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Abstract. This work concerns the development of an Algebraic Multilevel method
for computing stationary vectors of Markov chains. We present an efficient Boot-
strap Algebraic Multilevel method for this task. In our proposed approach, we
employ a multilevel eigensolver, with interpolation built using ideas based on com-
patible relaxation, algebraic distances, and least squares fitting of test vectors. Our
adaptive variational strategy for computation of the state vector of a given Markov
chain is then a combination of this multilevel eigensolver and associated multilevel
preconditioned GMRES iterations. We show that the Bootstrap AMG eigensolver
by itself can efficiently compute accurate approximations to the state vector. An
additional benefit of the Bootstrap approach is that it yields an accurate inter-
polation operator for many other eigenmodes. This in turn allows for the use of
the resulting AMG hierarchy to accelerate the MLE steps using standard multigrid
correction steps. Further, we mention that our method, unlike other existing mul-
tilevel methods for Markov Chains, does not employ any special processing of the
coarse-level systems to ensure that stochastic properties of the fine-level system are
maintained there. The proposed approach is applied to a range of test problems,
involving non-symmetric stochastic M-matrices, showing promising results for all
problems considered.

1. Introduction

We consider the task of computing a non-zero vector x such that

(1) Ax = 1x,

where A denotes the transition matrix of a given irreducible Markov process and x is
the associated state vector, an eigenvector of A with eigenvalue equal to one. Since
A is irreducible, x is unique up to scalar factors. The approach considered in this
paper is to approximate x iteratively using an Algebraic Multigrid (AMG) method
designed to find a non-trivial solution to the eigenvalue problem

Bx = 0x, where B = I − A,

in the setup phase and use the computed AMG method to solve the homogeneous
system

Bx = 0,

. Our AMG algorithm relies on the Bootstrap framework, a fully adaptive algebraic
multigrid scheme proposed in [4]. For solving complex-valued linear systems, this
BootAMG (Bootstrap AMG) framework was efficiently put into action in [6]. In this
paper, we develop a variant of BootAMG specifically tailored to compute x in (1).
Although we are not (yet) in a position to give a full rigorous mathematical analysis
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of the method, we demonstrate the efficiency of the BootAMG approach for a series
of Markov Chain test problems.

The main new ingredient of our BootAMG method is an adaptive (setup) compo-
nent that simultaneously computes an approximation to the state vector and Test
Vectors (TVs) which are then used in a Least Squares approach to calculate a multi-
level sequence of interpolation operators. Letting ` denote a given level of the multi-
level hierarchy and taking on the finest level B0 = B, our adaptive strategy consists
of the following steps (explained and described in detail in the latter sections):

(1) relax on the homogeneous system B`x` = 0, B` ∈ Rn`×n` to improve the set

of test vectors, x
(1)
` , ..., x

(r)
` , approximating the state vector; n` here is the

problem size on level `;
(2) compute a sparse interpolation operator P` ∈ Rn`+1×n` using a least-squares

fit based on x
(1)
` , ..., x

(r)
` ;

(3) compute the system matrix B`+1 ∈ Rn`+1×n`+1 on the next coarser level as
B`+1 = Q`B`P` via a Petrov-Galerkin approach, with the restriction Ql ∈
Rn`×n`+1 representing a simple averaging operator; also calculate the mass
matrix Tl+1 = Q`T`P` (with T0 = I) for the next leg of BootAMG;

(4) obtain the coarse-level series of test vectors

x
(j)
`+1 = R`x

(j)
l , j = 1, ..., r, with R` ∈ Rnl+1×nl being injection.

This process is applied recursively until a level with sufficiently small problem size
(the coarsest level, ` = L) is reached. There, an exact eigensolve for

B`x = λT`x

is performed and then used to improve the given approximations to the state vector

on increasingly finer levels. Along with the state vector’s approximations x
(0)
` , some

(small number) of near kernel eigenfunctions (λi, x
(i)
` ), from the coarsest level are

interpolated to increasingly finer levels, where they are relaxed and then used as
initial guesses to the corresponding fine-level eigenvectors. On each such level, the
relaxation is performed on the homogeneous system

(B` − λiT`)x(i)
` = 0,

and the approximations to λi are updated (except for λ0 which is known to be exactly

zero.) Each x
(i)
` is already a reasonable approximation to an eigenfunction on level `,

i.e,

B`x
(i)
` ≈ λ`iT`x

(i)
`

for an `th level eigenvalue λ`i . Therefore, a good eigenvalue approximation can be
obtained by

