
ar
X

iv
:1

00
3.

45
46

v2
 [

cs
.D

M
]

 2
6

M
ar

 2
01

1

BOLTZMANN SAMPLERS, PÓLYA THEORY, AND CYCLE POINTING

MANUEL BODIRSKY, ÉRIC FUSY, MIHYUN KANG, AND STEFAN VIGERSKE

Abstract. We introduce a general method to count unlabeled combinatorial structures and to
efficiently generate them at random. The approach is based on pointing unlabeled structures
in an “unbiased” way that a structure of size n gives rise to n pointed structures. We extend

Pólya theory to the corresponding pointing operator, and present a random sampling framework
based on both the principles of Boltzmann sampling and on Pólya operators. All previously
known unlabeled construction principles for Boltzmann samplers are special cases of our new
results. Our method is illustrated on several examples: in each case, we provide enumerative
results and efficient random samplers. The approach applies to unlabeled families of plane and
nonplane unrooted trees, and tree-like structures in general, but also to families of graphs (such
as cacti graphs and outerplanar graphs) and families of planar maps.

This is the extended and revised journal version of a conference paper with the title “An
unbiased pointing operator for unlabeled structures, with applications to counting and sam-
pling”, which appeared in the Proceedings of ACM-SIAM Symposium on Discrete Algorithms
(SODA’07), 7-9 January 2007, New Orleans.

1. Introduction

Pointing (or rooting) is an important tool to derive decompositions of combinatorial structures,
with many applications in enumerative combinatorics. Such decompositions can for instance be
used in polynomial-time algorithms that sample structures of a combinatorial class uniformly
at random. For a class of labeled structures, pointing corresponds to taking the derivative of
the (typically exponential) generating function of the class. In other words, each structure of
size n gives rise to n pointed (or rooted) structures. Other important operations on classes of
combinatorial structures are the disjoint union, the product, and the substitution operation – they
correspond to addition, multiplication, and composition of the associated generating functions.
Together with the usual basic classes of combinatorial structures (finite classes, the class of finite
sets, the class of finite sequences, and the class of cycles), this collection of constructions is a
powerful device to define a great variety of combinatorial families.

If a class of structures can be described by recursive specifications involving pointing, disjoint
unions, products, substitutions, and the basic classes, then the techniques of analytic combinatorics
can be applied to obtain enumerative results, to study statistical properties of random structures
in the class, and to derive efficient random samplers. An expository account for this line of
research is [10]. Among recent developments in the area of random sampling are Boltzmann
samplers [9], which are an attractive alternative to the recursive method of sampling [25, 11].
Both approaches provide in a systematic way polynomial-time uniform random generators for
decomposable combinatorial classes. The advantage of Boltzmann samplers over the recursive
method of sampling is that Boltzmann samplers operate in linear time if a small relative tolerance
is allowed for the size of the output, and that they have a small preprocessing cost, which makes
it possible to sample very large structures.

A third general random sampling approach is based on Markov chains. This approach does not
require recursive decompositions of structures, and is applicable on a wide range of combinatorial
classes. However, Markov chain methods are mostly limited to approximate uniformity. Moreover,
it is usually difficult to obtain bounds on the rate of convergence to the uniform distribution [20].

All the results in this paper concern classes of unlabeled combinatorial structures, i.e., the
structures are considered up to isomorphism. In the case of the class of all graphs, the labeled and
the unlabeled model do not differ much, which is due to the fact that almost all graphs do not have
a non-trivial automorphism (see e.g., [5, Ch. 9.] and [17]). However, for many interesting classes of

1

http://arxiv.org/abs/1003.4546v2

2 MANUEL BODIRSKY, ÉRIC FUSY, MIHYUN KANG, AND STEFAN VIGERSKE

combinatorial structures (and for most of the classes studied in this paper), the difference between
the labeled and the unlabeled setting does matter.

The Markov chain approach can be adapted also to sample unlabeled structures approximately
uniformly at random, based on the orbit counting lemma [19]. Again, the rate of convergence is
usually very difficult to analyze, and frequently these Markov chains do not have a polynomial
convergence rate [15]. For unlabeled structures, the approach faces additional difficulties: to
computationally implement the transitions of the Markov chain, we have to be able to generate
structures with a given symmetry uniformly at random (this is for instance a difficult task for
planar graphs), and we have to be able to generate a symmetry of a given structure (for the class
of all finite graphs, this task is computationally equivalent to the graph isomorphism problem).

To enumerate unlabeled structures, typically the ordinary generating functions are the appro-
priate tool. Disjoint unions and products for unlabeled structures then still correspond to addition
and multiplication of the associated generating functions as for labeled cases. Boltzmann samplers
for classes described by recursive specifications involving these operations have recently been de-
veloped in [13]. However, the substitution operation for unlabeled structures no longer corresponds
to the composition of generating functions, due to the symmetries an unlabeled structure might
have. This problem can be solved by Pólya theory, which uses the generalization of generating
functions to cycle index sums to take care of potential symmetries. Pólya theory provides a com-
putation rule for the cycle index sum associated to a substitution construction. The presence of
symmetries leads to another problem with the pointing (or rooting) operator: the fundamental
property that a structure of size n gives rise to n pointed structures does not hold. Indeed, if
a structure of size n has a non-trivial automorphism, then it corresponds to less than n pointed
structures (because pointing at two vertices in symmetric positions produces the same pointed
structure). Thus, for unlabeled structures, the classical pointing operator does not correspond to
the derivative of the ordinary generating function.

In this paper, we introduce an unbiased pointing operator for unlabeled structures. The op-
erator is unbiased in the sense that a structure of size n gives rise to n pointed structures. It
produces cycle-pointed structures, i.e., combinatorial structures A together with a marked cyclic
sequence of atoms of A that is a cycle of an automorphism of A. Accordingly, we call our oper-
ator cycle-pointing. The idea is based on Parker’s lemma in permutation group theory [7] (this
will be discussed in Remark 3.1). We develop techniques to apply this new pointing operator to
enumeration and random sampling of unlabeled combinatorial classes. The crucial point is that
cycle-pointing is unbiased. As a consequence, performing both tasks of enumeration and uniform
random sampling on a combinatorial class is equivalent to performing these tasks on the associated
cycle-pointed class.

To understand how we use our operator, it is instructive to look at the class of free trees, i.e.,
unrooted and nonplane trees (equivalently, acyclic connected graphs). Building on the work of
Cayley and Pólya, Otter [26] determined the exact and asymptotic number of free trees. To this
end, he developed the by-now standard dissimilarity characteristic equation, which relates the
number of free trees with the number of rooted nonplane trees; see [16]. The best-known method
to sample free trees uniformly at random is due to Wilf [34], and uses the concept of the centroid of
a tree. The method is an example of application of the recursive method of sampling and requires
a pre-processing step where a table of quadratic size is computed.

Cycle-pointing provides a new way to count and sample free trees. Both tasks are carried out on
cycle-pointed (nonplane) trees. The advantage of studying cycle-pointed trees is that the pointed
cycle provides a starting point for a recursive decomposition. In the case of cycle-pointed trees,
we can formulate such a decomposition using standard constructions such as disjoint union, prod-
uct, and substitution (which requires to suitably adapt these constructions to the cycle-pointed
framework). We want to stress that, despite some superficial similarities, this method for count-
ing free trees is fundamentally different from the previously existing methods mentioned above,
and it proves particulary fruitful in the context of random generation. Indeed, the dissimilarity
characteristic equation [26] and the dissymmetry theorem [2] both lead to generating function
equations involving subtraction. However, subtraction yields massive rejection when translated
into a random generator for the class of structures (both for Boltzmann samplers and for the

BOLTZMANN SAMPLERS, PÓLYA THEORY, AND CYCLE POINTING 3

recursive method). In contrast, the equations produced by the method based on cycle-pointing
have only positive signs, and the existence of a Boltzmann sampler for (cycle-pointed) free trees,
with no rejection involved, will follow directly from the general results derived in this paper. As
usual, the Boltzmann samplers we obtain have a running time that is linear in the size of the
structure generated, and have small pre-processing cost.

Similarly, we can decompose plane and nonplane trees, and more generally all sorts of tree-
like structures. By the observation that the block decomposition of a graph has also a tree-like
structure, we can apply the method to classes of graphs where the two-connected components can
be explicitly enumerated. This leads to efficient Boltzmann samplers, for instance, for cacti graphs
and outerplanar graphs, improving on the generators of [4]. Further, our strategy is not limited
to only tree-like structures, but can also be applied to other classes of structures that allow for a
recursive decomposition. To demonstrate this, we sketch how the method can be applied to count
and sample certain classes of planar maps.

Outline of the paper. To formalize our general results on enumeration and sampling for classes
of unlabeled combinatorial structures in full generality, we apply the concept of combinatorial
species ; we recall this concept in Section 2. In Section 3 we introduce cycle-pointed species and
the cycle-pointing operator. Section 4 is devoted to applications of our cycle-pointing operator
in enumeration. The technique in which we use the operator to obtain recursive decomposition
strategies for unlabeled enumeration is very generally applicable; we illustrate it by the enumer-
ation of (unrooted) non-plane and plane trees, cacti graphs, and maps. Finally, in Section 5,
we present how to apply the concepts introduced in this paper to obtain highly efficient random
sampling procedures for unlabeled structures. This is illustrated by applications for sampling of
concrete and fundamental classes of unlabeled combinatorial structures; several of these concrete
sampling results are either new or improve the state-of-the-art of sampling efficiency.

2. Preliminaries

In this paper we work with classes of combinatorial structures, such as graphs, relational struc-
tures, functions, trees, plane trees, maps, words, terms, or permutations. There are many ways to
define formally these objects; for example, rooted trees can be coded as special types of directed
graphs, but also as terms. Which formal representation of a combinatorial structure is best usually
depends on the application.

When we are interested in combinatorial enumeration, the differences in representation are not
essential; in the example above, we have the same number of rooted trees, no matter how they
are represented. We would thus like to have a formalism that is sufficiently abstract so that our
results apply to broad classes of combinatorial structures. At the same time, we would like to have
a formalism for classes of combinatorial structures that supports fundamental construction oper-
ations for combinatorial classes, such as formation of disjoint unions, products, and substitution,
and allows to state general results about enumeration and random sampling.

The theory of combinatorial species is an elegant tool that fully satisfies the needs mentioned
above. We give a brief introduction to species, and refer to Bergeron, Labelle, and Leroux [2]
for a broader treatment of the topic. The fundamental and well-known classes of combinatorial
structures that we treat in Section 4 provide ample illustration of the concepts we define in this
section.

2.1. Combinatorial Species. We closely follow the presentation in [2]. A species of structures
is a functor A from finite sets U to finite sets A[U], together with a rule that produces for each
bijection σ : U → V a function from A[U] to A[V]. Slightly abusing notation, this function will
also be denoted by A[σ]. The functions A[σ] must satisfy the following two (functorial) properties:

• for all bijections σ : U → V and τ : V →W ,

A[τ ◦ σ] = A[τ] ◦A[σ] ;

• for the identity map IdU : U → U ,

A[IdU] = IdA[U] .

4 MANUEL BODIRSKY, ÉRIC FUSY, MIHYUN KANG, AND STEFAN VIGERSKE

An element A ∈ A[U] is called an A-structure on U . The elements of U are called the atoms of
A[U], and we refer to |U | as the size of A. The function A[σ] is called the transport of A-structures
along σ. We write σ ·A for A[σ](A).

Definition 2.1. Let A1 ∈ A[U] and A2 ∈ A[V] be two A-structures. A bijection σ : U → V is
called an isomorphism from A1 to A2 if A2 = σ ·A1 = A[σ](A1). An isomorphism from A1 to A1

is called an automorphism of A1.

The advantage of species is that the rule A that produces the structures A[U] and the transport
functions A[σ] can be described in any way; the book [2] gives instructive examples where this
description is by axiomatic systems, explicit constructions, algorithms, combinatorial operations,
or functional equations.

Definition 2.2. A species A is a subspecies of a species B (and we write A ⊆ B) if it satisfies the
following two conditions:

• for any finite set U , A[U] ⊆ B[U];
• for any σ : U → V we have A[σ] = B[σ]|B[U].

2.2. Enumeration. For all finite sets U , the number of A-structures on U depends only on the
number of elements of U (and not on the elements of U). If A is a species, we write an for
|A[{1, . . . , n}]|, the cardinality of the set of A-structures on {1, . . . , n}. The series

A(x) :=
∑

n≥0

1

n!
anx

n (1)

is called the exponential generating series of the species A.
In this article we focus on unlabeled structures, i.e., we consider structures up to isomorphism.

We may restrict ourselves to structures on sets of the form U = [1..n] := {1, . . . , n}, and write
A[n] for A[{1, . . . , n}]. We define the equivalence relation ∼ on A[n] by setting A1 ∼ A2, for
A1, A2 ∈ A[n], if and only if there is an isomorphism σ : [1..n] → [1..n] from A1 to A2. We also
say that A1 and A2 have the same isomorphism type, and the equivalence classes of A-structures
on [1..n] with respect to ∼ are also called unlabeled A-structures of size n, The set of all those

equivalence classes is denoted by Ãn, and we write ãn for its cardinality |Ãn|. The series

Ã(x) :=
∑

n≥0

ãnx
n (2)

is called the ordinary generating series (OGS) of A. We use the classical notation [xn]Ã(x) to

denote the n-th coefficient ãn in the power series Ã(x).

2.3. Cycle index sums. For a species A and each n ≥ 0, a symmetry of A of size n is a pair
(A, σ) where A is from A[n] and σ is an automorphism of A. We call A the underlying structure of
the symmetry (A, σ). Notice that the automorphism σ can be the identity. We denote by Sym(A)
the species defined by

Sym(A)[n] := {(A, σ) | A ∈ A[n] and σ is an automorphism of A} .
The definition of the transport of Sym(A) is obvious (the definition of symmetries as an auxiliary
species is standard; see Section 4.3 in [2]). The weight-monomial of a symmetry (A, σ) of size n
is defined as

w(A,σ) :=
1

n!

n∏

i=1

s
ci(σ)
i , (3)

where, for i ∈ [1..n], si is a formal variable and ci(σ) is the number of cycles of σ of length i. For
simplicity, in the following we will write ci for ci(σ) if the corresponding automorphism is clear
from the context. The cycle index sum of A, denoted by ZA(s1, s2, . . .), or shortly ZA, is the
formal power series defined as the sum of the weight-monomials over all the symmetries of A,

ZA(s1, s2, . . .) :=
∑

n≥0

 ∑

(A,σ)∈Sym(A)[n]

w(A,σ)

 . (4)

BOLTZMANN SAMPLERS, PÓLYA THEORY, AND CYCLE POINTING 5

Basic species Notation Cycle index sum

Empty species 0 Z0 = 0
Neutral species 1 Z1 = 1
Atomic species X ZX = s1
Sequences with k atoms Seq[k] ZSeq[k] = sk1

Sets with k atoms Set[k] ZSet[k] = [xk] exp
(∑

r≥1

1

r
xrsr

)

Cycles with k atoms Cyc[k] ZCyc[k] =
1

k

∑

r|k

φ(r)sk/rr

Species of sequences Seq ZSeq =
1

1− s1

Species of sets Set ZSet = exp
(∑

r≥1

1

r
sr

)

Species of cycles Cyc ZCyc = 1 +
∑

r≥1

φ(r)

r
log

(
1

1− sr

)

Construction Notation Cycle index sum

Union of two species M = A+B ZM = ZA + ZB

Product of two species M = A ·B ZM = ZA · ZB

Composition of two species M = A ◦B ZM = ZA ◦ ZB

Figure 1. The cycle index sums of basic species and of species composed by +,
·, and ◦.

Cycle index sums for classes of combinatorial structures have been introduced by Pólya [28]. The
following fact, which is based on Burnside’s lemma, shows that cycle index sums are a refinement
of ordinary generating series.

Lemma 1 (Pólya). Let A be a species of structures. For n ≥ 0, each unlabeled structure Ã ∈ Ãn

gives rise to n! symmetries, i.e., there are n! symmetries (A, σ) such that A ∈ Ã. Hence,

ZA(x, x
2, x3, . . .) = Ã(x). (5)

In the proofs of combinatorial identities it will be convenient to identify species that are essen-
tially the same.

Definition 2.3. Let A and B be two species. An isomorphism from A to B is a family of bijections
αU : A[U]→ B[U] which satisfies the following naturality condition: for any bijection σ : U → V
between two finite sets U and V , and for any A-structure A on U , one must have

σ · αU (A) = αV (σ ·A) .

It is known (see [2]) that when A is isomorphic to B, then A(x) = B(x), Ã(x) = B̃(x), and
ZA(x1, x2, . . .) = ZB(x1, x2, . . .). Hence, for the purposes of combinatorial enumeration we can
even identify isomorphic species, and as in [2] we write A = B when A and B are isomorphic
species.

2.4. Basic species and combinatorial constructions. We now recall a collection of basic
species and combinatorial constructions. We start with the description of some basic species, and
then introduce the three fundamental constructions of disjoint union, product, and substitution.

2.4.1. Basic Species. The most elementary species are

• the empty species 0 defined by 0[U] := ∅ for all U ;
• the neutral species 1 defined by 1[U] := {∅} if |U | = 0 and 1[U] := ∅ otherwise;
• the atomic species X defined by X [U] := {U} if |U | = 1 and X [U] := ∅ otherwise;
• the species of sets Set defined by Set[U] := {U};
• the species Seq of sequences defined by Seq[U] := {(U,<) | U is linearly ordered by <};

6 MANUEL BODIRSKY, ÉRIC FUSY, MIHYUN KANG, AND STEFAN VIGERSKE

• the species Cyc of oriented cycles (or cyclic permutations) defined by

Cyc[U] := {(U, π) | π is a cyclic permutation of U} .
In each case, the definition of the transport A[σ] of A-structures is obvious.

If A is a species, then A[n] denotes the species defined by A[n][U] := A[U] if |U | = n and
A[U] := ∅ otherwise. The transport A[n][σ] for bijections σ : U → V is defined by A[n][σ] := A[σ]

if |U | = n and A[n][σ] := IdA[U] otherwise. In particular, X is Set[1].

2.4.2. Constructions. We now describe the three fundamental constructions that we use to con-
struct species from other species.

Disjoint union. For two species A and B, the species A+B, called the disjoint union (or sum)
of A and B, is defined by (A + B)[U] = ({1} × A[U]) ∪ ({2} × B[U]). The transport along a
bijection σ : U → V is carried out by setting, for any (A+B)-structure C on U ,

(A+B)[σ]((i, C)) :=

{
A[σ](C) if i = 1

B[σ](C) if i = 2 .

Note that when A,A′,B,B′ are species such that A = A′ (i.e., A and A′ are isomorphic) and
B = B′, then A+B = A′ +B′.

The disjoint union of a countably infinite sequence A1,A2, . . . of species is defined analogously,
setting

(∑
i≥1 Ai

)
[U] :=

⋃
i≥1(i,Ai[U]) (this species is well-defined provided the set on the right

is finite for each finite set U).

Product. The cartesian (often also called partitional or dinary) product A ·B of two species A
and B is the species defined as follows. An (A ·B)-structure on U is an ordered pair C = (A,B)
where A is an A-structure on a set U1 ⊆ U , B is a B-structure on a set U2 ⊆ U , U1 ∩ U2 = ∅,
and U1 ∪ U2 = U . The transport along a bijection σ : U → V is carried out by setting, for each
(A ·B)-structure C = (A,B) on U ,

(A ·B)[σ](C) := (A[σ1](A),B[σ2](B))

where σi is the restriction σ|Ui
of σ on Ui for i ∈ {1, 2}.

