
Relaxation Methods for Image Denoising Based on Difference Schemes

Rong-Qing Jia†, Hanqing Zhao† and Wei Zhao†
Department of Mathematical and Statistical Sciences

University of Alberta
Edmonton, Canada T6G 2G1

rjia@ualberta.ca, hzhao@math.ualberta.ca and wazhao@math.ualberta.ca

Abstract

In this paper, we propose some relaxation methods that can be used to design very fast
iteration schemes for image denoising based on the total variation model. By using certain
techniques from convex optimization, we establish the convergence of the iteration schemes
based on these relaxation methods. Furthermore, we provide some empirical formulas for the
parameters needed in the denoising model. As a result, we are able to construct automatic
algorithms for image denoising that produce nearly optimal results. Finally, we apply the
relaxation methods to image denoising based on high-order difference schemes. The resulting
iteration scheme is fast and yields significantly better image quality than the numerical
schemes based on the total variation model.

Key words and phrases: image denoising, difference schemes, total variation, relaxation
methods, optimization.

AMS Mathematics Subject Classification: 94A08, 68U10, 49M20, 65K10.

Abbreviated Title: Relaxation Methods for Image Denoising.

†Supported in part by NSERC Canada under Grant OGP 121336

1

Relaxation Methods for Image Denoising Based on Difference Schemes

§1. Introduction

An image is regarded as a function from {1, . . . , N} × {1, . . . , N} to IR, where N ≥ 2.
Suppose u ∈ IRJN×JN , where JN := {1, . . . , N}. For 1 ≤ p <∞, let

‖u‖p :=
(∑
1≤i,j≤N

|u(i, j)|p
)1/p

,

and let ‖u‖∞ := max1≤i,j≤N |u(i, j)|. The inner product of two vectors u, v ∈ IRJN×JN is
defined to be

〈u, v〉 :=
∑

1≤i,j≤N

u(i, j)v(i, j). (1.1)

Clearly, ‖u‖22 = 〈u, u〉. For a linear operator A on IRJN×JN , we use AT to denote the adjoint
operator of A with respect to the inner product given in (1.1). If A = AT , then we say
that A is symmetric. A symmetric linear operator A is said to be positive definite if
〈Av, v〉 > 0 for every nonzero vector v in IRJN×JN . We use I to denote the identity operator
on IRJN×JN .

Let f ∈ IRJN×JN be an observed image with noise. We wish to recover a target image
u from f by denoising. The TV (Total Variation) model of Rudin, Osher, and Fatemi [21]
for image denoising is considered to be one of the best denoising models. The anisotropic
TV model for denoising can be formulated as the following minimization problem with an
appropriately chosen positive parameter µ:

min
u

[
‖∇xu‖1 + ‖∇yu‖1 +

µ

2
‖u− f‖22

]
, (1.2)

where ∇x denotes the difference operator given by ∇xu(1, j) = 0 for j = 1, . . . , N and

∇xu(i, j) = u(i, j)− u(i− 1, j), i = 2, . . . , N, j = 1, . . . , N,

and ∇y is the difference operator given by ∇yu(i, 1) = 0 for i = 1, . . . , N and

∇yu(i, j) = u(i, j)− u(i, j − 1), i = 1, . . . , N, j = 2, . . . , N.

This motivates us to consider the general minimization problem of a convex function on
the n-dimensional Euclidean space IRn. Let E : IRn → IR be a convex function. A vector h
in IRn is called a subgradient of E at a point v ∈ IRn if

E(u)− E(v)− 〈h, u− v〉 ≥ 0 ∀u ∈ IRn.

The subdifferential ∂E(v) is the set of subgradients of E at v. It is known that the
subdifferential of a convex function at any point is nonempty. If g ∈ ∂E(u) and h ∈ ∂E(v),
then

E(u)− E(v)− 〈h, u− v〉 ≥ 0 and E(v)− E(u)− 〈g, v − u〉 ≥ 0.

2

It follows that 〈g−h, u− v〉 ≥ 0. Clearly, v is a minimal point of E if and only if 0 ∈ ∂E(v).
If this is the case, we write

v = arg min
u
{E(u)}.

If E is given byE(u) = |u|+ λ
2
(u− c)2, u ∈ IR, where λ > 0 and c ∈ IR, then 0 ∈ ∂E(v)

if and only if v = shrink(c, 1/λ), where

shrink(c, 1/λ) :=

 c− 1/λ for c > 1/λ,
0 for −1/λ ≤ c ≤ 1/λ,
c+ 1/λ for c < −1/λ.

This soft thresholding operator was introduced by Donoho in [11].
For λ > 0 and c ∈ IR, we define

cut(c, 1/λ) :=

 1/λ for c > 1/λ,
c for −1/λ ≤ c ≤ 1/λ,
−1/λ for c < −1/λ.

Clearly, shrink(c, 1/λ) + cut(c, 1/λ) = c. Let v = (v1, . . . , vn) and c = (c1, . . . , cn) be
two vectors in IRn. We write v = shrink(c, 1/λ) if vi = shrink(ci, 1/λ), i = 1, . . . , n.
Analogously, we write v = cut(c, 1/λ) if vi = cut(ci, 1/λ), i = 1, . . . , n.

Suppose E is the function on IRn given by

E(u) = ‖u‖1 +
λ

2
‖u− c‖22, u ∈ IRn,

where λ > 0 and c = (c1, . . . , cn) ∈ IRn. Given v = (v1, . . . , vn) ∈ IRn, we see that 0 ∈ ∂E(v)
if and only if v = shrink(c, 1/λ).

Suppose u∗ is the unique solution to the minimization problem (1.2). In order to find
the solution u∗, Goldstein and Osher in [13] proposed to use the Bregman method, as in-
troduced in [3]. Following [13], we introduce new vectors vx, vy ∈ IRJN×JN and consider the
minimization problem

min
vx,vy ,u

[
E(vx, vy, u) +

λ

2
‖vx −∇xu‖22 +

λ

2
‖vy −∇yu‖22

]
,

where λ > 0 and E(vx, vy, u) := ‖vx‖1 + ‖vy‖1 + (µ/2)‖u − f‖22. Choose b0x = b0y = 0 and
v0x = v0y = 0. For k = 0, 1, 2, . . ., let

(vk+1
x , vk+1

y , uk+1) := argmin
vx,vy ,u

[E(vx, vy, u) +Hk(vx, vy, u)], (1.3)

where Hk(vx, vy, u) := (λ/2)‖vx −∇xu− bkx‖22 + (λ/2)‖vy −∇yu− bky‖22, and let

bk+1
x := bkx − (vk+1

x −∇xu
k+1), bk+1

y := bky − (vk+1
y −∇yu

k+1). (1.4)

3

It was proved in [16] that limk→∞ u
k = u∗.

