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CHARACTERIZATION OF ALL SOLUTIONS FOR UNDERSAMPLED
UNCORRELATED LINEAR DISCRIMINANT ANALYSIS PROBLEMS®
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Abstract. In this paper the uncorrelated linear discriminant analysis (ULDA) for undersampled pro-
blems is studied. The main contributions of the present work include the following: (i) all solutions of the
optimization problem used for establishing the ULDA are parameterized explicitly; (ii) the optimal solutions
among all solutions of the corresponding optimization problem are characterized in terms of both the ratio of
between-class distance to within-class distance and the maximum likelihood classification, and it is proved that
these optimal solutions are exactly the solutions of the corresponding optimization problem with minimum
Frobenius norm, also minimum nuclear norm; these properties provide a good mathematical justification for
preferring the minimum-norm transformation over other possible solutions as the optimal transformation in
ULDA; (iii) explicit necessary and sufficient conditions are provided to ensure that these minimal solutions
lead to a larger ratio of between-class distance to within-class distance, thereby achieving larger discrimination
in the reduced subspace than that in the original data space, and our numerical experiments show that these
necessary and sufficient conditions hold true generally. Furthermore, a new and fast ULDA algorithm is
developed, which is eigendecomposition-free and SVD-free, and its effectiveness is demonstrated by some
real-world data sets.
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1. Introduction. Linear discriminant analysis (LDA) is a powerful technique for
data dimensionality reduction [1], [2], [3], [4], [6], [8], [10], [11], [12], [14], [16], [19], [23],
[24], [27], [28], [29], [30], [33], [34], [35], [36], [37], [38], [39], [40], [41]. It seeks an optimal
linear transformation of the data to a low-dimensional subspace. Preferably the reduced
dimension is as small as possible, and in the reduced subspace the data features can be
modeled with maximal discriminative power. LDA has found many important applica-
tions, for example, in pattern recognition [10], [24], [36], face recognition [25], [32], text
classification [38], information retrieval [30], [34], and microarray data analysis [20], [21].
A major disadvantage of the classical LDA is that the so-called total scatter matrix must
be nonsingular. But, in many applications such as those mentioned above, the total
scatter matrix is singular since usually the number of the data samples is smaller than
the data dimension. This is known as the undersampled problem [36], also commonly
called the small sample size problem. As a result, the classical LDA cannot be applied
directly to undersampled problems. To apply LDA to undersampled problems, many
extensions of the classical LDA have been proposed recently. These extensions include
uncorrelated LDA (ULDA) [13], [15], [25], [26], orthogonal LDA (OLDA) [13], the reg-
ularized LDA [17], [37], null space-based LDA (NLDA) [22], [28], GSVD-based LDA
(LDA/GSVD) [14], [16], [18], Bayes optimal LDA [5], and least squares LDA [9]. How-
ever, all these extended LDA compute the optimal linear transformations by computing
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some eigendecompositions/singular value decompositions (SVD), which are computa-
tionally expensive. Hence, it is important to develop new and fast algorithms for these
extended LDA; preferably the new algorithms are eigendecomposition-free and
SVD-free.

ULDA has been studied in [13], [15], [25], [26], and its effectiveness has been demon-
strated by many numerical experiments. The feature vectors transformed by ULDA are
mutually uncorrelated. This is highly desirable for feature extraction in many applica-
tions in order to contain minimum redundancy. The optimal transformation of ULDA in
[13] is a solution of an optimization problem. However, this optimization problem has so
many different solutions. It is not clear yet how a particular solution should be selected
as the optimal transformation of ULDA in [13]. It is necessary to find a mathematical
criterion for selecting a particular solution from all solutions of the related optimization
problem as the optimal transformation of ULDA.

In this paper we focus on the ULDA for the undersampled problems. The main
contributions of the present work include the following;:

(i) All solutions of the optimization problem used for establishing the ULDA are

parameterized explicitly.

(ii) The optimal solutions among all solutions of the corresponding optimization
problem are characterized in terms of both the ratio of between-class distance
to within-class distance and the maximum likelihood classification; it has been
proved that these optimal solutions are exactly the solutions of the correspond-
ing optimization problem with minimum Frobenius norm, also exactly the so-
lutions with minimum nuclear norm. Hence, these minimal solutions can be
considered to be optimal candidates for the optimal transformations in ULDA.
These properties provide a mathematical criterion for the selection of the op-
timal transformations in ULDA.

(iii) Explicit necessary and sufficient conditions are provided to ensure that these
minimal solutions lead to a larger ratio of between-class distance to within-class
distance, thereby achieving larger discrimination in the reduced subspace than
that in the original data space, and our numerical experiments show that these
necessary and sufficient conditions hold true generally.

