λ n (4.17)
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with

λ = −1

k
log
(
1− ǫ2/δ0,k−1

)
and a = 1/

(
1− ǫ2/δ0,k−1

)

as well as

sup
η∈P(E)

∣∣∣∣
1

n
log ηQn(1)− log η∞(G)

∣∣∣∣ ≤ b/n (4.18)

for some finite constant b < ∞. For a more thorough discussion on the stability
properties of the semigroup Φ0,n and the limiting measures η∞, we refer the reader
to [4]. Our next objective is to transfer these stability properties to the one of the
sequence ηn. First, using (4.18), we readily prove that

lim
n→∞

1

n
log γn(1) = log η∞(G)

Next, we simplify the notation and we set αn := α0,n (γ0(1), η0) and cn := c0,n. Using
(4.11), we find that for any n > 1

a−1 ‖ηn − η∞‖tv ≤ αn e−λn + (1− αn)
∑

0≤p<n

cp∑
0≤q<n cq

e−λp

Recalling that
µ(1) gp− ≤ cp = µQp(1) ≤ µ(1) gp+

we also obtain that

∑

0≤p<n

cp∑
1≤q<n cq

e−λp ≤ 1
[∑

0≤q<n cq

]1/r



∑

0≤p<n

cpe
−λpr



1/r

≤ 1
[∑

0≤q<n g
q
−

]1/r


 ∑

0≤p<n

(e−λrg+)
p



1/r

(4.19)

for any r ≥ 1. We conclude that

r >
1

λ
log g+ =⇒

∑

0≤p<n

cp∑
0≤q<n cq

e−λp ≤ g
−(n−1)/r
− /(1 − e−λrg+)

1/r

and therefore

a−1 ‖ηn − η∞‖tv ≤ e−λn + g
−(n−1)/r
− /(1 − e−λrg+)

1/r →n→∞ 0

4.3 Stability and Lipschitz regularity properties

We describe in this section a framework that allows to transfer the regularity properties of
the Feynman-Kac semigroups Φp,n introduced in (3.2) to the ones of the semigroup Γp,n

of the sequence (γn(1), ηn). Before proceeding we recall a lemma that provides some weak
Lipschitz type inequalities for the Feynman-Kac semigroup Φp,n in terms of the Dobrushin
contraction coefficient associated with the Markov transitions Pp,n introduced in (3.2). The
details of the proof of this result can be found in [4] or in [5] (see Lemma 4.4. in [5], or
proposition 4.3.7 on page 146 in [4]).

15



Lemma 4.4 ([5]) For any 0 ≤ p ≤ n, any η, µ ∈ P(Ep) and any f ∈ Osc1(En), we have

|[Φp,n(µ)− Φp,n(η)] (f)| ≤ 2 q2p,n β(Pp,n) |(µ− η)Dp,n,η(f)| (4.20)

for a collection of functions Dp,n,η(f) ∈ Osc1(Ep) whose values only depend on the parame-
ters (p, n, η).

Proposition 4.5 For any 0 ≤ p ≤ n, any η, η′ ∈ P(Ep) and any f ∈ Osc1(En), there exits
a collection of functions Dp,n,η′(f) ∈ Osc1(Ep) whose values only depend on the parameters
(p, n, η) and such that, for any m ∈ Ip, we have

∣∣[Γ2
p,n(m, η) − Γ2

p,n(m, η′)
]
(f)
∣∣

≤ 2 α⋆
p,n qp,n

[
qp,n β(Pp,n)

∣∣(η − η′)Dp,n,η′(f)
∣∣+ βp,n

∣∣(η − η′)hp,n,η′
∣∣]

(4.21)

with the collection of functions hp,n,η′ = 1
2qp,n

Qp,n(1)
η′Qp,n(1)

∈ Osc1(Ep) and the sequence of

parameters ǫp,n and βp,n defined below

α⋆
p,n := α⋆

p,n(m+(p)) and βp,n :=
∑

p<q≤n

cq,n∑
p<r≤n cr,n

β(Pq,n) (4.22)

Before getting into the details of the proof of proposition 4.5, we illustrate some conse-
quences of these weak functional inequalities for time-homogeneous models (En, Gn,Mn, µn) =
(E,G,M,µ) in the three scenarios discussed in (4.13), (4.14), and (4.16).