The minimization problem in (1.3) is still difficult to solve. To overcome the difficulty,
the split Bregman method was introduced in [13]. This method separates the variables u
and v in (1.3) as follows:

uk+1 := arg min
u

[E(vkx, v
k
y , u) +Hk(vkx, v

k
y , u)],

(vk+1
x , vk+1

y) := argmin
vx,vy

[E(vx, vy, u
k+1) +Hk(vx, vy, u

k+1)].

The above two minimization problems can be solved in the following way:

(µ− λ∆)uk+1 = µf + λ∇T
x (vkx − bkx) + λ∇T

y (vky − bky), (1.5)

where ∆ := −∇T
x∇x −∇T

y∇y, and

vk+1
x = shrink(∇xu

k+1 + bkx, 1/λ), vk+1
y = shrink(∇yu

k+1 + bky, 1/λ). (1.6)

The convergence of the iteration scheme given by (1.5), (1.6), and (1.4) could be established
by using the proximal forward-backward splitting algorithm based on the Moreau-Yosida
regularization. See the work [9] of Combettes and Wajs. Also, see the recent paper [4] of
Cai, Osher, and Shen for more general discussions on split Bregman methods. The actual
implementation in [13] was to use the Gauss-Seidel method once in each iteration step to
solve the linear system of equations in (1.5). As far as we know, however, the convergence
of this iteration scheme has not been established.

An alternative method for the minimization problem in (1.3) was proposed in [17]. Sup-
pose uk is known. Solve (vx, vy) in (1.3):

(vkx, v
k
y) := argmin

vx,vy
[E(vx, vy, u

k) +Hk−1(vx, vy, u
k)].

Suppose that the linear operator µI + λ∆ is positive definite. Let B be the square root
of µI + λ∆. Using the Bregman method, we let uk+1 be the solution of the following
minimization problem:

uk+1 := arg min
u

{1

2
‖B(u− f)‖22 − 〈B2(uk − f), u− uk〉+

λ

2
‖vkx −∇xu‖22 +

λ

2
‖vky −∇yu‖22

}
.

After solving the above two minimization problems, we obtain the following iteration scheme:
Set b0x := 0, b0y := 0, and u1 := f . For k = 1, 2, . . ., let

bkx := cut(∇xu
k + bk−1x , 1/λ), bky := cut(∇yu

k + bk−1y , 1/λ), (1.7)

uk+1 := f − λ

µ
(∇T

x b
k
x +∇T

y b
k
y). (1.8)

4

For details, see Lemmas 1 and 2 of [17]. It was proved there that limk→∞ u
k = u∗, provided

λ/µ ≤ 1/8.
The above iteration scheme could also be derived from the Uzawa algorithm (see [1,

Chap. 10]). The Uzawa algorithm can be viewed as a subgradient method applied to the dual
problem. By considering the problem dual to the minimization problem (1.2), Chambolle
in [5] and [6] developed (sub)gradient-based algorithms. However, he did not establish
convergence for the iteration scheme given by (1.7) and (1.8). Instead, he gave a proof of
convergence for a different iteration scheme, as given in [5]. Recently, Beck and Teboulle
in [2] also considered the dual problem and established the sublinear rate of convergence in
function values under the condition λ/µ ≤ 1/8.

Let τ := λ/µ. Then τ can be viewed as the step size of the iteration scheme. If τ is too
small, then the iteration scheme may converge very slowly. If τ is too large, the iteration
scheme may diverge. In this paper, we propose certain relaxation methods which admit a
wider range of step sizes. In this way we can speed up the iteration process significantly.

Here is the outline of the paper. In §2 we introduce two relaxation methods for the
minimization problem (1.2). Moreover, we establish the convergence of the iteration schemes
based on these relaxation methods. In §3 we report the numerical results of image denoising
by using the relaxation methods. For the anisotropic model (1.2) for denoising, we compare
the performance of our algorithm with the GO algorithm of Goldstein and Osher as given in
[13]. To achieve the same or slightly better image quality, our algorithm only requires 10% –
20% of the time needed for the GO algorithm. In §4, we design some automatic algorithms
for image denoising based on the total variation model. We provide an empirical formula to
estimate the parameter µ and demonstrate that our automatic algorithm produces nearly
optimal results. In §5, we extend our results to image denoising based on high-order difference
schemes. Our relaxation method gives fast iteration schemes that yield significantly better
image quality than the numerical schemes based on the total variation model. Finally, in §6,
we make concluding remarks and discuss topics for possible future research.

§2. Relaxation Methods for the Total Variation Model

Relaxation methods are frequently used in numerical linear algebra. A linear system of
equations has the form Ax = y, where A is an invertible n× n matrix, y is a given n-vector,
and x is the unknown n-vector. A simple iteration scheme for solving the linear system
Ax = y may be described as follows. Let F be an invertible n× n matrix. Starting with an
initial guess x0, we perform the iteration scheme

xk+1 := xk + F (y − Axk), k = 0, 1, 2,

If limk→∞ x
k = x∗, then Ax∗ = y. A relaxation method employs a weighted average of the

update xk + F (y − Axk) and the previous value xk:

xk+1 := (1− t)xk + t[xk + F (y − Axk)] = xk + tF (y − Axk),

5

where the weight factor t > 0 is called the relaxation parameter. Relaxation methods often
accelerate the convergence of the classical Jacobi and Gauss-Seidel iterations. See [18, §4.2]
for more details of the Jacobi method with relaxation and the Gauss-Seidel method with
relaxation.

Motivated by the preceding discussion, we derive from (1.7) and (1.8) the following
relaxation scheme: Set b0x := 0, b0y := 0, and u1 := f . For k = 1, 2, . . ., let

bkx := (1− t)bk−1x + t(cut(∇xu
k + bk−1x , 1/λ)), (2.1)

bky := (1− t)bk−1y + t(cut(∇yu
k + bk−1y , 1/λ)), (2.2)

uk+1 := f − λ

µ
(∇T

x b
k
x +∇T

y b
k
y). (2.3)

Clearly, the iteration scheme given in (1.7) and (1.8) is the special case of the current iteration
scheme when t = 1.

In the following theorem we establish convergence of the relaxation scheme. Our proof
is motivated by the techniques employed in [8] and [4].