Again we note that when A,A′,B,B′ are species such that A = A′ and B = B′, then A · B =
A′

·B′.

Substitution. Given two species A and B such that B[∅] = ∅, the (partitional) composite of B in
A, denoted by A ◦B, is the species C obtained as follows. A C-structure on U is a triple (π,A,B)
where

• π is a partition of U ;
• A is an A-structure on the set of classes of π;
• B := (Bp)p∈π where for each class p of π, Bp is a B-structure on p.

The transport along a bijection σ : U → V is carried out by setting, for any C-structure C =
(π,A, (Bp)p∈π) on U

C[σ](C) := (π̄, Ā, (B̄p̄)p̄∈π̄)

where

• π̄ is the partition of V obtained by transport of π along σ;
• the structure Ā is obtained from the structure A by A-transport along the bijection σ̄ :
π → π̄ induced by σ on π;
• for each p̄ = σ(p) ∈ π̄, the structure B̄p̄ is obtained from the structure Bp by B-transport
along σ|p.

We call the A-structure A the core of (π,A,B), and Bp in B = (Bp)p∈π a component of (π,A,B).
Also for the substitution construction, we have that when A,A′,B,B′ are species such that A = A′

and B = B′, then A ◦B = A′ ◦B′.
Together with the basic species, these constructions provide an extremely powerful device for

the description of combinatorial families. The substitution construction is particularly interesting,

BOLTZMANN SAMPLERS, PÓLYA THEORY, AND CYCLE POINTING 7

as it allows us to express other combinatorial constructions, such as the formation of sequences,
sets, and cycles of structures of a species A, which are specified as Seq◦A, Set◦A, and Cyc◦A,
respectively.

As usual, and to avoid clumsy expressions with many brackets, we make the convention that in
expressions involving several of the symbols +, ·, ◦, the symbol ◦ binds stronger than the symbol
·, and the symbol · binds stronger than the symbol +.

There are explicit rules to compute the cycle index sum for the basic species and for each
construction.

Definition 2.4. Given two power series f := f(x1, x2, x3 . . .) and g := g(x1, x2, x3, . . .) such that
g(0, 0, . . .) = 0, the plethystic composition of f and g, as defined in [2], is the power series

f ◦ g := f(g1, g2, g3, . . .), with gk = g(xk, x2k, x3k, . . .) . (6)

In other words, f ◦ g is the series f where each variable xk is replaced by g(xk, x2k, x3k, . . .).

Proposition 2 (Pólya, Bergeron et al. [2]). For each of the basic species {0,1, X, Seq[k], Set[k],

Cyc[k], Seq, Set, Cyc}, the associated cycle index sum has an explicit expression, as given in
Figure 1. For each of the fundamental constructions ∧ ∈ {+, ·, ◦}, there is an explicit rule to
compute the cycle index sum of the species A ∧B, as given in Figure 1.

Remark 2.1. The ordinary generating series of a species can be obtained from the cycle index
sums for the species. For the sum and product constructions, we obtain

C = A+B ⇒ C̃(x) = Ã(x) + B̃(x), (7)

C = A ·B ⇒ C̃(x) = Ã(x) · B̃(x). (8)

For the substitution construction, the computation rule is

C = A ◦B ⇒ C̃(x) = ZA(B̃(x), B̃(x2), B̃(x3), . . .). (9)

2.5. Recursive Specifications. It is possible to define species via recursive specifications that
involve the fundamental constructions introduced above.

Definition 2.5. A (standard) recursive specification with variables x1, . . . , xm over the species
A1, . . . ,Aℓ is a system Ψ of equations x1 = e1, . . . , xm = em where each ei is

• of the form a+ b or a · b with a, b ∈ {x1, . . . , xm,A1, . . . ,Aℓ}, or
• of the form a ◦ b with a ∈ {A1, . . . ,Aℓ} and b ∈ {x1, . . . , xm,A1, . . . ,Aℓ}.

Under a certain condition, a recursive specification Ψ with variables x1, . . . , xm defines new

species X1, . . . ,Xm as follows. We first define for each i ≥ 0 a vector of species X
(i)
1 , . . . ,X

(i)
m . For

i = 1, we set (X
(i)
1 , . . . ,X

(i)
m) = (0, . . . ,0). For i > 1 and 1 ≤ j ≤ m, the species X

(i)
j is defined

from ej by substituting for all 1 ≤ k ≤ m the occurrences of xk in ej by X
(i−1)
k . The resulting

expression only contains species and symbols +, ·, and ◦, and hence evaluates to a species, unless
ej = a ◦ b and b is substituted by a species that contains structures of size 0. If this case never
occurs, i.e., if B[∅] = ∅ whenever a species B is substituted for b in an expression a ◦ b, then we
call Ψ admissible.

Note that the sequence X
(1)
k ,X

(2)
k , . . . is monotone, that is, X

(i)
k ⊆ X

(i+1)
k for all 1 ≤ k ≤ m and

all i ≥ 1; this follows from the following basic fact (we omit the proof which is straightforward).

Proposition 3. If A,A′,B,B′ are species, and A ⊆ A′, B ⊆ B′, then A + B ⊆ A′ + B′,
A ·B ⊆ A′

·B′, and A ◦B ⊆ A′ ◦B′.

Note that due to this proposition, it is easy to decide for a given recursive specification whether
or not it is admissible (given also the information which of the species A1, . . . ,Aℓ contains struc-
tures of size 0).

8 MANUEL BODIRSKY, ÉRIC FUSY, MIHYUN KANG, AND STEFAN VIGERSKE

Definition 2.6. Let Ψ be an admissible recursive specification with variables x1, . . . , xm over

the species A1, . . . ,Aℓ, and let the species X
(i)
j be as described above. If for each n, the set⋃

i≥1 X
(i)[n] is finite, then the species X1, . . . ,Xm specified by Ψ are defined as follows. We set

Xj[n] =
⋃

i≥1 X
(i)
j [n]. By monotonicity, for each n we have that Xj[n] equals X

(k)
j [n] for some k,

and so we can define the transport of Xj by Xj [σ] = X
(k)
j [σ].

Definition 2.7. Let A be a class of species. The class of species that is decomposable over A is
the smallest class of species B that contains A, and that contains all species that can be defined
by recursive specifications over species from B.

2.6. Decomposition of symmetries. In this subsection we provide a proof of Proposition 2.
The proof relies on a precise description of the nature of the automorphisms for the basic species
and for the species obtained from one of the constructions +, ·, or ◦. Even though proofs and
details can already be found in [2], we give our own presentation here since we build on this later
on, in particular to define random generation rules (Section 5).

2.6.1. Automorphisms of some basic species. By convention, the neutral species 1 has the cycle-
index sum 1 (the structure of size 0 is assumed to be fixed by the “empty” automorphism, of
weight 1).

The cycle index sum of X is s1. The only X-structures are over U with |U | = 1, and all
automorphisms of such structures consist of a single cycle that has weight s1.

For the species Seq, the only automorphisms are the identity, and the identity has weight sk1/k!.

As there are k! sequences of length k, the cycle index sum of Seq[k] is sk1 . Since Seq =
∑

k≥0 Seq
[k],

the cycle index sum for Seq is

ZSeq =
∑

k≥0

sk1 =
1

1− s1
. (10)

For the species Cyc, the automorphisms are exactly the ‘shifts’: for a cycle (v1, . . . , vk), the shift
of this cycle by m ∈ [0..k−1] maps vi to vi+m where the indices are modulo k. The automorphisms
consist of k/r cycles of length r, where r is the order of m in Z/(kZ). For each divisor r of k,
there are φ(r) elements of order r in Z/(kZ), where φ(.) is the Euler totient function. Hence, for

each cycle of length k, the sum of the weight-monomials over all the cycles of size r is φ(r)s
k/r
r /k!,

and the sum of the weight-monomials over all the symmetries is
∑

r|k φ(r)s
k/r
r /k!. As there are

(k − 1)! cycles of length k, the cycle index sum of Cyc[k] is 1/k ·∑r|k φ(r)s
k/r
r . For the species

Cyc =
∑

k≥1 Cyc[k] of all cycles, the sum of the weight-monomials over all symmetries of size r,
which we denote by ZCyc,r, is thus

ZCyc,r =
∑

k,r|k

φ(r)

k
sk/rr =

φ(r)

r

∑

m≥1

1

m
smr =

φ(r)

r
log

(
1

1− sr

)
. (11)

Therefore, summing ZCyc,r over r ≥ 1, one obtains the expression of ZCyc given in Figure 1.
For the species Set, the automorphisms are all permutations. Hence, the cycle index sum for

Set is simply the exponential generating series for all permutations, where each cycle of length i
is marked by a variable si. In other words, when f(x) denotes the exponential generating series
for permutations, and f(x; s1, s2, s3, . . .) denotes the same generating series where each variable si
marks the number of cycles of length i, then the rules for computing exponential generating series
yield

f(x; s1, s2, s3, . . .) = exp

∑

i≥1

1

i!
xi(i− 1)!si

 = exp

∑

i≥1

1

i
xisi

 . (12)

Hence, f(1; s1, s2, s3, . . .) is the cycle index sum for Set, and the cycle index sum for Set[k] is
[xk]f(x; s1, s2, s3, . . .), which corresponds to a restriction to permutations of size k. Notice that
ZSet[k] is always a polynomial; for instance, we have

ZSet[2] =
1

2
(s21 + s2), ZSet[3] =

1

6
(s31 +3s2s1 +2s3), ZSet[4] =

1

24
(s41 +6s21s2 +8s1s3 +3s22+6s4).

BOLTZMANN SAMPLERS, PÓLYA THEORY, AND CYCLE POINTING 9

2.6.2. Automorphisms related to the constructions. We now describe precisely how a symmetry of
a species C = A ∧B, with ∧ ∈ {+, ·, ◦}, is assembled from symmetries on the species A and B.

Disjoint union. Clearly, each symmetry of C = A + B is either a symmetry of A or of B

depending on whether the underlying structure is in A or in B. Consequently, Sym(A+B) is the
disjoint union of Sym(A) and Sym(B). This directly yields the formula ZA+B = ZA + ZB.

Product. Consider a product species C = A · B. Then there is the following bijective corre-
spondence between symmetries of C and ordered pairs of a symmetry of A and a symmetry of B:
when ((A,B), σ) is a symmetry of C where U are the atoms of A and V are the atoms of B, then
((A,B), σ) is in correspondence with the symmetry (A, σ|U) of A and the symmetry (B, σ|V) of
B (where σ|U and σ|V denote the restriction of σ to U and V , respectively).

Hence, ZC = ZA·ZB. (Indeed, for the species C the cycle index sum acts like an exponential gen-
erating series for the species Sym(C) of symmetries when taking the refined weights sc11 · · · scnn /n!
instead of xn/n!.)

Substitution. For two species A and B with B[∅] = ∅, let C = A ◦ B. To understand the
automorphisms of C-structures, consider a C-structure C = (π,A, (Bp)p∈π) over [1..n]. Let σ be
an automorphism of C. It is clear that if two atoms v1 and v2 of C are in the same component,
then σ(v1) and σ(v2) have to be on the same component as well, by definition of the transport for
C; moreover, σ induces an automorphism τ of A.

Consider an atom v from a component Bp of C, and let k be the length of the cycle of τ
containing v. Note that σk maps Bp to itself, so σk induces an automorphism on Bp, the resulting
symmetry being denoted by (Bp, σp). Consider the cycle c = (p1, . . . , pk) in τ where p1 = p.
Observe that the symmetries (Bpi

, σpi
), for i ∈ [k], can be seen as k copies of the same symmetry

of B, which we denote by (Bc, σc). For each cycle d = (w1, . . . , wℓ) of σc, let (d1, . . . , dk) be the
copies of d at (p1, . . . , pk), respectively. Then one can merge d1, . . . , dk into a unique cycle of
length ℓ · k using a specific operation which we call composition of cycles.

Definition 2.8. Let d = (v1, . . . , vℓ) be a cycle of atoms from [1..n], with v1 the atom of d having
the smallest label. Let d1, . . . , dk be a sequence of k copies of the cycle. Then the composed cycle
of d1, . . . , dk is the cycle of atoms of length ℓk such that, for 1 ≤ i < k and 1 ≤ j ≤ ℓ, the successor
of the atom vj in di is the atom vj in di+1; and for 1 ≤ j ≤ ℓ, the successor of the atom vj in dk
is the atom v(j+1) mod ℓ in d1.

This definition correctly reflects how each cycle of σ is assembled from copies of cycles that are
on isomorphic components. Indeed, walking k steps forward on the composed cycle corresponds
to walking one step forward on one fixed cycle, which corresponds to the fact that the induced
automorphism on each component Bvi is the effect of σ iterated k times.

In each symmetry (A, σ) where A is an A-structure over [1..n], the automorphism σ induces a
partition of [1..n] corresponding to the cycles of σ. We say that σ has type t = (c1, . . . , cn) when
ci is the number of cycles of length i in σ. Note that n =

∑n
i=1 ici (and such integer sequences

(c1, . . . , cn) will also be called partition sequences (of order n)).
To compute the cycle index sum ZA◦B, we first choose a type t = (c1, . . . , cn) of a permutation

of [1..n]. The number a(t) of symmetries (A, σ) of the species A where σ is of type t equals
n! · [sc11 sc22 . . . scnn](ZA). To obtain a symmetry (C, ρ) of A ◦B with C = (π,A,B) where ρ induces
on A a permutation σ of type t, we choose a symmetry ofA of type t, and then choose ci symmetries

of B for each i. The sum Z
(t)
A◦B of the weight-monomials for all those symmetries is therefore

Z
(t)
A◦B =

a(t)

n!
bc11 bc22 · · · bcnn , where bi := ZB(si, s2i, s3i, . . .). (13)

Summing over all possible types t of permutations, one obtains

ZA◦B = ZA(b1, b2, b3, . . .), where bi := ZB(si, s2i, s3i, . . .). (14)

3. Cycle-pointed Species

In this section we introduce cycle-pointed species, and our unbiased pointing operator.

10 MANUEL BODIRSKY, ÉRIC FUSY, MIHYUN KANG, AND STEFAN VIGERSKE

3.1. Cycle-Pointed Species. Let A be a species. Then the cycle-pointed species of A, denoted
by A◦, is defined as follows. For a finite set U , the set A◦[U] is defined to be the set of all
pairs P = (A, c) where A ∈ A[U] and c = (v1, . . . , vℓ) is a cycle of atoms of A such that there
exists at least one automorphism of A having c as one of its cycles (i.e., (v1, . . . , vℓ) is mapped to
(v2, . . . , vℓ, v1)). The cycle c is called the marked cycle (or pointed cycle) of P , and A is called
the underlying structure of P . Note that cycle-pointed species are in particular species. Thus, the
theory from the previous section also applies to cycle-pointed species.

An automorphism σ of A having c as one of its cycles is called a c-automorphism of P , and the
other cycles of σ are called unmarked. By definition, two cycle-pointed structures P and P ′ are
isomorphic if there exists an isomorphism from the underlying structure of P to the underlying
structure of P ′ that maps the marked cycle of P to the marked cycle of P ′ (i.e., each atom of
the marked cycle of P is mapped to an atom of the marked cycle of P ′, and the cyclic order is
preserved).

Definition 3.1. A species P is called cycle-pointed if P ⊆ A◦, for some species A. For ℓ ≥ 1, P(ℓ)

is the species that consists of those structures from P whose marked cycle has length ℓ.

We define A⊛ to be the subspecies of A◦ where in all structures the marked cycle has length
greater than 1, i.e., A⊛ =

∑
ℓ≥2(A

◦)(ℓ). (All cycle-pointed species that will be considered in the

applications – except for maps – are either of the form A◦ or A⊛.)

Definition 3.2. Let P be a cycle-pointed species. We define P† to be the species obtained from
P by removing the marked cycle from all P-structures; that is, the set of P†-structures on [1..n] is
{A | (A, c) ∈ Pn for some cycle c of atoms in A}.

Clearly, for any species A we have that (A◦)† = A.

3.2. Cycle Index Sums. In order to develop Pólya theory for cycle-pointed species, we introduce
the terminology of c-symmetry and rooted c-symmetry. Given a cycle-pointed species P, a c-
symmetry on P is a pair (P, σ) where P = (A, c) is a cycle-pointed structure in P and σ is a
c-automorphism of A. A rooted c-symmetry is a triple (P, σ, v), where (P, σ) is a c-symmetry,
and v is one of the atoms of the marked cycle of P ; this atom v is called the root of the rooted
c-symmetry. The species of rooted c-symmetries of P is denoted by RSym(P).

The weight-monomial of a rooted c-symmetry of size n is defined as

w(P,σ,v) :=
1

n!
tℓ

n∏

i=1

s
ni(σ)
i , (15)

where tℓ and the si’s are formal variables, ℓ is the length of the marked cycle, and for i ∈ [n], ni(σ)
is the number of unmarked cycles of σ of length i, i.e., ni(σ) = ci(σ) if i 6= ℓ and nℓ(σ) = cℓ(σ)−1.
For simplicity, in the following we will write ni for ni(σ) if the corresponding automorphism is
clear from the context. We define the pointed cycle index sum Z̄P(s1, t1; s2, t2; . . .) of P, denoted
by Z̄P, as the sum of the weight-monomials over all rooted c-symmetries of P,

Z̄P(s1, t1; s2, t2; . . .) :=
∑

(P,σ,v)∈RSym(P)

w(P,σ,v). (16)

The following lemma is the counterpart of Lemma 1 for cycle-pointed species; it shows that
pointed cycle index sums refine ordinary generating functions. Recall that for a species P, the set

P̃ denotes the unlabeled P-structures, see Section 2.2.

Lemma 4. Let P be a cycle-pointed species. For n ≥ 0, each unlabeled structure P̃ ∈ P̃n gives
rise to exactly n! rooted c-symmetries, i.e., there are n! rooted c-symmetries (P, σ, v) such that

P ∈ P̃ . As a consequence,

P̃(x) = Z̄P(x, x;x
2, x2; . . .). (17)

Proof. Lemma 1 implies that P̃n gives rise to n! symmetries. Now we establish a bijection between
these symmetries and rooted c-symmetries from P̃n. Fix a c-symmetry (P0, σ0) where P0 is from P̃n

(by definition of cycle-pointed species, such a c-symmetry exists). Now, let (P1, σ1) be a symmetry

BOLTZMANN SAMPLERS, PÓLYA THEORY, AND CYCLE POINTING 11

Figure 2. An unlabeled nonplane tree of size 4 yields 4 unlabeled cycle-pointed trees.

of P where P1 is also from P̃n. The marked cycle (v1, . . . , vℓ) of P1 is preserved by σ1, so that all its
elements are shifted by the same value r ∈ [1..ℓ] modulo ℓ, i.e., σ1 maps vi to v(i+r) mod ℓ. Since

both P0 and P1 are from P̃n, there is an isomorphism σ from P1 to P0. Moreover, the permutation
τ := σ−1σ0σ is a c-symmetry of P1. Observe that the permutation τ−r+1σ1 is an automorphism
of P1 that moves an atom of the marked cycle r steps forward (because of σ1) and then r − 1
steps backward (because of τ−r+1). Hence, τ−r+1σ1 is a c-symmetry of P1. The desired bijection
maps (P1, σ1) to the rooted c-symmetry (P1, τ

−r+1σ1, v) where v is the atom of the marked cycle
having the r-th smallest label. This correspondence can be inverted easily, and hence we have
found a bijection between the symmetries and the rooted c-symmetries for structures having P̃n

as unlabeled structure. �

Observe that a rooted c-symmetry of A◦ is obtained from a symmetry (A, σ) of A by choosing
an atom v of A and marking the cycle of σ containing v. Therefore, each symmetry (A, σ) of size
n of the species A yields n rooted c-symmetries on A◦, and hence

Z̄A◦(s1, t1; s2, t2; . . .)|{t1=s1,t2=s2,...} =
d

dt
ZA(ts1, t

2s2, t
3s3, . . .)|{t=1}. (18)

Further, a rooted c-symmetry of A◦ can equivalently be obtained by marking a cycle of atoms that
corresponds to a cycle of σ and choosing an atom of the cycle as the root of the rooted c-symmetry.
Together, these observations yield the equality

Z̄A◦

(ℓ)
(s1, t1; s2, t2; . . .)|{t1=s1,t2=s2,...} = ℓ tℓ

∂

∂sℓ
ZA(s1, s2, . . .) for all ℓ ≥ 1. (19)

For ℓ = 1, which corresponds to structures of A with a unique distinguished vertex (the root), we
recover the well-known equation relating the cycle index sum of a species and of the associated
rooted species; see [2, Sec. 1.4.] and [16].

