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Abstract. In this paper the uncorrelated linear discriminant analysis (ULDA) for undersampled pro-
blems is studied. The main contributions of the present work include the following: (i) all solutions of the
optimization problem used for establishing the ULDA are parameterized explicitly; (ii) the optimal solutions
among all solutions of the corresponding optimization problem are characterized in terms of both the ratio of
between-class distance to within-class distance and the maximum likelihood classification, and it is proved that
these optimal solutions are exactly the solutions of the corresponding optimization problem with minimum
Frobenius norm, also minimum nuclear norm; these properties provide a good mathematical justification for
preferring the minimum-norm transformation over other possible solutions as the optimal transformation in
ULDA; (iii) explicit necessary and sufficient conditions are provided to ensure that these minimal solutions
lead to a larger ratio of between-class distance to within-class distance, thereby achieving larger discrimination
in the reduced subspace than that in the original data space, and our numerical experiments show that these
necessary and sufficient conditions hold true generally. Furthermore, a new and fast ULDA algorithm is
developed, which is eigendecomposition-free and SVD-free, and its effectiveness is demonstrated by some
real-world data sets.
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1. Introduction. Linear discriminant analysis (LDA) is a powerful technique for
data dimensionality reduction [1], [2], [3], [4], [6], [8], [10], [11], [12], [14], [16], [19], [23],
[24], [27], [28], [29], [30], [33], [34], [35], [36], [37], [38], [39], [40], [41]. It seeks an optimal
linear transformation of the data to a low-dimensional subspace. Preferably the reduced
dimension is as small as possible, and in the reduced subspace the data features can be
modeled with maximal discriminative power. LDA has found many important applica-
tions, for example, in pattern recognition [10], [24], [36], face recognition [25], [32], text
classification [38], information retrieval [30], [34], and microarray data analysis [20], [21].
A major disadvantage of the classical LDA is that the so-called total scatter matrix must
be nonsingular. But, in many applications such as those mentioned above, the total
scatter matrix is singular since usually the number of the data samples is smaller than
the data dimension. This is known as the undersampled problem [36], also commonly
called the small sample size problem. As a result, the classical LDA cannot be applied
directly to undersampled problems. To apply LDA to undersampled problems, many
extensions of the classical LDA have been proposed recently. These extensions include
uncorrelated LDA (ULDA) [13], [15], [25], [26], orthogonal LDA (OLDA) [13], the reg-
ularized LDA [17], [37], null space–based LDA (NLDA) [22], [28], GSVD-based LDA
(LDA/GSVD) [14], [16], [18], Bayes optimal LDA [5], and least squares LDA [9]. How-
ever, all these extended LDA compute the optimal linear transformations by computing
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some eigendecompositions/singular value decompositions (SVD), which are computa-
tionally expensive. Hence, it is important to develop new and fast algorithms for these
extended LDA; preferably the new algorithms are eigendecomposition-free and
SVD-free.

ULDA has been studied in [13], [15], [25], [26], and its effectiveness has been demon-
strated by many numerical experiments. The feature vectors transformed by ULDA are
mutually uncorrelated. This is highly desirable for feature extraction in many applica-
tions in order to contain minimum redundancy. The optimal transformation of ULDA in
[13] is a solution of an optimization problem. However, this optimization problem has so
many different solutions. It is not clear yet how a particular solution should be selected
as the optimal transformation of ULDA in [13]. It is necessary to find a mathematical
criterion for selecting a particular solution from all solutions of the related optimization
problem as the optimal transformation of ULDA.

In this paper we focus on the ULDA for the undersampled problems. The main
contributions of the present work include the following:

(i) All solutions of the optimization problem used for establishing the ULDA are
parameterized explicitly.

(ii) The optimal solutions among all solutions of the corresponding optimization
problem are characterized in terms of both the ratio of between-class distance
to within-class distance and the maximum likelihood classification; it has been
proved that these optimal solutions are exactly the solutions of the correspond-
ing optimization problem with minimum Frobenius norm, also exactly the so-
lutions with minimum nuclear norm. Hence, these minimal solutions can be
considered to be optimal candidates for the optimal transformations in ULDA.
These properties provide a mathematical criterion for the selection of the op-
timal transformations in ULDA.

(iii) Explicit necessary and sufficient conditions are provided to ensure that these
minimal solutions lead to a larger ratio of between-class distance to within-class
distance, thereby achieving larger discrimination in the reduced subspace than
that in the original data space, and our numerical experiments show that these
necessary and sufficient conditions hold true generally.

Along with the above mathematical findings, a new and fast ULDA algorithm is also
developed, which is eigendecomposition-free and SVD-free. Real-world data sets show
that the new algorithm has improved performance over the fast ULDA algorithm in [7].

2. Uncorrelated LDA. Consider a data matrixA ∈ Rm×n withm ≫ n represent-
ing a set of n m-dimensional data points. Assume that a class label is available for every
data point and that A is partitioned into k classes as

A ¼ ½ a1 a2 · · · an � ¼ ½A1 A2 · · · Ak �;

where

Ai ∈ Rm×ni ; i ¼ 1; : : : ; k;

and

Xk
i¼1

ni ¼ n:

Further, let
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e ¼ ½ 1 · · · 1 �T ∈ Rn×1;

ei ¼ ½ 1 · · · 1 �T ∈ Rni×1; i ¼ 1; : : : ; k;

and denote the set of column indices that belong to the class i by N i. The centroid cðiÞ

and the global centroid are given by

cðiÞ ¼ 1

ni

Aiei; i ¼ 1; : : : ; k;

and

c ¼ 1

n
Ae;

respectively. Then the between-class scatter matrix Sb, the within-class scatter matrix
Sw, and the total scatter matrix St are defined as

Sb ¼
Xk
i¼1

X
j∈N i

ðcðiÞ − cÞðcðiÞ − cÞT ¼
Xk
i¼1

niðcðiÞ − cÞðcðiÞ − cÞT ;

Sw ¼
Xk
i¼1

X
j∈N i

ðaj − cðiÞÞðaj − cðiÞÞT ;

St ¼
Xn
j¼1

ðaj − cÞðaj − cÞT :

It is well known [18] that St ¼ Sb þ Sw. Let

Hb ¼ ½ ffiffiffiffiffi
n1

p ðcð1Þ − cÞ · · ·
ffiffiffiffiffi
nk

p ðcðkÞ − cÞ� ∈ Rm×k;

Hw ¼ ½A1 − cð1ÞeT1 · · · Ak − cðkÞeTk � ∈ Rm×n;

Hw ¼ ½A1 − cð1ÞeT1 · · · Ak − cðkÞeTk � ∈ Rm×n;

The scatter matrices Sb, Sw, and St can be expressed as

Sb ¼ HbH
T
b ; Sw ¼ HwH

T
w; St ¼ HtH

T
t ;ð1Þ

since

TraceðSbÞ ¼
Xk
i¼1

X
j∈N i

kcðiÞ − ck22;

and

TraceðSwÞ ¼
Xk
i¼1

X
j∈N i

kaj − cðiÞk22.

Obviously, TraceðSbÞ measures the distance between classes, while TraceðSwÞ measures
the closeness of the data within the classes over all k classes. Note that when the
between-class relationship is remote, i.e., the centroids of the classes are remote,
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TraceðSbÞ will have a large value, whereas when data within each class are located
tightly around their own class centroid, TraceðSwÞ will have a small value. Hence,
the cluster quality can be measured using TraceðSbÞ and TraceðSwÞ.