λ̂i =
(B`x

(i)
` , v)

(T`x
(i)
` , v)

for any vector v. We choose v = x
(i)
` and thus calculate an approximation to eigen-

value using what would be a Rayleigh quotient for Hermitian matrices. The change in
eigenvalue approximation for each vector x(i), i > 1 after relaxation provides a mea-
sure of their accuracy – if after relaxation the relative change is significant, we add
x(i) to the set of test vectors. Otherwise, these eigenvectors are well approximated by
the existing interpolation operator to the current level and thus need not be built into
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the related coarser space. The state eigenvector approximation is always included in
the test set. After all test sets on all levels, including the finest, are updated, all P`,
B`, and T` are recalculated, and the setup stage is complete.

Once the adaptive setup is finished, we use the resulting V-cycle AMG method
as a preconditioner to (full) GMRES, applied to the homogeneous system Bx = 0.
This iteration converges rapidly to the state vector, since as we demonstrate later, the
BootAMG preconditioner efficiently separates the state vector from the field of values
of B on an appropriate complementary subspace. This use of both MLE steps and
V-cycle preconditioned GMRES iterations is the other main new idea in the present
paper.

The remainder of this paper is organized as follows. Section 2 contains an introduc-
tion to Markov chain systems and a general review of AMG approaches for computing
state vectors of Markov chains. Section 3 contains a general description of the Boot-
strap AMG ideas along with full algorithmic descriptions of realizations that we use
in this paper. In Section 4 we discuss our BootAMG algorithm for Markov chains
and theory for our AMG-GMRES solver. Numerical experiments are presented in
Section 5 and concluding remarks are given in Section 6.

2. Overview of Solvers for Markov Chain Systems

The transition matrix A ∈ Rn×n of a Markov process contains as its entries aij, the
transition probabilites from state i to state j, aij ≥ 0 for all i, j. Matrix A is column
stochastic, i.e. At1 = 1, with 1 being the vector of all ones. It is always possible to
eliminate self-transitions [19], so we assume aii = 0 for all i from now on. The state
vector x satisfies

Ax = x

with x 6= 0, 0 ≤ xi. By the Perron-Frobenius theorem (cf. [1, p. 27], e.g.) such a
vector x always exists.

A general square matrix A ∈ Rn×n induces a directed graph G(A) = (V,E) with
vertices V = {1, . . . , n} and directed edges E = {(i, j) ⊂ V 2 : i 6= j and aij 6= 0}.
Two vertices i and j in G(A) are said to be strongly connected (as in graph theory)
if there exist directed paths in G(A) from i to j and from j to i. Since this is an
equivalence relation on the vertices, it induces a partitioning of V into the strong
components of G(A). If G(A) has exactly one strong component, the matrix A is
called irreducible; otherwise it is called reducible which is precisely the case when
there exists a permutation matrix P such that

P tAP =

(
A11 0
A12 A22

)
,

where A11 and A22 are square submatrices.
IfA is irreducible — which we assume throughout — the Perron-Frobenius Theorem

guarantees that the state vector x has all positive values and is unique up to a
scalar factor. From this theorem it also follows that the spectral radius of A satisfies
ρ(A) = 1, implying that B = I − A is a singular M -matrix; recall that 0 ≤ aij ≤ 1.
In addition, B is irreducible, because of the irreducibility of A.

The idea of using Multigrid (MG) to compute the state vector of an irreducible
transition matrix is not new. Numerous approaches have been explored in the past,
in both the aggregation-based [10, 11, 20, 21] and Classical [23] MG settings. In [20],
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the idea of using a partition of unity type aggregation method was first explored.
Later, in [10], an extension of this approach based on Smoothed Aggregation was
developed for application to the page rank problem and further generalized in [11].
For an overview of Classical MG type methods (and preconditioners) we direct the
reader to [23] and the references therein.

Our MG solver can be loosely categorized as a variation of the Classical AMG
approach in the following way. We choose the coarse level variables as a subset of the
fine level variables. In this aspect, our approach is most closely related to the recent
work by Virnik [23]; we too employ the AMG-type method as a preconditioner for
GMRES. Our proposed new approach, however, differs from all previous AMG-type
solvers for Markov chains in several ways. Most importantly, we build interpolation
adaptively using a Least Squares approach, and we combine the multilevel eigensolver
with application of correction steps using an AMG-GMRES preconditioner. Unlike
other methods, we thus (experimentally) observe an excellent convergence without
the need to recompute interpolation and the entire coarse-level hierarchy at each
iteration. In addition, our solver yields an efficient and straightforward method for
Markov chains which computes the state vector to arbitrary accuracy without the
need for lumping (see [11]) and other such approaches typically employed to maintain
the stochastic properties of the transition matrix and state vectors on all coarse levels
of the MG hierarchy.