Theorem 1. Let (uk)k=1,2,... be the sequence produced by the iteration scheme given in (2.1),
(2.2), and (2.3). If 0 < t < 2 and λ/µ ≤ (2− t)/4, then limk→∞ u

k = u∗.

Proof. Let G denote the function given by G(v) := ‖v‖1 for v ∈ IRJN×JN . Recall that u∗ is
the unique solution to the minimization problem (1.2). Let v∗x := ∇xu

∗ and v∗y := ∇yu
∗. It

follows from (1.2) that there exist some p∗x ∈ ∂G(v∗x) and p∗y ∈ ∂G(v∗y) such that

∇T
x p
∗
x +∇T

y p
∗
y + µ(u∗ − f) = 0.

Let b∗x := p∗x/λ and b∗y := p∗y/λ. Consequently,

µ(u∗ − f) + λ(∇T
x b
∗
x +∇T

y b
∗
y) = 0. (2.4)

For k = 1, 2, . . ., let

vkx := arg min
v

{
‖v‖1 +

λ

2
‖v −∇xu

k − bk−1x ‖
2
2

}
, (2.5)

vky := arg min
v

{
‖v‖1 +

λ

2
‖v −∇yu

k − bk−1y ‖
2
2

}
. (2.6)

It follows that vkx = shrink(∇xu
k + bk−1x , 1/λ) and vky = shrink(∇yu

k + bk−1y , 1/λ). This
together with (2.1) and (2.2) gives

bkx = bk−1x + t(∇xu
k − vkx) and bky = bk−1y + t(∇yu

k − vky). (2.7)

Moreover, let pkx := −λ(vkx −∇xu
k − bk−1x) and pky := −λ(vky −∇yu

k − bk−1y). Then by (2.5)
and (2.6) we have pkx ∈ ∂G(vkx) and pky ∈ ∂G(vky).

6

For k = 1, 2, . . ., denote the errors by

uke := uk − u∗, vkx,e := vkx − v∗x, vky,e := vky − v∗y, bkx,e := bkx − b∗x, bky,e := bky − b∗y. (2.8)

It follows from (2.7) that

bk+1
x,e = bkx,e + t(∇xu

k+1
e − vk+1

x,e) and bk+1
y,e = bky,e + t(∇yu

k+1
e − vk+1

y,e). (2.9)

Moreover, by (2.3) we have µ(uk+1 − f) + λ(∇T
x b

k
x +∇T

y b
k
y) = 0. Subtracting (2.4) from this

equation, we obtain
µuk+1

e + λ(∇T
x b

k
x,e +∇T

y b
k
y,e) = 0.

Taking the inner product of both sides of the above equation with uk+1
e , we get

µ〈uk+1
e , uk+1

e 〉+ λ〈bkx,e,∇xu
k+1
e 〉+ λ〈bky,e,∇yu

k+1
e 〉 = 0. (2.10)

Recall that p∗x = λb∗x, v
∗
x = ∇xu

∗, and pk+1
x = −λ(vk+1

x −∇xu
k+1 − bkx). Hence,

pk+1
x − p∗x + λ(vk+1

x,e −∇xu
k+1
e − bkx,e) = 0.

Since pk+1
x ∈ ∂G(vk+1

x) and p∗x ∈ ∂G(v∗x), we have 〈pk+1
x − p∗x, v

k+1
x − v∗x〉 ≥ 0. Taking the

inner product of both sides of the above equation with vk+1
x,e = vk+1

x − v∗x, we get

〈pk+1
x − p∗x, vk+1

x − v∗x〉+ λ〈vk+1
x,e , v

k+1
x,e 〉 − λ〈∇xu

k+1
e , vk+1

x,e 〉 − λ〈bkx,e, vk+1
x,e 〉 = 0. (2.11)

Similarly,

〈pk+1
y − p∗y, vk+1

y − v∗y〉+ λ〈vk+1
y,e , v

k+1
y,e 〉 − λ〈∇yu

k+1
e , vk+1

y,e 〉 − λ〈bky,e, vk+1
y,e 〉 = 0. (2.12)

We also have 〈pk+1
y −p∗y, vk+1

y −v∗y〉 ≥ 0. Adding (2.10), (2.11), and (2.12) together, we obtain

µ〈uk+1
e , uk+1

e 〉+ λ‖vk+1
x,e ‖22 + λ‖vk+1

y,e ‖22 − λ〈∇xu
k+1
e , vk+1

x,e 〉 − λ〈∇yu
k+1
e , vk+1

y,e 〉

+λ〈bkx,e,∇xu
k+1
e − vk+1

x,e 〉+ λ〈bky,e,∇yu
k+1
e − vk+1

y,e 〉+ γk+1 = 0,

(2.13)

where γk := 〈pkx − p∗x, vkx − v∗x〉+ 〈pky − p∗y, vky − v∗y〉 ≥ 0. We deduce from (2.9) that

λ〈bkx,e,∇xu
k+1
e − vk+1

x,e 〉 = λ
2t

(‖bk+1
x,e ‖22 − ‖bkx,e‖22)− tλ

2
‖∇xu

k+1
e − vk+1

x,e ‖22,

λ〈bky,e,∇yu
k+1
e − vk+1

y,e 〉 = λ
2t

(‖bk+1
y,e ‖22 − ‖bky,e‖22)− tλ

2
‖∇yu

k+1
e − vk+1

y,e ‖22.

Substituting the above two equations into (2.13), we get

µ‖uk+1
e ‖22 + λ[gt(v

k+1
x,e ,∇xu

k+1
e) + gt(v

k+1
y,e ,∇yu

k+1
e)] +

λ

2t
(αk+1 − αk) + γk+1 = 0, (2.14)

7

where αk := ‖bkx,e‖22 + ‖bky,e‖22 and gt is the function given by

gt(v, w) := (1− t/2)‖v‖22 − (1− t)〈v, w〉 − (t/2)‖w‖22, v, w ∈ IRJN×JN .

Note that

2− t
2
‖v‖22 − (1− t)〈v, w〉+

(1− t)2

2(2− t)
‖w‖22 ≥ 0 ∀ v, w ∈ IRJN×JN .

It follows that

gt(v, w) ≥ − (1− t)2

2(2− t)
‖w‖22 −

t

2
‖w‖22 = − 1

2(2− t)
‖w‖22. (2.15)

This together with (2.14) implies the following inequality:

µ‖uk+1
e ‖22 −

λ

4− 2t
(‖∇xu

k+1
e ‖22 + ‖∇yu

k+1
e ‖22) ≤

λ

2t
(αk − αk+1).