1. When G(x) = 1 for any x ∈ E, we have

Φp,n(η) = ηM (n−p), hp,n,η′ = 1/2 cp,n = µ(1) qp,n = 1 α⋆
p,n ≤ 1

Let us assume that there exist a < ∞ and 0 < λ < ∞ such that β(Mn) ≤ ae−λn for
any n ≥ 0. In this situation, we prove using (4.21) that

∣∣[Γ2
p,n(m, η)− Γ2

p,n(m, η′)
]
(f)
∣∣ ≤ 2ae−λ(n−p)

∣∣(µ − η)Dp,n,η′(f)
∣∣

2. When g+ < 1 and when the mixing condition (M)k stated in (4.1) is satisfied for some
k and some fixed parameters ǫp = ǫ, we have seen in (4.15) that

sup
m∈Ip

α⋆
p,n(m) ≤ 1 ∧

(
d g

(n−p)
+

)
with d =

(
(γ0(1)/µ(1)) ∨ (1− g+)

−1
)
δ0,kǫ

−1

Furthermore, using the estimates given in (4.3) and (4.4), we also have that

qp,n ≤ δk/ǫ βp,n ≤ 1 and β(Pp,n) ≤ a e−λ (n−p) with (a, λ) given in (4.17)

In this situation, we prove using (4.21) that
∣∣[Γ2

p,n(m, η) − Γ2
p,n(m, η′)

]
(f)
∣∣

≤ 2
[
1 ∧

(
d g

(n−p)
+

)]
(δk/ǫ)

[
(δk/ǫ) a e−λ(n−p)

∣∣(µ − η)Dp,n,η′(f)
∣∣+
∣∣(µ− η)hp,n,η′

∣∣]

Notice that for (n− p) ≥ log (d)/ log (1/g+), this yields
∣∣[Γ2

p,n(m, η) − Γ2
p,n(m, η′)

]
(f)
∣∣

≤ a0 e−λ0(n−p)
∣∣(µ− η)Dp,n,η′(f)

∣∣+ a1 e−λ1(n−p)
∣∣(µ− η)hp,n,η′

∣∣

with

a0 = 2ad(δk/ǫ)
2 a1 = 2d(δk/ǫ) λ0 = λ+ log (1/g+) and λ1 = log (1/g+)
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3. When g− > 1 and when the mixing condition (M)k presented in (4.1) is met for some
k and some fixed parameters ǫp = ǫ > 0, then we use the fact that

α⋆
p,n ≤ 1 qp,n ≤ δk/ǫ and β(Pp,n) ≤ a e−λ(n−p) with (a, λ) given in (4.17)

Arguing as in (4.19), we prove that for any r > 1
λ log g+

βp,n ≤ g
−(n−p−1)/r
− /(1− e−λrg+)

1/r

from which we conclude that
∣∣[Γ2

p,n(m, η) − Γ2
p,n(m, η′)

]
(f)
∣∣

≤ a0 e−λ0(n−p)
∣∣(µ− η)Dp,n,η′(f)

∣∣+ a1 e−λ1(n−p)
∣∣(µ− η)hp,n,η′

∣∣

with

a0 = 2a(δk/ǫ)
2 a1 = 2gr−(δk/ǫ)/(1 − e−λrg+)

1/r λ0 = λ and λ1 = log (g−)

Now, we come to the proof of proposition 4.5.
Proof of proposition 4.5:
First, we observe that

Γ2
p,n(m, η)− Γ2

p,n(m
′, η′)

= αp,n (m, η)
[
Φp,n(η)−

∑
p<q≤n

cq,n∑
p<r≤n cr,n

Φq,n(µq)
]

−αp,n (m
′, η′)

[
Φp,n(η

′)−∑p<q≤n
cq,n∑

p<r≤n cr,n
Φq,n(µq)

]