3. Bootstrap AMG

In this section, we provide a general review of the Bootstrap AMG framework [4, 7]
for building MG interpolation together with some heuristic motivation of our choices
for the individual components of the BootAMG multigrid algorithm.

The first key ingredient to any AMG method is its relaxation or smoothing iteration.
For a given system matrix B it is a splitting based iteration

(2) Muν+1 = Nuν + b, where B = M −N, M non-singular, ν = 0, 1, . . .

with its “error propagation matrix” given by M−1N = I − M−1B. Here, M is
chosen such that after a few iterations the error eν w.r.t. the solution of Bx = b is
algebraically smooth, i.e. ‖Beν‖ � ‖eν‖. In many situations this can be achieved by
point-wise Gauss-Seidel or (under-relaxed) Jacobi iterations. Indeed, in our Markov
chain setting we used ω-Jacobi relaxation with ω = 0.7 on all levels, i.e., we took
M = 1

ω
diag(B), resulting in I −M−1B = I − ω · (diag(B))−1B.

(In case a diagonal entry bii of B happens to be zero for some row(s) i, Kaczmarz
or some other distributive relaxation scheme can be applied to the ith equation.)

The Bootstrap AMG process can now be described as follows. Coarse variables
are selected as a subset of the fine variables using a full coarsening (for problems on
structured grids) or, otherwise, compatible relaxation (CR) coarsening scheme [3].
The CR scheme can be either started from scratch, or, if geometric information is
given and a suitable candidate set of coarse variables is known, such set can be tested
and improved by CR. Interpolation is then computed using a Least Squares based
approach. We mention that once a tentative Multigrid hierarchy has been defined, it
can be used to further enhance the set of test vectors.
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3.1. Choosing the coarse variables: compatible relaxation. In the AMG set-
ting, CR is a relaxation-based coarsening process which can be viewed as a special
case of a general approach for constructing coarse-level descriptions of given fine-level
systems, including non-stationary, highly non-linear, and also non-deterministic sys-
tems [5]. The basic idea of CR is to use the given relaxation scheme (2), restricted to
appropriately defined subspaces, to measure the quality of the given coarse space and
also to iteratively improve it if needed. We proceed with a brief overview of CR and
its use in AMG coarsening. A detailed discussion, theory and comparisons between
various measures of the quality of coarse spaces and their relations to compatible
relaxation schemes are presented in [3, 8, 9, 12, 13, 16].

3.1.1. Classical AMG CR-based coarsening. Assume that the set of coarse-level vari-
ables, C, is a subset of the set of fine-level variables, Ω. Under this assumption, one
possible form of CR is given by F -relaxation for the homogeneous system — relax-
ation applied only to the set of F variables, with F := Ω \ C. Given the partitioning
of Ω into F and C, we have

u =

(
uf
uc

)
, B =

(
Bff Bfc

Bcf Bcc

)
, and M =

(
Mff Mfc

Mcf Mcc

)
,

assuming the equations are permuted such that the unknowns in F come before those
in C. The F -relaxation of CR is then defined by

(3) uν+1
f = (I −M−1

ff Bff )u
ν
f = Efu

ν
f .

If M is symmetric, the asymptotic convergence rate of CR

ρf = ρ(Ef ),

where ρ denotes the spectral radius, provides a measure of the quality of the coarse
space, that is, a measure of the ability of the set of coarse variables to represent error
not eliminated by the given fine-level relaxation. This measure can be approximated
using F -relaxation for the homogeneous system with a random initial guess u0

f . Since

limν→∞ ‖Eν
f ‖1/ν = ρ(Ef ) for any norm ‖ · ‖, the measure

(4)
(
‖uνf‖/‖u0

f‖
)1/ν

estimates ρf .
In choosing C, we use the CR-based coarsening algorithm developed in [9]. This

approach is described in Algorithm 1.
In our numerical experiments for Markov chains, we use weighted Jacobi CR, set

the CR tolerance θ = .85, the number of CR sweeps ν = 8, choose the components of
u0 to be uniformly distributed in the interval [1, 2], and select C0 using the standard
independent set algorithm (see [22]) based on the full graph of the system matrix.
For further information on CR we refer the reader to [9].