In the lower-dimensional space mapped upon using the linear transformation
GT ∈ Rl×m, the between-class, within-class, and total scatter matrices are of the forms

SG
b ¼ GTSbG; SG

w ¼ GTSwG; SG
t ¼ GTStG:

Ideally, the optimal transformation GT would maximize TraceðSL
b Þ and minimize

TraceðSL
wÞ simultaneously and equivalently maximize TraceðSL

b Þ and minimize
TraceðSL

t Þ simultaneously, which leads to the optimization in classical LDA for deter-
mining the optimal linear transformation GT , namely, the classical Fisher criterion:

G ¼ arg max
G

fTraceððSG
t Þ−1SG

b Þg:ð2Þ

In the classical LDA [36], the above optimization problem is solved by computing all the
eigenpairs

Sbx ¼ λStx; λ ≠ 0:

Thus, the solution G can be characterized explicitly through the eigendecomposition of
the matrix S−1

t Sb if St is nonsingular. It is easy to know that rankðSbÞ ≤ k− 1, and so
the reduced dimension by the classical LDA is at most k− 1.

The classical LDA does not work when St is singular, which is the case for under-
sampled problems. To deal with the singularity of St, several generalized optimization
criteria for determining the transformation G have been proposed. In particular, the
optimization criterion

G ¼ arg max
GTStG¼I

TraceððSG
t ÞðþÞSG

b Þ ¼ arg max
GTStG¼I

TraceðSG
b Þð3Þ

is used for ULDA in [13], [15], [25], [26]. ULDA was originally proposed in [25] for ex-
tracting feature vectors with uncorrelated attributes. The idea in [25] for computing the
optimal discriminant vectors of ULDA is as follows: suppose r optimal discriminant
vectors g1; : : : ; gr are obtained; then the (r þ 1)th vector grþ1 is obtained by maximizing
the Fisher criterion function

fðgÞ ¼ gTSbg

gTSwg

subject to the constraints

gTrþ1Stgi ¼ 0; i ¼ 1; : : : ; r:

As a result, the algorithm in [25] computes the jth discriminant vector gj of ULDA as
the eigenvector corresponding to the maximum eigenvalue of the following generalized
eigenvalue problem:

UjSbgj ¼ λjSwgj;

where
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U 1 ¼ Im;

Dj ¼ ½g1 · · · gj−1�T ðj > 1Þ;
Uj ¼ Im − StD

T
j ðDjStS

−1
w StD

T
j Þ−1DjStS

−1
w ðj > 1Þ:

The feature vectors transformed by ULDA are mutually uncorrelated. This is desirable
for feature extraction in many applications in order to reduce data redundancy. The
main limitations of the algorithm above for ULDA are that it is computationally very
expensive for large and high-dimensional data sets, and it is not applicable to under-
sampled problems.

It was later shown in [13], [15], [26] that classical LDA is equivalent to ULDA in the
sense that both classical LDA and ULDA produce the same transformation matrix when
the total scatter matrix St is nonsingular. The ULDA in [25] was also generalized in
[13], [15] for undersampled problems based on simultaneous diagonalization of scatter
matrices. Let the SVD of Ht be given by

Ht ¼ UΣVT;

whereU andV are orthogonal and Σ ¼ ½Σγ

0
0
0� with γ ¼ rankðHtÞ and Σγ being diagonal.

Then

St ¼ HtH
T
t ¼ U

�
Σ2
γ 0
0 0

�
UT:

Let U ¼ ½U 1 U 2 � with U 1 ∈ Rm×γ and U 2 ∈ Rm×ðm−γÞ. Since St ¼ Sb þ Sw, we have

UTSbU ¼
�
UT

1 SbU 1 0
0 0

�
; UTSwU ¼

�
UT

1 SwU 1 0
0 0

�
;

Σ2
γ ¼ UT

1 SbU 1 þ UT
1 SwU 1;

thus,

Σ−1
γ UT

1 SbU 1Σ−1
γ þ Σ−1

γ UT
1 SwU 1Σ−1

γ ¼ I :

Next, let the SVD of Σ−1
γ UT

1 Hb be

Σ−1
γ UT

1 Hb ¼ PΛQT;

whereP andQ are orthogonal,Λ ¼ ½Λb
0

0
0�, andΛb ∈ Rq×q is diagonal with q ¼ rankðSbÞ.

Define

X ¼ U

�
Σ−1
γ P 0
0 I

�
:

Then we have

XTSbX ¼
2
4
Λ2
b 0 0

0 0 0

0 0 0

3
5; XTSwX ¼

2
4
I − Λ2

b 0 0

0 I 0

0 0 0

3
5; XTStX ¼

2
4
I 0 0

0 I 0

0 0 0

3
5:
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The above analysis yields that the matrixX ½I q0 �, i.e., the first q columns ofX , is a solution
to the optimization problem (3), giving rise to the following ULDA algorithm [13].

ALGORITHM 1 (ULDA [13]).
Input: data matrix A, class number k;

Output: transformation matrix G
1. Form matrices Hb, Ht;
2. Compute the reduced SVD of Ht without forming V explicitly to get

Ht ¼ U 1½Σγ 0 �VT , with Σγ ∈ Rγ×γ, γ ¼ rankðHtÞ;
3. Compute the reduced SVD of Σ−1

γ UT
1 Hb without forming Q explicitly to get

Σ−1
γ UT

1 Hb ¼ P1½Λb 0 �QT , with Λb ∈ Rq×q, P1 ∈ Rγ×q, q ¼ rankðHbÞ;
4. G ¼ U 1Σ−1

γ P1.

A fast ULDA algorithm is given in [7]. The following is its pseudocode.

ALGORITHM 2 (FAST ULDA [7]).
Input: data matrix A.

output: transformation matrix G.
1. Compute the economic QR factorization of A as A ¼ U 1R and partition R into

R ¼ ½R1 : : : Rk �, Ri ∈ Rn×ni , i ¼ 1; : : : ; k;
2. Compute ĉ ¼ 1

n Re ∈ Rn, ĉðiÞ ¼ 1
ni
Riei ∈ Rn, i ¼ 1; : : : ; k, and then form

matrices Ĥ b ¼
h ffiffiffiffiffi

n1
p ðĉð1Þ − ĉÞ ffiffiffiffiffi

n2
p ðĉð2Þ − ĉÞ : : :

ffiffiffiffiffi
nk

p ðĉðkÞ − ĉÞ
i
∈ Rn×k;

Ĥw ¼ ½R1 − ĉð1ÞeT1 R2 − ĉð2ÞeT2 : : : Rk − ĉðkÞeTk � ∈ Rn×n;

3. Compute the complete orthogonal decomposition of ½ĤT
b

ĤT
w
� as ½ĤT

b

ĤT
w
� ¼ P̂½R̂0 0

0�V̂ T

and let γ ¼ rankðR̂Þ;
4. Compute the SVD of P̂ð1∶k; 1∶γÞ as P̂ð1∶k; 1∶γÞ ¼ Û R̂ ŴT ;

5. Compute the first k− 1 columns of U 1V̂ ½R̂−1Ŵ
0

0
I �, and then assign them to G.

Many numerical experiments in [7], [13], [15], [25], [26] have shown that Algorithms 1
and 2 are powerful for data dimensionality reduction. However, Algorithms 1 and 2 have
implicitly chosen without any theoretical basis a particular solution from so many dif-
ferent solutions of the optimization problem (3) as the optimal transformation of ULDA.
In the next section, we will study the properties of the set of all solutions to the opti-
mization problem (3), with an aim to provide a theoretical justification for selecting the
optimal transformation for ULDA among all possible solutions of (3).

3. New results. In this section we will first derive an explicit characterization of all
solutions (in Theorem 4) to the optimization problem (3). As a result, we can explore
optimal solutions with further properties (in Theorems 5, 7, and 8) among the set of all
solutions to the optimization problem (3).

Denote

E ¼ 1

n
eeT ; Ei ¼

1

ni
eie

T
i ; i ¼ 1; : : : ; k:

The scatter matrices St, Sb, and Sw can be written as

UNCORRELATED LINEAR DISCRIMINANT ANALYSIS 825

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/2

0/
12

 to
 1

47
.8

.2
30

.1
03

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



St ¼ AðI − EÞAT; Sb ¼ A

0
B@
2
64
E1

. .
.

