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SUMMARY

The discretization of the dynamic Signorini problem with finite elements in space and a time-stepping
scheme is not straightforward. Consequently a large variety of methods for this problem have been
designed over the last two decades. Up to date, no systematic comparison of such methods has been
performed. The aim of the present work is to classify and compare them. For each method, we discuss
the presence of spurious oscillations and the energy conservation. For explicit approaches, the stability
condition on the time step is also discussed. Numerical simulations on two 1D benchmark problems
with analytical solutions illustrate the properties of the different methods. Most of the discretizations
considered herein can be found in the literature, but the semi-explicit modified mass method is new
and features, in our opinion, several attractive properties. Copyright c© 2000 John Wiley & Sons,
Ltd.

key words: elastodynamics; frictionless unilateral contact; time-integration schemes; finite

elements; modified mass method

1. INTRODUCTION

The design of robust and efficient numerical methods for dynamic contact problems has
motivated a large amount of work over the last two decades and remains a challenging issue.
Here, we focus on the dynamic Signorini problem, which models the infinitesimal deformations
of a solid body that can come into contact with a rigid obstacle. This problem is the simplest
dynamic contact problem, but also the first step toward more complex situations, such as
multi-body problems, large deformation problems, contact with friction, etc... For an overview
of the different contact problems, we refer to [19, 21, 31].
In structural dynamics, the usual space-time discretization combines finite elements in space
and a time-stepping scheme. In this framework, the discretization of the dynamic Signorini
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problem involves mainly three choices: (i) the finite element space; (ii) the enforcement
of the contact condition; (iii) the time-stepping scheme. The combination of these three
ingredients is not straightforward. For instance, it is well-known that the combination of
an exact enforcement of the contact condition and an implicit Newmark scheme yields
spurious oscillations as well as poor energy conservation and long-time behavior. Moreover, the
combination of an exact enforcement and an explicit scheme is not straightforward, whereas
the use of a penalty contact condition tightens the stability condition of explicit schemes.
Consequently, various alternative discretizations have been designed for the dynamic Signorini
problem. However, up to date, no systematic comparison of such methods has been performed.
The aim of the present work is to classify and compare the main discretizations for the dynamic
Signorini problem. Most of the discretizations considered herein can be found in the literature.
The semi-explicit modified mass method (Discretization 7.2 below) is new and features, in our
opinion, several attractive properties.
We classify the different discretizations into four groups. The first three groups correspond to
different ways of enforcing the contact condition: exact enforcement [5, 7, 17, 23, 25, 26, 29, 30],
enforcement with penalty [1, 3, 14] and enforcement with contact condition in velocity [2, 3, 22].
The fourth approach is based on a modification of the mass matrix [13, 18]; it can be seen
as an alternative choice of the finite element space. These four classes yield different semi-
discrete problems in space which in turn can be discretized in time using various time-stepping
schemes, either implicit or (semi-)explicit. In our opinion, a reliable discretization should not
trigger spurious oscillations during the contact phases and achieve a tight energy conservation.
Energy conservation is important to guarantee a good behavior in long time. By energy
conservation we mean that the variation of the energy is equal to the work of the external forces
(the contact forces should not work). For each scheme, the presence of spurious oscillations
and the energy conservation are examined. In addition, for explicit approaches, the stability
condition on the time step is also discussed. Furthermore dynamic contact problems yield
shock waves, and spurious oscillations appear near the shock in the numerical solutions, owing
to the so-called Gibbs phenomenon. This issue being important but not specific to dynamic
contact problems, it will be briefly addressed in the appendix. To illustrate the behavior
of the different discretizations, numerical simulations on two 1D benchmark problems with
analytical solutions have been performed. The first benchmark, the impact of an elastic bar,
is well-known in the literature and allows to detect spurious oscillations. The second one, the
bounces of an elastic bar, is geared towards the energy conservation and long-time behavior
of the discretizations. It is new to our knowledge. Although both benchmarks are 1D, we
believe they are representative of the various difficulties encountered in higher space dimension.
Furthermore, the mathematical analysis of the different methods is beyond the scope of this
article, but we mention, whenever they exist, the theoretical results (well-posedness of the
discrete problems and convergence of the discrete solutions).
The article is organized as follows. We formulate the dynamic Signorini problem in the
continuous setting (Section 2.1) and we introduce the main ingredients for its approximation
(Sections 2.2 and 2.3). We present the two benchmark problems with their analytical
solutions (Section 3). We describe the four classes of discretizations together with numerical
results: exact enforcement of the contact condition (Section 4), enforcement with penalty
contact condition (Section 5), enforcement with contact condition in velocity (Section 6)
and modification of the mass matrix (Section 7). The Appendix is devoted to the Gibbs
phenomenon.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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2. THE DYNAMIC SIGNORINI PROBLEM

2.1. Governing equations

We consider the infinitesimal deformations of a body occupying a reference domain Ω ⊂ R
d

(d = 1, d = 2 or d = 3) during a time interval [0, T ]. The tensor of elasticity is denoted
by A and the mass density is denoted by ρ. An external load f is applied to the body. Let
u : (0, T )×Ω → R

d, ǫ(u) : (0, T )×Ω → R
d,d and σ(u) : (0, T )×Ω → R

d,d be the displacement
field, the linearized strain tensor and the stress tensor, respectively. Denoting time-derivatives
by dots, the equilibrium equation is

ρü − div σ = f, σ = A : ǫ, ǫ =
1

2
(∇u + T∇u) in Ω × (0, T ). (1)

The boundary ∂Ω is partitioned into three disjoint open subsets ΓD, ΓN and Γc. Dirichlet and
Neumann conditions are prescribed on ΓD and ΓN , respectively,

u = uD on ΓD × (0, T ), σ · n = fN on ΓN × (0, T ), (2)

where n denote the outward unit normal to Ω. We set un := u|∂Ω ·n and σn := n ·σ|∂Ω ·n, the
normal displacement and the normal stress on ∂Ω, respectively. On Γc, a unilateral contact
condition, also called Signorini condition, is imposed,

un ≤ 0, σn(u) ≤ 0, σn(u)un = 0 on Γc × (0, T ). (3)

At the initial time, the displacement and velocity fields are prescribed,

u(0) = u
0, u̇(0) = v

0 in Ω. (4)

Problem (1)-(4) is an evolution partial differential equation under unilateral constraints. Here,
the equation is second-order in time and the constraint holds on the displacement; this is not
the most favorable case. The existence and uniqueness of a solution has only been proven in
1D, when the contact boundary is reduced to a point [24, 10]. In 1D, it has also been proven
that the variation of energy is equal to the work of the external forces; the contact force does
not work [24, 10]. In higher dimension, the existence of a solution is proven in the case of a
viscoelastic material [10].