As stated below and illustrated in Figure 2, pointing a cycle of symmetry instead of a single
atom (as the classical pointing operator does) yields an unbiased pointing operator in the unlabeled
setting.

Theorem 5 (unbiased pointing). Let A be a species. Then, for n ≥ 0, each unlabeled structure of

Ãn gives rise to exactly n unlabeled structures in Ã◦
n; that is, for each A ∈ A[n] there are exactly

n non-isomorphic structures (A, c) in A◦[n]. Hence, the ordinary generating series of A◦ satisfies

Ã◦(x) = x
d

dx
Ã(x). (20)

Proof. Given Ã ∈ Ãn, let S be the set of unlabeled pointed structures of Ã◦ whose underlying
unpointed structure is Ã. The proof of the lemma reduces to proving that S has cardinality n.
Let Sym(Ã) be the set of symmetries for the structure Ã, and let RSym(S) be the set of rooted

c-symmetries for structures from S. Lemma 1 shows that Ã has n! symmetries and Lemma 4 shows

that each structure of Ã◦
n has n! rooted c-symmetries. Hence |Sym(Ã)| = n! and |RSym(S)| =

|S|n!. In addition, we have seen that a symmetry (A, σ) of size n on A has n rooted c-symmetries

on A◦. Hence, |RSym(S)| = n|Sym(Ã)|. Thus, we obtain |S|n! = nn!, and therefore |S| = n. �

Remark 3.1. Theorem 5 is equivalent to a result known as Parker’s lemma [7, Section 2.8]. For a
subgroup G of the symmetric group Sn, say that a cycle c in g ∈ G is equivalent to a cycle c′ in
g′ ∈ G if there exists h ∈ G that maps the elements of c to the elements of c′ and preserves the

12 MANUEL BODIRSKY, ÉRIC FUSY, MIHYUN KANG, AND STEFAN VIGERSKE

Basic cycle-pointed species: A◦, A⊛,

where A ∈ {0,1, X,Seq[k],Set[k],Cyc[k],Seq,Set,Cyc}
Pointed cycle-index sum:

Z̄A◦ =
∑

ℓ≥1

ℓ tℓ
∂

∂sℓ
ZA

Z̄A⊛ =
∑

ℓ≥2

ℓ tℓ
∂

∂sℓ
ZA

Construction Notation Pointed cycle index sum

Pointed union R = P+ Q Z̄R = Z̄P + Z̄Q

Pointed product R = P ⋆B Z̄R = Z̄P · ZB

Pointed substitution R = P⊚B Z̄R = Z̄P ⊚ ZB

Figure 3. The rules to calculate the pointed cycle index sums of basic cycle-
pointed species and of cycle-pointed species composed by +, ⋆, and ⊚.

cyclic order, i.e., for each element x ∈ c, the successor of x in c is mapped by h to the successor of
h(x) in c′. Let ak be the number of inequivalent cycles of length k. Then Parker’s lemma states
that

∑n
k=1 ak = n.

If this lemma is applied to the automorphism group of a fixed structure A of size n, then ak is
the number of unlabeled cycle-pointed structures arising from A and such that the marked cycle
has length k. So Parker’s lemma states that there are n unlabeled cycle-pointed structures arising
from A, i.e., it implies Theorem 5 (conversely, each permutation group is the automorphism group
of a structure, so Parker’s lemma can be deduced from Theorem 5).

Remark 3.2. The classical pointing operator, which selects a single atom in a structure, yields an
equation similar to (20) for exponential generating series, which is useful for labeled enumeration.
Given a species A, let A• be the species of structures from A where an atom is distinguished.
Then

A•(x) = x
d

dx
A(x). (21)

An important contribution of this article is to define a pointing operator A 7→ A◦ that yields the
same equation, Equation (20), in the unlabeled case.

3.3. Basic Cycle-pointed Species and Constructions.

3.3.1. Basic cycle-pointed species. Species of the form A◦ or A⊛ where A is a basic species as
introduced in Subsection 2.4 will be called basic cycle-pointed species. The derivation rule in
Equation (19) allows us to compute the pointed cycle index sum of basic cycle-pointed species, as
indicated in Figure 3 (upper part).

3.3.2. Pointed constructions. It is clear that the disjoint union of two cycle-pointed species as
defined in Section 2.4.2 is again a cycle-pointed species. We now adapt the constructions of
product and substitution to obtain a pointed product and a pointed substitution operation that
produce cycle-pointed species.

Pointed product. Let A,B be species, and let P ⊆ A◦ be a cycle-pointed species. Then the
pointed product P ⋆ B of P and B is the subspecies of (A · B)◦ of all those structures ((A,B), c)
in (A ·B)◦ where the pointed cycle c is from A, and (A, c) ∈ P.

Pointed substitution. Let E = ((π,A, (Bp)p∈π), c) be a structure in (A ◦ B)◦. The study of
automorphisms of structures in A ◦B performed in Section 2.6.2 shows that

• c is the cycle composed from cycles c1, . . . , ck on different components Bp1 , . . . , Bpk
;

• the structure (A, c′ = (p1, ..., pk)) is cycle-pointed.

BOLTZMANN SAMPLERS, PÓLYA THEORY, AND CYCLE POINTING 13

Figure 4. A cycle-pointed graph obtained from a substitution.

We call (A, c′) ∈ A◦ the core-structure of E.
We can now define a substitution construction for cycle-pointed species. Let P ⊆ A◦ and let

B be a species such that B[∅] = ∅. Then P ⊚ B is defined as the subspecies of structures from
(A ◦B)◦ whose core-structure is in P.

As in the previous section, we make the convention that in expressions involving several of the
symbols +, ·, ⋆, ◦,⊚, the symbols ◦,⊚ bind stronger than the symbols ·, ⋆, and the symbols ·, ⋆
bind stronger than the symbol +.

In a similar way to the labeled framework [2], our pointing operator behaves well with the three
constructions +, ·, and ◦:
Proposition 6. The cycle-pointing operator obeys the following rules:

(A+B)◦ = A◦ +B◦, (22)

(A ·B)
◦

= A◦ ⋆B + B◦ ⋆A, (23)

(A ◦B)
◦

= A◦
⊚B . (24)

Proof. It is easy to see that (A + B)◦ is isomorphic to A◦ + B◦. For the product, note that
the pointed cycle c of a structures from (A · B)◦ has to be entirely on A or entirely on B. The
species that contains all structures ((A,B), c) where c is on A is isomorphic to A◦ ⋆ B, and the
species that contains all structures ((A,B), c) where c is on B is isomorphic to B◦ ⋆ A. Hence,
(A ·B)◦ = A◦ ⋆B+B◦ ⋆A. For the expression for the substitution operation, we in fact have not
only isomorphism, but even equality of species. This is clear from the fact that all core-structures
of structures from (A ◦B)◦ are from A◦. �

As in the unpointed case, there are explicit rules to compute the pointed cycle index sums
for each basic species and for each construction. To this end we need the following notion of
composition for power series.

Definition 3.3. Let f and g be two power series of the form f̄ := f(x1, y1;x2, y2; . . .) and
g := g(x1, x2, . . .) such that g(0, 0, . . .) = 0. Then the pointed plethystic composition of f with g is
the power series

f̄ ⊚ g := f(g1, h̄1; g2, h̄2; . . .), (25)

with gk = g(xk, x2k, x3k, . . .) and h̄k = h̄(xk, yk;x2k, y2k; . . .) for h̄ :=
∑

ℓ≥1 ℓtℓ
∂

∂sℓ
g.

The following proposition is the counterpart of Proposition 2 for cycle-pointed species.

Proposition 7 (computation rules for pointed cycle index sums). For each basic species A, the
pointed cycle index sum of the pointed species A◦ and A⊛ is given by the explicit expression given
in Figure 3 (upper part) in terms of the cycle index sum of A. For each of the fundamental pointed
constructions +, ⋆, and ⊚ there is an explicit rule, given in Figure 3 (lower part), to compute the
pointed cycle index sum of the resulting species.

14 MANUEL BODIRSKY, ÉRIC FUSY, MIHYUN KANG, AND STEFAN VIGERSKE

Proof. The statement is clear for the cycle-pointed atomic species and the pointed union. Let A,B
be species, and let P ⊆ A◦ be a cycle-pointed species. For the cycle-pointed product Q = P ⋆ B
notice that, similarly as for a partitional product for species, a rooted c-symmetry on Q decomposes
into a rooted c-symmetry on P and a symmetry on B, since the automorphism has to act separately
on the two component structures. Therefore, RSym(Q) can be considered as a partitional product
of RSym(P) and Sym(B), which yields Z̄Q = Z̄P · ZB.

For the substitution construction, the proof is similar. Let P ⊆ A◦ be a cycle-pointed species
and let B be a species such that B[∅] = ∅. Let Q = P ⊚ B ⊆ (A ◦ B)◦. Consider a rooted
c-symmetry (Q, σ, v). As we have seen in Section 2.6, the core structure A is endowed with an
induced automorphism σ′. In addition, the automorphism is naturally rooted at the atom v′ ∈ A
where the B◦-component that contains the root v is substituted. We denote the cycle of σ′ that
contains v′ by c′. Now we have that (A, c′) is cycle-pointed and the automorphism σ′ rooted
at v′ is a rooted c-symmetry on P = (A, c′). In addition, the components substituted at each
atom of a cycle c = (u1, . . . , uk) of σ′ are isomorphic copies of a same symmetry on B. The
components that are substituted at the atoms of the marked cycle c′ are naturally rooted at the
isomorphic representant of v. Finally, this decomposition is reversable: one can go back to the
original composed symmetry using the composition of cycle operation.

To express these observations in an equation, we define the type of the rooted c-symmetry
(P, ρ, v) with P = (A, c′) to be the sequence (ℓ;n1, n2, . . . , nk) where ℓ is the length of c′, and ni is
the number of unmarked cycles of length i in ρ. Note that the size of P is ℓ+

∑
i ini. The number

a(t) of rooted c-symmetries of type t = (ℓ;n1, n2, . . . , nn) on P is n![tℓsn1
1 · · · snn

n]Z̄P. The core
type of a rooted c-symmetry on P⊚B is defined as the type of the rooted c-symmetry induced on
the core structure.

Let Z̄
(t)
R

be the pointed cycle index sum of P restricted to the rooted c-symmetries with core-type
t = (ℓ;n1, n2, . . . , nn). From the above discussion, we have

Z̄
(t)
R

=
a(t)

n!
qℓb

n1
1 bn2

2 . . . bnn
n , where bi := ZB(s1, s2, . . .), qℓ := Z̄B◦(sℓ, tℓ; s2ℓ, t2ℓ; . . .). (26)

Summing over all possible types of rooted c-symmetries t, we obtain

Z̄R = Z̄P(b1, q1; b2, q2; . . .), where bi := ZB(s1, s2, . . .), qℓ := Z̄B◦(sℓ, tℓ; s2ℓ, t2ℓ; . . .). �

In the following we introduce recursive specifications that involve pointed constructions. Cycle-
pointed specifications are like standard recursive specifications (Definition 2.5), but with two sorts
of variables (where one is reserved for cycle-pointed species) and where we are allowed to use
additionally the pointed constructions.

Definition 3.4. A recursive cycle-pointed specification with variables x1, . . . , xm, y1, . . . , ym′ over
the species A1, . . . ,Aℓ and over cycle-pointed species B1, . . . ,Bk is a system Ψ of equations x1 =
e1, . . . , xm = em, y1 = f1, . . . , ym′ = fm′ where each ei is

• of the form a+ b or a · b with a, b ∈ {x1, . . . , xm,A1, . . . ,Aℓ}, or
• of the form a ◦ b with a ∈ {A1, . . . ,Aℓ} and b ∈ {x1, . . . , xm,A1, . . . ,Aℓ},

and each fi is

• of the form a+ b with a, b ∈ {y1, . . . , ym′ ,B1, . . . ,Bk}, or
• of the form a ⋆ b with a ∈ {y1, . . . , ym′ ,B1, . . . ,Bk} and b ∈ {x1, . . . , xm,A1, . . . ,Aℓ}, or
• of the form a⊚ b with a ∈ {B1, . . . ,Bk} and b ∈ {x1, . . . , xm,A1, . . . ,Aℓ}.

To define the species X1, . . . ,Xm,Y1, . . . ,Ym′ that are given by a recursive cycle-pointed spec-
ification Ψ with variables x1, . . . , xm, y1, . . . , ym′ over the species A1, . . . ,Aℓ,B1, . . . ,Bk where

B1, . . . ,Bk are pointed, we again (as in Section 2.5) consider sequences of species X
(i)
j and Y

(i)
j for

i ≥ 1. For i = 1, we define X
(i)
j = 0 for all 1 ≤ j ≤ m, and Y

(i)
j = 0◦ for all 1 ≤ j ≤ m′. For i > 1

the species X
(i)
j and Y

(i)
j are obtained by evaluating the corresponding expressions for xj and yj ,

respectively (as in Section 2.5). We say that Ψ is admissible if in expressions of the form a ◦ b or
a⊚ b the species substituted for b never contain structures of size 0.

BOLTZMANN SAMPLERS, PÓLYA THEORY, AND CYCLE POINTING 15

Note that also the new pointed constructions are monotone, so in case that for each n the sets⋃
i≥1 X

(i)[n] and
⋃

i≥1 Y
(i)[n] are finite it is straightforward (and analogous to Definition 2.6) to

define the species X1, . . . ,Xm,Y1, . . . ,Ym′ specified by admissible recursive specifications Ψ over
A1, . . . ,Aℓ,B1, . . . ,Bk.

Definition 3.5. Let A be a class of species. The class of species that is cycle-pointing decomposable
over A is the smallest class of species B that contains A, contains all species that can be specified
by cycle-pointed recursive specifications over pointed and unpointed species from B, and contains
all species obtained from species of the form A◦ in B by applying the unpointing operation.

Plenty of examples of species that are decomposable over simple basic species can be found in
Section 4.

Proposition 8. If a species A is decomposable (in the sense of Definition 2.7), then the pointed
species A◦ is cycle-pointing-decomposable.

Proof. Follows directly from Proposition 6. �

Remark 3.3. The ordinary generating series inherit simple computation rules from the ones for
pointed cycle index sums. As expected, for the sum and product constructions, one gets

R = P+ Q ⇒ R̃(x) = P̃(x) + Q̃(x), (27)

Q = P ⋆B ⇒ Q̃(x) = P̃(x) · B̃(x). (28)

For the substitution construction, the computation rule is:

Q = P⊚B ⇒ Q̃(x) = Z̄P(B̃(x), B̃◦(x); B̃(x2), B̃◦(x2); . . .), (29)

where B̃◦(x) = x d
dxB̃(x). Hence, to compute the ordinary generating series of a decomposable

cycle-pointed species, the only place where the cycle index sum or pointed cycle index sum is
needed (as a refinement of ordinary generating series) is for the species that is the first argument
of a substitution or pointed substitution construction.

Remark 3.4. As an exercise, the reader can check just by standard algebraic manipulations that the
computation rules for cycle-index sums are consistent with Proposition 6. For instance, proving
Z̄(A◦B)◦ = Z̄A◦⊚B is equivalent (by the computation rules) to proving the equality Z̄(A◦B)◦ =

Z̄A◦ ⊚ ZB, which reduces to checking the following identity on power series:

∆(f ◦ g) = (∆f)⊚ g , (30)

where ∆ is the operator that associates to a power series f(x1, x2, x3, . . .) the power series

∆f(x1, y1;x2, y2; . . .) :=
∑

ℓ≥1

ℓ yℓ
∂

∂xℓ
f(x1, x2, x3, . . .).

Similarly, to prove Z̄(A+B)◦ = Z̄A◦+B◦ and Z̄(A·B)◦ = Z̄A◦⋆B+B◦⋆A, one has to check the identities
∆(f + g) = ∆f +∆g, and ∆(f · g) = ∆f · g + f ·∆g, respectively.

4. Application to Enumeration

In this section we demonstrate that cycle-pointing provides a new way of counting many classes
of combinatorial structures in the unlabeled setting. Typically, species satisfying a “tree-like”
decomposition are amenable to our method. This includes of course species of trees, but also
species of graphs (provided that the species is closed under taking 2-connected components, and
that the sub-species of 2-connected graphs is tractable), and species of planar maps.

The general scheme to enumerate unlabeled structures of a species A, i.e., to obtain the coef-

ficients |Ãn|, is as follows. First, we observe that the task is equivalent to the task to enumerate

unlabeled cycle-pointed structures from A◦, because |Ã◦
n| = n|Ãn|. Enumeration for A◦ turns out

to be easier since the marked cycle usually provides a starting point for a recursive decomposition.

16 MANUEL BODIRSKY, ÉRIC FUSY, MIHYUN KANG, AND STEFAN VIGERSKE

For a cycle-pointed species of trees (and more generally for species satisfying tree-like decom-
positions), the first step of the decomposition scheme is to distinguish whether the marked cycle
has length 1 or greater than 1. The general equation is

A◦ = X◦ ⋆A′ +A⊛, (31)

where A′ is the derived species of A, consisting of structures from A where one atom is marked
with a special label, say ∗, as defined in [2]1. Then each of the two species A′ and A⊛ has to be
decomposed. For derived structures (the species A′) we follow the classical root decomposition.
For symmetric cycle-pointed structures (the species A⊛) our decomposition strategy is different,
and leads us to introduce the notion of center of symmetry.

4.1. Trees. We first illustrate our decomposition method for trees, which are defined as connected
acyclic graphs (i.e., unless mentioned otherwise, trees are unrooted), and we start with the formal
definition of the center of symmetry. Let T be a symmetric cycle-pointed tree. A path of T
connecting two consecutive atoms of the marked cycle is called a connecting path (thus the number
of connecting paths is the size of the marked cycle).

Claim 9 (center of symmetry). Given a symmetric cycle-pointed tree T , all connecting paths of T
share the same middle vc, called the central point for the marked cycle of T . The central point vc
is the middle of an edge e if these paths have odd length, and is a vertex v if these paths have even
length. In the first (second) case, the edge e (the vertex v, resp.) is called the center of symmetry
of T .