Along with the above mathematical findings, a new and fast ULDA algorithm is also

developed, which is eigendecomposition-free and SVD-free. Real-world data sets show
that the new algorithm has improved performance over the fast ULDA algorithm in [7].

2. Uncorrelated LDA. Consider a data matrix A € R™*" with m > n represent-
ing a set of n m-dimensional data points. Assume that a class label is available for every
data point and that A is partitioned into & classes as

A:[al ay - Gn]:[-Al Ay - A/c]?

where

and

Further, let
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e=[1 -+ 1]T e R™,
e;=[1 - 1]TeR™ =1 .k

and denote the set of column indices that belong to the class i by NV;. The centroid ¢?
and the global centroid are given by

. 1
CU):*Aieiﬁ i:l,...,k,

i

and

c=—Ae,
n

respectively. Then the between-class scatter matrix S}, the within-class scatter matrix
S, and the total scatter matrix S, are defined as

It is well known [18] that S, = S, + 5,,. Let

Hb = [\/n_l(c(1> - C) o \/n_k(c(k) — C)] c Rmxk7
H, [.A - C( - A — clk ] € R™n,
H [-Al — C -Ak — C ] c Ran

The scatter matrices Sy, S, and S, can be expressed as
(1) Sy=H,H]. S, =H,HT, S,=HHT,

since

Trace(Sy) Z Z |t — c||3,

=1 jeN;

and

Trace(S,,) Z Z la; — V3.

i=1 jeN,
Obviously, Trace(.S;) measures the distance between classes, while Trace(.S,,) measures

the closeness of the data within the classes over all k classes. Note that when the
between-class relationship is remote, i.e., the centroids of the classes are remote,
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Trace(S,) will have a large value, whereas when data within each class are located
tightly around their own class centroid, Trace(S,) will have a small value. Hence,
the cluster quality can be measured using Trace(S;) and Trace(S,,).

In the lower-dimensional space mapped upon using the linear transformation
GT € R™™ the between-class, within-class, and total scatter matrices are of the forms

S¢ = @Grs,G, S =GTS,G.  S¢=GTS,G.

Ideally, the optimal transformation G would maximize Trace(S}) and minimize
Trace(SL) simultaneously and equivalently maximize Trace(SE) and minimize
Trace(S}) simultaneously, which leads to the optimization in classical LDA for deter-
mining the optimal linear transformation G7, namely, the classical Fisher criterion:

(2) G = arg mgx{Trace((Sf)’le)}.

In the classical LDA [36], the above optimization problem is solved by computing all the
eigenpairs

Spx = AS,x, A#0.

Thus, the solution G can be characterized explicitly through the eigendecomposition of
the matrix S; 1S, if S, is nonsingular. It is easy to know that rank(S},) < k — 1, and so
the reduced dimension by the classical LDA is at most k& — 1.

The classical LDA does not work when S, is singular, which is the case for under-
sampled problems. To deal with the singularity of S, several generalized optimization
criteria for determining the transformation G have been proposed. In particular, the
optimization criterion

(3) G =arg max Trace((SF)*H)SF) =arg max Trace(S{)
GTS,G=I GTS,G=I

is used for ULDA in [13], [15], [25], [26]. ULDA was originally proposed in [25] for ex-
tracting feature vectors with uncorrelated attributes. The idea in [25] for computing the
optimal discriminant vectors of ULDA is as follows: suppose r optimal discriminant
vectors gy, ..., g, are obtained; then the (r + 1)th vector g, is obtained by maximizing
the Fisher criterion function

fg) = 9" 819
9" 8,9
subject to the constraints
95415:9: =0, i=1,...,7

As a result, the algorithm in [25] computes the jth discriminant vector g; of ULDA as
the eigenvector corresponding to the maximum eigenvalue of the following generalized
eigenvalue problem:

UjSvg; = 2459,

where
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Ul = Im»

Dj=lg -~ gj]" (G>1),

The feature vectors transformed by ULDA are mutually uncorrelated. This is desirable
for feature extraction in many applications in order to reduce data redundancy. The
main limitations of the algorithm above for ULDA are that it is computationally very
expensive for large and high-dimensional data sets, and it is not applicable to under-
sampled problems.

It was later shown in [13], [15], [26] that classical LDA is equivalent to ULDA in the
sense that both classical LDA and ULDA produce the same transformation matrix when
the total scatter matrix S; is nonsingular. The ULDA in [25] was also generalized in
[13], [15] for undersampled problems based on simultaneous diagonalization of scatter
matrices. Let the SVD of H; be given by

Ht == UZVT,

where U and V are orthogonal and £ = [ZOV 8

Then

] with y = rank(H,) and Z, being diagonal.