2.2. Basic time-integration schemes in linear elastodynamics

In this section, we briefly recall some basic facts about time-integration schemes in linear
elastodynamics; most of this material can be found in [15]. Firstly, we discretize the problem
in space with a finite element method. The number of degrees of freedom is denoted by Nd. Let
K, M , and F (t) be the stiffness matrix, the mass matrix, and the column vector of the external
forces, respectively. The space semi-discrete problem consists in seeking u : [0, T ] → R

Nd such
that, for all t ∈ [0, T ],

Mü(t) + Ku(t) = F (t), (5)

with the initial conditions u(0) = u0 and u̇(0) = v0. For solving such a system of ODEs
(ordinary differential equations), linear one-step schemes are the most frequently used. The
interval [0, T ] is divided into equal subintervals of length ∆t. We set tn = n∆t and denote by
un, u̇n, and ün the approximations of u(tn), u̇(tn), and ü(tn), respectively. We define the convex

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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combination �
n+α := (1−α)�n+α�

n+1, where � stands for u, u̇, ü or t, and α ∈ [0, 1]. We also
set Fn+α := F (tn+α). At time tn, the energy of the system is En := 1

2
Tu̇nMu̇n + 1

2
TunKun.

It is also convenient to define the quadratic form En
β,γ := En + ∆t2

2

(

β − 1
2γ
)

TünMün. Now we
can formulate some of the most common time-stepping schemes in linear elastodynamics.

Discretization 2.1 (HHT-Newmark) Seek un+1, u̇n+1, ün+1 ∈ R
Nd such that

Mün+1 + Kun+1+α = Fn+1+α, (6)

un+1 = un + ∆t u̇n +
∆t2

2
ün+2β, (7)

u̇n+1 = u̇n + ∆t ün+γ , (8)

where α, β, γ are parameters.

Discretization 2.2 (Midpoint) Seek un+1, u̇n+1, ün+ 1
2 ∈ R

Nd such that

Mün+ 1
2 + Kun+ 1

2 = Fn+ 1
2 , (9)

un+1 = un + ∆t u̇n+ 1
2 , (10)

u̇n+1 = u̇n + ∆t ün+ 1
2 . (11)

Discretization 2.3 (Central differences) Seek un+1 ∈ R
Nd such that

M

(

un+1 − 2un + un−1

∆t2

)

+ Kun = Fn. (12)

When α = 0, the schemes (6)-(8) are called Newmark schemes. For these schemes, the energy
balance reads [20],

En+1
β,γ − En

β,γ = T

(

1

2
(Fn+1 + Fn) +

(

γ − 1

2

)

(Fn+1 − Fn)

)

(un+1 − un)

−
(

γ − 1

2

)(

T(un+1 − un)K(un+1 − un) +

(

β − 1

2
γ

)

T(ün+1 − ün)M(ün+1 − ün)

)

. (13)

The particular choice β = 1/4, γ = 1/2 yields an implicit, unconditionally stable, and second-
order scheme. It is energy-conserving in the sense that

En+1 − En = TFn+1(un+1 − un). (14)

When α ∈ [−1/3, 0], β = 1/4(1−α)2, γ = 1/2−α, the schemes (6)-(8) are called HHT schemes
or α-methods. Such schemes are implicit, unconditionally stable, second-order and dissipative
in the high frequencies. The amount of dissipation is controlled by the parameter α. The
midpoint scheme is implicit, unconditionally stable, and second-order. It is energy-conserving,
in the sense that

En+1 − En = TFn+ 1
2 (un+1 − un). (15)

The central difference scheme is explicit (provided the mass matrix is lumped), conditionally
stable and second-order. Here it is written as a two-step linear scheme involving only the
displacement but it can be formulated as a one-step scheme. Actually, it is a Newmark
scheme with parameters β = 0, γ = 1/2; the associated velocity and acceleration are then

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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u̇n = 1
2∆t

(un+1 − un−1) and ün = 1
∆t2

(un+1 − 2un + un−1). The central difference scheme
conserves a quadratic form which is nearly the energy,

En+1
0, 1

2

− En
0, 1

2

= T

(

Fn+1 + Fn

2

)

(un+1 − un). (16)

There exist also second-order explicit schemes with high-frequency dissipation, such as the
Chung-Hulbert schemes [16].

2.3. Enforcing the contact condition

The enforcement of a contact condition in a finite element setting has been widely studied in
the case of the static Signorini problem [19]. We assume that the mesh is compatible with the
partition of the boundary. Let Nc be the number of nodes lying on the contact boundary. We
define the linear normal trace operator on Γc, g : v 7−→ −v|Γ · n and the associated matrix G.
Note that the dimension of G is Nc ×Nd. We denote by {Gi}1≤i≤Nc

the rows of the matrix G.
Thus, Giu yields the value of the normal displacement at the ith node of the contact boundary.
With an exact enforcement, the static Signorini problem consists in seeking a displacement
u ∈ R

Nd and a contact pressure r ∈ R
Nc such that

Ku = F + TGr, (17)

Gu ≥ 0, r ≥ 0, TrGu = 0. (18)

Here the problem is formulated as a complementarity problem. Other formalisms can be found
in the literature, e.g., variational inequality, Lagrangian formulation and formulation with
subderivatives. If the matrix K is positive definite, problem (17)-(18) has a unique solution. For
solving this problem, a large variety of methods has been developed [19, 31]: Uzawa algorithms,
active set methods, semi-smooth Newton methods, Lemke algorithm, etc...
Penalty formulations are another classical way of dealing with constrained problems. We have
to define a penalty function Rǫ : R

Nc → R
Nc . For instance we can choose Rǫ(v) = 1

ǫ
(v)−,

where (v)− denotes the negative part of v. The penalized static Signorini problem consists
now in seeking u ∈ R

Nd such that

Ku = F + TGRǫ(Gu). (19)

A third way of enforcing the contact condition, specific to the dynamic problem, is to replace
the Signorini condition by an approximation involving the velocity instead of the displacement
[10]. Assume that un = 0 at a certain time tc. Then, on a short time interval afterwards,
un ≈ (t − tc)u̇n. This motivates the following contact condition in velocity,

u̇n ≤ 0, σn(u) ≤ 0, σn(u)u̇n = 0, on Γc. (20)

It must be stated that this condition is not rigorously equivalent to the Signorini condition.

3. BENCHMARK PROBLEMS

To compare the different methods, we test them on two 1D problems. Both problems can be
formulated in the same setting. We consider an elastic bar dropped against a rigid ground. The

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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bar is dropped, undeformed, from a height h0, with an initial velocity −v0, under a gravity
g0 ≥ 0. The length of the bar is denoted by L, the Young modulus by E and the density by ρ.

Let c0 :=
√

E
ρ

denote the wave speed. The reference domain is Ω = [0, L]. The displacement

u of the bar and the contact pressure r satisfy the following equations,

ρü − E
∂2u

∂x2
= −ρg0 + r, in Ω × (0, T ), (21)

u(0, t) ≥ 0, r(t) ≥ 0, r(t)u(0, t) = 0 on (0, T ), (22)

∂u

∂x
(L, t) = 0 on (0, T ), (23)

u(·, 0) = h0, u̇(·, 0) = −v0. (24)

Problem (21)-(24) has a unique solution and the variation of the energy is equal to the work
of the gravity force [24],

d

dt

(

1

2

∫

Ω

ρu̇2 +
1

2

∫

Ω

E

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

2
)

=

∫

Ω

−g0u̇, ∀t ∈ [0, T ]. (25)

In the first problem, v0 > 0 and g0 = 0. This benchmark has been widely used in the literature.
It enables us to examine the possible spurious oscillations triggered by the numerical schemes.
In the second problem, v0 = 0 and g0 > 0, so that the bar can make several bounces. With a
suitable choice of parameters, the motion of the bar is periodic in time and we can calculate the
exact solution. It enables us to examine the energy conservation and the long-time behavior
of the different numerical methods. This benchmark is, to our knowledge, new.