3.2. Building Bootstrap AMG interpolation. We now outline the Least Squares
(LS) approach for defining interpolation, see also [6]. We assume that the set C of
coarse variables is given, i.e., it has been previously determined, for instance, by
geometric coarsening and/or using compatible relaxation. In the LS approach, the
interpolation operator P is chosen to approximate a given (specifically chosen) set
of test vectors. We define c as the maximum number of coarse-level variables used
to interpolate to a single fine-level variable, or equivalently the maximum number of
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Algorithm 1 compatible relaxation {Computes C using Compatible Relaxation}
Input: C0 {C0 = ∅ is allowed}
Output: C
Initialize C = C0

Initialize N = Ω \ C
Perform ν CR iterations (3) with components of u0 randomly generated
while ρf > θ do

N = {i ∈ Ω \ C :
|uνi |
|uν−1
i |

> θ}

C = C ∪ {independent set of N}
Perform ν CR iterations (3) with components of u0 randomly generated

end while

non-zero entries in any row of P . The key ingredient of the BootAMG setup lies in
the use of several test vectors (TVs) that collectively should represent those error
components not reduced by relaxation. We assume for now that such a set of test
vectors, U := {x(k)}rk=0 is known on some fine level. The rows of the prolongation
operator P are then obtained individually. For each variable i ∈ F , we first determine
a set of its neighboring coarse-level variables, Ni, using the directed graph G(A)

(5) Ni = {j ∈ C : there is a path of length ≤ z in G(A) from i to j },
where z ≤ 3, such that Ni is a subset of the local graph neighborhood of i. We
then determine an appropriate set of (coarse level) interpolatory variables Ji ⊆ Ni
with |Ji| ≤ c that yields the best fit of the LS interpolation for point i ∈ F . For
ease of presentation let us use the indices j ∈ Ji of the fine level variables to address
the columns of P . We then define the local least squares functional for the nonzero
entries Pi = {pij : j ∈ Ji} of row i of P as

(6) L(Pi;Ji) =
r∑

k=0

ωk

(
x

(k)
i −

∑
j∈Ji

pijx
(k)
j

)2

.

The task is then to find a set Ji of interpolating points for which the minimum of
L is small and to obtain the corresponding values pij of the minimizer that yield the
coefficients for the interpolation operator. Generally, the weights ωk should be chosen
according to the algebraic smoothness of x(k) to bias the least squares functional
towards the smoothest vectors. We do so by using the square of the inverse of the
norm of the residual of the homogeneous problem B`x

(k) = 0 for each x(k).Here ` is
the current level to which operator P interpolates from the next coarser level `+ 1.

Our approach for solving this task is given as Algorithm 2. It is based on a greedy
strategy to find an appropriate set of interpolatory points Ji for each fine point i; see
[6] and [15].

4. MLE and AMG-GMRES Algorithms

In this section, we discuss the main ideas and their implementations in our BootAMG-
based algorithm for computing non-trivial solutions x to Bx = 0, where as before
B = I − A, A is an irreducible column stochastic transition matrix so that B is a
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Algorithm 2 ls interpolation {Computes Least Squares based interpolation}
Input: U , c
Output: interpolation P
X(k) = Rx(k), x(k) ∈ U
for i ∈ F do

Take Ni from (5)
Set Ji = ∅
repeat

determine g∗ ∈ Ni s.t. min
Pi

L(Pi;Ji ∪ {g∗}) = min
g∈Ni

min
Pi

L(Pi,Ji ∪ {g})
Set Ni = Ni \ {g∗} and Ji = Ji ∪ {g∗}

until |Ji| ≥ c or Ni = ∅
end for

non-symmetric and singular M -matrix. The goal of each MLE step is twofold: (1)
to compute approximations to the solution x and also to compute suitable test vec-
tors that allow us to improve the accuracy of Least Squares interpolation and (2) to
update the multigrid hierarchy, used to precondition GMRES.

Such a hierarchy consists of a sequence of prolongation and restriction operators
and systems of coarse-level equations. The coarse-level equations are defined using
the Petrov-Galerkin approach. More precisely, Bl+1 = QlBlPl, with restriction Ql

given by the averaging operator. This means that each column of Ql has identical
nonzero entries at exactly the positions corresponding to Ji and that 1tQl = 1t. This
implies Bt

l1 = 0 for all levels l.