Ek

3
75− E

1
CAAT;

Sw ¼ A

0
B@I −

2
64
E1

. .
.

Ek

3
75
1
CAAT:

ð4Þ

Note that

I − E;

2
64
E1

. .
.

Ek

3
75− E; I −

2
64
E1

. .
.

Ek

3
75

are orthogonal projections in Rn. Let Rt, Rb, and Rw be the range spaces of the above
orthogonal projections, respectively. It can be shown that Rt ¼ Rb þRw with

dimðRtÞ ¼ n− 1; dimðRbÞ ¼ k− 1; dimðRwÞ ¼ n− k:

We now devise an orthogonal basis in Rn containing partitions that span the subspaces
Rb and Rw. Define Householder transformations

Wi ¼ I −

0
BBB@

2
6664
1− ffiffiffiffiffi

ni
p
1
..
.

1

3
7775 ∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ni −

ffiffiffiffiffi
ni

pq
1
CCCA

0
BBB@

2
6664
1− ffiffiffiffiffi

ni
p
1
..
.

1

3
7775 ∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ni −

ffiffiffiffiffi
ni

pq
1
CCCA

T

;

i ¼ 1; : : : ; k;

W ¼ I −

0
BBB@

2
6664

ffiffiffiffiffi
n1

p −
ffiffiffi
n

p
ffiffiffiffiffi
n2

p

..

.

ffiffiffiffiffi
nk

p

3
7775∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n−

ffiffiffiffiffiffiffiffi
nn1

pq
1
CCCA

0
BBB@

2
6664

ffiffiffiffiffi
n1

p −
ffiffiffi
n

p
ffiffiffiffiffi
n2

p

..

.

ffiffiffiffiffi
nk

p

3
7775 ∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n−

ffiffiffiffiffiffiffiffi
nn1

pq
1
CCCA

T

:

Matrices W and Wiði ¼ 1; : : : ; kÞ are orthogonal satisfying

W ¼ WT; Wi ¼ WT
i ði ¼ 1; : : : ; kÞ;

WT

0
BBB@

2
6664

ffiffiffiffiffi
n1

pffiffiffiffiffi
n2

p

..

.

ffiffiffiffiffi
nk

p

3
7775 ∕

ffiffiffi
n

p
1
CCCA ¼

2
6664
1
0
..
.

0

3
7775; WT

i ðei ∕
ffiffiffiffiffi
ni

p Þ ¼

2
6664
1
0
..
.

0

3
7775; i ¼ 1; : : : ; k:

Let P be the permutation matrix obtained by exchanging the ðPi−1
j¼1 nj þ 1Þth column of

I n and the ith column (for i ¼ 2; : : : ; k), but otherwise leaving the order of the remain-
ing columns unchanged. It can be verified by a straightforward calculation that
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0
BBB@

2
6664
W 1

. .
.

Wk

3
7775P

�
W

I

�
1
CCCA

T0
BBB@I −

2
6664
E1

. .
.

Ek

3
7775

1
CCCA

2
6664
W 1

. .
.

Wk

3
7775P

�
W

I

�

¼
�
0

I n−k

�
ð5Þ

and

0
BBB@

2
6664
W 1

. .
.

Wk

3
7775P

�
W

I

�
1
CCCA

T

ðI − EÞ

2
6664
W 1

. .
.

Wk

3
7775P

�
W

I

�

¼

2
6664
01×1

I k−1

0

3
7775:ð6Þ

The following lemma is a direct consequence of (4), (5), and (6).
LEMMA 1. Denote

½A1 A2 A3 � ≔ A

2
6664
W 1

. .
.

Wk

3
7775P

�
W

I

�
;

where A1 ∈ Rm×1, A2 ∈ Rm×ðk−1Þ, and A3 ∈ Rm×ðn−kÞ. Then

Sb ¼ A2A
T
2 ; Sw ¼ A3A

T
3 ; St ¼ ½A2 A3 �½A2 A3 �T :ð7Þ

LEMMA 2. Let G1 ∈ Rμ×τ and G2 ∈ Rν×τ satisfy ½G1
G2
�T ½G1

G2
� ¼ I τ. Let B ∈ Rμ×μ be

symmetric positive definite. Then

TraceðGT
1 BG1Þ ¼ TraceðBÞ

if and only if

G1GT
1 ¼ Iμ:

Proof. Since ½G1
G2
�T ½G1

G2
� ¼ I τ, there exist ~G1 ∈ Rμ×ðμþν−τÞ and ~G2 ∈ Rν×ðμþν−τÞ such

that ½G1
G2

~G1
~G2
� is orthogonal, and thus

G1GT
1 þ ~G1

~GT
1 ¼ Iμ:ð8Þ

Hence, we have
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TraceðBÞ ¼ TraceðBðG1GT
1 þ ~G1

~GT
1 ÞÞ

¼ TraceðBG1GT
1 Þ þ TraceðB ~G1

~GT
1 Þ

¼ TraceðGT
1 BG1Þ þ Traceð ~GT

1 B ~GT
1 Þ;

which gives that

TraceðGT
1 BG1Þ ¼ TraceðBÞ ⇔ Traceð ~GT

1 B ~G1Þ ¼ 0

⇔ ~G1 ¼ 0 ðsince B is symmetric positive definiteÞ
⇔ G1GT

1 ¼ Iμ ðsince ð8Þ holdsÞ:

The following result can be found in [13].
LEMMA 3 (see [13]).

max
G

TraceððSG
t ÞðþÞSG

b Þ ¼ TraceðS ðþÞ
t SbÞ:

THEOREM 4. Let the economic QR factorization of the data matrix A be

A ¼ U 1R;ð9Þ

where U 1 ∈ Rm×n is column orthogonal and R ∈ Rn×n. Denote

½R1 R2 R3 � ¼ R

2
664
W 1

. .
.

Wk

3
775P

�
W

I

�
;ð10Þ

where

R1 ∈ Rn×1; R2 ∈ Rn×ðk−1Þ; R3 ∈ Rn×ðn−kÞ:

Let the economic QR factorization of ½R2 R3 � with column pivoting be

½R2 R3 � ¼ Q1R;ð11Þ

where Q1 ∈ Rn×γ is column orthogonal, R ∈ Rγ×ðn−1Þ, and rankðRÞ ¼
rankð½R2 R3 �Þ ¼ γ. Further, let the economic QR factorization of RT be

RT ¼ PT
1 ΔT ;ð12Þ

where P1 ∈ Rγ×ðn−1Þ is row orthogonal and Δ ∈ Rγ×γ is lower triangular. Denote

828 DELIN CHU, SIONG THYE GOH, AND Y. S. HUNG

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/2

0/
12

 to
 1

47
.8

.2
30

.1
03

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



P1 ¼ ½P11 P12 �; P11 ∈ Rγ×ðk−1Þ:

Finally, let the economic QR factorization of P11 with column pivoting be

P11 ¼ V 1Π11;ð13Þ

where V 1 ∈ Rγ×q is column orthogonal, Π11 ∈ Rq×ðk−1Þ, and rankðΠ11Þ ¼ q. Then all
solutions G ∈ Rm×l of the optimization problem (3) are parameterized by

G ¼ ðU 1Q1Δ−T ½V 1 N 1 � þN 2ÞZ; q ≤ l ≤ γ;ð14Þ

where Z ∈ Rl×l is any orthogonal matrix, N 1 ∈ Rγ×ðl−qÞ is any column orthogonal
matrix satisfying N T