3.1. Impact of an elastic bar

Let us describe the solution of the benchmark problem (Figure 1). Before the impact, the bar
is undeformed and has a uniform velocity −v0. The bar reaches the ground at time t1 = h0

v0
.

After the impact, the bar stays in contact with the ground. A shock wave travels from the
bottom of the bar to the top. Above the shock wave, the velocity is −v0; below, the velocity
is zero. Then, the shock wave travels from the top to the bottom. Above the shock wave, the
velocity is v0; below, the velocity is still zero. As soon as the wave reaches the bottom, the bar
takes off, undeformed, with a uniform velocity v0. The speed of the shock wave is c0. Thus, the
wave takes a time τw := L

c0
to cross the bar, and the bar takes off at time t2 = t1 + 2τw. The

analytical solution can be easily expressed using travelling functions. Defining the auxiliary
function Hv(x, t) = −v min(x/c0, τw − |t − τw|), the exact solution is

u(x, t) =











h0 − v0t if t ≤ t1

Hv0
(x, t − t1) if t1 < t ≤ t2

v0(t − t2) if t2 < t

(26)

In particular the displacement at the bottom of the bar and the contact pressure are:

u(0, t) =











h0 − v0t if t ≤ t1

0 if t1 < t ≤ t2

v0(t − t2) if t2 < t

r(t) =











0 if t ≤ t1
Ev0

c0
if t1 < t ≤ t2

0 if t2 < t

(27)

These two quantities are represented in Figure 2 (with the parameters chosen in Section 3.3).

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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Figure 1. Impact of an elastic bar.
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Figure 2. Impact of an elastic bar. Displacement at the bottom of the bar (left) and contact pressure
(right).

3.2. Bounces of an elastic bar

In this benchmark problem (Figure 3), the bar is dropped, undeformed, with a zero velocity.

It takes a time τf :=
√

2h0

g0
to reach the ground. At the impact, at time t1 := τf , the bar is

undeformed and has uniform velocity −vf , where vf :=
√

2h0g0. After the impact, as in the
previous benchmark, the bar stays in contact with the ground during a time 2τw. During this
contact phase, the response of the bar is the superposition of a shock wave due to velocity at
the impact and a vibration due to the gravity. When the bar takes off, at time t2 := t1+2τw, it
has a uniform velocity vf but it is compressed (u(x, t2) = ũ(x) := g0

c0
(x2−2Lx)). Consequently,

during the flight phase, the response of the bar, is the superposition of a rigid parabolic motion
(due to the gravity and the velocity) and a vibration (due to the initial deformation). If we
choose proper parameters (for instance, τf = 3τw), we can ensure that the bar reaches the
ground with uniform velocity −vf and with displacement field ũ. By doing so, the second
impact occurs at time t3 := t2 + 2τf = t2 + 6τw. When the bar takes off again, at time
t4 := t3 + 2τw, it is undeformed and has a uniform velocity vf . The next flight phase is a rigid
parabolic movement. Then, this sequence of two contact phases and two flight phases repeats
periodically. To compute the analytical solution, we use a decomposition on the eigenmodes
in addition to the travelling functions. We set t4k+1 = 3τw + 16kτw, t4k+2 = t4k+1 + 2τw,

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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Figure 3. Bounces of an elastic bar.

t4k+2 = t4k+1 + 8τw and t4k+4 = t4k+1 + 10τw. We define also the auxiliary functions

P (x, t) = h0 −
1

2
g0(t − τf )2, (28)

S1(x, t) =

∞
∑

n=1

an(1 − cos(c0νnt))sin(νnx), (29)

S2(x, t) = −2g0L
2

3c2
0

+

∞
∑

n=1

bncos(c0λnt)cos(λnx), (30)

where an = −2g0

c2
0
Lν3

n
, νn = (n − 1

2 ) π
L
, bn = 4g0

g0λ2
n
, λn = n π

L
. The function S1 corresponds to the

vibration of a bar, clamped at its bottom, initially at rest, under a gravity g0. The function S2

corresponds to the vibration of a bar, free at its two extremities, with the initial displacement
ũ, a zero initial velocity and without external force. The computation of series S1 and S2 is
standard; see [6] for instance. The exact solution is

u(x, t) =































P (x, t + τf ) if t ≤ t1

Hvf
(x, t − t4k+1) + S1(x, t − t4k+1) if t4k+1 < t ≤ t4k+2

P (x, t − t4k+2) + S2(x, t − t4k+2) if t4k+2 < t ≤ t4k+3

Hvf
(x, t4k+4 − t) + S1(x, t4k+4 − t) if t4k+3 < t ≤ t4k+4

P (x, t − t4k+4) if t4k+4 < t ≤ t4(k+1)+1

(31)

The displacement at the bottom of the bar is represented in Figure 4 (with the parameters
chosen in Section 3.3).

3.3. Numerical simulations

The parameters used in the numerical simulations are E = 900, ρ = 1, L = 10, h0 = 5.
In the first benchmark v0 = 10, g0 = 0; in the second benchmark v0 = 0, g0 = 10. The
bar is discretized with a uniform meshsize ∆x and linear finite elements are used. We define
νc := c0

∆t
∆x

the Courant number, which is the relevant ratio to link the mesh size and the
time step. In particular, the central difference scheme with the lumped mass matrix is stable
in the linear case under the condition νc ≤ 1. Let us set some notation which will be used in
the description of numerical results. If v is a displacement vector, we denote by v0 and (Kv)0
the displacement and the stress at the bottom node of the bar, respectively. In the benchmark
problems, the load vector is time-independent; we denote it by F .

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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Figure 4. Bounces of an elastic bar. Displacement at the bottom of the bar.

4. DISCRETIZATIONS WITH EXACT ENFORCEMENT OF THE CONTACT
CONDITION

In this section we combine standard finite elements in space and an exact enforcement of
the contact condition at each node of the contact boundary. This leads to the semi-discrete
problem,

Mü(t) + Ku(t) = F (t) + TGr(t), (32)

Gu(t) ≥ 0, r(t) ≥ 0, Tr(t)Gu(t) = 0. (33)

Problem (32)-(33) is a system of differential equations under unilateral constraints. The same
kind of formulation arises in rigid-body dynamics with impact [4, 28], so the mathematical
results and the numerical methods developed in this framework can in general be applied to our
problem. Mathematically, problem (32)-(33) turns out to be delicate. Firstly, the functional
framework is not obvious. Due to the unilateral constraints, the velocity can be discontinuous
and there is in general no strong solution (i.e. twice differentiable in time) to this problem.
We then have to define a concept of weak solution: the displacement u is continuous in time,
the velocity u̇ is a function with bounded variation in time, the acceleration ü and the contact
pressure r are measures (they contain impulses). Secondly, this weak solution is in general not
unique. Consider the simple example of a point mass impacting a rigid foundation. Before the
impact, the motion of the point mass is uniquely determined. After the impact, an infinity
of velocities and trajectories are admissible (Figure 5). To recover uniqueness, an additional
condition, specifying the velocity after an impact, is needed. If we denote by v− the normal
velocity before the impact and by v+ the normal velocity after the impact, we can prescribe

v+ = −ev−, (34)

where e is a non-negative parameter. This impact law is commonly used in rigid-body
dynamics. In our case, it seems reasonable to take e = 0. Indeed, in the continuous dynamic
Signorini problem, the unilateral constraint holds on the boundary and the boundary does not
bounce after an impact. In the discrete setting, the unilateral constraint holds on the nodes

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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Figure 5. Impact of a point mass.

of the contact boundary. If we want these nodes to have the same behavior as the boundary
in the continuous setting, we are led to choose e = 0. We can now formulate the semi-discrete
problem in a rigorous way.