4.1. Multilevel Eigensolver (MLE). Our approach for building a multilevel method
relies on the BootAMG framework. We construct a sequence of increasingly coarser-
level descriptions of the given fine-level Markov Chain system using the LS-based
fit discussed above. The coarse-level test vectors are calculated from the fine-level
test set as X(k) = Rx(k). On the coarsest level, the eigenproblem is solved exactly
for some small number of the lowest (in absolute value) eigenvectors, which are then
directly interpolated and relaxed on finer levels, becoming increasingly more accurate
approximations to the finest-level eigenfunctions (such treatment is similar to the Ex-
act Interpolation Scheme, e.g, [17]). These eigenfunction approximations are added
to test sets on each level. Note that the initial (random) test functions are not relaxed
during this stage – otherwise they may become almost linearly dependent which may
result in ill-posed local least squares problem. With the improved TV sets (enriched
by eigenfunction approximations), new prolongation operators are then calculated.

We note that the setup cycle in Algorithm 3 also yields an approximation to the
state vector which we use as an initial guess in our AMG-GMRES iterations. This
approach can also be used as a stand-alone solver for these systems although, in
general, it will be far more expensive than using several AMG-GMRES steps in
addition to the MLE. We note that for certain problems (e.g., when several eigenvalues
of B are close to zero) and for larger problem sizes, it may be necessary to alternate
several times between the MLE and AMG-GMRES iterations to find an accurate
approximation of x. In our tests, we found it sufficient to use either a traditional
V -cycle (µ = 1) or W -cycle (µ = 2) for the MLE step followed by a small number of
AMG-GMRES steps to compute an approximation to the state vector. Ultimately,
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in our MLE approach, the sequence of prolongation operators needs to be accurate
for only the smoothest error component – the kernel of the finest-level operator B =
I−A. The accurate resolution of many other near-kernel components by our LS-based
interpolation operator allows for fast convergence of MG preconditioned GMRES,
whereas the kernel component of B is the state vector we aim to compute. Algorithm
3 contains a pseudo-code of our implementation of the MLE iteration.

Algorithm 3 bootamg mle {Implements the Bootstrap AMG MLE scheme}
Input: Bl (B0 = B), Tl, (T0 = I), Ul (set of test vectors on level l)
Output: updated Ul and (Λl,Vl), approximations to the lowest eigenpairs;
if l = L then

Compute VL = {x(i)}1,...,k, s.t. BLx
(i) = λ(i)TLx

(i), |λ(1)| ≤ |λ(2)| ≤ . . . ≤ |λ(k)|.
else

Relax Blx
(j) = 0, x(j) ∈ Ul

Set Vl = ∅
for m = 1, . . . , µ do
Pl = ls interpolation(Ul ∪ Vl, c)
Compute averaging Ql with sparsity(Ql) = sparsity(Pl)
Bl+1 = QlBlPl
Tl+1 = QlTlPl
Ul+1 = {Rlx, x ∈ Ul}
Vl+1 = bootamg mle(Bl+1, Tl+1,Ul+1)
Vl = {Plx, x ∈ Vl+1}
for i = 1, . . . , |Vl| do

Relax (Bl − λiTl)x(i) = 0, x(i) ∈ Vl

Update λi =
〈Blx

(i), x(i)〉
〈Tlx(i), x(i)〉

end for
end for

end if

In Figure 1 a possible setup cycle is visualized. We note that at each square one has
to decide whether to recompute P or advance to the next finer grid in the multigrid
hierarchy. The illustrated cycle resembles a W -cycle, but any other cycling strategy
can be applied to the setup.

4.2. Multigrid preconditioned GMRES. The multilevel eigensolve steps described
above yield increasingly better approximations to the state vector and other vectors
that cannot be removed efficiently by the Multigrid relaxation.

Although we are only interested in computing the state vector, the LS-based Multi-
grid hierarchy is able to resolve a larger subspace. This leads to the idea of exploiting
this richness of the given hierarchy for use in MG correction steps – in addition to
the discussed MLE steps.