Recall that ∆ = −∇T
x∇x −∇T

y∇y. Hence,

µ‖uk+1
e ‖22 −

λ

4− 2t
(‖∇xu

k+1
e ‖22 + ‖∇yu

k+1
e ‖22) = 〈(µI + λ∆/(4− 2t))uk+1

e , uk+1
e 〉.

By our assumption, λ/µ ≤ (2 − t)/4, and hence the linear operator µI + λ∆/(4 − 2t) is
positive definite. Thus, there exists some ρ > 0 such that 〈(µI + λ∆/(4− 2t))u, u〉 ≥ ρ‖u‖22
for all u ∈ IRJN×JN . Consequently,

ρ‖uk+1
e ‖22 ≤

λ

2t
(αk − αk+1), k = 1, 2,

Summing this inequality over k = 1, . . . , K gives

K∑
k=1

ρ‖uk+1
e ‖22 ≤

K∑
k=1

λ

2t
(αk − αk+1) ≤

λα1

2t
=

λ

2t
(‖b1x,e‖22 + ‖b1y,e‖22).

This shows that the series
∑∞

k=1 ‖uk+1
e ‖22 converges. Consequently, limk→∞ u

k
e = 0, that is,

limk→∞ u
k = u∗.

According to Theorem 1, the relaxation method admits a wider range of step sizes.
Recall that the step size τ = λ/µ. In particular, for t = 1/2, the iteration scheme converges,
provided 0 < τ ≤ 3/8. Our numerical experiments show that the iteration scheme usually
converges if 0 < τ ≤ 1/2.

We are in a position to introduce the second relaxation method to find the unique solution
u∗ to the minimization problem (1.2). This method gives rise to the following iteration
scheme: Set b0x := 0, b0y := 0, and u1 := f . For 0 < s ≤ 1 and k = 1, 2, . . ., let bkx and bky be
given by (1.7), and let

uk+1 := (1− s)uk + s[f − (λ/µ)(∇T
x b

k
x +∇T

y b
k
y)]. (2.16)

8

Theorem 2. Let (uk)k=1,2,... be the sequence produced by the iteration scheme given in (1.7)
and (2.16). If 0 < s ≤ 1, and if the linear operator

(2− s)2I − (λ/µ)(∇T
x∇x +∇T

y∇y)/2

is positive definite, then limk→∞ u
k = u∗.

Proof. The proof is analogous to that of Theorem 1. For k = 1, 2, . . ., let vkx and vky be the
same as given by (2.5) and (2.6), respectively. Moreover, let uke , v

k
x,e, v

k
y,e, b

k
x,e, and bky,e be

the errors as defined in (2.8). It follows from (2.16) that

µuk+1 − µ(1− s)uk − µsf + sλ(∇T
x b

k
x +∇T

y b
k
y) = 0.

We deduce from (2.4) that

µu∗ − µ(1− s)u∗ − µsf + sλ(∇T
x b
∗
x +∇T

y b
∗
y) = 0.

Subtracting the second equation from the first one, we obtain

µuk+1
e − µ(1− s)uke + sλ(∇T

x b
k
x,e +∇T

y b
k
y,e) = 0. (2.17)

Taking the inner product of both sides of the above equation with uk+1
e + (1− s)uke , we get

µ[‖uk+1
e ‖22 − (1− s)2‖uke‖22] + λsηk = 0, (2.18)

where

ηk := 〈bkx,e,∇xu
k+1
e 〉+ 〈bky,e,∇yu

k+1
e 〉+ (1− s)〈bkx,e,∇xu

k
e〉+ (1− s)〈bky,e,∇yu

k
e〉.

By summing both sides of equation (2.18) over k = 1, . . . , K, we obtain

µ[‖uK+1
e ‖22 − ‖u1e‖22] +

K∑
k=1

µs(2− s)‖uke‖22 + λs
K∑
k=1

ηk = 0. (2.19)

In order to estimate
∑K

k=1 ηk, we derive from (2.11),(2.12), and (2.9) that

〈bkx,e,∇xu
k+1
e 〉+ 〈bky,e,∇yu

k+1
e 〉 = (αk+1 − αk)/2 + γk+1/λ+ βk+1/2− δk+1/2.

where αk := ‖bkx,e‖22 + ‖bky,e‖22, βk := ‖vkx,e‖22 + ‖vky,e‖22, δk := ‖∇xu
k
e‖2 + ‖∇yu

k
e‖2, and γk :=

〈pkx − p∗x, vkx − v∗x〉+ 〈pky − p∗y, vky − v∗y〉. Furthermore,

〈bkx,e,∇xu
k
e〉+ 〈bky,e,∇yu

k
e〉 = (αk − αk−1)/2 + γk/λ+ βk/2 + δk/2− θk,

where θk := 〈vkx,e,∇xu
k
e〉+ 〈vky,e,∇yu

k
e〉. Since γk ≥ 0 for all k ≥ 1, we obtain

ηk ≥
1

2
(αk+1 − αk) +

1− s
2

(αk − αk−1) +
1

2
βk+1 +

1− s
2

βk −
1

2
δk+1 +

1− s
2

δk − (1− s)θk.

9

We have

K∑
k=1

[1

2
(αk+1 − αk) +

1− s
2

(αk − αk−1)
]

=
1

2
(αK+1 − α1) +

1− s
2

(αK − α0),

K∑
k=1

[1

2
βk+1 +

1− s
2

βk

]
=

1

2
[βK+1 − β1] +

2− s
2

K∑
k=1

βk,

K∑
k=1

[
−1

2
δk+1 +

1− s
2

δk

]
= −1

2
[δK+1 − δ1]−

s

2

K∑
k=1

δk.

By the construction of bkx,e and bky,e we have ‖λbkx,e‖∞ ≤ 2 and ‖λbky,e‖∞ ≤ 2. In light of (2.17),
the sequence (‖uke‖∞)k=1,2,... is bounded. Consequently, the sequence (δk)k=1,2,... is bounded.
Taking (2.19) into account, we see that there exists a positive constant M independent of K
such that

K∑
k=1

µ(2− s)‖uke‖22 +
K∑
k=1

λ
[2− s

2
βk − (1− s)θk −

s

2
δk

]
≤M.

By (2.15) we have

2− s
2

βk − (1− s)θk −
s

2
δk ≥ −

1

2(2− s)
[‖∇xu

k
e‖22 + ‖∇yu

k
e‖22].