Problem 4.1. Seek a displacement u : [0, T ] → R
Nd and a contact pressure r : [0, T ] → R

Nc

such that

Mü + Ku = F + TGr, (35)

Gu ≥ 0, r ≥ 0, TrGu = 0, (36)
Tri(t)Giu̇(t+) = 0 if Giu(t) = 0, (37)

with the initial conditions u(0) = u0 and u̇(0) = v0.

Most of the mathematical terms in equations (35)-(37) must be understood in the sense
of measures. In particular TrGu and Tri(t)Giu̇(t+) should be defined with suitable duality
products. For more details, we refer to [4, 28].

Remark 4.1. The impact law is a consequence of the discretization in space. Indeed, the
continuous problem does not need an impact law to have a unique solution. This fact is proven
in 1D [10, 24]; in higher dimension, the uniqueness is still an open problem, but the difficulty
does not seem to come from the absence of an impact law.

Remark 4.2. The semi-discrete solution does not conserve the energy (there is a loss of energy
at each impact of a node). This is another difference with the continuous solution.

Remark 4.3. The impact law is different from the concept of persistency condition sometimes
encountered in the literature [1, 21, 22, 23]. The persistency condition is defined in the
continuous setting and in the fully discrete setting. It requires that the contact force does not
work. Note that in the continuous problem, the persistency condition seems to be a consequence
of the Signorini condition (it is at least proven in 1D).

4.1. Implicit schemes

To motivate the discussion, let us begin with an ill-founded discretization. We choose a
Newmark scheme (trapezoidal rule) for the elastodynamic part and we enforce the contact
condition (36) at a certain time, say tn+1. We pay no attention to the impact law (37). This
choice corresponds to Discretization 4.1 with α = 0, β = 1/4, γ = 1/2.

Discretization 4.1 (HHT-Newmark) Seek un+1, u̇n+1, ün+1 ∈ R
Nd , and rn+1 ∈ R

Nc

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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such that

Mün+1 + Kun+1+α = Fn+1+α + TGrn+1, (38)

Gun+1 ≥ 0, rn+1 ≥ 0, Trn+1Gun+1 = 0, (39)

un+1 = un + ∆tu̇n +
∆t2

2
ün+2β , (40)

u̇n+1 = u̇n + ∆t ün+γ . (41)

At each time step, Problem (38)-(41) is equivalent to a linear complementarity problem and
is well-posed. In contrast to the static case, the matrix K does not need to be definite for the
problem to be well-posed (Dirichlet boundary conditions are not needed). When this scheme
is tested on the first benchmark, we observe large spurious oscillations on the contact pressure
and small spurious oscillations on the displacement during the contact phase (Figure 6). On
the second benchmark, we observe a poor behavior in long-time and a poor energy conservation
(Figure 7). Let us try to explain what happens exactly. Suppose there is contact at the ith
node of the contact boundary at time tn+1 (i.e. Giu

n+1 = 0), then

Giu̇
n+1 = − 1

2∆t
Giu

n +

(

1 − β

γ

)

Giu̇
n + ∆t

2β − γ

2β
Giü

n, (42)

Giü
n+1 = − 1

β∆t2
Giu

n − 1

β∆t
Giu̇

n − 1 − 2β

2β
Giü

n. (43)

As we can see, the impact law is not satisfied since we would expect that after an impact,
Giu̇

n = Giü
n = 0. During a contact phase following an impact, the velocity and the

acceleration oscillate. For the acceleration, the magnitude of the oscillations is vi

∆t
, where

vi is the velocity before the impact. These oscillations of the acceleration trigger oscillations
of magnitude mivi

∆t
on the contact pressure, where mi is the mass associated with the node i

(Figure 6). Moreover, the energy balance takes the form,

En+1 − En = T

(

rn+1 + rn

2

)

(Gun+1 − Gun) + T

(

Fn+1 + Fn

2

)

(un+1 − un), (44)

so that the contact force works when a node changes status. When a node comes into contact
(Giu

n > 0, rn = 0, Giu
n+1 = 0, rn+1 > 0), the work is negative; when a node is released

(Giu
n = 0, rn > 0, Giu

n+1 > 0, rn+1 = 0), the work is positive. As the contact pressure is
polluted by large oscillations, this strongly perturbs the rest of the structure (Figure 7). The
poor behavior of the Newmark scheme can be summarized by the following diagram:

(a) large oscillations of the acceleration at the contact boundary
↓

(b) large oscillations of the contact pressure
↓

(c) perturbation of the whole structure

In themselves the oscillations of the acceleration at the contact boundary are not a problem.
The oscillations of the contact pressure are more troublesome if a Lagrangian method is used
for solving the linear complementarity problem at each time step (the Lagrange multiplier
being equal to the contact pressure). Of course, the perturbation of the whole structure must

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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Figure 6. Impact of an elastic bar. Displacement un

0 (left) and contact pressure rn (right).
Discretization 4.1 with α = 0, β = 1/4 and γ = 1/2. ∆x = 0.1, ∆t = 0.005, νc = 1.5.
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Figure 7. Bounces of an elastic bar. Displacement un

0 (left) and energy En−TFun (right). Discretization
4.1 with α = 0, β = 1/4 and γ = 1/2. ∆x = 0.1, ∆t = 0.005, νc = 1.5.

be avoided. Several options can be considered to design better algorithms. The first option
consists in using dissipative schemes, such as HHT schemes (Discretization 4.1). The spurious
oscillations are then damped (Figure 8), but at the expense of poor energy conservation (Figure
9). First-order schemes like θ-schemes, which are implicit, unconditionally stable, dissipative
schemes, yield the same kind of results (Discretization 4.2).