Using the following decomposition

ab− a′b′ = a′(b− b′) + (a− a′)b′ + (a− a′)(b− b′) (4.23)

which is valid for any a, a′, b, b′ ∈ R, we prove that

Γ2
p,n(m, η)− Γ2

p,n(m
′, η′)

= αp,n (m
′, η′) [Φp,n(η)− Φp,n(η

′)]

+
[
Φp,n(η

′)−∑p<q≤n
cq,n∑

p<r≤n cr,n
Φq,n(µq)

]
[αp,n (m, η)− αp,n (m

′, η′)]

+ [αp,n (m, η)− αp,n (m
′, η′)] [Φp,n(η) − Φp,n(η

′)]

(4.24)

For m = m′, using (4.24) we find that

Γ2
p,n(m, η) − Γ2

p,n(m, η′)

= αp,n (m, η) [Φp,n(η)− Φp,n(η
′)]

+
[
Φp,n(η

′)−∑p<q≤n
cq,n∑

p<r≤n cr,n
Φq,n(µq)

]
[αp,n (m, η)− αp,n (m, η′)]

We also notice that

αp,n (m, η) =
1

1 + µp,n/[mηQp,n(1)]
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from which we easily prove that

αp,n (m, η)− αp,n (m
′, η′)

=
µp,n

µp,n+mηQp,n(1)
1

µp,n+m′η′Qp,n(1)
[mηQp,n(1) −m′η′Qp,n(1)]

and therefore

αp,n (m, η)− αp,n

(
m, η′

)
=
(
αp,n

(
m, η′

)
(1− αp,n (m, η))

) [
η − η′

]( Qp,n(1)

η′Qp,n(1)

)

The proof of αp,n (m, η) ≤ α⋆
p,n(m) is elementary. From the above decomposition, we prove

the following upper bounds

∣∣αp,n (m, η)− αp,n

(
m, η′

)∣∣ ≤ α⋆
p,n(m)

∣∣∣∣
[
η − η′

]( Qp,n(1)

η′Qp,n(1)

)∣∣∣∣

and
∣∣[Γ2

p,n(m, η)− Γ2
p,n(m, η′)

]
(f)
∣∣

≤ α⋆
p,n(m) [|[Φp,n(η)− Φp,n(η

′)] (f)|

+
∣∣∣[η − η′]

(
Qp,n(1)
η′Qp,n(1)

)∣∣∣
∣∣∣
∑

p<q≤n
cq,n∑

p<r≤n cr,n

[
Φq,n(µq)− Φq,n (Φp,q(η

′))
]
(f)
∣∣∣
]

This yields

∣∣[Γ2
p,n(m, η) − Γ2

p,n(m, η′)
]
(f)
∣∣

≤ α⋆
p,n(m)

[
|[Φp,n(η) − Φp,n(η

′)] (f)|+ βp,n

∣∣∣[η − η′]
(

Qp,n(1)
η′Qp,n(1)

)∣∣∣
]

The last formula comes from the fact that

β(Pq,n) := sup
ν,ν′∈P(Eq)

∥∥Φq,n(ν)− Φq,n(ν
′)
∥∥
tv

The proof of this result can be found in [4] (proposition 4.3.1 on page 134). The end of
the proof is now a direct consequence of lemma 4.4. This ends the proof of the proposition.

5 Mean field particle approximations

5.1 McKean particle interpretations

In proposition 4.1, the evolution equation (4.5) of the sequence of probability measures
ηn  ηn+1 is a combination of an updating type transition ηn  ΨGn

(ηn) and an integral
transformation w.r.t. a Markov transition Mn+1,(γn(1),ηn) that depends on the current total
mass γn(1) and the current probability distribution ηn. The operator Mn+1,(γn(1),ηn) defined
in (4.6) is a mixture of the Markov transition Mn+1 and the spontaneous birth normalized
measure µn+1. We let Sn,ηn be any Markov transition from En into itself satisfying