1 V 1 ¼ 0, and N 2 ∈ Rm×l is any matrix satisfying N T
2 U 1Q1 ¼ 0.

Proof. Let U 2 ∈ Rm×ðm−nÞ, Q2 ∈ Rn×ðn−γÞ, and V 2 ∈ Rγ×ðγ−qÞ be such that
½U 1 U 2 �, ½Q1 Q2 �, and ½V 1 V 2 � are orthogonal. Denote

H ¼
�h

U 1 U 2

i�
Q1Δ½V 1 V 2 � Q2 0

0 0 I

��
−T

¼ ½U 1Q1Δ−T ½V 1 V 2 � U 1Q2 U 2 �:

In the following we prove Theorem 4 by four arguments, outlined as follows before the
full details are given:

• First it is shown in Argument 1 that H can be used to diagonalize scatter
matrices St, Sb, and Sw; that is,8>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>:

HTStH ¼ HT ½A2 A3 �½A2 A3 �TH ¼

2
6664
I q 0 0 0
0 I γ−q 0 0
0 0 0 0
0 0 0 0

3
7775;

HTSbH ¼ HTA2A
T
2 H ¼

2
6664
Π11ΠT

11 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

3
7775;

HTSwH ¼ HT ðSt − SbÞH ¼

2
6664
I − Π11ΠT

11 0 0 0
0 I γ−q 0 0
0 0 0 0
0 0 0 0

3
7775:

ð15Þ

• Then it is shown in Argument 2 that

TraceðS ðþÞ
t SbÞ ¼ TraceðΠ11ΠT

11Þ:ð16Þ

• Next it is shown in Argument 3 using (15) and (16) that G is a solution of the
optimization problem (3) if and only if

G ¼
�
U 1Q1Δ−T ½V 1 V 2G2 � þ ½U 1Q2 U 2 �

�
G31 G32

G41 G42

��
Z;ð17Þ
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where ½G31
G41

G32
G42

� ¼ ½G3
G4
�ZT , G31 ∈ Rðn−γÞ×q, G32 ∈ Rðn−γÞ×ðl−qÞ, G41 ∈ Rðm−nÞ×q,

and G42 ∈ Rðm−nÞ×ðl−qÞ.
• Finally it is shown in Argument 1 using (17) that G is a solution of the opti-

mization problem (3) if and only if G is of the form (14).
Argument 1. Note that

½A1 A2 A3 � ¼ A

2
6664
W 1

. .
.

Wk

3
7775P

�
W

I

�

¼ ½U 1 U 2 �
�
R

0

�
2
6664
W 1

. .
.

Wk

3
7775P

�
W

I

�

¼ ½U 1 U 2 �
�
R1 R2 R3

0 0 0

�
;

thus,

½A2 A3 � ¼ ½U 1 U 2 �
�
R2 R3

0 0

�
:

Consequently, we get

½A2 A3 � ¼ ½U 1 U 2 �
�
R2 R3

0 0

�

¼ ½U 1 U 2 �
�
Q1 Q2 0

0 0 I

�24
R

0

0

3
5

¼ ½U 1 U 2 �
�
Q1 Q2 0

0 0 I

�24ΔP11 ΔP12

0 0
0 0

3
5

¼ ½U 1 U 2 �
�
Q1 Q2 0

0 0 I

�
2
6664
Δ ½V 1 V 2 �

�Π11

0

�
Δ ½V 1 V 2 �

�Π12

Π22

�

0 0
0 0

3
7775

¼ ½U 1 U 2 �
�
Q1Δ½V 1 V 2 � Q2 0

0 0 I

�
2
6664
Π11 Π12

0 Π22

0 0
0 0

3
7775;

where
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�
Π12

Π22

�
¼ ½V 1 V 2 �TP12:

Note that P1 is row orthogonal. This yields that

�
Π11 Π12

0 Π22

��
Π11 Π12

0 Π22

�
T

¼ ½V 1 V 2 �TP1P
T
1 ½V 1 V 2 � ¼

�
I q 0
0 I γ−q

�
;

which together with Lemma 1 gives (15), and thus

q ¼ rankðΠ11Þ ¼ rankðSbÞ:

Argument 2. Now we consider TraceðS ðþÞ
t SbÞ. Since Δ is nonsingular, V 1 is column

orthogonal, and

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

St ¼ ½A2 A3 �½A2 A3 �T

¼ ½U 1 U 2 �
�
Q1 Q2 0
0 0 I

�24ΔΔT 0 0
0 0 0
0 0 0

3
5�½U 1 U 2 �

�
Q1 Q2 0
0 0 I

��
T

;

Sb ¼ A2A
T
2

¼ ½U 1 U 2 �
�
Q1 Q2 0
0 0 I

�24ΔV 1Π11ΠT
11V

T
1 ΔT 0 0

0 0 0
0 0 0

3
5

�
½U 1 U 2 �

�
Q1 Q2 0
0 0 I

��
T

;

we obtain

TraceðSðþÞ
t SbÞ ¼ TraceððΔΔT Þ−1ðΔV 1Π11ΠT

11V
T
1 ΔT ÞÞ ¼ TraceðV 1Π11ΠT

11V
T
1 Þ

¼ TraceðΠ11ΠT
11Þ;

i.e., (16) holds true.
Argument 3. For any G ∈ Rm×l, denote

G ¼ H−1G ¼

2
6664

G1

G2

G3

G4

3
7775; G1 ∈ Rq×l; G2 ∈ Rðγ−qÞ×l; G3 ∈ Rðn−γÞ×l;

G4 ∈ Rðm−nÞ×l:

It is obvious that

GTStG ¼ GT ðHTStHÞG ¼
�
G1

G2

�
T
�
G1

G2

�
;

GTSbG ¼ GT ðHTSbHÞG ¼ GT
1 Π11ΠT

11G1:

ð18Þ

We have using (16) and (18) that
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G is a solution of the optimization problem ð3Þ

⇔
�
G1

G2

�
T
�
G1

G2

�
¼ I l; TraceðGT

1 Π11ΠT
11G1Þ ¼ TraceðΠ11ΠT

11Þ

⇔
�
G1

G2

�
T
�
G1

G2

�
¼ I l;

G1G
T
1 ¼ I qðby Lemma 2 with G1 ≔ G1;G2 ≔ G2;B ≔ Π11ΠT

11;μ ≔ q; τ ≔ lÞ

⇔

8<
:

q ≤ l ≤ γ;�
G1

G2

�
¼

�
I q 0

0 G2

�
Z;

G2 ∈ Rðγ−qÞ×ðl−qÞ is column orthogonal andZ ∈ Rl×l is orthogonal;

⇔ G ¼ ½ U 1Q1Δ−T ½V 1 V 2 � U 1Q2 U 2 �

2
6664

I q 0

0 G2

G31 G32

G41 G42

3
7775Z

¼
�
U 1Q1Δ−T ½V 1 V 2G2 � þ ½U 1Q2 U 2 �

�
G31 G32

G41 G42

��
Z;

where ½G31
G41

G32
G42

� ¼ ½G3
G4
�ZT , G31 ∈ Rðn−γÞ×q, G32 ∈ Rðn−γÞ×ðl−qÞ, G41 ∈ Rðm−nÞ×q,

and G42 ∈ Rðm−nÞ×ðl−qÞ.
Argument 4. Since ½V 1 V 2 � and ½U 1Q1 U 1Q2 U 2 � are orthogonal, it holds for

any N 1 ∈ Rγ×ðl−qÞ and N 2 ∈ Rm×l that

N T
1 V 1 ¼ 0; N 1 is column orthogonal ⇔ N 1 ¼ V 2G2;

G2 ∈ Rðγ−qÞ×ðl−qÞ is column orthogonal;

and

N T
2 U 1Q1 ¼ 0

⇔

8><
>:

N 2 ¼ ½U 1Q2 U 2 �
�
G31 G32

G41 G42

�
;

G31 ∈ Rðn−γÞ×q; G32 ∈ Rðn−γÞ×ðl−qÞ; G41 ∈ Rðm−nÞ×q; G42 ∈ Rðm−nÞ×ðl−qÞ.