Discretization 4.2 (θ-schemes [30]) Seek un+1, u̇n+1 ∈ R
Nd , and rn+1 ∈ R

Nc such that

Mün+ 1
2 + Kun+θ = Fn+θ + TGrn+1, (45)

Gun+1 ≥ 0, rn+1 ≥ 0, Trn+1Gun+1 = 0, (46)

un+1 = un + ∆t u̇n+θ, (47)

u̇n+1 = u̇n + ∆t ün+ 1
2 . (48)

Remark 4.4. It is sometimes advocated in the literature that first-order schemes must be
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Figure 8. Impact of an elastic bar. Displacement un

0 (left) and contact pressure rn (right).
Discretization 4.1 with α = −0.2, β = 1/4(1 − α)2, γ = 1/2 − α. ∆x = 0.1, ∆t = 0.005, νc = 1.5.
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Figure 9. Bounces of an elastic bar. Displacement un

0 (left) and energy En−TFun (right). Discretization
4.1 with α = −0.2, β = 1/4(1 − α)2, γ = 1/2 − α. ∆x = 0.1, ∆t = 0.005, νc = 1.5.

preferred to second-order schemes for dynamic contact problems, due to the non-smoothness
of the solution. We must distinguish two issues: the treatment of the contact condition and the
treatment of the shock waves induced by the contact. As discussed previously, a proper treatment
of the contact condition is not related to the order of the scheme. As for the shock waves, they
require a scheme with dissipation and there exist second-order schemes with dissipation, such
as the HHT or Chung-Hulbert schemes. We refer to the Appendix for further discussion.

A second option consists in finding a scheme which satisfies the impact law or, more
precisely, a scheme which enforces the acceleration to be zero during the contact phases.
No implicit Newmark scheme achieves this. An extra-step is needed to enforce the impact law
(Discretization 4.3).

Discretization 4.3 (naive stabilized Newmark)
1. Seek un+1 ∈ R

Nd, u̇n+1 ∈ R
Nd , ün+1 ∈ R

Nd , and rn+1 ∈ R
Nc satisfying (38)-(41).
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2. If Giu
n < 0 and Giu

n+1 = 0, then u̇n+1 and ün+1 are modified so that

Giu̇
n+1 = 0 and Giü

n+1 = 0. (49)
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Figure 10. Impact of an elastic bar. Displacement un

0 (left) and contact pressure rn (right).
Discretization 4.3 with α = 0, β = 1/4 and γ = 1/2. ∆x = 0.1, ∆t = 0.005, νc = 1.5.

As illustrated in Figure 10, the large spurious oscillations have disappeared. However, this
stabilization takes effect only one step after the impact, which explains the peak in the contact
pressure just after the impact. Stabilizations procedures which enforce the impact law as soon
as the impact occurs have been proposed in [29] and [7]. This second problem will be presented
at the end of the section (Discretization 4.6). As a third option, it is possible to prevent the
oscillations of the acceleration from transferring to the contact pressure by removing the mass
at the contact boundary. This approach will be developed in Section 7. The fourth option
consists in finding a time discretization where the contact force does not work or is at least
dissipative. For instance, the midpoint scheme with an enforcement of the contact condition
at time tn+1 achieves the following energy balance,

En+1 − En = Trn+1(Gun+1 − Gun) + TFn+ 1
2 (un+1 − un). (50)

It is easy to check that the work of the contact force is always non-positive. As illustrated in
Figure 11, the contact pressure still oscillates but the stress is practically free of oscillations.
However, the losses of energy are quite important and deteriorate the long-time behavior
(Figure 12).

Discretization 4.4 (Midpoint-implicit contact) Seek un+1, u̇n+1 ∈ R
Nd, and rn+1 ∈

R
Nc such that

Mün+ 1
2 + Kun+ 1

2 = Fn+ 1
2 + TGrn+1, (51)

Gun+1 ≥ 0, rn+1 ≥ 0, Trn+1Gun+1 = 0, (52)

un+1 = un + ∆t u̇n+ 1
2 , (53)

u̇n+1 = u̇n + ∆t ün+ 1
2 . (54)
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Another scheme with dissipative contact has been proposed in [17]. The Newmark scheme with
parameters β = 1/2 and γ = 1 and with an enforcement of the contact condition at time tn+1

yields the following energy balance

En+1 −En = Trn+1(Gun+1−Gun)− 1

2
T(un+1 −un)K(un+1−un)+TFn+1(un+1−un). (55)

The work of the contact force is always non-positive, but there is a strong bulk dissipation. To
remove this dissipation, one can, as proposed in [17], discretize the acceleration coming from
the contact forces with the dissipative parameters (β = 1/2 and γ = 1) and the acceleration
coming from the elastic forces with a trapezoidal rule (β = 1/4 and γ = 1/2). This yields
Discretization 4.5. With such a discretization, the energy balance is

En+1 − En = Trn+1(Gun+1 − Gun) + TFn+1(un+1 − un). (56)

The numerical results are similar to those obtained with Discretization 4.4.

Discretization 4.5 (Newmark with dissipative contact [17]) Seek un+1, u̇n+1, ün+1
int ,

ün+1
con ∈ R

Nd , and rn+1 ∈ R
Nc such that

Mün+1 + Kun+1 = Fn+1 + TGrn+1, (57)

Gun+1 ≥ 0, rn+1 ≥ 0, Trn+1Gun+1 = 0, (58)

un+1 = un + ∆tu̇n +
∆t2

2
ün+2β

int +
∆t2

2
ün+1

con , (59)

u̇n+1 = u̇n + ∆tün+γ
int + ∆tün+1

con , (60)

where ün+1 = ün+1
int + ün+1

con and Mün+1
con = TGrn+1 .

To compensate the losses of energy in schemes with dissipative contact, the so-called velocity-
update method has been introduced in [23]. Applied to Discretization 4.4, this procedure does
not improve significantly the long-time behavior on our benchmark.
In [7], the authors add to Discretization 4.5 a stabilization procedure (Discretization 4.6).
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Figure 11. Impact of an elastic bar. Contact pressure rn (left) and stress (Kun)0 (right). Discretization
4.4. ∆x = 0.1, ∆t = 0.005, νc = 1.5.
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Figure 12. Bounces of an elastic bar. Displacement un

0 (left) and energy En − TFun (right).
Discretization 4.4. ∆x = 0.1, ∆t = 0.005, νc = 1.5.

Discretization 4.6 (stabilized Newmark [7])
1. Seek un+1

pred ∈ R
Nd and λn+1 ∈ R

Nc such that

Mun+1
pred = Mun + ∆tMu̇n, (61)

Gun+1
pred ≥ 0, λn+1 ≥ 0, Tλn+1Gun+1

pred = 0. (62)

2. Seek un+1, u̇n+1, ün+1
int , ün+1

con ∈ R
Nd , and rn+1 ∈ R

Nc such that

Mün+1 + Kun+1 = Fn+1 + TGrn+1, (63)

Gun+1 ≥ 0, rn+1 ≥ 0, Trn+1Gun+1 = 0, (64)

un+1 = un+1
pred +

∆t2

2
ün+2β

int +
∆t2

2
ün+1

con , (65)

u̇n+1 = u̇n + ∆tün+γ
int + ∆tün+1

con , (66)

where ün+1 = ün+1
int + ün+1

con and Mün+1
con = TGrn+1.

With this scheme, the contact pressure is now almost free of oscillations (Figure 13). Indeed,
if Giu

n+1 = Giu
n+1
pred = 0, then

Giü
n+2β
int + Giü

n+1
con = 0. (67)

The long-time behavior is still poor (Figure 14). The additional step required by this scheme
is not expensive compared with the main step, especially if the mass matrix is lumped.