Note that
‖∇xu

k
e‖22 + ‖∇yu

k
e‖22 = 〈−∆uke , u

k
e〉.

Consequently,
K∑
k=1

〈(µ(2− s)I + λ∆/(4− 2s))uke , u
k
e〉 ≤M.

By our assumption, the linear operator µ(2 − s)2I + λ∆/2 is positive definite. Hence, the
series

∑∞
k=1 ‖uke‖22 converges. Consequently, limk→∞ u

k
e = 0, that is, limk→∞ u

k = u∗.

By Theorem 2, we have limk→∞ u
k = u∗, provided the step size τ = λ/µ ≤ (2− s)2/4. In

particular, for s = 1/2, this is true if τ ≤ 9/16.

§3. Numerical Experiments

In this section we report the numerical results of image denoising by using the relaxation
method as described in the iteration scheme given in (2.1), (2.2), and (2.3). We fix the
relaxation parameter t = 0.5 and the step size τ = 0.5. Thus, for given µ, λ = 0.5µ.

In what follows, all the images considered have the size 512 × 512 and the grey-scale in
the range between 0 and 255. A Gaussian noise with the normal distribution N(0, σ2) is

10

added to the original image. Let u be the original image, and let f be the noised image. By
uk+1 we denote the result after k iterations.

For image processing, the image quality is usually measured in terms of the Peak Signal-
to-Noise Ratio (PSNR), which is defined by PSNR = 20 log10M/

√
E, where M is the

maximum possible pixel value of the image and E is the mean squared error. In our case,
M = 255 and E = ‖uk+1 − u‖22/N2 with N = 512.

We test our (JZZ) algorithm and compare our algorithm with the GO algorithm of
Goldstein and Osher [13] on four images: Lena, Boat, Goldhill, and Bridge.

In this section, for each image and each σ, we assume that the optimal value of µ is
known. Automatic estimation of µ will be discussed in the next section.

All the computation is conducted on a Lenovo desktop with 2 GB memory and an Intel
Core 2 CPU 6400 at 2.13 GHz. We use gcc to write a C code to implement our algorithm.

We first deal with image Lena. In the following table, the first row gives the value of σ,
and the second row gives the PSNR value of the noisy image obtained by adding a Gaussian
noise with the normal distribution N(0, σ2) to the original image. The denoising results by
the GO algorithm are shown in the third, fourth, and fifth rows. The third row indicates
the PSNR value of the denoised image after Nit iterations. For the GO algorithm, Nit is
chosen to be σ+10. The fifth row records the CPU time in seconds needed for the iterations
performed. The denoising results by the JZZ algorithm are shown in the sixth, seventh,
and eighth rows. The sixth row indicates the PSNR value of the denoised image after Nit

iterations. For the JZZ algorithm, Nit is chosen to be 0.6σ − 2. The eighth row records the
CPU time in seconds needed for the iterations conducted. From the table we see that the
PSNR values of our algorithm are slightly better than the corresponding PSNR values of the
GO algorithm. But our algorithm only requires 10% – 20% of the time needed for the GO
algorithm.

Table 1: Denoising Results of Lena for Optimal µ

σ 10 15 20 25 30 35 40

noisy PSNR 28.14 24.62 22.10 20.22 18.68 17.42 16.21

optimal µ 0.17 0.11 0.075 0.058 0.046 0.039 0.034

denoised PSNR 34.33 32.46 31.17 30.16 29.45 28.83 28.21

by the GO Nit 20 25 30 35 40 45 50

Algorithm time 0.31 0.41 0.47 0.53 0.61 0.69 0.78

denoised PSNR 34.47 32.54 31.23 30.19 29.48 28.85 28.23

by the JZZ Nit 4 7 10 13 16 19 22

Algorithm time 0.03 0.08 0.08 0.09 0.13 0.14 0.16

In Tables 2, 3, and 4, we list denoising results for images Boat, Goldhill, and Bridge,
respectively. For these images, we choose Nit = 0.4σ for the JZZ algorithm.

11

Table 2: Denoising Results of Boat for Optimal µ

σ 10 15 20 25 30 35 40

noisy PSNR 28.14 24.62 22.10 20.22 18.68 17.42 16.21

optimal µ 0.20 0.12 0.088 0.066 0.052 0.043 0.038

denoised PSNR 32.45 30.53 29.15 28.14 27.33 26.69 26.13

by the GO Nit 20 25 30 35 40 45 50

Algorithm time 0.33 0.47 0.48 0.55 0.64 0.69 0.77

denoised PSNR 32.56 30.61 29.20 28.18 27.36 26.71 26.15

by the JZZ Nit 4 6 8 10 12 14 16

Algorithm time 0.03 0.06 0.06 0.08 0.09 0.09 0.11

Table 3: Denoising Results of Goldhill for Optimal µ

σ 10 15 20 25 30 35 40

noisy PSNR 28.14 24.62 22.10 20.22 18.68 17.42 16.21

optimal µ 0.20 0.12 0.083 0.063 0.051 0.041 0.035

denoised PSNR 32.56 30.71 29.52 28.62 27.95 27.39 26.88

by the GO Nit 20 25 30 35 40 45 50

Algorithm time 0.33 0.47 0.48 0.55 0.61 0.69 0.75

denoised PSNR 32.66 30.81 29.60 28.69 28.01 27.46 26.95

by the JZZ Nit 4 6 8 10 12 14 16

Algorithm time 0.03 0.06 0.07 0.08 0.08 0.09 0.11

Table 4: Denoising Results of Bridge for Optimal µ

σ 10 15 20 25 30 35 40

noisy PSNR 28.14 24.62 22.10 20.22 18.68 17.42 16.21

optimal µ 0.29 0.16 0.11 0.081 0.065 0.052 0.045

denoised PSNR 30.52 28.18 26.72 25.69 24.90 24.27 23.74

by the GO Nit 20 25 30 35 40 45 50

Algorithm time 0.38 0.42 0.50 0.58 0.66 0.72 0.80

denoised PSNR 30.57 28.23 26.76 25.73 24.95 24.31 23.79

by the JZZ Nit 4 6 8 10 12 14 16

Algorithm time 0.03 0.05 0.06 0.06 0.08 0.09 0.12

12

A very different approach for the total variation minimization problem in image restora-
tion was proposed by Darbon and Sigelle in [10]. Their method relied on the decomposition
of an image into its level sets. Solutions of minimization problems at each level were obtained
by using the technique of graph cuts. We downloaded the latest version of the executable
codes from Darbon’s website and tested the codes. From our numerical experiments we found
that the GO algorithm outperformed the DS (Darbon and Sigelle) algorithm. First, the GO
algorithm is faster than the DS algorithm. It was reported in [10] that their algorithm took
about 3 second on a Pentium4 3GHz for denoising an image of size 512 × 512. The latest
version of their codes took between 1 and 1.25 second on our computer for denoising an
image of size 512 × 512. Second, the quality of the denoised image produced by the GO
algorithm is better than the one generated by the DS algorithm as the PSNR values are at
least 0.5 dB higher.