Hence, we have thatG ∈ Rm×l is a solution of the optimization problem (1) if and only if

�
q ≤ l ≤ γ;
G ¼ ðU 1Q1Δ−T ½V 1 N 1 � þN 2ÞZ;

where Z ∈ Rl×l is orthogonal, N 1 ∈ Rγ×ðl−qÞ is column orthogonal satisfying
N T

1 V 1 ¼ 0, and N 2 ∈ Rm×l is any matrix satisfying N T
2 U 1Q1 ¼ 0.

To have high cluster quality, a specific clustering result must have a tight within-
class relationship, while the between-class relationship should be remote. With this ob-
jective, the ratio TraceðSG

b Þ∕ TraceðSG
wÞ, that is, the ratio of the between-class distance

to within-class distance, is an important measure of how well TraceðSG
b Þ is maximized
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while TraceðSG
wÞ is minimized in the reduced space [18]. The following result reveals the

conditions under which the ratio TraceðSG
b Þ∕ TraceðSG

wÞ obtained by a solution of the
optimization problem (3) is greater than the ratio TraceðSbÞ ∕ TraceðSwÞ of the full-
dimension data.

THEOREM 5.
(i) Let G ∈ Rm×l be any arbitrary solution of the optimization problem (3).

Then

G ¼ arg max

�
TraceðSGl

b Þ
TraceðSGl

w Þ
: Gl is a solution of the

optimization problem ð3Þ
�

ð19Þ

if and only if H

l ¼ q; G ¼ U 1Q1Δ−TV 1Z þN ;ð20Þ

where Z ∈ Rq×q is any orthogonal matrix and N ∈ Rm×q is any matrix satisfy-
ing N TU 1Q1 ¼ 0.

(ii) For any solution G in the form (20) of the optimization problem (3),

TraceðSbÞ
TraceðSwÞ

≤
TraceðSG

b Þ
TraceðSG

wÞ
ð21Þ

if and only if

rankðSbÞTraceðSbÞ ≤ TraceðStÞTraceðS ðþÞ
t SbÞ;ð22Þ

which, with the notation in Theorem 4, is equivalent to
ffiffiffi
q

p kΔV 1Π11kF ≤ kΔkFkΠ11kF :

Proof. For any solution G ∈ Rm×l of the optimization problem (3), Theorem 4
gives that

TraceðSG
t Þ ¼ TraceðGTStGÞ ¼ l ≥ q;

TraceðSG
b Þ ¼ TraceðGTSbGÞ ¼ TraceðS ðþÞ

t SbÞ;
TraceðSG

wÞ ¼ TraceðGTSwGÞ ¼ l− TraceðS ðþÞ
t SbÞ;

rankðSbÞ ¼ q;

TraceðS ðþÞ
t SbÞ ¼ TraceðΠ11ΠT

11Þ ¼ kΠ11k2F ;
TraceðSbÞ ¼ TraceððΔV 1Π11ÞðΔV 1Π11ÞT Þ ¼ kΔV 1Π11k2F ;
TraceðStÞ ¼ TraceðΔΔT Þ ¼ kΔk2F ;

and further if l ¼ q, then G is of the form (20). Hence, Theorem 5 follows. ▯
It should be pointed out that Theorem 5 holds only for optimization problem (3) but

does not hold for the optimization problems, for example, for OLDA [13] and NLDA
[22], [28].
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Clearly, Theorem 5 provides explicit necessary and sufficient conditions to ensure
that these minimal solutions lead to a larger ratio of between-class distance to
within-class distance, thereby achieving larger discrimination in the reduced subspace
than that in the original data space.

Noting that

TraceðSðþÞ
t SbÞ ≥

1

kStk2
TraceðSbÞ

and

kStk2 ¼ kΔk22;

we have the following result by using Theorem 5.
COROLLARY 6. If

rankðSbÞkStk2 ≤ TraceðStÞð23Þ

or, equivalently,

ffiffiffi
q

p kΔk2 ≤ kΔkF ;

then (21) holds true.
It is well known that one important property of the classical LDA is that it is equiva-

lent to maximum likelihood classification, assuming normal distribution for each data
class with the common covariance matrix. We will next derive a necessary and sufficient
condition under which this property also holds true for the ULDA on undersampled
problems. Classification in classical LDA based on the maximum likelihood estimation
is based on the Mahalanobis distance as follows: a test data h is classified as class j if

j ¼ arg min
j
ðh− cðjÞÞTS−1

t ðh− cðjÞÞ:

For the undersampled problem, it has been shown in [13] that for the G in Algorithm 1
the following holds for any test data h ∈ Rm:

arg min
j
fðh− cðjÞÞTS ðþÞ

t ðh− cðjÞÞg ¼ arg min
j
fkGT ðh− cðjÞÞk22g:ð24Þ

The result below is a stronger one which establishes a necessary and sufficient condition,
ensuring (24) holds a true for a solution of the optimization problem (3).

THEOREM 7. With the notation in Theorem 4, let G ∈ Rm×l be a solution of the
optimization problem (3). Then (24) holds for any test data h ∈ Rm if and only if

G ¼ ðU 1Q1Δ−T ½V 1 N 1 � þ ½ 0 N̂ 2
�ÞZ;ð25Þ

where Z ∈ Rl×l is any orthogonal matrix, N 1 ∈ Rγ×ðl−qÞ is any column orthogonal
matrix satisfying N T

1 V 1 ¼ 0, and N̂ 2 ∈ R
m×ðl−qÞ is any matrix satisfying N̂ T

2 U 1Q1 ¼ 0.
Proof. We have from Theorem 4 and its proof that
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q ≤ l ≤ γ;

G ¼ ðU 1Q1Δ−T ½V 1 N 1 � þN 2ÞZ

¼
�
U 1Q1Δ−T ½V 1 V 2G2 � þ ½U 1Q2 U 2 �

�
G31 G32

G41 G42

��
Z;

ð26Þ

where

N 1 ¼ V 2G2; N 2 ¼ ½U 1Q2 U 2 �
�
G31 G32

G41 G42

�
;

G2 ∈ Rðγ−qÞ×l and Z ∈ Rl×l are any column orthogonal matrix and orthogonal
matrix, respectively, ½G31

G41

G32
G42

� is arbitrary, G31 ∈ Rðn−γÞ×q, G32 ∈ Rðn−γÞ×ðl−qÞ, G41 ∈
Rðm−nÞ×q, G42 ∈ Rðm−nÞ×ðl−qÞ, and furthermore

S
ðþÞ
t ¼ U 1Q1Δ−TΔ−1ðU 1Q1ÞT

¼ ðU 1Q1Δ−TV 1ÞðU 1Q1Δ−TV 1ÞT þ ðU 1Q1Δ−TV 2ÞðU 1Q1Δ−TV 2ÞT ;

and for j ¼ 1; : : : ; k,

8>>>>>>><
>>>>>>>:

2
4 ðU 1Q1Δ−TV 2ÞT

ðU 1Q2ÞT
UT

2

3
5Sb½U 1Q1Δ−TV 2 U 1Q2 U 2 � ¼ 0;

2
4 ðU 1Q1Δ−TV 2ÞT

ðU 1Q2ÞT
UT

2

3
5cðjÞ ¼

2
4 ðU 1Q1Δ−TV 2ÞT

ðU 1Q2ÞT
UT

2

3
5c:

So,

ðh− cðjÞÞTSðþÞ
t ðh− cðjÞÞ ¼ kðU 1Q1Δ−TV 1Þðh− cðjÞÞk22 þ kðU 1Q1Δ−TV 2ÞT ðh− cÞk22;

j ¼ 1; : : : ; k;

arg min
j
fðh− cðjÞÞTS ðþÞ

t ðh− cðjÞÞg ¼ arg min
j
kðU 1Q1Δ−TV 1ÞT ðh− cðjÞÞk22;ð27Þ

and

GT ðh− cðjÞÞ ¼ ZT

��
ðU 1Q1Δ−TV 1ÞT ðh− cðjÞÞ
GT
2 ðU 1Q1Δ−TV 2ÞT ðh− cÞ

�

þ
�
GT

31 GT
41

GT
32 GT

42

�� ðU 1Q2ÞT
UT

2

�
ðh− cÞ

�
;

j ¼ 1; : : : ; k:

ð28Þ

Sufficiency. Let (25) hold. Then ½G31
G41

� ¼ 0, and for any test data h ∈ Rm and for
j ¼ 1; : : : ; k,
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8>>>>>>>>>>><
>>>>>>>>>>>:

GT ðh− cðjÞÞ ¼ ZT

2
4 ðU 1Q1Δ−TV 1ÞT ðh− cðjÞÞ�

GT
2 ðU 1Q1Δ−TV 2ÞT þ ½GT

32 GT
42 �

� ðU 1Q2ÞT
UT

2

��
ðh− cÞ

3
5;

kGT ðh− cðjÞÞk22 ¼ kðU 1Q1Δ−TV 1ÞT ðh− cðjÞÞk22
þ
����
�
GT
2 ðU 1Q1Δ−TV 2ÞT þ ½GT

32 GT
42 �

� ðU 1Q2ÞT
UT

2

��
ðh− cÞ

����
2

2

;

arg min
j
kGT ðh− cðjÞÞk22 ¼ arg min

j
kðU 1Q1Δ−TV 1ÞT ðh− cðjÞÞk22;

the above equalities together with (27) give that (24) holds for any test data h ∈ Rm.
Necessity. Note that (24) holds for any test data h ∈ Rm, so it also holds true for any

test data h of the form

h ¼ cþ ½U 1Q2 U 2 �x; x ∈ Rm−γ:

For such h, it holds that

arg min
j
fðh− cðjÞÞTS ðþÞ

t ðh− cðjÞÞg ¼ arg min
j
kðU 1Q1Δ−TV 1ÞT ðc− cðjÞÞk22;

GT ðh− cðjÞÞ ¼ ZT

� ðU 1Q1Δ−TV 1ÞT ðc− cðjÞÞ þ ½GT
31 GT

41 �x
½GT

32 GT
42 �x

�
;

kGT ðh− cðjÞÞk22 ¼ kðU 1Q1Δ−TV 1ÞT ðc− cðjÞÞ þ ½GT
31 GT

41 �xk22 þ k½GT
32 GT

42 �xk22;

and

arg min
j
kGT ðh− cðjÞÞk22 ¼ arg min

j
kðU 1Q1Δ−TV 1ÞT ðc− cðjÞÞ þ ½GT

31 GT
41 �xk22:

Hence, we obtain by using (24) that

½GT
31 GT

41 � ¼ 0:

Equivalently,

G ¼
�
U 1Q1Δ−T ½V 1 V 2G2 � þ ½U 1Q2 U 2 �

�
0 G32

0 G42

��
Z

¼ ðU 1Q1Δ−T ½V 2 N 1 � þ ½ 0 N̂ 2
�ÞZ;

ð29Þ

where Z is orthogonal, and N 1 ¼ V 2G2 is column orthogonal and satisfies that

N T
1 V 1 ¼ GT

2 V
T
2 V 1 ¼ 0, N̂ 2 ¼ ½U 1Q2 U 2 �½G32

G42
�, and N̂ T

2 U 1Q1 ¼ 0. ▯
Note that any solution G of the optimization problem (3) is of the form (26); thus,

G ¼ ½U 1Q1 U 1Q2 U 2 �

2
64
Δ−TV 1 Δ−TV 2G2

G31 G32

G41 G42

3
75Z;

kGk2F ¼ kΔ−TV 1k2F þ kΔ−TV 2G2k2F þ
����
�
G31 G32

G41 G42

�����
2

F

;
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and

kGk⋆ ¼

��������

2
64
Δ−TV 1 Δ−TV 2G2

G31 G32

G41 G42

3
75
��������
⋆

≥ k½Δ−TV 1 Δ−TV 2G2 �k⋆ ≥ kΔ−TV 1k⋆;ð30Þ

where k · kF and k · k⋆ denote the Frobenius norm and nuclear norm, respectively. It is
easy to see that the first inequality in (30) becomes an equality if and only if
½G31
G41

G32
G42

� ¼ 0, and the second one becomes an equality if and only if Δ−TV 2G2 vanishes

(i.e., l ¼ q) since Δ−TV 2G2 is of full column rank if l > q. Therefore, the following result
is a direct consequence of Theorems 5 and 7.

THEOREM 8. With the notation in Theorem 4, let G be a solution of the optimization
problem (3). Then the following four statements are equivalent:

(i) Equations (19) and (24) hold simultaneously for any test data h ∈ Rm.
(ii)

G ¼ U 1Q1Δ−TV 1Z; Z ∈ Rq×q is orthogonal.ð31Þ

(iii) G is a solution of the optimization problem (3) with minimum Frobenius norm;
i.e.,

G ¼ arg minfkGlkF : Gl is a solution of the optimization problem ð3Þg.

(iv) G is a solution of the optimization problem (3) with minimum nuclear norm;1

i.e.,

G ¼ arg minfkGlk⋆: Gl is a solution of the optimization problem ð3Þg:

We now summarize the main findings in this section. Theorem 3 provides a char-
acterization of all optimal solutions to the ULDA problem (3). Further properties of the
optimal solutions are then explored in Theorems 5, 7, and 8. Theorem 5 shows that all
optimal solutions to problem (3) that maximize the ratio of between-class distance to
within-class distance are characterized by (20). Theorem 7 shows that all optimal
solutions to problem (3) that solve the maximum likelihood classification problem in
classical LDA are characterized by (25). Taking the intersection of the above two sets
of solutions, i.e., satisfying both (20) and (25), yields (31) which characterizes all opti-
mal solutions to (3) that have both properties of the optimal ratio of between-class dis-
tance to within-class distance as well as maximum likelihood classification. Moreover,
Theorem 8 shows that the solutions characterized by (31) are exactly those solutions of
the optimization problem (3) with minimal Frobenius and/or nuclear norm.

We further note that it is natural to pick the minimum-norm transformation G
among all possible solutions to (3), and this is the current practice, perhaps because
there is no better reason for other choices ofG. With the above remarks, the significance
of our results is that we have now provided a good justification for preferring the
minimum-norm transformation over other possible solutions.

1For any matrix, its nuclear norm is defined as the sum of all its singular values.
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4. Numerical experiments.

4.1. A new ULDA algorithm. The results in section 3 lead to the following new
ULDA algorithm, in which the minimal solution G ¼ U 1Q1Δ−TV 1 of the optimization
problem (3) is used as the optimal transformation in ULDA.

ALGORITHM 3 (PROPOSED ULDA METHOD).
Input: data matrix A ∈ Rm×n, class number k.

Output: transformation matrix G
1. Compute economic QR factorization (1);
2. Compute R2 and R3 by (10);
3. Compute the economic QR factorization (1) with column pivoting and then

compute the economic QR factorization (1);
4. Compute the economic QR factorization (13) with column pivoting;
5. Solve the upper triangular linear system of equations ΔTY 1 ¼ V 1 and then

compute G ¼ U 1Q1Y 1.

Obviously, Algorithm 3 is eigendecomposition-free and SVD-free and can be carried
out by means of four economic QR factorization with/without pivoting.