4.2. Semi-explicit schemes

Now, we try to discretize the elastodynamic part of the problem with an explicit scheme, such
as the central difference scheme. It is not possible to enforce an explicit contact condition.
The contact condition can be enforced implicitly (Discretization 4.7) or by a projection step
(Discretization 4.8).
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Figure 13. Impact of an elastic bar. Displacement un

0 (left) and contact pressure rn (right).
Discretization 4.6 with β = 1/4 and γ = 1/2 (lumped mass matrix). ∆x = 0.1, ∆t = 0.005, νc = 1.5.
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Figure 14. Bounces of an elastic bar. Displacement un

0 (left) and energy En − TFun (right).
Discretization 4.6 with β = 1/4 and γ = 1/2 (lumped mass matrix). ∆x = 0.1, ∆t = 0.005, νc = 1.5.

Discretization 4.7 (Central differences-implicit contact [25, 26]) Seek un+1 ∈ R
Nd

and rn+1 ∈ R
Nc such that

M

(

un+1 − 2un + un−1

∆t2

)

+ Kun = Fn + TGrn+1, (68)

Gun+1 ≥ 0, rn+1 ≥ 0, Trn+1Gun+1 = 0. (69)

(70)

Discretization 4.8 (Central differences-projected contact [5])
1. Seek un+1

pred ∈ R
Nd such that

M

(

un+1
pred − 2un + un−1

∆t2

)

+ Kun = Fn. (71)
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2. Seek un+1 ∈ R
Nd and rn+1 ∈ R

Nc such that

un+1 = un+1
pred + TGrn+1, (72)

Gun+1 ≥ 0, rn+1 ≥ 0, Trn+1Gun+1 = 0. (73)

The second approach seems more explicit, but, actually, the two approaches are equivalent
when the mass matrix M is diagonal. Discretization 4.7 has been proposed in [27] in 1D and
[25, 26] in the framework of rigid-body dynamics. Discretization 4.7 has been proposed in [5].
It is easy to check that the acceleration at the contact boundary vanishes during a contact
phase. Indeed, if Giu

n+1 = Giu
n = Giu

n−1 = 0, then

Giü
n = Gi

(

un+1 − 2un + un−1

∆t2

)

= 0. (74)

Consequently, there are no spurious oscillations (Figure 15). The energy balance reads

En+1
0, 1

2

− En
0, 1

2

= T

(

rn+2 + rn+1

2

)

(Gun+1 − Gun) + T

(

Fn+1 + Fn

2

)

(un+1 − un). (75)

The losses of energy are quite important (Figure 16). In 1D, the convergence of the discrete
solutions to the continuous solution, provided a stability condition is met (the same as in
the linear case), has been established in [27]. The convergence of the discrete solutions to a
semi-discrete solution has been proven in [25, 26].
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Figure 15. Impact of an elastic bar. Displacement un

0 (left) and contact pressure rn (right).
Discretization 4.7 (lumped mass matrix). ∆x = 0.1, ∆t = 0.0025, νc = 0.75.

5. DISCRETIZATIONS WITH PENALTY CONTACT CONDITION

In this part we combine standard finite elements in space and a penalty approximation of the
contact condition. Then, the semi-discrete problem is a mere system of ODEs.

Problem 5.1. Seek a displacement u : [0, T ] → R
Nd such that, ∀t ∈ [0, T ],

Mü(t) + Ku(t) = f(t) + TGRǫ(Gu(t)), (76)

with the initial conditions u(0) = u0 and u̇(0) = v0.
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Figure 16. Bounces of an elastic bar. Displacement un

0 (left) and energy En − TFun (right).
Discretization 4.7 (lumped mass matrix). ∆x = 0.1, ∆t = 0.0025, νc = 0.75.

Problem 5.1, being a system of ODEs, has one and only one solution, which is furthermore
twice differentiable in time.

5.1. Implicit schemes

To begin with, we discretize Problem 5.1 with an implicit Newmark scheme.

Discretization 5.1 (Newmark) Seek un+1, u̇n+1, ün+1 ∈ R
Nd , such that

Mün+1 + Kun+1 = Fn+1 + TGRǫ(Gun+1), (77)

un+1 = un + ∆tu̇n +
∆t2

2
ün+2β, (78)

u̇n+1 = u̇n + ∆tün+γ . (79)

We observe that the penalty formulation tends to reduce spurious oscillations (Figure 17).
Nevertheless, the oscillations grow with the penalty parameter 1/ǫ (Figure 18). This is not
surprising since the penalty contact condition tends to the exact contact condition when 1/ǫ
tends to infinity. If the oscillations are too large, stabilization procedures can be used (see for
instance the procedure described in [1]). With the addition of a penalty term, the Newmark
scheme (trapezoidal rule) no longer conserves the energy (Figure 19). In [1, 14], the authors
proposed a discretization of the penalty term which enables to recover energy conservation
(Discretization 5.2). It is based on a midpoint scheme. On our benchmark problems, it does
not yield significantly better results.

Discretization 5.2 (Energy-conserving midpoint [1, 14]) Seek un+1, u̇n+1 ∈ R
Nd ,

such that

Mün+ 1
2 + Kun+ 1

2 = Fn+ 1
2 + TGR̃ǫ(Gun+1, Gun), (80)

un+1 = un + ∆tu̇n+ 1
2 , (81)

u̇n+1 = u̇n + ∆tün+ 1
2 , (82)
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Figure 17. Impact of an elastic bar. Displacement un

0 (left) and contact pressure TGRǫ(Gun) (right).
Discretization 5.1 with α = 0, β = 1/4, γ = 1/2, ǫ = 10−4. ∆x = 0.1, ∆t = 0.005, νc = 1.5.
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Figure 18. Impact of an elastic bar. Contact pressure TGRǫ(Gun). Discretization 5.1 with α = 0,
β = 1/4 and γ = 1/2. ∆x = 0.1, ∆t = 0.005, νc = 1.5. ǫ = 10−3 (left) and ǫ = 10−5 (right).

where

(R̃ǫ(Gun+1, Gun))i =











1
2ǫ

((Giu
n+1)−)2−((Giu

n)−)2

Giun+1−Giun if Giu
n 6= Giu

n+1

0 if Giu
n = Giu

n+1 ≥ 0
1
2ǫ

(Gun+1 + Gun) if Giu
n = Giu

n+1 < 0

(83)

Setting En
pen := En + 1

2ǫ
((Gun)−)2, the energy balance reads

En+1
pen − En

pen = TFn+ 1
2 (un+1 − un). (84)

5.2. Explicit schemes

We can also envisage an explicit scheme for Problem 5.1.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



TIME-INTEGRATION SCHEMES FOR THE DYNAMIC SIGNORINI PROBLEM 21

-2

-1

 0

 1

 2

 3

 4

 5

 6

 0  5  10  15  20

di
sp

la
ce

m
en

t

time

pen./Newmark
exact solution

 460

 470

 480

 490

 500

 510

 0  5  10  15  20

en
er

gy

time

pen./Newmark
exact solution

Figure 19. Bounces of an elastic bar. Displacement un

0 (left) and energy En − TFun (right).
Discretization 5.1 with α = 0, β = 1/4 and γ = 1/2, ǫ = 10−4. ∆x = 0.1, ∆t = 0.005, νc = 1.5.