Proof. We prove here that all connecting paths share the same middle. Let U be the subgraph of
T formed by the union of all connecting paths. Observe that U is connected, so U is a subtree of
T . In addition, U is globally fixed by any c-automorphism of T (indeed, the property of being on
a connecting path is invariant under the action of a c-automorphism), and it contains the atoms
of the marked cycle of T . Hence U is the underlying structure of a cycle-pointed tree (U, c).
Consider the classical center of U , obtained by pruning the leaves (at each step, all leaves are
simultaneously deleted) until the resulting tree is reduced to an edge or a vertex [2]. The central
point vc of U is defined as follows: if the center of U is a vertex v, then vc := v, if the center of
U is an edge e, then vc is the middle of e. Let σ be a c-automorphism of (U, c) and let 〈σ〉 be
the group of automorphisms generated by σ. It is well known that the central point is fixed by
any automorphism on the tree, hence vc is equidistant from all atoms of the marked cycle, as the
group 〈σ〉 acts transitively on the vertices of the marked cycle. In addition, vc is on at least one
connecting path of T (because U is the union of these connecting paths). Hence, vc has to be on
all connecting paths, as the group 〈σ〉 acts transitively on the connecting paths. Thus, vc has to
be the middle of all connecting paths simultaneously. �

Remark 4.1. Notice that the center of symmetry might not coincide with the classical center of
the tree, as shown in Figure 5. However, in the case of plane trees, the two notions of center
coincide.

4.1.1. Nonplane trees. Let F be the species of free trees, i.e., unrooted nonplane trees (equivalently,
acyclic connected graphs), where the vertices are taken as atoms. Let F ′ be the derived species
of F (also the species of derived nonplane trees). Rooted nonplane trees can be decomposed at
the root. Since the root does not count as an atom and since the children of the root node are
unordered, we classically have

F ′ = Set ◦ (X · F ′). (32)

In contrast, the decomposition of symmetric cycle-pointed trees does not start at atoms of the
marked cycle, but at the center of symmetry, which is either an edge or a vertex (see Figure 5 for
an illustration of the decomposition). In order to write down the decomposition, we introduce the

1Note that the derived species A′ is not cycle-pointed. However, it can be identified with A◦
(1)

. Indeed, by

adding a new label and a pointing loop on the marked atom, one obtains a bijective correspondence between A◦
(1)

and X◦ ⋆ A′.

BOLTZMANN SAMPLERS, PÓLYA THEORY, AND CYCLE POINTING 17

Figure 5. Decomposition of a nonplane tree at its center of symmetry (in case
the center of symmetry is a vertex).

species L consisting of a single one-edge graph. Note that L ≃ Set[2], and that L⊛ consists of the
link graph carrying a marked cycle of length 2 that exchanges the two extremities of the edge.

Claim 10. The species F⊛ of symmetric cycle-pointed free trees satisfies

F⊛ = L⊛
⊚ R+X · Set⊛

⊚ R, (33)

where R := X · F is the species of all pointed trees.

Proof. Consider a tree produced from the species L⊛ ⊚ R + X · Set⊛
⊚ R (for an example of a

tree produced from X · Set⊛
⊚ R, see the transition between the right and the left drawing in

Figure 5). Clearly, such a tree is free and cycle-pointed and it is symmetric because the marked
cycle of the core-structure – an edge e in the first case, a cycle-pointed set attached to a vertex v
in the second case – already has length greater than 1. Hence F⊛ ⊇ L⊛ ⊚ R + X · Set⊛

⊚ R◦.
Notice also that in the first (second) case, e (v, respectively) is the center of symmetry of the
resulting tree. Indeed each connecting path connects vertices on two different subtrees attached
at the center of symmetry, which, by symmetry, stands in the middle of such a path.

Conversely, for each symmetric cycle-pointed free tree T , we color blue its center of symme-
try, which plays the role of a core-structure for T . Partition F⊛ as F⊛

v + F⊛
e , where F⊛

v (F⊛
e ,

respectively) gathers the trees in F⊛ whose center of symmetry is a vertex (an edge, respectively).
Define also Mv (Me) as the species of free trees with a distinguished vertex (edge, resp.) that
is colored blue. Clearly Mv = X · (Set ◦ R) and Me = L ◦ R. From Proposition 6, we obtain
M⊛

v = X◦ ⋆ (Set ◦ R) + X · Set◦
⊚ R and M◦

e = L◦ ⊚ R. Observe that F⊛
v (F⊛

e) contains the
structures of M⊛

v (of M⊛
e) where the blue vertex (edge, resp.) is the center of symmetry. It is

clear that the structures of X◦ ⋆ (Set ◦R) have their marked cycle of length 1, so they are not in
F⊛
v . Concerning the structures of X · Set◦

(1) ⊚ R, the atoms of the marked cycle are on a same
subtree attached at the blue vertex, so that the blue vertex is not the center of symmetry. Hence
the structures of X ·Set◦

(1)⊚R are not in F⊛
v . Similarly, the structures of L◦

(1) ⊚R are not in F⊛
e .

Therefore we obtain the second inclusion F⊛ ⊆ L⊛ ⊚ R+X · Set⊛
⊚ R. �

Proposition 11 (decomposing and counting free trees). The species F◦ of cycle-pointed free trees
has the following cycle-pointed recursive specification over the species Set, L⊛, X:

F◦ = X◦ ⋆ F ′ + F⊛,

F ′ = Set ◦ R, R = X · F ′,

F⊛ = L⊛ ⊚ R+X · Set⊛
⊚ R,

R◦ = X◦ ⋆ (Set ◦ R) +X · Set◦
⊚ R,

(34)

18 MANUEL BODIRSKY, ÉRIC FUSY, MIHYUN KANG, AND STEFAN VIGERSKE

The ordinary generating function f(x) := F̃(x) of free trees satisfies the equations

xf ′(x) = r(x) + x2r′(x2) +

∑

ℓ≥2

xℓr′(xℓ)

 r(x) (35)

= xr′(x)(1 − r(x)) + x2r′(x2), (36)

where r(x) is specified by r(x) = x exp

∑

i≥1

1

i
r(xi)

.

Proof. The first three lines of the grammar are Equations (31), (32), and (33), respectively. The
fourth line2 is obtained from the second line (i.e., R = X · (Set ◦R)) using the derivation rules of
Proposition 6.

Concerning the OGSs, let r(x) := R̃(x) be the OGS of the species R. Note that F̃◦(x) = xf ′(x)

and R̃◦(x) = xr′(x) by Theorem 5. By the computation rules for OGSs (Remark 2.1 and Re-
mark 3.3), the second line of the grammar, i.e., R = X·(Set◦R), yields r(x) = x exp(

∑
i≥1 r(x

i)/i);
and the third line of the grammar yields

F̃⊛(x) = ZL⊛(r(x), xr′(x); r(x2), x2r′(x2); . . .) + xZSet⊛(r(x), xr′(x); r(x2), x2r′(x2); . . .).

Applying the derivation rule (19) to L = Set[2] and Set, we get the expressions ZL⊛ = t2 and

ZSet⊛ = (
∑

ℓ≥2 tℓ) · ZSet. Hence F̃⊛(x) = x2r′(x2) +
(∑

ℓ≥2 x
ℓr′(xℓ)

)
· r(x). Finally, the first

line of the grammar yields F̃◦(x) = r(x) + F̃⊛(x), which gives Expression (35) of xf ′(x). Using
xr′(x) = r(x)(1 +

∑
ℓ≥1 x

ℓr′(xℓ)), this expression simplifies to Expression (36) of xf ′(x). �

Remark 4.2. The expression xf ′(x) = xr′(x)(1 − r(x)) + x2r′(x2) clearly agrees with Otter’s
formula [26]:

f(x) = r(x) − 1

2
(r2(x)− r(x2)), (37)

which can be obtained either from Otter’s dissimilarity equation or from the dissymmetry theo-
rem [2]. The new result of our method is to yield an expression for xf ′(x) – Equation (35) – that
has only positive signs, as it reflects a positive decomposition grammar. This is crucial to obtain
random generators without rejection in Section 5.

All the arguments we have used for free trees can be adapted to decompose and enumerate
species FΩ of trees where the degrees of the vertices lie in a finite integer set Ω that contains 1.
It is helpful to define the auxiliary species RΩ that consists of trees from FΩ rooted at a leaf that
does not count as an atom. By decomposing trees at the root, we note that RΩ has the recursive
specification

RΩ = X · SetΩ−1 ◦ RΩ, with SetΩ−1 := ∪k∈ΩSet
[k−1] .

The species RΩ serves as elementary rooted species to express the pointed species arising from FΩ.

Proposition 12 (decomposing and counting degree-constrained trees). For any finite set Ω of
positive integers containing 1, let FΩ be the species of nonplane trees whose vertex degrees are in
Ω. Then the species F◦

Ω has the following cycle-pointed recursive specification, where SetΩ :=

∪k∈ΩSet
[k] and SetΩ−1 := ∪k∈ΩSet

[k−1]:

F◦
Ω = X◦ ⋆ FΩ

′ + F⊛

Ω ,

FΩ
′ = SetΩ ◦ RΩ, RΩ = X · SetΩ−1 ◦ RΩ,

F
⊛

Ω = L⊛ ⊚ RΩ +X · Set⊛

Ω ⊚ RΩ,

R◦
Ω = X◦ ⋆ SetΩ ◦ RΩ +X · Set◦

Ω ⊚ RΩ.

(38)

2The fourth line of Equation (34) is not needed for enumeration, but it is necessary to make the grammar
completely recursive, and, as such, will be necessary for writing down a random generator in Section 5.

BOLTZMANN SAMPLERS, PÓLYA THEORY, AND CYCLE POINTING 19

The ordinary generating function fΩ(x) := F̃Ω(x) satisfies the equation

xf ′
Ω(x) = xZSetΩ

(rΩ(x), rΩ(x
2), . . .) + x2r′Ω(x

2) + xZSet⊛

Ω
(rΩ(x), xr

′
Ω(x); rΩ(x

2), x2r′Ω(x
2); . . .),

(39)
where rΩ(x) is specified by rΩ(x) = x · ZSetΩ−1(rΩ(x), rΩ(x

2), rΩ(x
3), . . .). The power series

ZSetΩ−1
, ZSetΩ

and ZSet⊛

Ω
appearing in the equation are polynomials that can be computed ex-

plicitly.

Example 1. Unrooted nonplane binary trees. Trees whose vertex degrees are in Ω := {1, 3} are called
unrooted nonplane binary trees (note that rooting such a tree at a leaf, one obtains a rooted nonplane
binary tree, i.e., each internal node has two unordered children). In that case, the elementary cycle index
sums required in Equation (39) are

ZSetΩ−1 = 1 +
1

2
s21 +

1

2
s2, ZSetΩ = s1 +

1

6
s31 +

1

2
s1s2 +

1

3
s3, Z

Set⊛
Ω

= t2s1 + t3.

Let f(x) be the OGS of unrooted nonplane binary trees and r(x) the OGS of rooted nonplane binary trees
(rooted at a leaf that does not count as an atom). Firstly, from the expression of ZSetΩ−1 one obtains

r(x) = x · (1 +
1

2
r(x)2 +

1

2
r(x2)).

Then, Equation (39) yields

xf ′(x) = x · (r(x) +
1

6
r(x)3 +

1

2
r(x)r(x2) +

1

3
r(x3)) + x2r′(x2) + x · (x2r′(x2)r(x) + x3r′(x3)),

i.e.,

f ′(x) = r(x) +
1

6
r(x)3 +

1

2
r(x)r(x2) +

1

3
r(x3) + xr′(x2) · (1 + xr(x)) + x3r′(x3).

From this equation one can extract the counting coefficients of unrooted nonplane binary trees with respect
to the number of vertices (after extracting first the coefficients of r(x)):

xf ′(x) = 2 · 1 · x2 + 4 · 1 · x4 + 6 · 1 · x6 + 8 · 1 · x8 + 10 · 2 · x10 + 12 · 2 · x12 + 14 · 4 · x14 + 16 · 6 · x16 + . . .

Hence the first counting coefficients with respect to the number of internal nodes (starting with 0 internal

nodes) are 1, 1, 1, 1, 2, 2, 4, 6. Pushing further one gets 1, 1, 1, 1, 2, 2, 4, 6, 11, 18, 37, 66, 135, 265, 552,

1132, which coincides with Sequence A000672 in [32] (the number of trivalent trees with n nodes). . . �

4.1.2. Plane trees. A plane tree is a tree endowed with an explicit embedding in the plane. Hence,
a plane tree is a tree where the cyclic order around each vertex matters. Let E be the species of
plane trees, where again the atoms are the vertices. As usual the startegy to count plane trees is
to decompose E◦, distinguishing whether the marked cycle has length 1 or larger than 1:

E◦ = X◦ ⋆ E′ + E⊛. (40)

The species E′ is decomposed with the help of another species of plane trees: denote by A the
species of plane trees rooted at a leaf which does not count as an atom. Decomposing A at the
root, we get

A = X · Seq ◦A. (41)

Again the species A serves as elementary rooted species to express species of pointed plane trees:

Proposition 13 (decomposing and counting plane trees). The species E◦ of cycle-pointed plane
trees has the following cycle-pointed recursive specification.

E◦ = X◦ ⋆ E ′ + E⊛,

E ′ = Cyc ◦A, A = X · Seq ◦A,

E⊛ = L⊛ ⊚A+X ·Cyc⊛
⊚A,

A◦ = X◦ ⋆ Seq ◦A+X · Seq◦
⊚A,

(42)

The ordinary generating function Ẽ(x) of plane trees satisfies the equation:

e′(x) = 1 +
∑

ℓ≥1

φ(ℓ)

ℓ
log

1

1− a(xℓ)
+ xa′(x2) +

∑

ℓ≥2

φ(ℓ)
xℓa′(xℓ)

1 − a(xℓ)
, (43)

20 MANUEL BODIRSKY, ÉRIC FUSY, MIHYUN KANG, AND STEFAN VIGERSKE

where a(x) is the series of Catalan numbers: a(x) =
1

2

(
1−
√
1− 4x

)
=

∑

n≥0

1

n+ 1

(
2n

n

)
xn+1.

By coefficient extraction, one gets the following formula for the number en of plane trees with
n+ 1 vertices (entry A002995 in [32]):

en =
1

n+ 1

[1

2n

(
2n

n

)
+

n+ 1

2n

∑

k|n,k 6=n

φ(n/k)

(
2k

k

)
+ 1{

n odd
n=2n′+1

} ·
(
2n′

n′

)]
. (44)

Proof. The grammar is obtained by arguments similar to those used to derive the grammar (34)
for free trees. The only difference is that the cyclic order of the neighbors around each vertex
matters, so a Set construction in the grammar for free trees typically has to be replaced by a
Cyc construction in the grammar for plane trees. �

All the arguments apply similarly for species of plane trees where the degrees of vertices are
constrained. As a counterpart to Proposition 11, we obtain:

Proposition 14 (decomposing and counting degree-constrained plane trees). For any finite set
Ω of positive integers containing 1, let EΩ be the species of free trees where the degrees of vertices
are constrained to lie in Ω. Then the cycle-pointed species E◦

Ω is decomposable, it satisfies the

following decomposition grammar, where CycΩ := ∪k∈ΩCyc[k] and SeqΩ−1 := ∪k∈ΩSeq
[k−1]:

E◦
Ω = X◦ ⋆ EΩ

′ + E
⊛

Ω ,

EΩ
′ = CycΩ ◦AΩ, AΩ = X · SeqΩ−1 ◦AΩ,

E
⊛

Ω = L⊛ ⊚AΩ +X ·Cyc⊛

Ω ⊚AΩ,

A◦
Ω = X◦ ⋆ SeqΩ−1 ◦AΩ +X · Seq◦

Ω−1 ⊚AΩ.

(45)

The ordinary generating function eΩ(x) := ẼΩ(x) satisfies the equation3:

eΩ
′(x) =

∑

k∈Ω
r|k

φ(r)

k
aΩ(x

r)k/r + xaΩ
′(x2) +

∑

k∈Ω
r|k,r>1

φ(r)xraΩ
′(xr)aΩ(x

r)k/r−1, (46)

where aΩ(x) is specified by aΩ(x) = x
∑

k∈Ω

aΩ(x)
k−1.

Example 2. d-regular plane trees. For d ≥ 3, a d-regular plane tree is a plane tree such that each internal
node has degree d, which corresponds to the case Ω = {1, d} in Proposition 14. It is easily shown that such
a tree with n internal nodes has m = n(d− 2) + 2 leaves. Let E[d] be the species of d-regular plane trees,
where the atoms are the leaves (it proves here more convenient to take leaves as atoms and to write the
counting coefficients according to the number of internal vertices). Let A[d] := E[d]

′ be the corresponding

derived species, which satisfies A[d] = X+(A[d])
d−1. The decomposition for the cycle-pointed species E[d]

◦

is

E[d]
◦ = X◦ ⋆A[d] + L

⊛
⊚A[d] + (Cyc[d])⊛ ⊚ A[d].

Hence, the OGS e[d](x) := Ẽ[d](x) satisfies:

xe[d]
′(x) = xa[d](x) + x2a[d]

′(x2) +
∑

r|d,r>1

φ(r)xra[d]
′(xr)a[d](x

r)d/r−1, where a[d](x) = x+ a[d](x)
d−1.

The coefficients of each of the summand series (such as a[d]
′(x)a[d](x)

k−1) have a closed formula, which can
be found for instance using the univariate Lagrange inversion formula. From these formulas, we obtain
the following expression for the number en,[d] of d-regular plane trees with n internal nodes:

en,[d] =
1

m

1

m− 1

(
n+m−2

n

)
+ 1{

2|m,
(d−2)|(m−2)/2

} ·

(
n′+m2−1

n′

)
+

∑

r>1,r|d,r|m
(d−2)|(m−d)/r

φ(r)

(
nr+mr−1

nr

)

 (47)

3To obtain this equation we use the formula ZCyc[k] =
1

k

∑

r|k

φ(r)s
k/r
r .

BOLTZMANN SAMPLERS, PÓLYA THEORY, AND CYCLE POINTING 21

where

m = n(d− 2) + 2, n′=
m− 2

2(d − 2)
=

n

2
, nr=

m− d

r(d− 2)
=

n− 1

r
, mr = m/r.

One can extend this formula to any degree distribution on vertices, by adding variables marking the degree

of each vertex and applying the multivariate Lagrange inversion formula. A general enumeration formula

is given in [6] using the dissymmetry theorem. �

Remark 4.3. As the only automorphisms for plane trees are rotations, a simple application of
Burnside’s lemma is enough to get (47). (An adaptation of Burnside’s lemma to unrooted plane
graphs is given in [22].) In contrast, free trees require more involved counting techniques using
cycle index sums. Currently, these techniques are Otter’s dissimilarity equation, the dissymmetry
theorem (these two methods being closely related), and now cycle-pointing.

(a) (b) (c)

Figure 6. (a) A connected (outerplanar) graph, (b) its block-decomposition, (c)
the associated Bv-tree.

4.2. Graphs. We extend here the decomposition principles which we have developed for trees
to the more general case of a species of connected graphs, by taking advantage of a well-known
“tree-like” decomposition of a connected graph into 2-connected components. (A 2-connected
graph is a graph that has at least two vertices and has no separating vertex.) Given a connected
graph G, a maximal 2-connected subgraph of G is called a block of G. The set of vertices of G is
denoted V(G) and its set of blocks is denoted B(G). The Bv-tree of G is the bicolored graph with
vertex-set V(G) ∪B(G) and edges corresponding to the adjacencies between the blocks and the
vertices of G, see Figure 6. It can be shown that the Bv-tree of G is indeed a tree, see [16, p.10]
and [24] for details.