20

Let U=[U; U,]with U; € R™ and U, € R™("7) Since S, = S, + S,,, we have

UTSbU: |:U1TSI)U1 0:|’

0 0
2}2,: UlTSbU1+ UlTSwUl,

urs,u= [UlTSwUl O],

0 0

thus,
2 ULS, UGS + 51U S, U, =1
Next, let the SVD of 2;1 UI'H, be
2 UTH, = PAQT,

where P and @) are orthogonal, A = [/B” 8], and A, € R7%is diagonal with ¢ = rank(.S;).
Define

>1p oo
— Y
o3 9]
Then we have
A% 0 0 I—A% 0 0 I 0 O
Xrs,Xx=10 0 0], XTs,X = 0 I 0f, XT's,X=10 I 0
0 0 O 0 0 0 0 0 O

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/20/12 to 147.8.230.103. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

UNCORRELATED LINEAR DISCRIMINANT ANALYSIS 825

The above analysis yields that the matrix X [Io‘f], i.e., the first ¢ columns of X, is a solution
to the optimization problem (3), giving rise to the following ULDA algorithm [13].

AvcoriTaMm 1 (ULDA [13]).
Input: data matrix A, class number k;
Output: transformation matrix G
1. Form matrices H,, H;;
2. Compute the reduced SVD of H; without forming V explicitly to get
H,=U[%, 0]VT with X, € R, y =rank(H,);
3. Compute the reduced SVD of X, LUT H, without forming @Q explicitly to get
VUV H, = Pi[A, 0]QT, with Ay € R, Py € R, ¢ = rank(H});
4. G=U%,'P.

A fast ULDA algorithm is given in [7]. The following is its pseudocode.

AicoritaMm 2 (Fast ULDA [7]).
Input: data matrix A.
output: transformation matrix G.
1. Compute the economic QR factorization of A as A = U; R and partition R into
R=[R, ... R,ReR™ i=1,...k
2. Compute ¢=1ReeR", ¢ = W%R,;e,; €R", i=1,...,k and then form

matrices I, = [1/_n1(6(1) —8) (e =) ... ymE(E® — e)} € R™,

H,=[R, — ¢Wel Ry—2@el ... R,—tWel]e R™™,
T T AN A
3. Compute the complete orthogonal decomposition of [gﬂ as [glr] = P[] vt

and let y = rank(R); . o
4. Compute the SVD of P(1:k,1:y) as P(1:k.1:y) = UR W,

A

5. Compute the first £ — 1 columns of U, V[IAT(IJW 9], and then assign them to G.

Many numerical experimentsin [7], [13], [15], [25], [26] have shown that Algorithms 1
and 2 are powerful for data dimensionality reduction. However, Algorithms 1 and 2 have
implicitly chosen without any theoretical basis a particular solution from so many dif-
ferent solutions of the optimization problem (3) as the optimal transformation of ULDA.
In the next section, we will study the properties of the set of all solutions to the opti-
mization problem (3), with an aim to provide a theoretical justification for selecting the
optimal transformation for ULDA among all possible solutions of (3).

3. New results. In this section we will first derive an explicit characterization of all
solutions (in Theorem 4) to the optimization problem (3). As a result, we can explore
optimal solutions with further properties (in Theorems 5, 7, and 8) among the set of all
solutions to the optimization problem (3).

Denote

E==¢ceTl, E,==¢cel i=1,....k

n ni

The scatter matrices S;, S, and S, can be written as
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E,
S, = A(I — E)AT, Sy =A —E | AT,
E;
(4)
E,
S,=A|I- AT,
By
Note that
E, E,
[—E, - ~-B,  I- .
E;, E;,

are orthogonal projections in R". Let R;, R, and R,, be the range spaces of the above
orthogonal projections, respectively. It can be shown that R; = R, + R, with

dim(R,) =n—1, dim(R;) = k-1, dim(R,) =n— k.

We now devise an orthogonal basis in R" containing partitions that span the subspaces
R; and R,,. Define Householder transformations

1—m 1-m; !
1 1

Wi:I_ : / ni_\/n_i : / ni_\/n_i s
1 1

Vi =V VL=V '
W=1I- \/n_z /i/n—/nn \/n_z /a/n—/nng
Nz Nz
Matrices W and W, (i =1, ..., k) are orthogonal satisfying

W=wI — W,=WIl(i=1, ..k,

i 1
wr \/n_Q /| = 0 Wle /i) =|.|. i=1...k

N 0 0

O =

Let P be the permutation matrix obtained by exchanging the (3772} n; + 1)th column of
I,, and the ith column (for ¢ = 2, ..., k), but otherwise leaving the order of the remain-
ing columns unchanged. It can be verified by a straightforward calculation that
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W, ! B W,
w w
)| (.
I I
W E;, Wy
2 -]
a Infk
and
T
W, - W, -
p[ [} (I-B) p{ I]
Wk Wk
lel
(6) = I