§4. Automatic Algorithms for Image Denoising

In this section we design some automatic algorithms for image denoising based on the
total variation model.

First, we need to estimate the standard deviation σ for the noise. For natural images,
Donoho in [11], and Wang and Shang in [22] gave good estimates for σ. Suppose that f is
the observed image of size N ×N . Express{√

(|∇xf(i, j)|2 + |∇yf(i, j)|2)/2 : 1 ≤ i, j ≤ N
}

as a sequence. Let θ be the median value of this sequence. In light of the results in [22], we
use the following estimation for σ:

σ = 1.0482 θ.

Assuming σ is known, we employ the following procedure to estimate µ. For each σ, let

µ0
σ :=

2.15

σ
− 0.02.

Then we perform the iteration scheme as given in (2.1), (2.2), and (2.3) with µ = µ0
σ, t = 0.5,

and λ = 0.5µ. After 0.4σ iterations we get u = u0.4σ+1. Then we compute

τσ :=
‖∇xu‖1 + ‖∇yu‖1

2N2
− (5.9943− 0.0566σ).

Furthermore, we set
µσ := µ0

σ + 0.0088|τσ|τσ + 0.0023. (4.1)

With the automatic choice of µ = µσ, we test the GO algorithm and the JZZ algorithm on
four images: Lena, Boat, Goldhill, and Bridge. For the GO algorithm, the number Nit of
iterations is chosen to be σ + 10. For the JZZ algorithm, Nit is chosen to be 0.4σ + 2. The

13

following tables describe the numerical results. We see that the PSNR values with automatic
µ are close to the PSNR values with optimal µ.

Table 5: Denoising Results of Lena for Automatic µ

σ 10 15 20 25 30 35 40

noisy PSNR 28.14 24.62 22.10 20.22 18.68 17.42 16.21

automatic µ 0.18 0.11 0.080 0.061 0.049 0.041 0.035

denoised PSNR 34.35 32.45 31.15 30.14 29.44 28.83 28.21

by the GO Nit 20 25 30 35 40 45 50

Algorithm time 0.31 0.39 0.45 0.53 0.59 0.66 0.73

denoised PSNR 34.45 32.52 31.20 30.16 29.45 28.83 28.21

by the JZZ Nit 6 8 10 12 14 16 18

Algorithm time 0.03 0.05 0.06 0.08 0.09 0.11 0.12

Table 6: Denoising Results of Boat for Automatic µ

σ 10 15 20 25 30 35 40

noisy PSNR 28.14 24.62 22.10 20.22 18.68 17.42 16.21

automatic µ 0.20 0.13 0.090 0.068 0.054 0.044 0.036

denoised PSNR 32.45 30.53 29.14 28.13 27.34 26.70 26.11

by the GO Nit 20 25 30 35 40 45 50

Algorithm time 0.31 0.41 0.47 0.53 0.59 0.67 0.73

denoised PSNR 32.51 30.59 29.18 28.16 27.36 26.71 26.14

by the JZZ Nit 6 8 10 12 14 16 18

Algorithm time 0.05 0.06 0.06 0.08 0.09 0.11 0.12

Table 7: Denoising Results of Goldhill for Automatic µ

σ 10 15 20 25 30 35 40

noisy PSNR 28.14 24.62 22.10 20.22 18.68 17.42 16.21

automatic µ 0.19 0.12 0.085 0.064 0.050 0.041 0.035

denoised PSNR 32.53 30.72 29.52 28.62 27.95 27.39 26.87

by the GO Nit 20 25 30 35 40 45 50

Algorithm time 0.33 0.41 0.47 0.53 0.59 0.66 0.73

denoised PSNR 32.60 30.78 29.58 28.68 28.01 27.45 26.94

by the JZZ Nit 6 8 10 12 14 16 18

Algorithm time 0.03 0.05 0.08 0.08 0.09 0.11 0.12

14

Table 8: Denoising Results of Bridge for Automatic µ

σ 10 15 20 25 30 35 40

noisy PSNR 28.14 24.62 22.10 20.22 18.68 17.42 16.21

automatic µ 0.28 0.17 0.12 0.084 0.063 0.048 0.039

denoised PSNR 30.51 28.19 26.72 25.69 24.90 24.23 23.65

by the GO Nit 20 25 30 35 40 45 50

Algorithm time 0.33 0.41 0.50 0.58 0.64 0.70 0.77

denoised PSNR 30.54 28.21 26.75 25.72 24.93 24.28 23.70

by the JZZ Nit 6 8 10 12 14 16 18

Algorithm time 0.05 0.06 0.06 0.08 0.09 0.11 0.12

Automatic algorithms for image denoising were also considered by Chambolle in [5].
Following [5, §4], we have the following iteration scheme: Set b0x := 0, b0y := 0, and u1 := f .
Choose an initial µ1 > 0. For k = 1, 2, . . ., let

bkx := cut(∇xu
k + bk−1x , 8/µk), bky := cut(∇yu

k + bk−1y , 8/µk).

uk+1 := f − 1

8
(∇T

x b
k
x +∇T

y b
k
y).

Then update µk+1:

µk+1 := µk
‖f − uk+1‖2

Nσ
.

Our numerical experiments tell us that the sequence (µk)k=1,2,... converges. However, its limit
µ often deviates far from the optimal one. See the following table:

Table 9: Denoising Results of Lena by Chambolle’s Automatic Algorithm

σ 10 15 20 25 30 35 40

limit µ 0.11 0.066 0.046 0.034 0.025 0.018 0.013

denoised by PSNR 33.52 31.58 30.23 29.13 28.10 27.02 25.78

Chambolle’s Nit 100 120 150 170 190 210 230

Algorithm time 1.26 1.33 1.53 1.78 1.94 2.12 2.25

Comparing Table 9 with Table 5, we see that Chambolle’s automatic algorithm gives
considerably lower PSNR values. In particular, for σ = 40, the difference could be as large
as 2.4 dB. Moreover, it takes 100 – 230 iterations to achieve the stated PSNR values.