Proposition 15. Let G be a species of connected graphs that satisfy the following stability property:
“a connected graph is in G iff all its blocks are in G”. Let B be the subspecies of graphs in G that are
2-connected. Then G admits a decomposition grammar from the species of 2-connected structures
B′, B⊛, and (B′)◦:

G◦ = X · G′ + G⊛.

G′ = Set ◦K, K = B′ ◦H, H = X · G′,

G⊛ = B⊛ ⊚H +X · Set⊛
⊚K,

H◦ = X◦ ⋆ Set ◦K+X · Set◦
⊚K, K◦ = (B′)◦ ⊚H.

(48)

Hence, if the species of 2-connected structures B⊛ and B′ are decomposable (the latter implies that
(B′)◦ is decomposable), then the cycle-pointed species G◦ is decomposable as well. More generally,
if ZB′ and ZB⊛ are both solutions of an equation system involving the operations {+, ⋆, ◦,⊚} and
basic cycle-index sums, then ZG◦ is also a solution of such an equation system.

22 MANUEL BODIRSKY, ÉRIC FUSY, MIHYUN KANG, AND STEFAN VIGERSKE

Proof. The first line of the grammar is obtained as usual by distinguishing whether the marked
cycle has length 1 or greater than 1. The second line easily follows from the block decomposition,
as shown for instance in [14]. To wit, the marked vertex of a graph in G′ is incident to a collection
of blocks, and a connected graph is possibly attached at each non-marked vertex of these blocks.
Let us prove the third line in a similar way as for free trees (Claim 10). Consider a graph G in G′,
and let T be the Bv-tree of G. Clearly the Bv-tree of a graph has less structure than the graph
itself, so any automorphism of G induces an automorphism on T . In particular T is a symmetric
cycle-pointed tree, hence it has a center of symmetry that either corresponds to a block or to a
vertex of G. The species of graphs in G⊛ whose center of symmetry in the Bv-tree is a vertex (a
block) is denoted (G⊛)v ((G⊛)B, resp.). Let Gv (GB) be the species of graphs in G with a marked
vertex (block, resp.) that is colored blue. Then clearly Gv = X · G′ and GB = B ◦ (X · G′). Hence,
following the notations introduced in the grammar, Gv = H = X ·Set ◦K and GB = B ◦H. Note
that the structures in (G⊛)v ((G⊛)B) are the graphs in Gv

⊛ (GB
⊛) such that the center of symmetry

of the associated Bv-tree is the blue vertex (block, resp.). It is easy to check, in a similar way
as for free trees, that this property holds only for the graphs of Gv

⊛ that are in X · Set⊛
⊚ K

and only for the graphs of GB
⊛ that are in B⊛ ⊚H. Finally, the 4th line, which is necessary to

have only species of 2-connected structures as terminal species, is obtained from the second line
by applying the derivation rules (Proposition 6). �

Remark 4.4. Trees are exactly connected graphs where each block is an edge. In other words,
the species F of free trees is the species G of connected graphs formed from the species B = L

(the one-element species that consists of the link graph). One easily checks that, in that case, the
grammar (48) for G is equivalent to the grammar (34) for free trees.

4.2.1. Cacti graphs. Cacti graphs form an important class of graphs that have several algorithmic
applications. They consist of cycles attached together in a tree-like fashion; in other words, the
species of cacti graphs arises from the species of 2-connected structures as B = L+ P where L is
the species of the link graph and P is the speices of polygons with at least 3 edges (i.e., B is the
species of polygons where one allows the degenerated 2-sided polygon).

Thanks to the grammar (48), the unlabeled enumeration of connected cacti graphs reduces to
the calculation of the cycle-index sums for the species of 2-connected structures B′ and B⊛ (the
cycle-index sum Z(B′)◦ is also required, but it can directly be deduced from ZB′ by differentia-
tion). Since the 2-connected cacti graphs are polygons, the possible automorphisms are from the
dihedral group. In addition, the presence of a marked vertex (for B′) or cycle (for B⊛) restricts
the symmetries. For instance, if a structure in B′ has a marked (unlabeled) vertex v, then the
automorphisms have to fix v; there are only two such symmetries for each polygon, the identity
and the unique reflection whose axis passes by v. Accordingly, we have two terms in the expres-
sion of ZB′ below, the first one for the identity, and the second one for reflections (where one
distinguishes whether the polygon has odd or even length).

ZB′ =
1

2

s1
1− s1

+
1

2

s1 + s2
1− s2

For B⊛, all symmetries must be nontrivial and have to respect the marked cycle. These symme-
tries are of two types: rotation and reflection, which yields the two main terms in the expression
of ZB⊛ below.

ZB⊛ =
∑

r≥2

φ(r)

2

tr
1− sr

+
t2(s

2
1 + 2s1 + 1)

2(1− s2)2

The expressions for ZB′ and ZB⊛ can be used to enumerate unlabeled cacti graphs. We just
have to translate (using the computation rules in Remark 2.1 and Remark 3.3) the grammar (48)
– applied to the species of cacti graphs – into an equation system satisfied by the corresponding
ordinary generating functions.

BOLTZMANN SAMPLERS, PÓLYA THEORY, AND CYCLE POINTING 23

Figure 7. Left (Right, resp.): the quotient of a dissection under a rotation
(reflection, resp.).

Proposition 16 (enumeration of unlabeled cacti graphs). The ordinary generating function
c(x) =

∑
n cnx

n of unlabeled cacti graphs counted with respect to the number of vertices satis-
fies

xc′(x) = H(x) + I(x),

H(x) = x exp
(∑

r≥1

K(xr)

r

)
, with K(x) =

1

2

H(x)

1−H(x)
+

1

2

H(x) +H(x2)

1−H(x2)
,

I(x) =
∑

r≥2

φ(r)

2

xrH ′(xr)

1−H(xr)
+

x2H ′(x2)(H(x)2 + 2H(x) + 1)

2(1−H(x2))2
+H(x)

∑

r≥2

xrK ′(xr),

from which one can extract4 the counting coefficients cn (after firstly extracting the coefficients of
H(x)):

xc′(x) = 1 · 1 · x+ 2 · 1 · x2 + 3 · 2 · x3 + 4 · 4 · x4 + 5 · 9 · x5 + 6 · 23 · x6 + 7 · 63 · x7 +

4.2.2. Outerplanar graphs. Outerplanar graphs are graphs that can be drawn in the plane so that
all vertices are incident to the outer face. They form a fundamental subspecies of the species
of planar graphs, which already captures some difficulties of the species of all planar graphs; for
example, the convergence rate of sampling procedures using the Markov Chain approach is not
known. However, outerplanar graphs are easier to tackle with the decomposition approach. For
enumeration, we use the well-known property that 2-connected outerplanar graphs, except for the
one-edge graph, have a unique hamiltonian cycle. Hence, the species B of 2-connected outerplanar
graphs can be identified with the species of dissections of a polygon (allowing a degenerated 2-
sided dissection). This time, to obtain the cycle index sums ZB′ and ZB⊛ , we have to count not
polygons (as for cacti graphs) but dissections of a polygon under the action of the dihedral group.
We only sketch the method here (the principles for counting such dissections are well known, going
back to earlier articles of Read [30], see also [3] for more detailed calculations).

For each type of symmetry (rotation or reflection), one considers the “quotient dissection”, as
shown in Figure 7. Notice that a dissection fixed by a rotation has either a central edge (only for
the rotation of order two) or a central face. In case of a central edge e, it turns out to be more
convenient to “double” e, so as to always have a central face before taking the quotient. Thus,
the quotient dissection has a marked face (the quotient of the central face) that might have degree
one (only for rotations of order at least three) or two (only for rotations of order at least two).
Concerning quotient dissections under a reflection, there are two special vertices v1 and v2 on the
boundary (the intersections of the original polygon with the reflection-axis), and there might be
some other special vertices, all of degree three, on the boundary path from v1 to v2; see Figure 7.

The second ingredient is to take the dual of such quotient dissections in order to obtain plane
trees, which are easier to decompose and to count. Notice that if the rotation is the identity
rotation, then the associated plane tree is in the species F of plane trees with no vertex of degree
two. Notice also that each leaf of the tree corresponds to a vertex of the dissection; see Figure 8

4The calculations have been done with the help of the computer algebra system Maple.

24 MANUEL BODIRSKY, ÉRIC FUSY, MIHYUN KANG, AND STEFAN VIGERSKE

Figure 8. The dual tree of a dissection.

for an example. The generating function of F with respect to the number of leaves satisfies

F (x) = x+
F (x)2

1− F (x)
. (49)

To calculate ZB′ and ZB⊛ , one computes separately the contributions of rotations and reflec-
tions to ZB′ and to ZB⊛ . In each case, using duality, the contribution is easily expressed in terms
of the series F (x). All calculations done, one finds:

ZB′ =
1

2

(
F (s1)+(s1+s2)P (s2)

)
, ZB⊛ =

1

2

∑

r≥2

φ(r)trG(sr)+
1

2
t2
(
1+s21Q(s2)+2s1R(s2)+S(s2)

)
,

where

G(x) =
F ′(x)

1− F (x)
, P (x) =

1

x

F (x)

1− 2F (x)
,

Q(x) =
d

dx
P (x), R(x) =

d

dx
(xP (x)), S(x) =

d

dx
(x2P (x)).

Similarly as for cacti graphs, the expressions for ZB′ and ZB⊛ make it possible to enumerate
unlabeled connected outerplanar graphs. Translating the grammar (48) into an equation system
on the corresponding generating functions, we obtain the following.

Proposition 17 (Enumeration of unlabeled connected outerplanar graphs). The ordinary gener-
ating function o(x) =

∑
n onx

n of unlabeled connected outerplanar graphs counted with respect to
the number of vertices satisfies the system:

xo′(x) = H(x) + I(x),

H(x) = x exp
(∑

r≥1

K(xr)

r

)
, with K(x) =

1

2
F (H(x)) +

1

2
(H(x) +H(x2)) · P (H(x2)),

I(x) =
1

2

∑

r≥2

φ(r)xrH ′(xr)G(H(xr)) +H(x)
∑

r≥2

xrK ′(xr)

+
1

2
x2H ′(x2)

(
1 +H(x)2Q(H(x2)) + 2H(x)R(H(x2)) + S(H(x2))

)
,

where the series F , G, P , Q, R, S are defined above. One extracts from this system (extracting
firstly the coefficients in F , Q, R, S, then in H and K, then in I) the counting coefficients on:

xo′(x) = 1 · 1 · x+ 2 · 1 · x2 + 3 · 2 · x3 + 4 · 5 · x4 + 5 · 13 · x5 + 6 · 46 · x6 + 7 · 172 · x7 +

4.3. Maps. A map is a planar graph embedded on a sphere up to isotopic deformation, i.e.,
it is a planar graph together with a cyclic order of the neighbors around each vertex. There
is a huge literature on maps since the pioneering work of Tutte [33]. As we show next, the
decomposition grammar (48) for maps is actually simpler than for graphs, and it allows us to
enumerate (unrooted unlabeled) 2-connected maps in terms of not necessarily connected maps.
To write down the grammar, it turns out to be more convenient to take half-edges as atoms instead
of vertices. Denote by M the species of maps – so R := Z ·M′ is the species of rooted maps (maps
with a marked half-edge) – and by B the species of 2-connected maps (the loop-map is considered
as 2-connected).

BOLTZMANN SAMPLERS, PÓLYA THEORY, AND CYCLE POINTING 25

Proposition 18. The species of rooted maps and symmetric cycle-pointed maps (in each length
ℓ ≥ 2 of the marked cycle) have the following recursive specification over the corresponding species
of rooted and cycle-pointed 2-connected maps.

{
R = K · Seq ◦K, K = X ·B′ ◦H, H = X · (1 + R) ,

M◦
(ℓ) = B◦

(ℓ) ⊚H +Cyc◦
(ℓ) ⊚K for ℓ ≥ 2 .

(50)

Proof. The arguments are similar to the proof for graphs (Proposition 15). The only difference is
that one takes the embedding into account, hence corners (which are in one-to-one correspondence
with half-edges for a given map) play for maps a similar role as vertices do for graphs, and
a Set construction typically becomes a Cyc construction here. Let us comment here on the
decomposition for symmetric cycle-pointed maps (the one for rooted maps is well known, see [33]).
One has

M⊛ = B⊛
⊚H +Cyc⊛

⊚K, (51)

where the first (second) term takes account of the maps whose center of symmetry – for the
associated block-decomposition tree – is a block (vertex, respectively). Further simplification is
possible, since a rooted map has only the identity as automorphism. Hence, the species of rooted
maps H and K satisfy H◦ = H◦

(1) and K◦ = K◦
(1). Thus, Equation (51) can be “sliced” into a

collection of equations, one for each length ℓ ≥ 2 of the marked cycle. �

An important property of any map automorphism – as shown by Liskovets [22] – is that all
its cycles have the same length ℓ, which is also the order of the automorphism. Hence, the
number of half-edges of a cycle-pointed map with a marked cycle of length ℓ is divisible by ℓ.
For ℓ ≥ 1, denote by M(ℓ)(x) (B(ℓ)(y)) the series counting unlabeled cycle-pointed maps (2-
connected maps, respectively), according to the number of half-edges, divided by ℓ. In particular,
R(x) := M(1)(x) and S(x) := B(1)(x) are the series counting rooted maps and rooted 2-connected
maps, respectively. We clearly have

ZM◦

(ℓ)
=

tℓ
sℓ
M(ℓ)(sℓ), ZB◦

(ℓ)
=

tℓ
sℓ
B(ℓ)(sℓ) .

Given this simplification, the grammar (50) is translated into the following system relating the
series counting species of maps and species of 2-connected maps:

R(x) =
K(x)

1−K(x)
, H(x) = x(1 +R(x)), K(x) =

x

H(x)
S(H(x)), (52)

M(ℓ)(x) =
xH ′(x)

H(x)
B(ℓ)(H(x)) + φ(ℓ)

xK ′(x)

1 −K(x)
for ℓ ≥ 2. (53)

In the case of maps, the decomposition grammar is used in the other direction, i.e., one obtains
the enumeration of (unrooted) 2-connected maps from maps. Indeed, unconstrained maps are
easier to count, by a method of quotient [22] similar to the one we have used for counting dissections
in Section 4.2.2.

Let us first review (from Tutte [33]) how one obtains an expression for the series S(y) counting
rooted 2-connected maps from an expression for the series R(x) counting rooted maps. One starts
from the following expression of R(x):

R(x) =
β(2 − 9β)

(1− 3β)2
, with β = β(x) specified by β = x2 + 3β2. (54)

Next, notice that the change of variable y = H(x) = x(1+R(x)) between rooted maps and rooted
2-connected maps is such that y2 is also rational in β:

y2 = x2(1 +R(x))2 = β
(1− 4β)2

(1− 3β)3
.

Equivalently:

y2 = η(1 − η)2, where η :=
β

1− 3β
,

26 MANUEL BODIRSKY, ÉRIC FUSY, MIHYUN KANG, AND STEFAN VIGERSKE

so the dependence between η and β is invertible: β = η/(1 + 3η). Notice also from (52) that

S(y) =
H(x)

x
K(x) = (1 +R(x))K(x) = R(x) =

β(2 − 9β)

(1 − 3β)2
.

Replacing β by η/(1 + 3η), one gets

S(y) = η(2− 3η), with η = η(y) specified by η =
y2

(1− η)2
,

which can also be written as

S(y) = S(y2), with S(y) = η(2− 3η), and η := η(y) specified by η =
y

(1 − η)2
. (55)

In a similar way, if two series f(x) = g(y) are related by the change of variables y = H(x) and
if f(x) is rational in β(x), then g(y) is rational in η(y) (replacing β by η/(1 + 3η)). For instance,
for ℓ ≥ 3, it has been shown by Liskovets using the quotient method (see [12] for the reformulation
on series) that

M(ℓ)(x) = φ(ℓ)
6β(x)

1 − 6β(x)
.

Since H(x)/x = 1 + R(x) and K(x) = R(x)/(1 + R(x)) are rational in β, as well as xH ′(x) and
xK ′(x) (noticing that xdf/dx = 2x2df/dx2 = 2β(1−3β)·(df/dβ)/(dx2/dβ)), one finds from (53)
a rational expression in β for the series B(ℓ)(H(x)). Replacing β by η/(1+3η) in that expression,
one finally gets:

B(ℓ)(y) = φ(ℓ)
2η(y)

1 − 3η(y)
for ℓ ≥ 3,

which can also be written as

B(ℓ)(y) = φ(ℓ)G(y2) for ℓ ≥ 3, with G(y) =
2η(y)

1− 3η(y)
. (56)

In a similar way, starting from the expression (given in [12])

M(2)(x) = −1 +
1− 2β(x)

(1− 6β(x))(1 − 3β(x))
+ x · 2

(1 − 6β(x))(1 − 3β(x))
,

one obtains the following expression for B(2)(y):

B(2)(y) =
η(y)(3 − η(y))

1− 3η(y)
+ y

2

1− 3η(y)
,

which can also be written as

B(2)(y) = P (y2) + yQ(y2),with P (y) =
η(y)(3 − η(y))

1− 3η(y)
and Q(y) =

2

1− 3η(y)
. (57)

Proposition 19 (counting unrooted 2-connected maps, recover [23]). The number tn of (unrooted
unlabeled) 2-connected maps with n edges satisfies:

tn =
1

2n

(
sn + un +

1

2

∑

k|n,k 6=n

φ(n/k) · (9k2 − 9k + 1)sk

)
, (58)

where sn =
2(3n− 3)!

n!(2n− 1)!
, un =

n(n+ 1)

2
s(n+1)/2 if n is odd, and un =

(3n− 4)n

8
sn/2 if n is even.

Proof. Cycle-pointing ensures that the generating function B̃◦(y) =
∑

n 2ntny
2n satisfies

B̃◦(y) = S(y) +B(2)(y
2) +

∑

ℓ≥3

B(ℓ)(y
ℓ) = S(y) +

(
B(2)(y

2)−G(y4)
)
+
∑

ℓ≥2

φ(ℓ)G(y2ℓ).

Extracting the coefficient [y2n] in this equation yields

2ntn = sn + un +
∑

ℓ≥2,ℓ|n

φ(ℓ)vn/ℓ = sn + un +
∑

k|n,k 6=n

φ(n/k)vk, (59)

BOLTZMANN SAMPLERS, PÓLYA THEORY, AND CYCLE POINTING 27

where sn = [yn]S(y), vn = [yn]G(y), un = [yn](B(2)(y)−G(y2)), which is [yn/2]P (y)− vn/2 if n is

even and y(n−1)/2Q(y) if n is odd. Notice that the series S(y), G(y), P (y), and Q(y) are rational
in the simple series η(y) = y/(1 − η(y))2. Hence the Lagrange inversion formula [2, Section 3.1]
allows us to extract exact formulas for the coefficients sn, vn, and un. Substituting these exact
expressions in (59), one obtains the announced formula for tn. �

The enumeration of unrooted 2-connected maps has first been done by Liskovets and Walsh [23]
using the quotient method in a quite involved way. More recently, the counting formula has been
recovered in [12] using a method of extraction at a center of symmetry on quadrangulations. What
we do here is equivalent to [12], but the cycle-pointed framework allows us to write the equations
on generating functions in a more systematic way.