ΨGn
(ηn) = ηnSn,ηn

18



The choice of these transitions is not unique. We can choose for instance one of the col-
lection of transitions presented in (2.10), (2.11) and (2.12). Further examples of McKean
acceptance-rejection type transitions can also be found in section 2.5.3 in [4]. By construc-
tion, we have the recursive formula

ηn+1 = ηnKn+1,(γn(1),ηn) with Kn+1,(γn(1),ηn) = Sn,ηnMn+1,(γn(1),ηn) (5.1)

with the auxiliary total mass evolution equation

γn+1(1) = γn(1) ηn(Gn) + µn+1(1) (5.2)

As already mentioned in section 2, the sequence of probability distributions ηn can be
interpreted as the distributions of the states Xn of a process defined, conditional upon
(γn(1), ηn), by the elementary transitions

P
(
Xn+1 ∈ dx | Xn

)
= Kn,(γn(1),ηn)

(
Xn, dx

)
with ηn = Law(Xn)

Next, we define the mean field particle interpretations of the sequence (γn(1), ηn) given in
(5.1) and (5.2). First, mimicking formula (5.2) we set

γNn+1(1) := γNn (1) ηNn (Gn) + µn+1(1) and γNn (f) = γNn (1) × ηNn (f)

for any f ∈ B(En), with the initial measure γN0 = γ0. It is important to notice that

γNn (1) = γ0(1)
∏

0≤q<n

ηNq (Gq) +

n∑

p=1

µp(1)
∏

p≤q<n

ηNq (Gq) =⇒ γNn (1) ∈ In

The mean field particle interpretation of the nonlinear measure valued model (5.1) is an EN
n -

valued process ξn with elementary transitions defined in (2.9) and (5.1). By construction,
the particle evolution is a simple combination of a selection and a mutation genetic type
transition

ξn  ξ̂n = (ξ̂in)1≤i≤N  ξn+1

During the selection transitions ξn  ξ̂n, each particle ξin  ξ̂in evolves according to the
selection type transition Sn,ηNn

(ξin, dx). During the mutation stage, each of the selected

particles ξ̂in  ξin+1 evolves according to the transition

Mn+1,(γN
n (1),ηNn )(x, dy) := αn

(
γNn (1), ηNn

)
Mn+1(x, dy) +

(
1− αn

(
γNn (1), ηNn

))
µn+1(dy)

5.2 Asymptotic behavior

This section is mainly concerned with the proof of theorem 3.2. In section 5.2.1, we discuss
the unibiasedness property of the particle measures γNn and their convergence properties
towards γn, as the number of particles N tends to infinity. We mention that the proof of the
non asymptotic variance estimates (3.11) is simpler than the one provided in a recent article
by the second author with F. Cérou and A. Guyader [3]. Section 5.2.2 is concerned with
the convergence and the fluctuations of the occupation measures ηNn around their limiting
measures ηn.
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5.2.1 Intensity measures

We start this section with a simple unbiasedness property. Recall that F (N)
p stands for the

σ-field generated by the random sequence (ξ
(N)
k )0≤k≤p.

Proposition 5.1 For any 0 ≤ p ≤ n, and any f ∈ B(En), we have

E

(
γNn+1(f)

∣∣∣ F (N)
p

)
= γNp Qp,n+1(f) +

∑

p<q≤n+1

µqQq,n+1(f) (5.3)

In particular, we have the unbiasedness property: E
(
γNn (f)

)
= γn(f).

Proof:
By construction of the particle model, for any f ∈ B(En) we have

E

(
ηNn+1(f)

∣∣∣ F (N)
n

)
= ηNn Kn+1,(γN

n (1),ηNn )(f) = Γ2
n+1

(
γNn (1), ηNn

)
(f)

with the second component Γ2
n+1 of the transformation Γn+1 introduced in 4.7. Using the

fact that

Γ2
n+1

(
γNn (1), ηNn

)
(f) =

γNn (1) ηNn (Qn+1(f)) + µn+1(f)

γNn (1) ηNn (Qn+1(1)) + µn+1(1)
=

γNn (Qn+1(f)) + µn+1(f)