15

§5. Image Denoising Based on High-order Difference Schemes

We have demonstrated that our relaxation methods give rise to very fast schemes for
image denoising based on the anisotropic model (1.2). Our relaxation methods can also be
extended to the isotropic model and other more sophisticated models for image denoising.

In [15] Lysaker, Lundervold, and Tai introduced an image denoising scheme based on
pure fourth order PDEs (partial differential equations). The model of fourth order PDEs
is more suitable for smoother images. In [7] Chang, Tai, and Xing proposed a combination
model of second order and fourth order PDEs for image denoising. They claimed that their
combination model was better than the models of either pure second order or fourth order
PDEs.

In this section we put forward an image denoising model based on a combination of the
second and fourth order difference schemes . By using our relaxation methods we give a
denoising scheme which runs faster and performs better than many other known numerical
schemes.

For u ∈ IRJN×JN , define

∆xu(i, j) :=

u(1, j)− u(2, j) if i = 1,
2u(i, j)− u(i− 1, j)− u(i+ 1, j), if 1 < i < N ,
u(N, j)− u(N − 1, j), if i = N ,

and

∆yu(i, j) :=

u(i, 1)− u(i, 2) if j = 1,
2u(i, j)− u(i, j − 1)− u(i, j + 1), if 1 < j < N ,
u(i, N)− u(i, N − 1), if j = N .

Then ∆x and ∆y are difference operators on IRJN×JN . Evidently, ∆T
x = ∆x and ∆T

y = ∆y.

Let f ∈ IRJN×JN be an observed image. Our model of denoising is to find the target
image u as the unique solution of the following minimization problem with appropriately
chosen positive parameters µ and ν:

min
u

{ 1

µ
(‖∇xu‖1 + ‖∇yu‖1) +

1

ν
(‖∆xu‖1 + ‖∆yu‖1) +

1

2
‖u− f‖22

}
.

Let s be a real number such that 0 < s ≤ 1. In order to find the unique solution u∗ to
the above minimization problem, we propose the following iteration scheme: Set b0x := 0,
b0y := 0, c0x := 0, c0y := 0, and u1 := f . For k = 1, 2, . . ., let

bkx := cut(∇xu
k + bk−1x , 1/λ),

bky := cut(∇yu
k + bk−1y , 1/λ),

ckx := cut(∆xu
k + ck−1x , 1/λ),

cky := cut(∆yu
k + ck−1y , 1/λ),

16

and

uk+1 := (1− s)uk + s
[
f − λ

µ
(∇T

x b
k
x +∇T

y b
k
y)−

λ

ν
(∆T

x c
k
x + ∆T

y c
k
y)
]
.

An argument analogous to the proof of Theorem 2 gives the following theorem.

Theorem 3. Let (uk)k=1,2,... be the sequence produced by the above iteration scheme. If
0 < s ≤ 1, and if the linear operator

(2− s)2I − (λ/µ)(∇T
x∇x +∇T

y∇y)/2− (λ/ν)(∆T
x∆x + ∆T

y ∆y)/2

is positive definite, then
lim
k→∞

uk = u∗.

We test the HD (High-order Difference) model for image denoising on images Lena and
Boat . The parameters are fixed to be s = 0.2, µ = ν = 2.4µσ, and λ = 0.4µ, where µσ is
given by (4.1). We adopt the following stopping criterion:

‖uk+1 − uk‖2
N

< 0.1.

For an image of size 512× 512, N = 512.
We also consider the following denoising model based on pure fourth order difference

scheme with optimal ν:

min
u

{1

ν
(‖∆xu‖1 + ‖∆yu‖1) +

1

2
‖u− f‖22

}
.

The numerical results are listed in Tables 9 and 10. We see that the HD model produces
significantly better results than the TV model for images with large smooth parts such as
Lena. Moreover, the combination HD model outperforms the pure fourth order model.

Table 10: Denoising Results of Lena Based on the HD Model

σ 10 15 20 25 30 35 40

noisy PSNR 28.14 24.62 22.10 20.22 18.68 17.42 16.21

TV Model PSNR 34.35 32.45 31.15 30.14 29.44 28.83 28.21

optimal ν 0.26 0.14 0.09 0.07 0.05 0.04 0.04

4th Order PSNR 34.78 32.83 31.47 30.45 29.61 28.92 28.29

automatic µ and ν 0.43 0.27 0.19 0.15 0.12 0.098 0.084

denoised PSNR 35.05 33.20 31.90 30.86 30.11 29.49 28.83

by the HD Nit 19 23 26 29 31 33 35

Model time 0.78 0.95 1.04 1.17 1.22 1.30 1.36

17

Table 11: Denoising Results of Boat Based on the HD Model

σ 10 15 20 25 30 35 40

noisy PSNR 28.14 24.62 22.10 20.22 18.68 17.42 16.21

TV Model PSNR 32.45 30.53 29.14 28.13 27.34 26.70 26.11

optimal ν 0.34 0.19 0.13 0.09 0.07 0.06 0.05

4th Order PSNR 32.63 30.65 29.24 28.21 27.39 26.74 26.13

automatic µ and ν 0.47 0.30 0.22 0.16 0.13 0.11 0.087

denoised PSNR 32.82 30.97 29.60 28.57 27.78 27.10 26.48

by the HD Nit 18 22 25 28 30 32 35

Model time 0.73 0.86 1.06 1.17 1.22 1.25 1.36

Figure 1 and Figure 2 are attached at the end of this paper. Figure 1 shows the four
images Lena, Boat, Goldhill, and Bridge used for our numerical experiments. In Figure 2,
we compare the denoising effects for image Lena with noise level σ = 40 by using the ROF
model and the HD model. We see that the HD model produces higher image quality. In
particular, the HD model preserves the smooth part of the image better and reduces the
staircase effect.

Recently, Beck and Teboulle in [2] considered the GP (Gradient Projection) method for
the dual problem to the denoising problem based on total variation. For the fixed step size
τ = 1/8, they extended the method of Nesterov introduced in [19] and developed in [20] that
achieves a rate of convergence of O(1/k2) for values of the objective function. As a result,
they proposed the FGP (Fast Gradient Projection) algorithm for image denoising. We tested
the FGP algorithm for Lena and compared it with the GO (Goldstein and Osher) algorithm
for the isotropic model and the HD model. The results are listed in the following table.