In the following we perform extensive experimental studies to evaluate and demon-
strate the efficiency of our Algorithm 3. We perform a detailed comparison of Algo-
rithms 1, 2, and 3 in terms of the classification accuracy and the computational time.

First, we estimate the computational complexities of Algorithms 1, 2, and 3 in
Table 1, in which

q ¼ rankðSbÞ ¼ rankðHbÞ ≤ k− 1

and
γ ¼ rankðStÞ ¼ rankðHtÞ ¼ rankð½Hb Hw �Þ ≤ n− 1:

We consider only the undersampled case, that is, m > n.
Table 1 implies that the computational complexities of Algorithms 2 and 3 are much

lower than that of Algorithm 1. It can also be seen that Algorithm 3 has a lower
computational complexity than Algorithm 2.

Remark 1. In Table 1, the following computational costs for QR factorization and
SVD are used [31]:

Computational complexity for QR factorization of Θ ∈ Rm×n with m ≥ n.
Full QR factorization: 4m2nþ 2

3n
3 − 2mn2;

Economic QR factorization: 4mn2 − 4
3n

3;
Full QR factorization with column pivoting: ð4m2n− 4mn2 þ 4

3n
3Þ þ ð4mnp−

2p2ðmþ nÞ þ 4
3 p

3Þ; p ¼ rankðΘÞ;
Economic QR factorization with column pivoting: 2mn2 − 2

3n
3 þ ð4mnp−

2p2ðmþ nÞ þ 4
3 p

3Þ;
Computational complexity for SVD ðΘ ¼ UΣVT;U 1 ¼ Uð∶; 1∶nÞÞ of Θ ∈ Rm×n

with m ≥ n.
Σ: 4mn2 − 4

3n
3 ;

Σ, V : 4mn2 þ 8n3;
U , Σ: 4m2n− 8mn2;
U 1, Σ: 14mn2 − 2n3.
U , Σ, V : 4m2nþ 8mn2 þ 9n3;
U 1, Σ, V : 14mn2 þ 8n3.
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4.2. Numerical results. In this subsection we experiment on four face databases,
the ORL face database, AR face database, FERET face database, and Palmprint da-
tabase, to demonstrate the efficiency of Algorithm 3. These face databases are described
as follows.

The ORL face database is available at http://www.cl.cam.ac.uk/research/dtg/
attarchive/facedatabase.html. This database consists of 400 different images, 10 for
each of 40 distinct subjects. All of the images in the ORL face database were resized
to 32× 32 pixels.

The AR face database is available at http://www2.ece.ohio-state.edu/~aleix/
ARdatabase.html. A subset of the AR database was used in our experiment. This subset
includes 1680 color images corresponding to 120 persons’ faces (70 men and 50 women).
Images feature frontal view faces with different facial expressions, illumination condi-
tions, and occlusions (sunglasses and scarf). The pictures of 120 individuals (65 men and
55 women) were taken in two sessions; 28 face images (each session containing 14) of
these 120 individuals were used in our experiment. The face portion of each image was
manually cropped and then resized to 50× 40 pixels.

The FERET face database is available at http://www.itl.nist.gov/iad/humanid/
feret/feret_master.html. This database has become a standard database for testing
the state-of-the-art face recognition algorithms. A subset of the FERET database
was used in our experiment. This subset includes 1000 images of 200 individuals (each
one has 5 images). It is composed of the images whose names are marked with two-
character strings: “ba”, “bj”, “bk”, “be”, and “bf”. This subset involves variations in facial
expression, illumination, and pose. In our experiment, the facial portion of each original
image was automatically cropped based on the locations of eyes and mouths, and the
cropped images were resized to 80× 80 pixels and further preprocessed by histogram
equalization.

The Palmprint database is available at http://www4.comp.polyu.edu.hk/
~biometrics/. This database contains 100 different palms. Six samples from each of
these palms were collected in two sessions, where three samples were captured in each
session. All images from the Palmprint database were compressed to 64× 64 pixels.

TABLE 1
Computational complexities of Algorithms 1, 2, and 3.

The computational complexity of Algorithm 1.

Step 1: OðmnÞ,
Step 2: 14mn2 − 2n3,
Step 3: 2mγkþ 14γk2 − 2k3,
Step 4: 2mγq.

The computational complexity of Algorithm 2.

Steps 1 and 2: 4mn2 þ 4
3n

3 þOðn2Þ
Step 3: 4ðnþ kÞ2n− 4ðnþ kÞn2 þ 4

3n
3 þ 4ðnþ kÞnγ − 2γ2ð2nþ kÞ þ 4

3 γ
3 þ 4n2γ þ 2

3 γ
3 − 2nγ2,

Step 4: 14γk2 − 2k3,
Step 5: 2mnðk− 1Þ þ 2nγðk− 1Þ þ γ2ðk− 1Þ.

The computational complexity of Algorithm 3.

Steps 1 and 2: 4mn2 − 4
3n

3 þOðn2Þ.
Step 3: 2nðn− 1Þ2 − 2

3 ðn− 1Þ3 þ ½4nðn− 1Þγ − 2γ2ðnþ n− 1Þ þ 4
3 γ

3� ≤ 8
3n

3 þ 4ðn− 1Þγ2 − 4
3 γ

3 ≤ 8
3n

3,
Step 4: 2γðk− 1Þ2 − 2

3 ðk− 1Þ3 þ ½4γðk− 1Þq− 2q2ðγ þ k− 1Þ þ 4
3 q

3� ≤ 4γk2 − 4
3 k

3,
Step 5: 2mnqþ 2nγqþ γ2q.
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Table 2 summarizes the data structures in our experiments.
For all data sets above, we performed our study by repeated random splitting into

training and test sets using the following algorithm: within each class, we randomly re-
ordered the data and then for each class with size ni, the first d0.5nie data were used as
the training data and the others were used as test data, whereby d·e is the ceiling func-
tion. The splitting was repeated 10 times.

The experiments were conducted by using the Osprey workstation cluster with 8GB
RAM located at the Center for Computational Science and Engineering, National Uni-
versity of Singapore.

We compare the classification accuracies (%) and the ratio of between-class distance
to within-class distance of Algorithms 1, 2, and 3, and in the original data space, respec-
tively, in Tables 3 and 4. We also compare the CPU time of Algorithms 1, 2, and 3 in
Table 5. The standard deviations of classification accuracies are given in brackets in
Table 3.

In the following experiments, we consider different solutions of the optimization
problem (3) as the optimal transformations of ULDA and then compare their classifica-
tion performances:

TABLE 2
Data structures.

Data m (data dimension) n (training size) k (number of classes) (Number of test data)

ORL 1024 200 40 200
AR 2000 840 120 840
FERET 6400 600 200 400
Palmprint 4096 300 100 300

TABLE 3
Comparison of 1-NN average classification accuracies (%) for Algorithms 1, 2, and 3, and the original

data space, with standard deviations (in brackets).

Data Algorithm 1 Algorithm 2 Algorithm 3 The original data space

ORL 94.4000 (1.2247) 94.4000 (1.2247) 94.4000 (1.2247) 89.1500 (1.9200)

AR 95.5357 (0.5195) 95.5357 (0.5195) 95.5357 (0.5195) 85.1667 (1.0108)

FERET 70.8250 (1.7177) 70.8250 (1.7177) 70.8250 (1.7177) 58.9250 (2.7014)

Palmprint 99.3000 (0.5538) 99.3000 (0.5538) 99.3000 (0.5538) 97.6667 (0.9888)

TABLE 4
Comparison of average ratio of between-class distance to within-class distance for Algorithms 1, 2, and 3,

and the original data space.