To illustrate the effect of MG correction steps applied to the homogeneous prob-
lem Bx = 0, we start by analyzing simple relaxation schemes for the steady state
problem, Ax = x. As the steady state solution is the eigenvector corresponding to
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Compute V , s.t., Bv = λTv, v ∈ V

Relax on Bu = 0, u ∈ U and (B − λT )v = 0, v ∈ V

Relax on Bu = 0, u ∈ U

Relax on (B − λT )v = 0, v ∈ V

Figure 1. Bootstrap AMG setup W-cycle.

the eigenvalue with largest absolute magnitude, a power iteration

(7) xk+1 = Axk

is guaranteed to converge to the solution. However, convergence can be slow if A has
other eigenvalues with absolut value close to one.

Such power iterations applied to the steady state problem are in turn equivalent to
applying a Richardson iteration to the homogeneous system (I − A)x = 0. A natural
modification, facilitating that the field of values of A is contained in the unit circle,
is then given by a suitable under-relaxed iteration, yielding the error propagator

(8) ek+1 = (I − τB) ek.,

which translates into an identical relation for the iterates,

(9) xk+1 = (I − τ(I − A))xk,

so that the iteration can be interpreted as a modified power method.
In Figures 2(a) and 2(b) the spectra of A and of I − τ (I − A) are depicted for a

characteristic two-dimensional test problem, along with the field of values. The error
propagator of the MG V-cycle applied to Bx = 0 is given by

(10) E = (I −MB) (I − PEcQB) (I −MB) ,

where Ec denotes the error propagation operator on the next coarser level. This
recursive definition terminates at the coarsest level with E = B†, the Moore-Penrose
inverse of the matrix on the coarsest level, since we compute the minimal norm
solution of the respective system at that level. The error propagator can be rewritten
as

(11) I − CB,
so that comparing with the one from (8) (relaxed Richardson) we see that we can
interprete the multigrid V-cycle as yet another modification of the power iteration. In
Figure 2(c), the spectrum and field of values of the MG V(2, 2)-cycle preconditioned
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(a) Spectrum and field of val-
ues for Richardson error prop-
agator.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(b) Spectrum and field of val-
ues for τ -Richardson.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(c) Spectrum and field of val-
ues of Multigrid error propa-
gator.

Figure 2. Spectra and field of values of the Richardson, τ -Richardson
and Multigrid error propagators for two-dimensional tandom queuing
problem with n = 332.

matrix (11) is depicted. For this case, it is clear that applying power iterations to
this preconditioned operator will converge rapidly to the steady state vector.

To further accelerate this approach, instead of the straightforward power method,
we consider MG preconditioned GMRES steps. As we show below, such iteration is
guaranteed to converge to the solution of our Markov Chain systems.

Remark 4.1. Let A be a column-stochastic irreducable operator and B = I − A.
Then we have

(12) range (B) ∩ null (B) = {0}.

Proof. As A is column-stochastic we know that At1 = 1. Hence Bt1 = 0. Fur-
thermore we know from the Perron-Frobenius theorem that Bx = 0 is uniquely
solvable up to a scalar factor and the solution x∗ is strictly positive (component-
wise). Thus, as for all y ∈ range (B) there exists a z such that y = Bz we have
〈1, y〉 = 〈1, Bz〉 = 〈Bt1, z〉 = 0. With this and 〈1, x∗〉 6= 0 as x∗ is strictly positive
we get (12). �

In [14, Theorem 2.8] it is shown that GMRES determines a solution of Bx = b
for all b ∈ range (B) , x0 ∈ Rm iff range (B) ∩ null (B) = {0}. Due to Lemma 4.1
the assumptions of this theorem are fulfilled for B = I − A, where A is a column-
stochastic irreducible operator arising in Markov-Chain models. There seems to be
no simple way to extend Lemma 4.1 to the multigrid preconditioned matrix. So the
observation that GMRES for the multigrid preconditioned matrix worked out very
well in all our experiments is not backed by theory so far.

4.3. A multigrid preconditioned Arnoldi method. Instead of solving the homo-
geneous linear system with preconditioned GMRES, we can also perform the Arnoldi
method for the preconditioned matrix CB. We thus compute orthonormal vectors
v1, v2, . . . in the usual way such that v1, . . . , vk is a basis of the Krylov subspace
span{y, Cy, . . . , (CB)k−1y}. Denoting Hk ∈ Rk×k the orthogonal projection of CB
onto the Krylov subspace, i.e. Hk = V t

k (CB)Vk with Vk = [v1| . . . |vk], we compute
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the eigenvalue closest to 0 of Hk and the corresponding eigenvector η. We then take
the Ritz vector Vkη as an approximation for the steady state vector. For the vector y
upon which we build the Kryolv subspace we take the approximation x for the steady
state vector resulting from the MLE setup phase.