4.4. Asymptotic enumeration. Cycle-pointing makes it possible to easily obtain an asymptotic
estimate for the coefficients counting the number of unlabeled structures from a species, provided
that the singular behavior of the OGS counting the associated species of rooted unlabeled structures
is known.

We illustrate the method on free trees. Let R(x) be the OGS of rooted unlabeled nonplane trees,
which is specified by R(x) = x exp(

∑
i≥1 R(xi)/i). It is well known that R(x) has a dominant

singularity ρ < 1 of the square-root type [10, VII.5]. That is, in the slit complex neighborhood
Dǫ := {x | x− ρ /∈ R+ and |x− ρ| < ǫ} we have the expansion

R(x) = 1− aX + o(X), where X =
√
1− x/ρ, (60)

which yields – using transfer theorems of analytic combinatorics [10, VI] – the asymptotic estimate

Rn ∼ c n−3/2 ρ−n, where c =
a

2
√
π
≈ 0.43922, ρ ≈ 0.33832, (61)

for the number of rooted unlabeled nonplane trees with n vertices.
To obtain a similar estimate for free trees, we consider the OGS P (x) of cycle-pointed nonplane

trees and start from the expression of P (x) obtained in Proposition 11:

P (x) = x2R′(x2) +
(
1 +

∑

ℓ≥2

xℓR′(xℓ)
)
R(x).

Notice that, since ρ < 1, the series A := x2R′(x2) and B := 1 +
∑

ℓ≥2 x
ℓR′(xℓ) are analytic at

x = ρ, and the value at x = ρ of B is the positive constant

b := 1 +
∑

ℓ≥2

ρℓR′(ρℓ). (62)

Therefore, from the singular expansion (60) of R(x), we obtain

P (x) = P (ρ)− abX + o(X) . (63)

Let us simplify further the positive constant b = B(ρ). First, by deriving the equation that
specifies R(x), one obtains xR′(x) = R(x)

(
1 +

∑
i≥1 x

iR′(xi)
)
, which yields

B(x)R(x) = xR′(x)(1 −R(x)) .

By deriving the singular expansion of R(x), one obtains

R′(x) =
a

2ρ
X−1 + o(X−1) ,

hence xR′(x)(1 −R(x)) converges to a2/2 as x→ ρ, i.e., b = a2/2.

Proposition 20 (asymptotic enumeration of free trees). The number Fn of unlabeled free trees
with n vertices satisfies

Fn ∼ (2πc3)n−5/2ρ−n, (64)

where c is the constant and ρ−1 is the growth ratio in the estimate (61) for rooted nonplane trees
(Rn ∼ c n−3/2ρ−n).

28 MANUEL BODIRSKY, ÉRIC FUSY, MIHYUN KANG, AND STEFAN VIGERSKE

Proof. From the singular expansion (63) of P (x) we obtain (again by the transfer theorems of
singularity analysis)

xn[P (x)] ∼ ab

2
√
π
n−3/2ρ−n .

Using c = a/(2
√
π) and b = a2/2, we have ab/(2

√
π) = 2πc3. Finally, Theorem 5 (unbiased

pointing) yields Fn = 1
n [x

n]P (x), so Fn ∼ (2πc3)n−5/2ρ−n. �

It is also possible to get the estimate of Fn from Otter’s dissimilarity equation (or from the
dissymmetry theorem). However, we find that cycle-pointing provides a more transparent expla-
nation why the asymptotic estimate of the coefficients Fn counting unlabeled structures from an
unrooted “tree-like” species F is of the universal type cn−5/2ρ−n. The argument is very simple:

• The OGS P (x) of the cycle-pointed species F◦ is positively expressed in terms of the
OGS of the rooted species, which has a square-root dominant singularity. Therefore, P (x)
inherits the same singularity and singularity type (square-root).
• Transfer theorems of singularity analysis ensure that a square-root dominant singularity
yields an asymptotic estimate in cn−3/2ρ−n for the coefficients [xn]P (x). Since Fn =
1
n [x

n]P (x), one gets Fn ∼ c n−5/2 ρ−n.

This strategy applies to all species of trees encountered in this section, as well as to cacti graphs
and connected outerplanar graphs (in all cases one starts from the singular expansion of the OGS
counting the corresponding rooted species).

5. Application to Random Generation

Recently, so-called Boltzmann samplers have been introduced by Duchon et al [9] as a general
method to efficiently (typically in linear time) generate uniformly at random combinatorial struc-
tures that admit a decomposition. In contrast to the more costly recursive method of sampling [25],
which is based on counting coefficients of the recursive decomposition, Boltzmann samplers are
primarily based on generating functions. Until now Boltzmann samplers were developed in the
labeled setting [9] and partially in the unlabeled setting [13].

In this section we provide a more complete method in the unlabeled setting. In order to deal
with the substitution construction and the cycle-pointing operator (which are not covered in [13]),
we have to describe samplers not solely based on ordinary generating functions, but on cycle index
sums – also known as Pólya operators. Therefore we call these random generatorsPólya-Boltzmann
samplers.

With these refined samplers we are able to design in a systematic way (via specific genera-
tion rules) a Pólya-Boltzmann sampler for species that admit a recursive decomposition, thereby
allowing in the decomposition all operators that have been described in this article. When spe-
cialized suitably, a Pólya-Boltzmann sampler reduces to an ordinary Boltzmann sampler, hence it
provides a uniform random sampler for species of unlabeled structures. In particular, we obtain
highly efficient random generators for the species in Section 4: for trees, cacti graphs, outerplanar
graphs, etc.

5.1. Ordinary Boltzmann Samplers. Let A be a species of structures, and let Ã(x) be the
ordinary generating series for A. A real number x > 0 is said to be admissible iff the sum defining

Ã(x) converges (x within the disk of convergence of the series). Given a fixed admissible value
x > 0, an ordinary Boltzmann sampler for unlabeled structures from A is a random generator

ΓÃ(x) that draws each structure γ ∈ Ã with probability

Px(γ) =
x|γ|

Ã(x)
. (65)

Notice that this distribution has the fundamental property to be uniform, i.e., any two unlabeled
structures of the species with the same size have the same probability.

BOLTZMANN SAMPLERS, PÓLYA THEORY, AND CYCLE POINTING 29

5.1.1. Automatic rules to design Boltzmann samplers. As described in [9], there are simple rules
to assemble Boltzmann samplers for the two classical constructions Sum and Product (Bern(p)
stands for a Bernoulli law, returning “true” with probability p and “false” with probability 1−p).

C = A+B. ΓC̃(x): if Bern(Ã(x)/C̃(x)) return ΓÃ(x) else return ΓB̃(x)

C = A · B. ΓC̃(x): return (ΓÃ(x),ΓB̃(x)) {independent calls}
These rules can be used recursively. For instance, the species T of rooted binary trees satisfies

T = X + T · T, (66)

which translates to the following Boltzmann sampler:

ΓT̃(x): if Bern
(

x

T̃ (x)

)
return leaf else return (ΓT̃(x), node,ΓT̃(x)).

5.1.2. The complexity model. Typically, when F has a recursive specification over the species

A1, . . . ,Al, then our sampling procedure ΓF̃(x) will require that we can evaluate the ordinary
generating functions for A1, . . . ,Al at real values x. Indeed, for a species F defined as A1 + A2,
each Bernoulli choice requires to draw a uniform value in [0, 1] and compare it with a ratio of

the form Ã1(x)/F̃(x). In the following we work with the complexity model where we assume that
there exists an oracle that provides at unit cost the exact values of these generating functions at
x, and that a random number in [0, 1] can be generated and compared with a fixed value such as

Ã(x)/C̃(x) in constant time as well. We will refer to this complexity model as the real-arithmetic
complexity model in the following.

The model is justified since in many applications we obtain expressions for the ordinary gen-
erating series that allow a rapid numeric evaluation of those series at given values, for example
with the Newton method. Then, in practice, one works at a fixed precision, say N bits (typically
N = 64, correspondingly roughly to 20 decimal digits).

Let us mention that the Boltzmann samplers for the constructions Multiset and Cycle—as
given in [13] and recovered in a more general framework here—require typically the values of
the generating functions not only at x, but at all powers xi. Since combinatorial species often
have exponential growth rate (which is the case for all examples presented here), the dominant

singularity ρ satisfies ρ < 1, hence x ≤ ρ < 1. Therefore the values Ã(xi) decrease exponentially
fast with i. When working at fixed precision ofN bits, one can thus discard the powers greater than
k = N/ log2(1/ρ) and assume that the oracle provides the evaluations of the generating functions
at x, x2, . . . , xk. For a more detailed study and implementation of the evaluation procedures we
refer to the recent article by Pivoteau, Salvy, and Soria [27].

Proposition 21 (Duchon et al. [9]). Let F be a species that can be decomposed recursively from
{1, X} in terms of the constructions {+, ·} (this is meant analogous to but more restricted than
Definition 2.7). Then one can obtain in a systematic way (from the recursive specification) an

ordinary Boltzmann sampler ΓF̃(x) for F. In addition, in the real-arithmetic complexity model,

ΓF̃(x) operates in linear time in the size of the output.

This result was recently extended in [13] to other constructions, such as the Multiset and
Cycle constructions (and their counterpart with fixed number of components). In this section
we extend this result to the substitution construction, and to the cycle-pointed constructions. It
follows that any species that is cycle-pointed decomposable over species where we already have a
Pólya-Boltzman sampler also has a Pólya-Boltzman sampler.

Remark 5.1. Note that in the general results on sampling we consider species up to isomorphism.
Theoretically, this is a necessary assumption, since isomorphisms between species might in artificial
examples be non-effective. However, in all the presented examples and applications in this article,
the isomorphisms between species are straightforward and efficiently computable. The effectiveness
of isomorphisms between the output species of the sampling procedures and the actual species are
actually more related to the question how combinatorial structures are represented on a computer,
and in particular they do not concern the complexity of the sampling task itself.

30 MANUEL BODIRSKY, ÉRIC FUSY, MIHYUN KANG, AND STEFAN VIGERSKE

5.1.3. Targeting Boltzmann samplers. Boltzmann samplers often lead to very efficient exact-size
and approximate-size random samplers. In order to draw unlabeled structures uniformly at random
from a speciesA at (in case of exact-size sampling) or around (in case of approximate-size sampling)

a target-size n, one simply repeats calling the Boltzmann sampler ΓÃ(x) – with a suitably chosen
value of x – until the size of the output is n (exact-size sampling) or is in [n(1 − ǫ), n(1 + ǫ)]
(approximate-size sampling), where ǫ is a tolerance-parameter fixed by the user. It turns out that
for a wide class of species, which covers the species encountered in Section 4 (trees, cacti graphs,
outerplanar graphs), this method works very well, as proved in [9].

Proposition 22 (Duchon et al [9]). Let F be a species such that asymptotically

|F̃n| ∼ c n−3/2 ρ−n

for some positive constant c, and where ρ is the radius of convergence of F̃(x), assuming that F̃(ρ)

is convergent5. Also suppose that there is a Boltzmann sampler ΓF̃(ρ) at x = ρ such that the cost
of generating a structure is linearly bounded by the size of the structure all along the generation

process. Then ΓF̃(ρ) yields an exact-size (approximate-size, resp.) sampler for unlabeled structures
from F with expected complexity O(n2) (O(n/ǫ), resp.), where n is a target-size and ǫ is a tolerance-
ratio.

The exact-size and approximate-size samplers are obtained by running ΓF̃(ρ) until the size of
the output is in the target domain Ωn (that is, Ωn = {n} for exact-size sampling, and Ωn =
[n(1− ǫ), n(1+ ǫ)] for approximate-size sampling). To obtain the stated complexity, it is necessary
that the generation of too large structures is aborted as soon as the size of the generated object
gets larger than Max(Ωn).

5.2. Pólya-Boltzmann Samplers for classical species. Let A be a species. Recall that a
symmetry on a species A is a pair (A, σ) where A ∈ A and σ is an automorphism of A. A
symmetry has a weight-monomial w(A,σ), as defined in (3); and the cycle index sum ZA(s1, s2, . . .)
is the sum of the weight-monomials over all the symmetries on A. Similarly as for the one-
variable case, a vector (si)i≥1 of nonnegative real values is said to be admissible if the sum
defining ZA(s1, s2, . . .) converges. Given an admissible vector (si)i≥1, a Pólya-Boltzmann sampler
is a procedure ΓZA(s1, s2, . . .) that randomly samples symmetries on A such that each symmetry
(A, σ) is drawn with probability

P(s1,s2,...)(A, σ) =
w(A,σ)

ZA(s1, s2, . . .)
, (67)

where the weight-monomial w(A,σ) is evaluated at (s1, s2, . . .). This probability distribution is
called the Pólya-Boltzmann distribution for A at (si)i≥1. The following simple lemma ensures
that Pólya-Boltzmann samplers are a refinement of ordinary Boltzmann samplers, in the same
way as cycle index sums are a refinement of ordinary generating functions.

Lemma 23 (Pólya-Boltzmann samplers extend ordinary Boltzmann samplers). Consider a species

A having a Pólya-Boltzmann sampler ΓZA(si)i≥1. Then, for any value x admissible for Ã(x), the
sampler ΓZA(x, x

2, x3, . . .) is an ordinary Boltzmann sampler for unlabeled structures from A at
x.

Proof. The generator ΓZA(x, x
2, . . .) gives weight xn/(n!ZA(x, x

2, . . .)) to each symmetry of size

n. Since ZA(x, x
2, . . .) = Ã(x) by Lemma 1, this weight simplifies to xn/(n!Ã(x)). In addition,

we have seen in Lemma 1 that each unlabeled structure γ ∈ Ãn gives rise to n! symmetries.

Hence, each unlabeled structure of size n has weight xn/Ã(x) when calling ΓZA(x, x
2, . . .), i.e.,

ΓZA(x, x
2, . . .) is an ordinary Boltzmann sampler for unlabeled structures from A. �

In the next two sections, we describe Pólya-Boltzmann samplers for unlabeled structures from
basic species and for the constructions {+, ·, ◦}. Note that the output of a Pólya-Boltzmann sam-
pler for a species A consists of a species from A[n] together with an automorphism on that struc-
ture. In all the random generators to be described (as well as in the procedures for cycle-pointed

5The asymptotic behaviour cρ−nn−3/2 is called universal [1], as it is widely encountered in combinatorics.

BOLTZMANN SAMPLERS, PÓLYA THEORY, AND CYCLE POINTING 31

species), the resulting structure S is made well-labeled by applying a procedure DistributeLa-
bels that substitutes [1, . . . , |S|] for the atoms of S uniformly at random (i.e., according to a
permutation of size |S| taken uniformly at random).

We also assume to have generators for classical distributions:

• Geom(p) returns an integer under the geometric law of parameter p ∈ [0, 1]: Pr(k) =
pk−1(1 − p);
• Pois(λ) returns an integer under the Poisson law of parameter λ: Pr(k) = e−λλk/k!; and
• Loga(λ) returns an integer under the distribution Pr(k) = (log(1/(1 − λ)))−1λk/k; this
distribution we call Loga law of parameter λ.

The generators for those distributions (more generally, any generator for an explicit distribution
on integers) can be easily obtained from the “inversion method” [8, §2.1] and [21, §4.1]).
5.2.1. Pólya-Boltzmann samplers for basic species. At first, let us describe Pólya-Boltzmann sam-

plers for the basic species Seq, Set, Cyc, and their counterparts Seq[k], Set[k], Cyc[k]. In each
case, the design of the sampler is guided by the expressions of the cycle index sums for the basic
species as given in Figure 1.

Proposition 24. The random generators shown in Figure 9 are Pólya-Boltzmann samplers for
the corresponding species.

Proof. For Seq, the proof is easy. Since ZSet =
∑

k≥1 s
k
1 , the probability of a sequence to have

size k must be sk1/ZSet, i.e., the size distribution is a geometric law of parameter s1.
For Set, observe that the sum of weight-monomials over all symmetries of type (n1, n2, . . . , nk)

in ZSet is
sn1
1

n1!

(s2/2)
n2

n2!
· · · (sk/k)

nk

nk!
.

Therefore, a Pólya-Boltzmann sampler has to draw a collection of cycles such that the number ni

of cycles of length i follows a Poisson law of parameter si/i for i ≥ 1, and the ni’s are independent.
This is precisely what the algorithm ΓZSet in Figure 9 does, upon choosing a priori the size of the
largest cycle to be drawn.

For Cyc, the argument is similar. As we have seen in Section 2.6.1, the sum of the weight-
monomials over all the symmetries of order r is

Z
(r)
Cyc :=

φ(r)

r
log

(1

1− sr

)
.

Therefore the order of the automorphism has to be chosen with probability Z
(r)
Cyc/ZCyc. In addition,

for each fixed order r, the probability of the cycle being r× k has to be skr/k/ log(1/(1− sr)), i.e.,
the size (divided by r) has to follow a Loga law of parameter sr. Finally, for all automorphisms
of size r and size r × k, all possible ‘rotation angles’ (there are φ(r) possibilities) have to be
equiprobable. This is exactly what the generator ΓZCyc does.

The proof that the generators for the species Seq[k], Set[k], and Cyc[k] are Polya-Boltzmann
samplers follows similar arguments upon restricting to structures of size k. �

5.2.2. Pólya-Boltzmann samplers for combinatorial constructions. As shown in Figure 10, Pólya-
Boltzmann samplers make it possible to have a simple sampling rule for each of the standard
constructions; that is, sampling rules not only for sum and product, but also for the substitution
construction.

Proposition 25. Let C = A ∧B, with ∧ ∈ {+, ·, ◦}. When there are Pólya-Boltzmann samplers
for A and B, then there is also a Pólya-Boltzmann sampler ΓZC(s1, s2, . . .) for C that can be
constructed from the samples for A and B, as given in Figure 10.

Proof. For C = A+B, the proof is easy. Note that Sym(A+B) = Sym(A) + Sym(B). As shown
in [9] (for the standard weight xn/n!), a disjoint union yields a Bernoulli switch on Boltzmann
samplers, with probability corresponding to the ratio of the series for A divided by the series for C
(this argument works as well here, where we take the refined weight sn1

1 sn2
2 . . . snk

k /n!). Therefore
the probability of the Bernoulli switch has to be ZA/ZC.

32 MANUEL BODIRSKY, ÉRIC FUSY, MIHYUN KANG, AND STEFAN VIGERSKE

(1) Sequence.

Algorithm ΓZSeq(s1, s2, . . .), with s1 < 1:
k ← Geom(s1);

return a sequence of k atoms (endowed with the identity-automorphism).

(2) Set.

Define the probability distribution relative to (si)i≥1:

Pr(K ≤ k) =
1

ZSet(s1, s2, . . .)

∏

j≤k

exp
(

1
j
sj
)
.

Let Max Index(s1, s2, . . .) be a generator for this distribution.

Algorithm ΓZSet(s1, s2, . . .) :
J ←Max Index(s1, s2, . . .);

for j from 1 to J − 1 do kj ← Pois
(

sj
j

)
end for

kJ ← Pois≥1

(
sJ
J

)
{Poisson conditioned to output a strictly positive integer}

return a collection of cycles of atoms where there are kj cycles in each length j > 0.

(3) Cycle.

Given (si)≥1 such that ZCyc(s1, s2, . . .) converges, consider the probability distribution

Pr(R = r) =
1

ZCyc(s1, s2, . . .)

ϕ(r)

r
log (1/(1− sr)) for r ≥ 1.

Let ReplicOrder(s1, s2, . . .) be a generator of this distribution.