Table 12: Comparison of Various Denoising Schemes for Lena

σ 10 15 20 25 30 35 40

denoised PSNR 34.50 32.60 31.32 30.40 29.61 28.98 28.40

by the GO Nit 20 25 30 35 40 45 50

isotropic time 0.35 0.45 0.53 0.59 0.68 0.77 0.86

denoised PSNR 34.50 32.60 31.32 30.40 29.61 28.98 28.40

by the FGP Nit 13 13 14 22 29 29 33

Algorithm time 0.30 0.30 0.33 0.49 0.64 0.64 0.72

denoised PSNR 34.49 32.74 31.33 30.50 29.67 29.04 28.42

by the HD Nit 6 8 8 11 12 13 13

Model time 0.21 0.30 0.31 0.39 0.43 0.48 0.48

18

From the above table we see that the FGP Algorithm is slightly faster than the GO
algorithm for the isotropic model. For 10 ≤ σ ≤ 20, the HD model and the FGP algorithm
have almost the same speed. But, for 25 ≤ σ ≤ 40, the HD model outperforms the FGP
algorithm. Moreover, if we increase the number of iterations, the PSNR values produced by
the GO algorithm and the FGP algorithm will be almost the same as shown in Table 12. For
the HD model, if we increase the number of iterations, the PSNR values will be increased
considerably, as indicated by Table 10.

§6. Conclusion

In this paper we introduce relaxation methods for image denoising based on difference
schemes. Our emphasis is placed on the speed of the algorithm. In this aspect, the iteration
schemes based on Theorems 1 and 2 for the TV anisotropic model are much faster than
the corresponding GO algorithm. In addition to image denoising, our schemes can often
be employed in preprocessing of images. Moreover, these denoising schemes can be used to
solve subproblems in certain deblurring algorithms as discussed in [2].

In order to increase the quality of denoised images, we extend the relaxation method to
an image denoising model based on high order difference schemes, which produces higher
image quality. In particular, the HD model preserves the smooth part of the image better
and reduces the staircase effect. Our numerical experiments demonstrate that our iteration
scheme based on the HD model outperforms both the GO algorithm and the FGP algorithm
for the isotropic model.

Another approach to better image denoising is to choose the parameter µ to be location
dependent. See the work [12] of Duval, Aujol and Gousseau on non-local means, and the
work [14] of Le, Chartrand and Asaki on applications to reconstruction of images corrupted
by Poisson noise. But non-local means require computationally demanding algorithms. For
more sophisticated models of image denoising, it will be worthwhile to consider more ad-
vanced acceleration techniques from optimization. These will be interesting topics for future
research. We believe that the relaxation methods will play a useful role in the study.

References

[1] K. J. Arrow, L. Hurwicz, and H. Uzawa, Studies in Linear and Non-linear Programming,
Stanford University Press, Stanford, 1958.

[2] A. Beck and M. Teboulle, Fast gradient-based algorithms for constrained total variation
image denoising and deblurring problems, IEEE Transactions on Image Processing,
published online July 24, 2009.

[3] L. M. Brègman, A relaxation method of finding a common point of convex sets and its
application to the solution of problems in convex optimization, USSR Computational
Mathematics and Mathematical Physics 7 (1967), 200–217.

[4] J.-F. Cai, S. Osher, and Z. W. Shen, Split Bregman methods and frame-based image
restoration, UCLA CAM Report (09-28). (Multiscale Modeling and Simulation, to
appear)

19

[5] A. Chambolle, An algorithm for total variation minimization and applications, J. Math.
Imaging Vis. 20 (2004), 89–97.

[6] A. Chambolle, Total variation minimization and a class of binary MRF models, Lecture
Notes Comput. Sci, vol. 3757 (2005), pp. 136–152.

[7] Q. Chang, X. Tai, and L. Xing, A compound algorithm of denoising using second-
order and fourth-order partial differential equations, Numerical Mathematics: Theory,
Methods and Applications 2 (2009), 353–376.

[8] X.-J. Chen, Global and superlinear convergence of inexact Uzawa methods for sad-
dle point problems with nondifferentiable mappings, SIAM J. Numerical Analysis 35
(1998), 1130–1148.

[9] P. Combettes and V. Wajs, Signal recovery by proximal forward-backward splitting,
Multiscale Model. Simul. 4 (2005), 1168–1200.

[10] J. Darbon and M. Sigelle, Image restoration with discrete total variation, Part I: fast
and exact optimization, J. Math. Imaging Vis. 26 (2006), 261–276.

[11] D. L. Donoho, De-noising by soft-thresholding, IEEE Transactions on Information The-
ory 41 (1995), 613–627.

[12] V. Duval, J.-F. Aujol and Y. Gousseau, On the parameter choice of the Non-Local
Means, CMLA Preprint 2010-06.

[13] T. Goldstein and S. Osher, The split Bregman method for L1 regularized problems,
SIAM Journal on Imaging Sciences 2 (2009), 323–343.

[14] T. Le, R. Chartrand and T. Asaki, A Variational approach to constructing images
corrupted by Poisson noise, J. Math. Imaging Vis. 27 (2007), 257–263.

[15] M. Lysaker, A. Lundervold, and X.-C. Tai, Noise removal using fourth-order partial
differential equation with applications to medical magnetic resonance images in space
and time, IEEE Transactions on Image Processing 12 (2004) 1579 - 1590.

[16] R. Q. Jia, H. Q. Zhao, and W. Zhao, Convergence analysis of the Bregman method
for the variational model of image denoising, Applied and Computational Harmonic
Analysis 27 (2009), 367–379.

[17] R. Q. Jia and H. Q. Zhao, A fast algorithm for the total variation model of image
denoising, Advances in Computational Mathematics, published online May 21, 2009.

[18] R. Kress, Numerical Analysis, Springer-Verlag, New York, 1998.
[19] Y. E. Nesterov, A method of solving a convex programming problem with convergence

rate O(1/k2), Soviet Math. Dokl. 27 (1983), 372–376.
[20] Y. E. Nesterov, Gradient methods for minimizing composite objective function, Tech.

Report, CORE, 2007.
[21] L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal

algorithms, Physics D 60 (1992), 259–268.
[22] J. Z. Wang and X. Q. Shang, Adaptive smoothing of anisotropic diffusion equations in

image denoising, preprint.

20

(a) Lena (b) Boat

(c) Goldhill (d) Bridge

Figure 1: Images for numerical experiments.

21

(a) The original image (b) Contaminated with σ = 40

(c) Denoised by the ROF model (d) Denoised by the HD model

(e) Denoised by the ROF model: face (f) Denoised by the HD model: face

Figure 2: Lena denoised by the ROF and HD models.

22