Data Algorithm 1 Algorithm 2 Algorithm 3 The original data space

ORL 1.2385× 1028 1.2096× 1029 1.1870× 1029 1.4950

AR 1.8020× 1027 9.7702× 1028 8.2030× 1028 1.7305

FERET 7.2614× 1027 1.1219× 1029 1.0432× 1029 2.1525

Palmprint 1.2173× 1028 3.0686× 1029 3.7712× 1029 3.6737
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• G ¼ U 1Q1Δ−TV 1 ∈ Rm×q, i.e., the output G of Algorithm 3;
• Let l ¼ qþ 3i, with i ¼ 0; 1; : : : ; 10, recover V 2 from the QR factorization of

V 1; then take

G ¼ U 1Q1Δ−T ½V 1 V 2G2 � ∈ Rm×l;ð32Þ

where

X ¼ randðγ − q; l− qÞ; ½G2;R� ¼ qrðX; 0Þ:

Note that for any N 2 ∈ Rm×l with N T
2 U 1Q1 ¼ 0, it holds that

N T
2 StN 2 ¼ 0; N T

2 SbN 2 ¼ 0; N T
2 SwN 2 ¼ 0;

which means that N 2 does not contain any useful discriminant information.
Hence, to remove redundancy as far as possible, G in (32) does not contain such
N 2.

Tables 6 and 7 record the average 1-NN classification accuracies achieved and the
ratio of between-class distance to within-class distance in the reduced space by different
G with different l above over the 10 experiments. The standard deviations of classifica-
tion accuracies are given in brackets in Table 6.

It is clear from Tables 3–7 that the following hold:
• Algorithms 1, 2, and 3 achieve similar classification accuracies. This is consis-

tent with the fact that the transformationG produced by Algorithms 1, 2, and 3
are theoretically equivalent (since it holds that q ¼ k− 1 for 4 data sets AR,
ORL, FERET, and Palmprint).

• Algorithms 2 and 3 are much faster than Algorithm 1, and Algorithm 3 is faster
than Algorithm 2.

• For 4 data sets AR, ORL, FERET, and Palmprint, it has been verified that

rankð½A2 A3 �Þ ¼ rankðA2Þ þ rankðA3Þ; i:e:;

rankðStÞ ¼ rankðSbÞ þ rankðSwÞ:
ð33Þ

Consequently, we have from the proof of Theorem 5 that

TraceðSG
b Þ ¼ TraceðSðþÞ

t SbÞ ¼ rankðSbÞ ¼ q;

TraceðSG
wÞ ¼ l− TraceðSðþÞ

t SbÞ ¼ l− q:

TABLE 5
Comparison of average CPU time (seconds) used by Algorithms 1, 2, and 3.

Data Algorithm 1 Algorithm 2 Algorithm 3

ORL 0.2200 0.0510 0.0400

AR 10.9370 1.9430 1.3770

FERET 9.8440 1.9350 1.5810

Palmprint 1.5870 0.3300 0.2820
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Thus, when l ¼ q, it holds that TraceðSG
wÞ ¼ 0, which leads to the huge numerical values

in Table 4 and the second row of Table 7.
It should be pointed out that the equality rankð½A2 A3 �Þ ¼ rankðA2Þ þ rankðA3Þ

holds true for almost all A2 and A3 with appropriate sizes, so the condition (33) holds for
almost all data sets. It is also worthy to note that condition (22) holds true in all our
experiments. This gives that the optimal transformation G produced by Algorithm 3
yields a larger ratio of between-class distance to within-class distance, thereby achieving
larger discrimination in the reduced subspace than that in the original data space.

TABLE 7
The average ratio of between-class distance to within-class distance in the reduced space for different G

with different l.

ORL AR FERET Palmprint

l ¼ q 1.1870× 1029 8.2030× 1028 1.0432× 1029 3.7712× 1029

l ¼ qþ 3 13.0000 39.667 66.3333 33.0000

l ¼ qþ 6 6.5000 19.833 33.1667 16.5000

l ¼ qþ 9 4.3333 13.222 22.1111 11.0000

l ¼ qþ 12 3.2500 9.9167 16.5833 8.2500

l ¼ qþ 15 2.6000 7.9333 13.2667 6.6000

l ¼ qþ 18 2.1667 6.6111 11.0556 5.5000

l ¼ qþ 21 1.8571 5.6667 9.4762 4.7143

l ¼ qþ 24 1.6250 4.9583 8.2917 4.1250

l ¼ qþ 27 1.4444 4.4074 7.3704 3.6667

l ¼ qþ 30 1.3000 3.9667 6.6333 3.3000

TABLE 6
Comparison of 1-NN average classification accuracies (%) for different G with different l, with standard

deviations (in brackets).

ORL AR FERET Palmprint

l ¼ q 94.4000 (1.2247) 95.5357 (0.5195) 70.8250 (1.7177) 99.3000 (0.5538)

l ¼ qþ 3 94.4500 (1.7146) 95.4881 (0.7865) 71.1000 (1.3124) 99.3000 (0.3266)

l ¼ qþ 6 94.1000 (1.3191) 95.5476 (0.7664) 70.6500 (1.2452) 99.3333 (0.3350)

l ¼ qþ 9 93.9000 (1.2855) 95.4048 (0.6326) 70.7250 (1.4276) 99.3667 (0.4534)

l ¼ qþ 12 93.4500 (1.7212) 95.4167 (0.7112) 70.6000 (1.2945) 99.2667 (0.4269)

l ¼ qþ 15 93.2500 (1.8848) 95.4048 (0.9528) 70.3500 (1.1675) 99.3000 (0.3786)

l ¼ qþ 18 92.4000 (1.8364) 95.2619 (0.5954) 70.0500 (1.3096) 99.2667 (0.4014)

l ¼ qþ 21 92.1500 (1.9551) 95.2024 (0.7716) 70.1000 (1.3730 99.1667 (0.3590)

l ¼ qþ 24 92.0000 (1.8364) 95.2857 (0.7226) 70.1750 (0.9682) 99.0667 (0.4269)

l ¼ qþ 27 92.1500 (2.2962) 95.0119 (0.5906) 69.8250 (1.0610) 99.1667 (0.3350)

l ¼ qþ 30 91.6000 (1.8173) 94.9762 (0.7810) 69.7250 (1.1803) 99.1333 (0.4485)

842 DELIN CHU, SIONG THYE GOH, AND Y. S. HUNG

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/2

0/
12

 to
 1

47
.8

.2
30

.1
03

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



• Although the transformation G with the largest ratio of between-class distance
to within-class distance does not always achieve the best classification accuracy,
it always achieves at least comparable classification accuracy, and usually the
transformation G with a relatively small ratio of between-class distance to
within-class distance yields relatively low classification accuracy. Hence, our
numerical experiments confirm the well-known fact that the ratio of between-
class distance to within-class distance is a very important measure for data
cluster quality.

• The minimal solution G ¼ U 1Q1Δ−TV 1 always achieves comparative classifi-
cation accuracy compared with other solutions G in the form (32). Hence, it is
reasonable to select it as the optimal transformation of the ULDA.

4.3. Conclusions. In this paper, all solutions to the optimization problem (3) for
establishing ULDA have been characterized explicitly. With such a characterization, all
optimal solutions to problem (3) that further maximize the ratio of between-class dis-
tance to within-class distance and also solve the maximum likelihood classification pro-
blem have been obtained. It turns out that these optimal solutions are exactly the
solutions of the optimization problem (3) with minimum Frobenius norm and/or nucle-
ar norm. Hence, it is natural to pick such a minimum-norm transformation G among all
possible solutions to optimization problem (3) to be the transformation in ULDA. These
properties provide a good mathematical justification for preferring the minimum-norm
transformation over other possible solutions as the optimal transformation in ULDA.
The explicit characterization of all solutions of the optimization problem (3) has led to
Algorithm 3—a new and fast ULDA algorithm. Algorithm 3 is eigendecomposition-free
and SVD-free, and its effectiveness has been demonstrated by some real-world data sets.
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