γNn (Qn+1(1)) + µn+1(1)

and
γNn+1(1) = γNn (1) ηNn (Gn) + µn+1(1) = γNn (Qn+1(1)) + µn+1(1)

we prove that

E

(
γNn+1(f)

∣∣∣ F (N)
n

)
= E

(
γNn+1(1) η

N
n+1(f)

∣∣∣ F (N)
n

)
= γNn+1(1) E

(
ηNn+1(f)

∣∣∣ F (N)
n

)

= γNn (Qn+1(f)) + µn+1(f)

This also implies that

E

(
γNn+1(f)

∣∣∣ F (N)
n−1

)
= E

(
γNn (Qn+1(f))

∣∣∣ F (N)
n−1

)
+ µn+1(f)

= γNn−1(QnQn+1(f)) + µn(Qn+1(f)) + µn+1(f)

Iterating the argument one proves (5.3). The end of the proof is now clear.

The next theorem provides a key martingale decomposition and a rather crude non
asymptotic variance estimate.

Theorem 5.2 For any n ≥ 0 and any function f ∈ B(En), we have the decomposition

√
N
[
γNn − γn

]
(f) =

n∑

p=0

γNp (1) WN
p (Qp,n(f)) (5.4)

In addition, if the mixing condition (M)k presented in (4.1) is met for some k ≥ 1 and some
constant parameters ǫp = ǫ > 0, then we have for any N > 1 and any n ≥ 1

E

([
γNn (1)

γn(1)
− 1

]2)
≤ n+ 1

N − 1

δ2k
ǫ2

(
1 +

δ2k
ǫ2(N − 1)

)n−1

(5.5)
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Before presenting the proof of this theorem, we would like to make a couple of comments.
On the one hand, we observe that the unbiasedness property follows directly from the
decomposition (5.4). On the other hand, using Kintchine’s inequality, for any r ≥ 1, p ≥ 1,
and any f ∈ Osc1(En) we have the almost sure estimates

√
N E

(∣∣WN
p (f)

∣∣r
∣∣∣F (N)

p−1

) 1
r ≤ ar

A detailed proof of these estimates can be found in [4], see also lemma 7.2 in [1] for
a simpler proof by induction on the parameter N . From this elementary observation, and
recalling that γNn (1) ∈ In for any n ≥ 0, we find that

√
N E

(∣∣[γNn − γn
]
(f)
∣∣r
) 1

r ≤ ar bn

for some finite constant bn whose values only depend on the time parameter n.
Now, we present the proof of theorem 5.2.
Proof of theorem 5.2:
We use the decomposition:

γNn+1(f)− γn+1(f) =
[
γNn+1(f)− E

(
γNn+1(f)

∣∣∣ F (N)
n

)]
+
[
E

(
γNn+1(f)

∣∣∣ F (N)
n

)
− γn+1(f)

]

By (5.3), we find that

γNn+1(f)− E

(
γNn+1(f)

∣∣∣ F (N)
n

)
= γNn+1(f)−

[
γNn (Qn+1(f)) + µn+1(f)

]

Since we have

γNn (Qn+1(1)) + µn+1(1) = γNn (Gn) + µn+1(1)

= γNn (1) ηNn (Gn) + µn+1(1) = γNn+1(1)

this implies that

γNn+1(f)−
[
γNn (Qn+1(f)) + µn+1(f)

]
= γNn+1(1)

[
ηNn+1(f)−

[
γNn (Qn+1(f)) + µn+1(f)

]

[γNn (Qn+1(1)) + µn+1(1)]

]

= γNn+1(1)
[
ηNn+1(f)− ηNn Kn+1,(γN

n (1),ηNn )(f)
]

and therefore

γNn+1(f)− E

(
γNn+1(f)

∣∣∣ F (N)
n

)
= γNn+1(1)

[
ηNn+1(f)− ηNn Kn+1,(γN

n (1),ηNn )(f)
]

Finally, we observe that

E

(
γNn+1(f)

∣∣∣ F (N)
n

)
− γn+1(f) = γNn (Qn+1(f))− γn(Qn+1(f))

from which we find the recursive formula
[
γNn+1 − γn+1

]
(f) = γNn+1(1)