5. Numerical Results

In this section, we provide results obtained using our Bootstrap AMG method when
applied to a series of Markov Chains. Our numerical tests consist of our BootAMG-
based approach to three Markov chain models that can be represented by planar
graphs. Each of the models has certain interesting characteristics that pose problems
for the solver.

5.1. Test Problems. We begin our experiments with a very simple model. The
uniform two-dimensional network can be seen as the Markov chain analogue of the
Laplace operator. It is defined on an equidistant grid Ω of size N × N . We denote
this grid in graph notation as GΩ = (VΩ, EΩ). The entries of A are then given as

ai,j =

{
1

dout(j)
, if (i, j) ∈ EΩ

0, otherwise,

where dout(j) is the number of outgoing edges of j ∈ Ω. In Figure 3, we illustrate the
two-dimensional uniform network problem. In the tests we conduct, we use again full-
coarsening, i.e., we choose C to be every other grid point in both spatial dimensions.
In order to keep the overall invested work small, we consider to take only up to two
interpolatory points Ci per point i ∈ F = Ω \ C. As the steady-state vector is known
to be strictly positive, we choose to use initially random, but positive test vectors for
this first problem, and also in all following tests. More precisely, we choose vectors
with entries uniformly distributed in [1, 2].

In Table 1, we present results that use 6 test vectors and a V (2, 2)-cycle MLE
step with ω-Jacobi smoother, ω = .7. We report the number of iterations needed to
compute the steady-state vector x, such that

‖Bx‖ ≤ 10−8, ‖x‖ = 1.
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Figure 3. Uniform network model on a two-dimensional equidistant grid.
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µy

µ

µx

µµ

µy µy µy

µyµy

µx

µxµx

µx µx

µ

Figure 4. Tandem-Queuing Network with probability to advance µ
and queuing probabilities µx and µy on a two-dimensional equidistant
grid.

In addition, the number of preconditioned GMRES iterations needed to achieve the
same accuracy is reported, with the initial MLE setup cycle denoted by the subscript.
The coarsest grid in the experiments is always 5×5. The operator complexity in these

N 17 33 65 129
MLE 10 9 10 11

pGMRES 7V 8V 10V 10V 2

pArnoldi 7V 8V 10V 9V 2

Table 1. Multilevel results for the two-dimensional uniform network
model on an N × N grid. We report results to compute the steady-
state vector x to an accuracy of 10−8, using a V (2, 2)-MLE cycle with
ω-Jacobi smoothing, ω = .7. In addition we also report the number
of iterations pGMRES needs to achieve the same accuracy, where we
denote the initial bootstrap setup in the subscript. The sets U and V
consist of 6 initially positive random vectors and coarsest grid eigen-
vectors, respectively.

tests is bounded by 1.6. The test shows that the MLE scales with increasing problem-
size, while the number of preconditioned GMRES iterations grows slightly. However,
one step of pGMRES is much cheaper than one step of MLE. Although we do not
report results here, in general we may also consider restarting the MLE iterations
when the solution is not found in a reasonable number of pGMRES iterations.

The next Markov chain model we consider in our tests is a tandem queuing network,
illustrated in Figure 4. The spectrum of this operator is complex, as we show in
Figure 2(a). Again, we use full-coarsening and a coarsest grid of 5 × 5. We present
our results in Table 2. In the test we use the following probabilities,

µ =
11

31
, µx =

10

31
, µy =

10

31
.

Again, we see that the MLE method converges rapidly to the steady-state vector
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N 17 33 65 129
MLE 8 8 8 8

pGMRES 6V 6V 6V 7V
pArnoldi 6V 6V 6V 7V

Table 2. Multilevel results for the tandem queuing network model on
an N × N grid. We report results to compute the steady-state vector
x to an accuracy of 10−8, using a V (2, 2)-MLE cycle with ω-Jacobi
smoothing, ω = .7. In addition we also report the number of iterations
pGMRES needs to achieve the same accuracy, where we denote the
initial bootstrap setup in the subscript. The sets U and V consist
of 6 initially positive random vectors and coarsest grid eigenvectors,
respectively.