Discretization 5.3 (Central differences) Seek un+1 ∈ R
Nd such that

M

(

un+1 − 2un + un−1

∆t2

)

+ Kun = Fn + TGRǫ(Gun). (85)

The penalty term stiffens the system of ODEs, which limits the stability domain of the schemes.
This is not surprising since the penalty contact condition tends to the exact contact condition
when 1/ǫ tends to infinity and an explicit exact enforcement of the contact condition is not
possible. A more detailed discussion on the choice of the penalty parameter can be found in
[3].

6. DISCRETIZATIONS WITH CONTACT CONDITION IN VELOCITY

In this part, standard finite elements in space are combined with an approximation of the
contact condition involving the velocity.

Problem 6.1. Seek a displacement u : [0, T ] → R
Nd and a contact pressure r : [0, T ] → R

Nc

such that, for almost every t ∈ [0, T ],

Mü(t) + Ku(t) = f(t) + TGr(t) (86)

Gu̇(t) ≥ 0, r(t) ≥ 0, Tr(t)Gu̇(t) = 0 (87)

with the initial conditions u(0) = u0 and u̇(0) = v0.

With this contact condition in velocity, the semi-discrete problem is much simpler than (32)-
(33). Problem 6.1 is still a system of differential equations under unilateral constraints, but the
constraint involves now the velocity instead of the displacement. The general theory developed
in [9, 11] applies to Problem 6.1. The solution u is unique. Furthermore, u is continuous and u̇
is differentiable in time almost everywhere, so that the equations have a sense at almost every
time. The mathematical analysis of this problem can be found in [9]. The time discretization
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has been extensively studied in [11].
Unfortunately, the contact condition in velocity is not equivalent to the Signorini condition.
This approximation is valid only on a short time interval after an impact. The strategy adopted
is the following: if a node satisfies the non-interpenetration condition, then at the next iteration
no constraint is enforced on this node; if a node breaks the non-interpenetration condition,
then at the next iteration the contact condition in velocity will be applied to this node. This
approach allows for slight interpenetration. At each time step, we define the matrix Gn whose
rows Gn

i are

Gn
i =

{

(0 . . . 0) if Giu
n ≥ 0

Gi if Giu
n < 0

(88)

This approach based on a contact condition in velocity has also been widely used in rigid-body
dynamics with impacts.

6.1. Implicit schemes

A midpoint scheme with a contact condition velocity has been proposed in [22].

Discretization 6.1 (Midpoint [22]) Seek un+1, u̇n+1 ∈ R
Nd, and rn+1 ∈ R

Nc such that

Mün+ 1
2 + Kun+ 1

2 = Fn+ 1
2 + TGnrn+ 1

2 , (89)

Gnu̇n+ 1
2 ≥ 0, rn+ 1

2 ≥ 0, Trn+ 1
2 Gnu̇n+ 1

2 = 0, (90)

un+1 = un + ∆t u̇n+ 1
2 , (91)

u̇n+1 = u̇n + ∆t ün+ 1
2 . (92)

An interesting feature of this scheme is to be energy-conserving,

En+1 − En = TFn+ 1
2 (un+1 − un). (93)

The contact pressure does not perturb the structure despite its oscillations (Figure 20). Owing
to the energy conservation, the long-time behavior is quite satisfactory (Figure 21).

6.2. Semi-explicit schemes

In [3], an explicit scheme based on the contact condition in velocity has been proposed.

Discretization 6.2 (Central differences [3]) Seek un+1 ∈ R
Nd and rn+1 ∈ R

Nc such that

M

(

un+1 − 2un + un−1

∆t2

)

+ Kun = Fn + TGnrn+1, (94)

Gn(un+1 − un) ≥ 0, rn+1 ≥ 0, Trn+1Gn(un+1 − un) = 0. (95)

(96)

Numerical simulations suggest that the stability condition of the central difference scheme is
not tightened by the contact condition. The numerical results are similar to those obtained
with Discretization 4.7 (Figures 22 and 23).
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Figure 20. Impact of an elastic bar. Displacement un

0 (left) and stress (right). Discretization 6.1 with
α = 0, β = 1/4 and γ = 1/2. ∆x = 0.1, ∆t = 0.005, νc = 1.5.
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Figure 21. Bounces of an elastic bar. Displacement un

0 (left) and energy En − TFun (right).
Discretization 6.1 with α = 0, β = 1/4 and γ = 1/2. ∆x = 0.1, ∆t = 0.005, νc = 1.5.

7. DISCRETIZATIONS WITH MODIFIED MASS

In the previous three parts, we have considered various ways of enforcing the contact condition.
Here we describe methods based on a modification of the mass matrix. Such methods are thus
compatible with any enforcement of the contact condition. For brevity, we restrict ourselves
to an exact enforcement of the contact condition. In the modified mass matrix, the entries
associated with the normal displacements at the contact boundary are set to zero. The
motivation for this modification is very simple: if the mass is removed, the inertial forces
and the oscillations are eliminated. This approach has been introduced in [18].
Set N∗

d := Nd −Nc. For the sake of simplicity, suppose that the degrees of freedom associated
with normal displacements at the contact boundary are numbered from N∗

d + 1 to Nd. The
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Figure 22. Impact of an elastic bar. Displacement un

0 (left) and contact pressure rn (right).
Discretization 6.2 (lumped mass matrix). ∆x = 0.1, ∆t = 0.0025, νc = 0.75.
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Figure 23. Bounces of an elastic bar. Displacement un

0 (left) and energy En − TFun (right).
Discretization 6.2 (lumped mass matrix). ∆x = 0.1, ∆t = 0.0025, νc = 0.75.

modified mass matrix is defined as

M∗ =

(

M∗∗ 0
0 0

)

.

Many choices are possible to build the block M∗∗. In [13, 18], the authors devise various
methods to preserve some features of the standard mass matrix (the total mass, the center of
gravity and the moments of inertia). We can also simply take the corresponding block in the
standard mass matrix (and this is what will be done in our numerical simulations below). The
modified problem reads

M∗ü(t) + Ku(t) = F (t) + TGr(t), (97)

Gu(t) ≥ 0, r(t) ≥ 0, Tr(t)Gu(t) = 0. (98)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



TIME-INTEGRATION SCHEMES FOR THE DYNAMIC SIGNORINI PROBLEM 25

If we set u(t) =

(

u∗(t)
uc(t)

)

, K =

(

K∗∗ K∗c

Kc∗ Kcc

)

, F (t) =

(

F∗(t)
Fc(t)

)

, and G = (G∗ Gc), then

equations (97) and (98) can be recast as

M∗∗ü∗(t) + K∗∗u∗(t) + K∗cuc(t) = F∗(t), (99)

Kc∗u∗(t) + Kccuc(t) = Fc(t) + TGcr(t), (100)

Gcuc(t) ≥ 0, r(t) ≥ 0, Tr(t)Gcuc(t) = 0. (101)

For a given t and a given u∗(t), there exists one and only one uc(t) satisfying (100) and (101).
Denote by Q : [0, T ]× R

N∗

d → R
Nc the non-linear application such that uc(t) = Q(t, u∗(t)).