[
ηNn+1 − ηNn Kn+1,(γN

n (1),ηNn )

]
(f) +

[
γNn − γn

]
(Qn+1(f))

The end of the proof of (5.4) is now obtained by a simple induction on the parameter n.
Now, we come to the proof of (5.5). Using the fact that

E

(
γNp (1)WN

p (f (1)) γNq (1)WN
q (f (2))

)
= E

(
γNp (1)γNq (1)WN

p (f (1)) E
(
WN

q (f (2)) | FN
q−1

))

= 0

21



for any 0 ≤ p < q ≤ n, and any f (1) ∈ B(Ep), and f (2) ∈ B(Eq), we prove that

N E

([
γNn (1) − γn(1)

]2)
=

n∑

p=0

E
(
γNp (1)2 E

(
WN

p (Qp,n(1))
2|FN

p−1

))

Notice that

1

γn(1)2
=

1

γp(1)2
1

ηp(Qp,n(1))2

(
γp(Qp,n(1))

γn(1)

)2

≤ α⋆
p,n(γp(1))

2 1

γp(1)2
1

ηp(Qp,n(1))2
(5.6)

The r.h.s. estimate comes from the fact that

γp(Qp,n(1))

γn(1)
=

γp(1) ηp(Qp,n(1))

γp(1) ηp(Qp,n(1)) +
∑

p<q≤n µqQq,n(1)
= αp,n (γp(1), ηp) ≤ α⋆

p,n(γp(1))

Using the above decompositions, we readily prove that

N E

([
γNn (1)

γn(1)
− 1

]2)
≤

n∑

p=0

α⋆
p,n(γp(1))

2
E



(
γNp (1)

γp(1)

)2

E
(
WN

p (Qp,n(1))
2|FN

p−1

)



with
Qp,n(1) = Qp,n(1)/ηp(Qp,n(1)) ≤ qp,n

We set

UN
n := E

([
γNn (1)

γn(1)
− 1

]2)
then we find that N UN

n ≤ an +

n∑

p=0

bp,n UN
p

with the parameters

an :=

n∑

p=0

(
qp,nα

⋆
p,n(γp(1)

)2
and bp,n :=

(
qp,nα

⋆
p,n(γp(1)

)2

Using the fact that bn,n ≤ 1, we prove the following recursive equation

UN
n ≤ aNn +

∑

0≤p<n

bNp,n UN
p with aNn :=

an
N − 1

and bNp,n :=
bp,n

N − 1

Using an elementary proof by induction on the time horizon n, we prove the following
inequality:

UN
n ≤




n∑

p=1

aNp
∑

e∈〈p,n〉

bN (e)


 +


 ∑

e∈〈0,n〉

bN (e)


 UN

0

In the above display, 〈p, n〉 stands for the set of all integer valued paths e = (e(l))0≤l≤k of
a given length k from p to n

e0 = p < e1 < . . . < ek−1 < ek = n and bN (e) =
∏

1≤l≤k

bNe(l−1),e(l)

We have also used the convention bN (∅) = ∏∅ = 1 and 〈n, n〉 = {∅}, for p = n. Recalling
that γN0 = γ0, we conclude that

UN
n ≤

n∑

p=1

aNp
∑

e∈〈p,n〉

bN (e)
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We further assume that the mixing condition (M)k presented in (4.1) is met for some
parameters k ≥ 1, and some constant parameters ǫp = ǫ > 0. In this case, we use the fact
that

α⋆
p,n ≤ 1 and qp,n ≤ δk/ǫ

to prove that

sup
0≤p≤n

aNp ≤ (n+ 1) (δk/ǫ)
2/(N − 1) and sup

0≤p≤n
bNp,n ≤ (δk/ǫ)

2/(N − 1)

Using these rather crude estimates, we find that

UN
n ≤ aNn +

∑

0<p<n

aNp

(n−p)∑

l=1

(
n− p− 1

l − 1

)(
δ2k

ǫ2(N − 1)

)l

and therefore

UN
n ≤ (n+ 1)

(N − 1)

δ2k
ǫ2


1 +

δ2k
ǫ2(N − 1)

∑

0<p<n

(
1 +

(
δ2k

ǫ2(N − 1)

))n−p−1



=
(n+ 1)

(N − 1)

δ2k
ǫ2

(
1 +

δ2k
ǫ2(N − 1)

)n−1

This ends the proof of the theorem.