Figure 5. Approximations to the eigenvectors corresponding to the
smallest 6 eigenvalues of the tandem queuing network problem on a
129× 129 grid with 6 levels upon convergence of the steady-state solu-
tion of the MLE method.

and also yields a very efficient preconditioner for the GMRES method. We observe
that the number of iterations does not depend on the size of the problem. Note
that the MLE method also yields accurate approximations to the eigenvectors corre-
sponding to all k smallest eigenvalues on the finest grid. In Figure 5, we show the
computed approximations and report in Table 3 their accuracy upon convergence of
the steady-state vector. One should keep in mind that the results are intended

i 1 2 3 4 5 6
‖vLi − vi‖ 1.02E−8 9.04E−3 2.68E−2 2.84E−2 1.42E−1 3.77E−1

Table 3. Accuracy of the eigenvectors corresponding to the smallest
6 eigenvalues of the tandem queuing network problem on a 129 × 129
grid with 6 levels upon convergence of the steady-state solution of the
MLE method.

to show the promise of our approach rather than presenting an optimized method
in the bootstrap framework for this type of problems. We limit our analysis to the
statement that with minimal effort spent in adjusting the parameters of the setup of
the bootstrap approach we obtain scalable solvers. The optimization of the method
by tuning the parameters involved, e.g., relaxation parameter of the smoother, coars-
ening, caliber, number of test vectors, weighting in the least squares interpolation,
number of relaxations in the setup and solution process, is part of future research.
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The last test we consider corresponds to a triangulation of N randomly chosen
points in [0, 1]× [0, 1]. The transition probabilities in the network are then given by
the inverse of the number of outgoing edges at each point, similar to the uniform
network. In Figure 6, we show two examples of such networks, one with N = 256
and one with N = 1024 points. Due to the fact that the corresponding graphs of this

(a) Random planar graph with N = 256 (b) Random planar graph with N = 1024

Figure 6. Delaunay-triangulations of N randomly chosen points in
the unit square [0, 1]× [0, 1].

model are planar, we call this model unstructured planar graph model. As there is no
natural way to define the set of coarse variables C for this problem we use compatible
relaxation, introduced in section 3.1 to define the splitting of variables Ω = F ∪ C.
In Figure 7, a resulting coarsening is presented. The size of each individual point
represents how many grids it appears on. In Table 4, we report results of our overall
algorithm for unstructured planar graph models for a set of varying graphs. Even

N 256 512 1024 2048
MLE 15 20 20 20

pGMRES 8V 10V 10V 11V
pArnoldi 8V 10V 10V 11V

Table 4. Multilevel (3 level) results for the unstructured planar graph
model on a grid with N points randomly scattered in the unit square.
We report results to compute the steady-state vector x to an accuracy
of 10−8, using a V (2, 2)-MLE cycle with ω-Jacobi smoothing, ω = .7.
In addition we also report the number of iterations pGMRES needs to
achieve the same accuracy, where we denote the initial bootstrap setup
in the subscript. The sets U and V consist of 6 initially positive random
vectors and coarsest grid eigenvectors, respectively.

for this unstructured graph network we obtain a fast converging method with our
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(a) Random planar graph with N = 256 (b) Random planar graph with N = 1024

Figure 7. Coarsening of Delaunay-triangulations of N points ran-
domly scattered in the unit square [0, 1]× [0, 1] shown in Figure 6 using
compatible relaxation.

MLE approach. The mild variation in the results when increasing the problem-size
might be caused by the fact that by increasing the problem-size the nature of the
problem changes in the sense that the average number of outgoing edges of grid
points increases. That is, it is not necessarily clear whether two unstructured graphs
of different sizes are comparable.

6. Conclusions

The proposed BootAMG Multilevel setup algorithm produces an effective multilevel
eigensolver for the Markov-Chain test problems we considered. In general, we have
proposed and implemented two important new ideas: First, the use of a coarse-level
eigensolve and the resulting multilevel hierarchy to improve a given approximation of
the state vector. Second the use of BootAMG preconditioned GMRES steps to further
accelerate this eigensolver. Both ideas, separately or combined can be incorporated
into any given multilevel method used for solving Markov Chain problems or other
problems targeting smooth eigenvectors. The accurate representation of the near-
kernel of the fine-level system on coarser levels, that results from our BootAMG setup,
yields a very effective preconditioner to GMRES as well as for the Arnoldi method.
An additional benefit of our proposed method over other existing multilevel method
for Markov Chains is that we do not require any special processing of the coarse-level
systems to ensure that stochastic properties of the fine-level system are maintained
there. We mention that the developed approach is not restricted to Markov Chain
problems; it can be applied to other eigenvalue problems.
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