Algorithm ΓZCyc(s1, s2, . . .)
r ←− ReplicOrder(s1, s2, . . .);
j ←− Loga (sr);
Draw an integer b ∈ [1..r − 1] that is relatively prime to r uniformly at random ;

return the cycle of length j × r endowed with the automorphism:
“each atom is mapped to the atom that is j × b units further on the cycle”.

(1’) Sequence of size k.

Algorithm ΓZSeq[k](s1, s2, . . .) :
return a sequence of k atoms (endowed with the identity-automorphism).

(2’) Set of size k.

Algorithm ΓZSet[k](s1, s2, . . .) :

Draw a partition sequence π of order k such that Pr(π) =
sn1
1 sn2

2 . . . snk
k · [s

n1
1 ...snk

k]ZSet[k]

ZSet[k](s1, s2, . . .)

return a collection of n1 cycles of length 1, n2 cycles of length 2, . . ., nk cycles of length k.

(3’) Cycle of size k.

Algorithm ΓZCyc[k](s1, s2, . . .) :

Draw a divisor r of k with distribution Pr(r) =
φ(r)s

k/r
r

kZCyc[k](s1, s2, . . .)
Draw an integer b ∈ [1..r − 1] that is relatively to r uniformly at random;

return the cycle of length k endowed with the automorphism:
“each atom is mapped to the atom that is kb/r units further on the cycle”.

Figure 9. Pólya-Boltzmann samplers for basic species. In all these random
samplers, the output structure is made well-labeled using the procedure Dis-
tributeLabels.

BOLTZMANN SAMPLERS, PÓLYA THEORY, AND CYCLE POINTING 33

Sum: C = A+B.
Given (si)i≥1 such that Za := ZA(s1, s2, . . .) and Zb := ZB(s1, s2, . . .) converge:

Algorithm ΓZC(s1, s2, . . .) :

if Bern
(
Za/(Za + Zb)

)
then return ΓZA(s1, s2, . . .)

else return ΓZB(s1, s2, . . .) end if

Product: C = A ·B.
Given (si)i≥1 such that ZA(s1, s2, . . .) and ZB(s1, s2, . . .) converge:

Algorithm ΓZC(s1, s2, . . .) :

return (ΓZA(s1, s2, . . .),ΓZB(s1, s2, . . .)) {independent calls}

Substitution: C = A ◦B.
Given (si)i≥1 such that bi := ZB(si, s2i, s3i, . . .) converges for each i ≥ 1,
and ZA(b1, b2, b3, . . .) converges:

Algorithm ΓZC(s1, s2, . . .) :
Compute (A, σA)← ΓZA(b1, b2, b3, . . .);
for each cycle C = (u1, . . . , uk) of σA (u1 has smallest label in C) do

Compute (B, σB)← ΓZB(sk, s2k . . .);
Replace each atom of C by a copy of B;
for each cycle D of σB do

Let ED be the cycle composed of the copies of D at u1, . . . , uk

end for

end for

return the resulting structure and the automorphism consisting of
the composed cycles ED

Figure 10. The rules to specify a Pólya-Boltzmann sampler for a species that
has a recursive specification. In all these random samplers, the finally returned
structure is made well-labeled using the procedure DistributeLabels.

For product, C = A ·B, Sym(C) is like a partitional product of Sym(A) and Sym(B). Therefore,
a Boltzmann sampler classically consists of two independent calls to Boltzmann samplers, as shown
in [9] (again, for the standard weight xn/n!). All the arguments work the same way for the refined
weight sn1

1 sn2
2 . . . snk

k /n!. Therefore, one has to call independently a Pólya-Boltzmann sampler for
A and a Pólya-Boltzmann sampler for B.

For substitution, C = A ◦ B, recall (from Section 2.6.2, Equation (13)) that for each partition
sequence π, the sum of the weight-monomials over all the symmetries on C of type π = (n1, . . . , nn)
satisfies the expression

Z
(π)
C

=
aπ
n!

bn1
1 bn2

2 . . . bnn

k , where aπ = n![sn1
1 · · · snn

n]ZA(s1, s2, . . .) and bi = ZB(si, s2i, . . .).

Hence, a Pólya-Boltzmann sampler for C must draw the core structure following the Pólya-
Boltzmann distribution for A with parameters (b1, b2, . . .). In addition, as discussed in Sec-
tion 2.6.2, once the type π of the core symmetry is fixed, the structures substituted at the cycles
of the core-automorphism form a partitional product of the form

Sym(B)n1
· {Sym(B) duplicated}n2

· (· · ·) · {Sym(B) replicated k times}nk .

Recall that a partitional product yields independent Boltzmann samplers. Hence, once the core-
automorphism (A, σA) is drawn, the symmetries in B that are substituted at each cycle of σA must
be independent calls of a Pólya-Boltzmann sampler for B, and the parameters of the sampler must

34 MANUEL BODIRSKY, ÉRIC FUSY, MIHYUN KANG, AND STEFAN VIGERSKE

be (si, s2i, . . .) if the replication order is i (i is also the length of the cycle of the core structure
where the substitution occurs). This is precisely what the generator ΓZC does. �

5.2.3. Pólya-Boltzmann samplers for decomposable species. The random generation rules shown
in Figure 9 for basic species and Figure 10 for general constructions can be combined to design a
Pólya-Boltzmann sampler for species that are decomposable over those basic species.

Definition 5.1. A Pólya-Boltzmann sampler ΓZA(s1, s2, . . .) is called linear if, in the real-
arithmetic complexity model described above, the number of computation steps for generating
a structure from A is linearly bounded by the size of the structures all along the generation
process.

Theorem 26. Let A be a species that is decomposable over species A1, . . . ,Al (Definition 2.7),
each having a linear Pólya-Boltzmann sampler. Then also the species A has a linear Pólya-
Boltzmann sampler ΓZA(s1, s2, . . .).

Proof. Given Proposition 25, the Pólya-Boltzmann sampler for A is straightforward by ‘unrolling’
the recursive specifications that show that A is decomposable; so we are left with the task to show
that we also have a linear Pólya-Boltzmann sampler for A.

Our argument is based on the following concept. The decomposition tree for structures A from
A is defined as follows. The leaves of this tree are structures from the species A1, . . . ,Al. The

other vertices of this tree are structures from the species X
(i)
j that appear in the definition of

recursive specifications (Definition 2.6). Suppose that A is specified by variable xs in the recursive
specification, and that n is the size of A. The root of the decomposition tree is A itself, which is

a structure from X
(n)
s . To define the children of a vertex A′ from X

(i)
j in the decomposition tree,

consider the species X
(i−1)
k for which xk appears in the expression ej in the recursive specification.

The children are the structures of those species from which A has been constructed. The size of
a decomposition tree is the number of its internal (i.e., non-leaf) vertices.

Let A be a structure from A, and let A1, . . . , At be the leafs of the decomposition tree for A.
Note that the cost of the sampling procedure for producing A is linearly bounded by the size of the
decomposition tree for A plus the total cost for sampling A1, . . . , At. The size of A is distributed
over all structures A1, . . . , At from terminal classes, consequently |A| = |A1|+ · · ·+ |At|. Since the
samplers for the terminal classes are linear, we conclude that the total cost for sampling A1, . . . , At

is linear in |A|.
We finally show that the size of the decomposition tree for A is linear in the size n of A.

More specifically, when m is the number of variables in the recursive specification of A, then the
size of the decomposition tree is bounded by 2mn. Otherwise, there would be a branch in the

decomposition tree that contains two vertices B1 from X
(n1)
j and B2 from X

(n2)
j (corresponding to

the same variable xj) such that B1 and B2 have the same size n. But then, by looping through
the corresponding cycle in the decomposition grammar, we can produce infinitely many distinct
structures of size n from the recursive specification, contradicting the fact that Xj [n] is finite. The
details of this argument are easy and left to the reader. �

Consequently, the rooted species we have encountered (i.e., with a single marked atom) in
Section 4 can be endowed with efficient random samplers.

Proposition 27. In the real-arithmetic complexity model (oracle assumption), the following
species admit an exact-size sampler of expected complexity O(n2) (n being the target-size) and
an approximate-size sampler of expected complexity O(n/ǫ) (ǫ being the tolerance-ratio) for the
uniform distribution on unlabeled structures: rooted nonplane (plane, resp.) trees, rooted non-
plane (plane, resp.) trees whose node degrees are constrained to lie in a finite integer set Ω, rooted
cacti graphs, rooted connected outerplanar graphs.

Proof. All the rooted tree species stated here are decomposable over the discussed basic species,
as we have seen in Section 4. (For instance, the species F′ of rooted nonplane trees satisfies
F′ = Set ◦ (X · F′).) Hence, by Theorem 26, the species of rooted trees can be endowed with a
linear Pólya-Boltzmann sampler. A species G′ of rooted connected graphs – provided that it is

BOLTZMANN SAMPLERS, PÓLYA THEORY, AND CYCLE POINTING 35

closed under taking 2-connected components – is decomposable in terms of the subspecies B′ of
rooted 2-connected graphs:

G′ = Set ◦ (B′ ◦ (X · G′)).

As we have explained in Sections 4.2.1 and 4.2.2, there is a decomposition strategy for rooted
2-connected cacti graphs (rooted polygons) and rooted 2-connected outerplanar graphs (rooted
dissections of a polygon). The linear Pólya-Boltzmann sampler ΓZB′ yields in turn a linear Pólya-
Boltzmann sampler for G′ (using the specification of G′ in terms of B′ stated above). Hence, each
of the rooted species stated above has a linear Pólya-Boltzmann sampler, which becomes a linear
ordinary Boltzmann sampler when specialized to si = xi.

Moreover, all these rooted species obey the universal asymptotic form c ρ−nn−3/2, as shown
in [26] for trees, in [31] for cacti graphs, and in [3] for outerplanar graphs. Hence, by Proposition 22,
a Boltzmann sampler run at the dominant singularity yields an exact-size (approximate-size, re-
spectively) sampler with expected complexity O(n2) (O(n/ǫ), respectively). �

5.3. Pólya-Boltzmann samplers for cycle-pointed species.

5.3.1. Definition. Given a cycle-pointed species P, a vector (si, ti)i≥1 of nonnegative real values
is said to be admissible if the sum of weight-monomials defining ZP converges when evaluated at
this vector. Given a fixed admissible vector (si, ti)i≥1, a Pólya-Boltzmann sampler is a procedure

ΓZP(si, ti)i≥1 that generates a rooted c-symmetry on P at random such that each rooted c-
symmetry (P, σ, v) of R(P) is drawn with probability

P(P, σ, v) =
w(P,σ,v)

ZP((si, ti)i≥1)
, (68)

with w(P,σ,v) as defined in (15). This probability distribution is called the Pólya-Boltzmann distri-

bution for P at (si, ti)i≥1. Similarly as for classical species, the procedure of calling ΓZP(x
i, xi)i≥1

(where x is admissible for the ordinary generating function P̃(x)) and then returning the underly-

ing unlabeled structure yields an ordinary Boltzmann sampler ΓP̃(x). The following sampling rules
make it possible to systematically assemble Pólya-Boltzmann samplers for cycle-pointed species.

5.3.2. Pólya-Boltzmann samplers for basic cycle-pointed species.

Proposition 28. The random generators shown in Figure 11 are Pólya-Boltzmann samplers for
the corresponding basic cycle-pointed species.

Proof. The arguments are very similar to the ones in the proof of Proposition 24. Observe that
Seq◦ = (X◦ ⋆ Seq) ⋆ Seq. The marked atom (the atom bearing the marked cycle, which has
length 1 here) must be preceded by a sequence of k1 atoms and followed by a sequence of k2 atoms
such that k1 and k2 follow independently a geometric law of parameter s1.

Next, we have Set◦
(ℓ) = C(ℓ) ⋆ Set where C(ℓ) is the cycle-pointed species of cycles of ℓ atoms

(the cycle being marked), which explains the samplers ΓZSet◦ and ΓZSet⊛ in Figure 11.
A cycle-pointed structure in Cyc◦

ℓ consists of ℓ isomorphic copies (attached cyclically in a chain)
of an object in X◦ ⋆ Seq. Additionally, one needs to specify the shift of the automorphism; if the
cycle has length nℓ, the possible shifts are n · i where i ∈ [1..ℓ] is relatively prime to ℓ, hence there
are φ(ℓ) possibilities for the shift.

The proofs for the samplers with k components follow similar arguments. �

5.3.3. Pólya-Boltzmann samplers for cycle-pointed constructions.

Proposition 29. Let R be a species with a recursive specification over other species having a
Pólya-Boltzmann sampler. Then the random sampler ΓZR(s1, t1; s2, t2; . . .), as given in Figure 12,
is a Pólya-Boltzmann sampler for R.

Proof. The arguments are very similar to the ones in the proof of Proposition 25. For the cycle-
pointed sum, R = P + Q, we have RSym(R) = RSym(P) + RSym(Q). Therefore the Pólya-
Boltzmann sampler has to be a Bernoulli switch with probability ZP/ZR followed by a call to
the Pólya-Boltzmann sampler of either P or Q (depending on the Bernoulli ouput to be “true” or

36 MANUEL BODIRSKY, ÉRIC FUSY, MIHYUN KANG, AND STEFAN VIGERSKE

(1) Cycle-pointed sequence.

Algorithm ΓZSeq◦ (s1, s2, . . .) :
k1 ← Geom(s1); k2 ← Geom(s1); {indep. calls}

return a sequence of k1 + k2 + 1 atoms (endowed with the identity-automorphism)
where the atom at position k1 + 1 is marked.

(2) Cycle-pointed (symmetric cycle-pointed, resp.) set.

Given (si, ti)i≥1 such that
∑

i≥1

ti converges, define the distribution:

Pr(K) =
tK

∑

i≥1 ti
for K ≥ 1

(

Pr(K) =
tK

∑

i≥2 ti
for K ≥ 2, resp.

)

.

Let Root Cycle Size(t1, t2, . . .) (Root Cycle Size≥2(t1, t2, . . .), resp.) be a generator for this distribution.

Algorithm ΓZSet◦ (s1, t1; s2, t2; . . .) (ΓZSet⊛ (s1, t1; s2, t2; . . .), resp.) :

K ← Root Cycle Size(t1, t2, . . .) (K ← Root Cycle Size≥2(t1, t2, . . .), resp.);
γ ← ΓZSet(s1, s2, . . .);
Add to γ a marked cycle of length K;

return γ.

(3) Cycle-pointed (symmetric cycle-pointed, resp.) cycle.

Given (si, ti)≥1 such that Z := ZCyc◦ (s1, t1; s2, t2; . . .) (Z := ZCyc⊛ (s1, t1; s2, t2; . . .), resp.) converges,
consider the probability distribution

Pr(R = r) =
1

Z
ϕ(r)

tr

1− sr
for r ≥ 1 (r ≥ 2, resp.).

Let ReplicOrder(s1, t1; s2, t2; . . .) be a generator of this distribution.

Algorithm ΓZCyc◦ (s1, t1; s2, t2; . . .) (ΓZCyc⊛ (s1, t1; s2, t2; . . .), resp.) :

r ←− ReplicOrder(s1, t1; s2, t2; . . .);
j ←− 1 + Geom (sr);
Draw an integer b ∈ [1..r− 1] that is relatively prime to r uniformly at random ;

return the cycle of length j × r with a marked atom, and endowed with the automorphism:
“each atom is mapped to the atom that is j × b units further on the cycle”
(the marked cycle is the automorphism-cycle containing the marked atom).

(1’) Cycle-pointed sequence of size k; denote E := Seq[k].

Algorithm ΓZE◦ (s1, t1; s2, t2; . . .) :
return a sequence of k atoms (with the identity-automorphism) where one atom taken u.a.r. is marked

(2’) Cycle-pointed (symmetric cycle-pointed, resp.) set of size k; denote S := Set[k].

A marked (marked symmetric, resp.) partition sequence of order k is a sequence π = (ℓ, n1, n2, . . . , nk)
such that ℓ ≥ 1 (ℓ ≥ 2, resp.) and ℓ+

∑

i ini = k (one block is marked).

The corresponding coefficient [tℓsn1
1 . . . s

nk
k] is denoted coefπ(ZS◦) (coefπ(ZS⊛), resp.)

Algorithm ΓZS◦(s1, t1; s2, t2; . . .) (ΓZS⊛(s1, t1; s2, t2; . . .), resp.) :
Draw a partition-sequence π of order k with probability:

Pr(π) =
tℓs

n1
1 sn2

2 . . . s
nk
k · coefπ(ZS◦)

ZS◦(s1, t1; s2, t2; . . .)

(

Pr(π) =
tℓs

n1
1 sn2

2 . . . s
nk
k · coefπ(ZS⊛)

ZS⊛(s1, t1; s2, t2; . . .)
, resp.

)

return a collection of n1 cycles of length 1, n2 cycles of length 2, . . ., nk cycles of length k,
together with a marked cycle of length ℓ (with a marked atom on it taken u.a.r.).

(3’) Cycle-pointed (symmetric cycle-pointed, resp.) cycle of size k; denote C := Cyc[k].

Algorithm ΓZC◦ (s1, t1; s2, t2; . . .) (ΓZC⊛(s1, t1; s2, t2; . . .), resp.) :
Draw a divisor r of k (divisor r ≥ 2 of k) with distribution

Pr(r) =
φ(r)trs

−1+k/r
r

ZC◦ (s1, t1; s2, t2; . . .)

(

Pr(r) =
φ(r)trs

−1+k/r
r

ZC⊛ (s1, t1; s2, t2; . . .)
, resp.

)

Draw an integer b ∈ [1..r − 1] that is relatively prime to r uniformly at random;
return the cycle of length k with a marked atom and endowed with the automorphism:

“each atom is mapped to the atom that is kb/r units further on the cycle”.

Figure 11. Pólya-Boltzmann sampler for basic cycle-pointed species. In all
these random samplers, the finally returned structure is made well-labeled using
the procedure DistributeLabels.

BOLTZMANN SAMPLERS, PÓLYA THEORY, AND CYCLE POINTING 37

Cycle-pointed sum: R = P+ Q.
Given (si, ti)i≥1 such that Zp := ZP(s1, t1; s2, t2; . . .) and Zq := ZQ(s1, t1; s2, t2; . . .) converge:

Algorithm ΓZR(s1, t1; s2, t2; . . .) :

if Bern
(
Zp/(Zp + Zq)

)
then return ΓZP(s1, t1; s2, t2; . . .)

else return ΓZQ(s1, t1; s2, t2; . . .) end if

Cycle-pointed product: R = P ⋆B (analog for R = B ⋆ P)

Given (si, ti)i≥1 such that ZB(s1, s2, . . .) and ZP(s1, t1; s2, t2; . . .) converge:

Algorithm ΓZR(s1, t1; s2, t2; . . .) :

return (ΓZP(s1, t1; s2, t2; . . .),ΓZB(s1, s2, . . .)) {independent calls}

Cycle-pointed substitution: R = P⊚B.
Given (si, ti)i≥1 such that bi := ZB(si, s2i, s3i, . . .) and qi := ZB◦(si, ti; s2i, t2i; . . .) converge
for each i ≥ 1, and such that ZP(b1, q1; b2, q2; . . .) converges:

Algorithm ΓZR(s1, t1; s2, t2; . . .) :

Compute (P, σP , v)← ΓZP(b1, q1; b2, q2; . . .);
for each unmarked cycle C = (u1, . . . , uk) of σP (u1 has smallest label in C)

Compute (B, σB)← ΓZB(sk, s2k, . . .);
Replace each atom of C by a copy of B;
for each cycle D of σB do

Let E be the cycle composed from the copies of D at u1, . . . , uk;
end for

end for

Let F =(v1, . . . , vℓ) be the marked cycle of P (v1 has smallest label in F);
Compute (Q, σQ, q)← ΓZB◦(sℓ, tℓ; s2ℓ, t2ℓ; . . .);
Replace each atom of F by a copy of Q;
for each cycle G of σQ do

Let H be the cycle composed from the copies of G at v1, . . . , vℓ;
end for

In the resulting structure R, mark the cycle composed from the copies of
the marked cycle of Q;

return (R, σR, r), where σR is the automorphism consisting of the cycles E
and the cycles H , and where r is the atom q in the copy of the marked cycle
of Q substituted at v.