5.2.2 Probability distributions

This section is mainly concerned with the proof of the Lr-mean error estimates stated in
(3.9). We use the decomposition

(
γNn (1), ηNn

)
− (γn(1), ηn) =

[
Γ0,n

(
γN0 (1), ηN0

)
− Γ0,n (γ0(1), η0)

]

+

n∑

p=1

[
Γp,n

(
γNp (1), ηNp

)
− Γp−1,n

(
γNp−1(1), η

N
p−1

)]
(5.7)

to prove that

ηNn − ηn

=
[
Γ2
0,n

(
γN0 (1), ηN0

)
− Γ2

0,n (γ0(1), η0)
]
+
∑n

p=1

[
Γ2
p,n

(
γNp (1), ηNp

)
− Γ2

p−1,n

(
γNp−1(1), η

N
p−1

)]

Using the fact that

Γp−1,n(m, η) = Γp,n (Γp(m, η)) ⇒ Γ2
p−1,n(m, η) = Γ2

p,n (Γp(m, η))

we readily check that

Γp

(
γNp−1(1), η

N
p−1

)
=
(
γNp−1(1)η

N
p−1(Gp−1) + µp(1),ΨGp−1

(
ηNp−1

)
Mp,(γN

p−1(1),η
N
p−1)

)

=
(
γNp (1), ηNp−1Kp,(γN

p−1(1),η
N
p−1)

)
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Since we have γN0 (1) = µ0(1) = γ0(1), one concludes that

ηNn − ηn =
[
Γ2
0,n

(
γ0(1), η

N
0

)
− Γ2

0,n (γ0(1), η0)
]

+

n∑

p=1

[
Γ2
p,n

(
γNp (1), ηNp

)
− Γ2

p,n

(
γNp (1), ηNp−1Kp,(γN

p−1(1),η
N
p−1)

)]

Using the fact that γNp (1) ∈ Ip, for any p ≥ 0, the end of the proof is a direct consequence of
lemma 4.5 and Kintchine inequality. The proof of the uniform convergence estimates stated
in the end of theorem 3.2 are a more or less direct consequence of the functional inequalities
derived at the end of section 4.3. The end of the proof of the theorem 3.2 is now completed.

We end this section with the fluctuations properties of the N -particle approximation
measures γNn and ηNn around their limiting values. Using the type of arguments as those
used in the proof of the functional central limit theorem, theorem 3.3 in [6], we can prove
that the sequence (WN

n )n≥0 defined in (3.12) converges in law, as N tends to infinity, to the
sequence of n independent, Gaussian and centered random fields (Wn)n≥0 with a covariance
function given in (3.13). Using the decompositions (5.4) and

ηNn (f)− ηn(f) =
γn(1)

γNn (1)

(
[γNn − γn]

(
1

γn(1)
(f − ηn(f))

))

by the continuous mapping theorem, we deduce the functional central limit theorem 3.3.

6 Particle approximations of spontaneous birth measures

Assume that the spontaneous birth measures µn are chosen so that µn ≪ λn for some
reference probability measures λn and that the Radon Nikodim derivatives Hn = dµn/dλn

are bounded. For any n ≥ 0, we let λN ′

n := 1
N ′

∑N ′

i=1 δζin be the empirical measure associated

with N ′ independent and identically distributed random variables
(
ζ in
)
1≤i≤N

with common

distribution λn. We also denote by µN ′

n the particle spontaneous birth measures defined
below

∀n ≥ 0 µN ′

n (dxn) := Hn(xn) λ
N ′

n (dxn)

In this notation, the initial distribution η0 and the initial mass γ0 are approximated by the
weighted occupation measure ηN