Problem 7.1. Seek a displacement u : [0, T ] → R
Nd such that, for all t ∈ [0, T ],

M∗∗ü∗(t) + K∗∗u∗(t) + K∗cQ(t, u∗(t)) = F∗(t), (102)

uc(t) = Q(t, u∗(t)), (103)

with the initial conditions u(0) = u0 and u̇(0) = v0.

The operator Q(t, ·) is Lipschitz continuous at each time t, so that equation (102) is a Lipschitz
system of ODEs. Therefore, it has a unique solution u∗, twice differentiable in time. Owing to
(103), uc is differentiable in time almost everywhere. The detailed mathematical analysis of
the semi-discrete modified mass formulation can be found in [18, 8]. A result of convergence of
the semi-discrete solutions to a continuous solution is proven for viscoelastic materials in [8].

Remark 7.1. In contrast to the semi-discrete problem with standard mass matrix, the semi-
discrete problem with modified mass matrix does not require an impact law and conserves the
energy.

7.1. Implicit schemes

Let us discretize Problem 7.1 with a HHT-Newmark scheme.

Discretization 7.1 (HHT-Newmark [18]) Seek un+1 ∈ R
Nd , u̇n+1

∗ ∈ R
Nd and ün+1

∗ ∈
R

Nd such that

M∗∗ü
n+1
∗ + K∗∗u

n+1+α
∗ + K∗cQ(tn+1+α, un+1+α

∗ ) = Fn+1+α
∗ , (104)

un+1+α
c = Q(tn+1+α, un+1+α

∗ ), (105)

un+1
∗ = un

∗ + ∆tu̇n
∗ +

∆t2

2
ün+2β
∗ , (106)

u̇n+1
∗ = u̇n

∗ + ∆tün+γ
∗ . (107)

The equations can be recast as a linear complementarity problem,

M∗ün+1 + Kun+1+α = Fn+1+α + TGrn+1, (108)

Gun+1 ≥ 0, rn+1 ≥ 0, Trn+1Gun+1 = 0, (109)

un+1 = un + ∆tu̇n +
∆t2

2
ün+2β , (110)

u̇n+1 = u̇n + ∆tün+γ . (111)
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In spite of the modification of the mass matrix, the problem is well posed. In practice, we
use this set of equations to compute the solution. As expected, the large oscillations have
disappeared during the contact phase (Figure 24). The energy conservation is also very
satisfactory (Figure 25), since there holds

En+1
∗ − En

∗ = T

(

rn+1 + rn

2

)

(Gun+1 − Gun) + T

(

Fn+1 + Fn

2

)

(un+1 − un), (112)

where En
∗ has the same expression than En, except that M is replaced by M∗.
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Figure 24. Impact of an elastic bar. Displacement un

0 and contact pressure rn. Discretization 7.1 with
α = 0, β = 1/4 and γ = 1/2. ∆x = 0.1, ∆t = 0.005, νc = 1.5.
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Figure 25. Bounces of an elastic bar. Displacement un

0 (left) and energy En

∗ − TFun (right).
Discretization 7.1 with α = 0, β = 1/4 and γ = 1/2. ∆x = 0.1, ∆t = 0.005, νc = 1.5.

7.2. Semi-explicit schemes

The modified mass method was introduced with implicit schemes. But we can also discretize
Problem 7.1 with an explicit scheme, such as the central difference scheme. This yields a new
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semi-explicit scheme.
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Figure 26. Bounces of an elastic bar. Displacement un

0 (left) and contact pressure rn (right).
Discretization 7.2 (lumped mass matrix). ∆x = 0.1, ∆t = 0.0025, νc = 0.75.
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Figure 27. Bounces of an elastic bar. Displacement un

0 (left) and energy En

∗ − TFun (right).
Discretization 7.2 (lumped mass matrix). ∆x = 0.1, ∆t = 0.0025, νc = 0.75.

Discretization 7.2 (Central differences) Seek un+1 ∈ R
Nd such that

M∗∗

(

un+1
∗ − 2un

∗ + un−1
∗

∆t2

)

+ K∗∗u
n
∗ + K∗cQ(tn, un

∗ ) = Fn
∗ , (113)

un+1
c = Q(tn+1, un+1

∗ ). (114)

In practice, the equations are solved the following way. 1. Seek un+1
∗ ∈ R

Nd such that

M∗∗

(

un+1
∗ − 2un

∗ + un−1
∗

∆t2

)

+ K∗∗u
n
∗ + K∗cu

n
c = Fn

∗ . (115)
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2. Seek un+1
c ∈ R

N∗

d and rn+1 ∈ R
Nc such that

Kc∗u
n+1
∗ + Kccu

n+1
c = Fn+1

c + TGcr
n+1, (116)

Gcu
n+1
c ≥ 0, rn+1 ≥ 0, TrGcu

n+1
c = 0. (117)

The first step is explicit, provided the mass matrix M∗∗ is lumped. The second step is a
constrained problem which concerns only the variable uc. Discretization 7.2 satisfies the system

M∗

(

un+1 − 2un + un−1

∆t2

)

+ Kun = Fn + TGrn,

Gun ≥ 0, rn ≥ 0, TrnGun = 0,

and the energy balance,

En+1
0, 1

2
∗
− En

0, 1
2
∗ = T

(

rn+1 + rn

2

)

(Gun+1 − Gun) + T

(

Fn+1 + Fn

2

)

(un+1 − un), (118)

where En
0, 1

2
∗

has the same expression than En
0, 1

2

, except that M is replaced by M∗. We observe

numerically that the stability condition on the time step is the same as in the linear case.
Compared with Discretizations 4.7 and 6.2, the semi-explicit modified mass method shows a
better energy conservation and a better long-time behavior (Figure 27).

APPENDIX

When approximating a solution presenting a shock or a sharp wave front with finite elements
in space and a time-stepping scheme, spurious oscillations are observed. This is the well-
known Gibbs phenomenon which is due to the poor approximation of eigenmodes associated
with the high frequencies. In the elastodynamic Signorini problem, we must deal with shock
waves after the impacts. If we plot the stress distribution computed with the modified mass
method and a Newmark scheme, we see this phenomenon (Figure 28). Moreover, the magnitude
of the oscillations does not decrease with the time step. For instance, as observed in [12],
with small time steps, the oscillations appears in front of the shock instead of behind. These
oscillations can be eliminated by using dissipative schemes, such as the HHT or Chung-Hulbert
schemes (or, which is equivalent, by filtering). For instance, the damping obtained with a
HHT scheme is presented in Figure 29. It may seem a little bit contradictory to discard the
use of dissipative schemes for the contact oscillations and to reintroduce them for the Gibbs
phenomenon. Actually, the oscillations on the stress caused by the Gibbs phenomenon are far
smaller than those caused by the contact condition (compare Figure 6 with Figure 28). The
former are proportional to the discontinuity jump, the latter are proportional to mivi

∆t
, where

vi is the velocity before the impact and mi is the mass associated with the impacting node.
Consequently, the amount of dissipation needed is much smaller.
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Figure 28. Impact of an elastic bar. Stress in the bar at time t=1.0. Discretization 7.1. ∆x = 0.1.
∆t = 0.005, νc = 1.5 (left). ∆t = 0.00125, νc = 0.375 (right).
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