Figure 12. The rules to specify a Pólya-Boltzmann sampler for a cycle-
pointed species assembled from other species using the cycle-pointed constructions
{+, ⋆,⊚}. In all these random samplers, the output structure is made well-labeled
using the procedure DistributeLabels.

“false”). (We work here with the refined weight tℓsn1
1 sn2

2 . . . snk

k /n! instead of the standard weight
xn/n!, but the arguments given in [9] work the same way with these refined weights.)

For the cycle-pointed product, R = P ⋆ B, RSym(R) is like a partitional product of RSym(P)
and Sym(B). Therefore, a Boltzmann sampler for R consists of two independent calls to Pólya-
Boltzmann samplers for P and for B. (Again the only difference here with [9] is that we consider
refined weights: tℓsn1

1 sn2
2 . . . snk

k /n! for P, and sn1
1 sn2

2 . . . snk

k /n! for B.) The arguments are the
same for B ⋆ P.

For cycle-pointed substitution, R = P ⊚ B, recall (from Equation (26) in the proof of Propo-
sition 7) that for each marked integer partition π, the sum of the weight-monomials over all the

38 MANUEL BODIRSKY, ÉRIC FUSY, MIHYUN KANG, AND STEFAN VIGERSKE

symmetries on R whose core has type π = (ℓ;n1, n2, . . . , nk) satisfies the expression

Z
(π)

R =
aπ
n!

qℓb
n1
1 bn2

2 . . . bnk

k , where bi = ZB(si, s2i, . . .), qℓ = ZB◦(sℓ, tℓ; s2ℓ, t2ℓ; . . .).

Hence, a Pólya-Boltzmann sampler for R must draw the core structure following the Pólya-
Boltzmann distribution for P with parameters (b1, q1; b2, q2; . . .). In addition, once the type π
of the core symmetry is fixed, the structures substituted at the cycles of the core automorphism
form a partitional product of the form

{RSym(B◦) replicated ℓ times}⋆Sym(B)n1 ⋆{Sym(B) duplicated}n2 ⋆ · · ·⋆{Sym(B) replicated k times}nk .

Recall that a partitional product yields independent Boltzmann samplers. Hence, once the core
symmetry (P, σ) is drawn, the symmetries in B that are substituted at each cycle of σA must
be independent calls of a Pólya-Boltzmann sampler for B, except for the marked cycle where we
have to call a Pólya-Boltzmann sampler for B◦. In addition, for an unmarked (marked, resp.)
cycle, the parameters of ΓZB (of ΓZB◦ , resp.) must be (si, s2i, . . .) ((si, ti; s2i, t2i; . . .), resp.) if

the cycle has length i, as indicated by the expression of Z
(π)

R given above. This is precisely what
the generator ΓZR does. �

5.3.4. Pólya-Boltzmann samplers for decomposable cycle-pointed species. Similarly as for decom-
posable species, the random generation rules shown in Figure 11 (basic cycle-pointed species) and
Figure 12 (cycle-pointed constructions) can be combined to design a Pólya-Boltzmann sampler for
any species with a cycle-pointed recursive decomposition over basic species. We assume here again
that an oracle provides the required evaluations of cycle-index sums and pointed cycle-index sums
for the species appearing in the decomposition; and that the cost of drawing k under a specific
integer distribution (such as ReplicOrder in ΓZCyc) has linear cost in k.

Theorem 30. Any species P with a cycle-pointed recursive specification (Definition 3.4) over
species A1, . . . ,Al having a linear Pólya-Boltzmann sampler can be endowed with a linear Pólya-
Boltzmann sampler ΓZP(s1, t1; s2, t2; . . .).

Proof. Analogous to the proof of Theorem 26. �

Consequently, the unrooted species we have encountered in Section 4 can be endowed with
efficient random samplers.

Proposition 31. In the real-arithmetic complexity model (oracle assumption), the following unla-
beled species admit an exact-size sampler and an approximate-size sampler of expected complexities
O(n2) and O(n/ǫ) (n being the target-size, ǫ the tolerance-ratio): unrooted nonplane (plane, resp.)
trees, unrooted nonplane (plane, resp.) trees whose node degrees are constrained to lie in a finite
integer set Ω, unrooted cacti graphs, unrooted connected outerplanar graphs.

Proof. The crucial point is that cycle-pointing is unbiased, hence finding an exact-size (approxi-
mate-size, resp.) sampler for a species A is equivalent to finding one for the cycle-pointed species
A◦.

For each of the unrooted tree species listed above, we have shown in Section 4 that the cor-
responding cycle-pointed species is decomposable. If G is a species of connected graphs (closed
under taking 2-connected components), the grammar (48) given in Proposition 15 ensures that
the cycle-pointed species G◦ is decomposed in terms of the 2-connected graph species B◦, B′,
and (B′)◦. For cacti graphs and outerplanar graphs, there is a decomposition strategy for the 2-
connected subspecies (polygons for cacti graphs, dissections of a polygon for outerplanar graphs),
which easily yields linear Pólya-Boltzmann samplers for the species B◦, B′, and (B′)◦. Since G◦

is specified over these three species, there is also a linear Pólya-Boltzmann sampler for G◦.
Hence, for each unrooted species A stated above, there is a linear Pólya-Boltzmann sampler for

A◦, which becomes a linear ordinary Boltzmann sampler when specializing to (si = xi, ti = xi).

Moreover, the counting coefficients |Ãn| obey the asymptotic form c ρ−nn−5/2, as shown in [26]

for trees, [31] for cacti graphs, and [3] for outerplanar graphs. Therefore the coefficients |Ã◦
n| obey

the asymptotic form c ρ−nn−3/2.

BOLTZMANN SAMPLERS, PÓLYA THEORY, AND CYCLE POINTING 39

Hence, by Proposition 22, running the Boltzmann sampler ΓZA◦ at (si = ρi, ti = ρi) – with

ρ the dominant singularity of Ã(x) – yields an exact-size (approximate-size, resp.) sampler for
unlabeled structures from A with expected complexity O(n2) (O(n/ǫ), respectively). �

5.4. Simplifications.

5.4.1. Regarding the labels. Notice that the last step of all the random generation rules – as written
in Figure 9, 10, 11, and 12 – is a call to a procedure that distributes distinct labels uniformly at
random on the atoms of the output structure. A Pólya-Boltzmann sampler for a decomposable
species calls each of these random generation rules a certain number of times until the structure
is completely build. It is however not necessary to call the label-distribution procedure at each
step; one can just wait until the complete structure is build to distribute the labels. (If one is only
interested in the underlying unlabeled structure of the final output, one can simply forget about
any label-distribution procedure.)

5.4.2. Regarding the cycles in automorphisms. We want to remark that one can simplify the ran-
dom generation rules by forgetting about the cyclic order of the atoms in each part of the symme-
tries (automorphisms), i.e., storing only the partition of the atoms induced by the automorphism.
The composition of cycles then corresponds to merging the corresponding parts of the partition;
and the line “draw an integer that is relatively prime to r” is deleted in the Pólya-Boltzmann sam-
plers for cycle-pointed species. These simplified random samplers output the profile of a symmetry
drawn under the Pólya-Boltzmann distribution (by profile we mean that the cyclic order of the
atoms in each part is forgotten). This is actually enough if one is just interested in the underlying
unlabeled structure, which is mostly the case in practice, since Pólya-Boltzmann samplers are used
as a tool to design ordinary Boltzmann samplers.

5.4.3. Specialization to ordinary Boltzmann samplers. Let F be a species with a recursive decom-
position (cycle-pointed or not) over finitely many other species. Remark 2.1 and Remark 3.3

ensure that, to compute F̃(x), the only species in the recursive specification for which it is neces-
sary to know the cycle-index sum are the core species of the substitution operations in the recursive
specification. For all the other species that appear in the recursive specification, it is enough to
compute just the ordinary generating function.

A similar remark holds for random generation. Namely, if one wants an ordinary Boltzmann

sampler ΓF̃(x), it suffices to have Pólya-Boltzmann samplers for the species that appear as core
species of substitution operations in the recursive specification. For all the other species, an
ordinary Boltzmann sampler is enough.

5.5. Examples. To illustrate how our samplers (and the simplifications discussed above) operate
in practice, we give here two examples: the species R of rooted nonplane trees, already treated
in [13], and the species F of unrooted nonplane trees, also called free trees; here, one has to consider
the associated cycle-pointed species, which is new.

In order to obtain uniform random samplers for unlabeled structures from R, we design an
ordinary Boltzmann sampler for R via Pólya-Boltzmann samplers. Recall that R is specified by
R = X · Set(R). Hence, according to Section 5.4.3, we need a Pólya-Boltzmann sampler for

Set in order to recursively specify an ordinary Boltzmann sampler ΓR̃(x). Actually, according
to the discussion in Section 5.4.2, we just need the profile of the automorphism computed by
ΓZSet. Given these simplifications and the definition of ΓZSet (Figure 9), we obtain the ordinary

Boltzmann sampler ΓR̃(x) shown in Figure 13.
Let us now discuss the species of free trees F. We want to sample unlabeled structures from F

uniformly at random. Since cycle-pointing is unbiased, it suffices to sample unlabeled structures
from the cycle-pointed species F◦. From the decomposition grammar for F◦ given in Proposi-
tion 11, we can design an ordinary Boltzmann sampler via Pólya-Boltzmann samplers. According
to Section 5.4.3, the only species for which we need Pólya-Boltzmann samplers (as refinements of
ordinary Boltzmann sampers) are the species Set, Set◦, and Set⊛. Again, only the profile of the
automorphisms returned by these samplers is necessary. Given the definition of ΓZSet, ΓZSet◦ ,

40 MANUEL BODIRSKY, ÉRIC FUSY, MIHYUN KANG, AND STEFAN VIGERSKE

(1) Rooted nonplane trees.

Algorithm ΓR̃(x):

J ←Max Index(R̃(x), R̃(x2), . . .);

for j from 1 to J − 1 do kj ← Pois
(
R̃(xj)/j

)
end for

kJ ← Pois≥1

(
R̃(xJ)/J

)
; {Poisson conditioned to output a strictly positive integer}

γ ← RootNode;
for j from 1 to J do

τj ← ΓR̃(xj); γ ← γ + {kj copies of τj pending from the root} end for
return γ.

(2) Cycle-pointed nonplane trees.

[An auxiliary Boltzmann sampler for unlabeled cycle-pointed rooted nonplane trees]

Algorithm ΓR̃◦(x)

ℓ← Root Cycle Size(xR̃′(x), x2R̃′(x2), . . .);

τ ← ΓR̃◦(xℓ); τ ′ ← ΓR̃(x);
Attach (at their roots) ℓ copies of τ and one copy of τ ′ at a node

return the resulting tree

[The Boltzmann sampler for unlabeled cycle-pointed nonplane trees]

Algorithm ΓF̃◦(x)

if Bern(R̃(x)/p(x)) return ΓR̃(x)

else if Bern
(
x2

R̃
′(x2)/(p(x)− R̃(x))

)

τ ← ΓR̃◦(x2);
return two copies of τ attached at an edge

else

ℓ← Root Cycle Size≥2(xR̃
′(x), x2

R̃
′(x2), . . .);

τ ← ΓR̃◦(xℓ); τ ′ ← ΓR̃(x);
Attach (at their roots) ℓ copies of τ and one copy of τ ′ at a node

return the resulting tree

Figure 13. Ordinary Boltzmann samplers for rooted nonplane trees and cycle-

pointed nonplane trees. Taking x = ρ the singularity of R̃(x), we repeatedly call

ΓR̃(x) (ΓF̃◦(x), respectively) until we reach the target size; this yields an exact-
size sampler of expected complexity O(n2) and an approximate-size sampler of
complexity O(n/ǫ) for rooted nonplane trees (for free trees, respectively).

and ΓZSet⊛ (Figure 9), we obtain the ordinary Boltzmann sampler ΓF̃◦ for unlabeled structures
shown in Figure 13.

Note that in these Boltzmann samplers, the only evaluations required are those of the series
p(x), and of r(xi) and xir′(xi) for any i ≥ 1. As discussed in Section 5.1.2, in practice we evaluate
these series up to the power i = N/ log2(1/ρ), where N is the precision (number of bits).

Acknowledgements. Omid Amini, Olivier Bodini, Philippe Flajolet, and Pierre Leroux are greatly
thanked for fruitful discussions and suggestions. Further, we thank two anonymous referees for
their helpful comments.

References

[1] J. P. Bell, S. N. Burris, and K. A. Yeats. Counting rooted trees: The universal law t(n) ∼ cρ−nn−3/2.
Electronic Journal of Combinatorics Volume 13(1) R63, 2006.

[2] F. Bergeron, G. Labelle, and P. Leroux. Combinatorial Species and Tree-like Structures. Cambridge University
Press, 1997.

BOLTZMANN SAMPLERS, PÓLYA THEORY, AND CYCLE POINTING 41

[3] M. Bodirsky, É. Fusy, M. Kang, and S. Vigerske. Enumeration of unlabeled outerplanar graphs. Electronic
Journal of Combinatorics, 14, R66, 2007.

[4] M. Bodirsky and M. Kang. Generating outerplanar graphs uniformly at random. Comb. Prob. and Computing,
15:333–343, 2006.

[5] B. Bollobás. Random Graph. Cambridge University Press, 2nd ed., 2001.
[6] M. Bona, M. Bousquet, G. Labelle, and P. Leroux. Enumeration of m-ary cacti, Advances in Applied Mathe-

matics, 24:22–56, 2000.
[7] P. Cameron. Permutation groups. Cambridge University Press, 1999.
[8] L. Devroye. Non-uniform Random Variate Generation. Springer, 1986.
[9] P. Duchon, P. Flajolet, G. Louchard, and G. Schaeffer. Boltzmann Samplers for the Random Generation of

Combinatorial Structures. Combinatorics, Probability and Computing, 13(4-5):577–625, 2004.
[10] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009.
[11] P. Flajolet, P. Zimmerman, and B. van Cutsem. A calculus for the random generation of labelled combinatorial

structures. Theoretical Computer Science, 132(1-2):1–35, 1994.

[12] É. Fusy. Counting unrooted maps using tree-decomposition. Séminaire Lotharingien de Combinatoire, B54Al
(2007), 44 pp.

[13] É. Fusy, P. Flajolet, and C. Pivoteau. Boltzmann sampling of unlabelled structures. In Proceedings of the
Fourth Workshop on Analytic Algorithmics and Combinatorics (ANALCO), 2007.

[14] O. Giménez and M. Noy. Asymptotic enumeration and limit laws of planar graphs J. Amer. Math. Soc. 22,
309-329, 2009.

[15] L. A. Goldberg, M. Jerrum. The “Burnside Process” Converges Slowly, Combinatorics, Probability and Com-
puting, 11(1):21-34, 2002.

[16] F. Harary and E. M. Palmer. Graphical Enumeration. Academic Press, New York and London, 1973.
[17] P. Hell and J. Nešeťril. Graphs and Homomorphisms. Oxford University Press, 2004.
[18] J. A. Howell, T. F. Smith, and M. S. Waterman. Computation of generating functions for biological molecules.

SIAM J. Appl. Math., 39:119–133, 1980.
[19] M. Jerrum. Uniform sampling modulo a group of symmetries using Markov chain simulation. Technical Report

ECS-LFCS-94-288, Univ. Edinburgh, 1994.
[20] M. Jerrum and A. Sinclair. The Markov Chain Monte Carlo Method: An Approach to Approximate Counting

and Integration. Approximation Algorithms (D. Hochbaum), PWS Publishing Company, Boston, 1997.
[21] D. E. Knuth. The Art of Computer Programming, 3rd edn, Vol. 2, Seminumerical Algorithms, Addison-Wesley,

1998.
[22] V. Liskovets. A census of non-isomorphic planar maps. In Coll. Math. Soc. J. Bolyai, Proc. Conf. Algebr.

Meth. in Graph Th., volume 25:2, pages 479–494, 1981.
[23] V. Liskovets and T. Walsh. The enumeration of non-isomorphic 2-connected planar maps. Canad. J. Math.,

volume 35:3, pages 417–435, 1983.
[24] B. Mohar and C. Thomassen. Graphs on surfaces. Johns Hopkins University Press, 2001.
[25] A. Nijenhuis and H. Wilf. Combinatorial algorithms. Academic Press Inc., 1979.
[26] Otter. The number of trees. Annals of Math., 49:583–599, 1948.
[27] C. Pivoteau, B. Salvy and M. Soria. Boltzmann Oracles for Combinatorial Systems. Proceedings of the Fifth

Colloquium on Mathematics and Computer Science: Algorithms, Trees, Combinatorics and Probabilities, 2008.
[28] G. Pólya. Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen. Acta

Mathematica 68 (1): 145–254, 1937.
[29] G. Pólya and R. C. Read. Combinatorial Enumeration of Groups, Graphs and Chemical Compounds. Springer

Verlag, 1987.
[30] R. C. Read. On general dissections of a polygon. Aequationes Mathematicae, 18, University of Waterloo, pages

370–388, 1978.
[31] B. Shoilekova. Unlabelled enumeration of cacti graphs. Manuscript, 2007.
[32] N. Sloane. The On-Line Encyclopedia of Integer Sequences. http://www.research.att.com/~njas/sequences/A000672,

2003.
[33] W. T. Tutte. A census of planar maps. Canad. J. Math., 15:249–271, 1963.
[34] H. S. Wilf. The uniform selection of free trees. J. Algorithms, 2(2):204–207, 1981.

Manuel Bodirsky: LIX (CNRS UMR 7161), École Polytechnique, 92128 Palaiseau, France.

Éric Fusy: LIX (CNRS UMR 7161), École Polytechnique, 92128 Palaiseau, France.

Mihyun Kang: Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136,
D-10623 Berlin, Germany.

Stefan Vigerske: Institut für Mathematik, Humboldt-Universität zu Berlin, Unter den Linden 6,
10099 Berlin, Germany.

http://www.research.att.com/~njas/sequences/A000672

	1. Introduction
	Outline of the paper

	2. Preliminaries
	2.1. Combinatorial Species
	2.2. Enumeration
	2.3. Cycle index sums
	2.4. Basic species and combinatorial constructions
	2.5. Recursive Specifications.
	2.6. Decomposition of symmetries

	3. Cycle-pointed Species
	3.1. Cycle-Pointed Species
	3.2. Cycle Index Sums
	3.3. Basic Cycle-pointed Species and Constructions

	4. Application to Enumeration
	4.1. Trees
	4.2. Graphs
	4.3. Maps
	4.4. Asymptotic enumeration

	5. Application to Random Generation
	5.1. Ordinary Boltzmann Samplers
	5.2. Pólya-Boltzmann Samplers for classical species
	5.3. Pólya-Boltzmann samplers for cycle-pointed species
	5.4. Simplifications
	5.5. Examples

	References