′

0 := ΨH0(λ
N ′

0 ) and γN
′

0 (1) := λN ′

0 (H0).
We let γ̃N

′

n and η̃N
′

n the random measures defined as γn and ηn by replacing in (2.2) the
measures µn by the random measures µN ′

n , for any n ≥ 0; that is, we have that

γ̃N
′

n = γ̃N
′

n−1Qn + µN ′

n and η̃N
′

n (fn) = γ̃N
′

n (fn)/γ̃
N ′

n (1)

for any fn ∈ B(En). By construction, using the same arguments as the ones we used in the
proof of (4.8), we have

γ̃N
′

n =
∑

0≤p≤n

µN ′

p Qp,n

This yields for any f ∈ B(En) the decomposition
[
γ̃N

′

n − γn

]
(f) =

∑

0≤p≤n

[
µN ′

p − µp

]
Qp,n(f) =

∑

0≤p≤n

[
λN ′

p − λp

]
(Hp Qp,n(f))

Several estimates can be derived from these formulae, including Lp-mean error bounds,
functional central limit theorems, empirical process convergence, as well as sharp exponential
concentration inequalities. For instance, we have the unbiasedness property

E

(
γ̃N

′

n (f)
)
= γn(f)
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and the variance estimate

N E

([
γ̃N

′

n (f)− γn(f)
]2)

=
∑

0≤p≤n

λp

[
(HpQp,n(f)− λp(HpQp,n(f))]

2
)

Using the same arguments as the ones we used in (5.6), we prove the following rather crude
upper bound

N E



[
γ̃N

′

n (f)

γn(1)
− ηn(f)

]2
 ≤

∑

0≤p≤n

α⋆
p,n(γp(1))

2 1

γp(1)2
µp

(
HpQp,n(f)

2
)

ηp(Qp,n(1))2

≤
∑

0≤p≤n

α⋆
p,n(γp(1))

2 1

γp(1)2
‖Hp‖ µp(1) q

2
p,n

We illustrate these variance estimates for time homogeneous models (En, Gn,Hn,Mn, µn) =
(E,G,H,M,µ), in the three situations discussed in (4.13), (4.14), and (4.16). We further
assume that the mixing condition (M)k presented in (4.1) is met for some parameters k ≥ 1,
and some ǫ > 0. In this case, we use the fact that qp,n ≤ δk/ǫ, to prove that

N E



[
γ̃N

′

n (f)

γn(1)
− ηn(f)

]2
 ≤ c

∑

0≤p≤n

[
α⋆
p,n(γp(1))/γp(1)

]2

with some constant c :=
(
‖H‖ µ(1) (δk/ǫ)

2
)
.

1. When G(x) = 1 for any x ∈ E, we have γp(1) = γ0(1) + µ(1) p. Recalling that
α⋆
p,n(γp(1)) ≤ 1, we prove the uniform estimates

N sup
n≥0

E



[
γ̃N

′

n (f)

γn(1)
− ηn(f)

]2
 ≤ c

∑

p≥0

(γ0(1) + µ(1) p)−2

2. When g+ < 1 and when the mixing condition (M)k stated in (4.1) is satisfied, we have
seen in (4.15) that

α⋆
p,n(γp(1)) ≤ 1 ∧

(
d1 g

(n−p)
+

)
and inf

n
γn(1) ≥ d2

for some finite constants d1 < ∞ and d2 > 0. From previous calculations, we prove
the following uniform variance estimates

N sup
n≥0

E



[
γ̃N

′

n (f)

γn(1)
− ηn(f)

]2
 ≤ (c/d22)

∑

p≥0

[
1 ∧

(
d21 g2p+

)]

3. When g− > 1 we have seen in (4.16) that γn(1) ≥ d gn− for any n ≥ n0, for some finite
constant d < ∞ and some n0 ≥ 1 so

N sup
n≥0

E



[
γ̃N

′

n (f)

γn(1)
− ηn(f)

]2
 ≤ c


 ∑

0≤p≤n0

γp(1)
−2 + d

∑

n≥n0

g−2n
−
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