The following lemma is a direct consequence of (4), (5), and (6).
Lemma 1. Denote

Wy
w
[4;, A, Az]=A P|: I:|,
Wi
where Ay € R™1 Ay € R™U=1 - and Ay € R™=K)  Then
(7) Sy = A A7, Sy = AsA], Sp=1[4y As][4y As]

LemMa 2. Let G € R**T and Gy € RY*7 satisfy [g;]T[g;] =1I,. Let B& R*FH pe
symmetric positive definite. Then

Trace(GIBG,) = Trace(B)
if and only if
glng == Iﬂ'

Proof. Since [g;]T[gi] = I, there exist G; € RF=7) and G, € R" =) such
that [gi gl] is orthogonal, and thus
2

(®) GGl + GGl =1,.

Hence, we have
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Trace(B) = Trace(B(G:GT + GiG!))
= Trace(BG,GT) + Trace(BG,Gi)
= Trace(G!' BG,) + Trace(G{ BG{ ),

which gives that

Trace(GTBG,) = Trace(B) < Trace(Gi BG,) = 0
&G =0 (since B is symmetric positive definite)

&G0 =1, (since (8) holds).

The following result can be found in [13].
Lemma 3 (see [13]).

max Trace((SF)HSF) = Trace(Sgﬂ Sy).

TaEOREM 4. Let the economic QR factorization of the data matriz A be
(9) A - UlR,
where U; € R™ " is column orthogonal and R € R™ ™. Denote

W,
(10) [Ri R, Rj=R| . P[W J,
Wi

where

R, € R R, € Rmx(k=1) Ry € Rx(n=k),
Let the economic QR factorization of [ Ry Rs] with column pivoting be
(11) [Ry R3] = iR,

where  Q; € R™ is  column  orthogonal, R € RV and rank(R) =
rank([ Ry Rg]) = y. Further, let the economic QR factorization of RT be

(12) RT = PTAT,

where P; € RV (" s row orthogonal and A € RY*? is lower triangular. Denote
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Py=[Pn Ppl Py e RV,
Finally, let the economic QR factorization of Py; with column pivoting be
(13) Py = Vi,

where V, € R4 is column orthogonal, T1;; € R*F-1 " and rank(I1;;) = q. Then all
solutions G € R™! of the optimization problem (3) are parameterized by

(14) G=(U,QqA TV, NiJ+NyZ, ¢g< 1<y,

where Z € R™ is any orthogonal matriz, N'y € RY=9 s any column orthogonal
matriz satisfying NT V| =0, and N'y € R™! is any matriz satisfying NT U, Q; = 0.

Proof. Let Uy € R™(m=n Q, € R™" 7 and V, e R"*("~9 be such that
[U, U,],[@1 @], and [V, V,] are orthogonal. Denote

H([U1 UQHQlA[VOl Vs Q02 ?D_T

=[U, ATV, Vo] U@y Usl.

In the following we prove Theorem 4 by four arguments, outlined as follows before the
full details are given:
e First it is shown in Argument 1 that H can be used to diagonalize scatter
matrices S, S, and S,,; that is,

I, 0 00
0o I,., 00
HTStH:HT[AQ As][AQ A3]TH: 0 6{1 0 0 5
0 0 00
o,y 0o 0 0
T T Toy 0 0 00
(15) HYSyH=H"AA  H = 0 00 ol
0 0 00
I-opnafy o0 0 0
T T _ N 0 nyq 00
HYS,H=H"(S;,— Sy)H = 0 o' 0 o
0 0 00
e Then it is shown in Argument 2 that
(16) Trace(SiHSb) = Trace(IT;; IT}; ).

e Next it is shown in Argument 3 using (15) and (16) that G is a solution of the
optimization problem (3) if and only if

an o= (neaTv velrine wl@ &)z
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where [gﬁ g?;] = [g?]ZT7 Gy € R(HV—V)X(I’ Gy € R("—}’)X(l—q)’ G, € R(m—n)xq’
and G42 € R(mfn)x(lfq).
e Finally it is shown in Argument 1 using (17) that G is a solution of the opti-

mization problem (3) if and only if G is of the form (14).
Argument 1. Note that

W,
w
[Al Ay A3]:A P[ I]
W
W
-0 vl d-
=1 2l 7
Wls:
Ry Ry Rs]
=|U, U ;
ERA
thus,
Ry R
A A =[U; U
[2\31[121[0‘0}
Consequently, we get
R, R
Ay As|=[U;, U ‘
4 )=l o)
o @ 0[F
1 2
CA | D
L O
r O‘ _APII APIQ
_ U, U] Q1 0 0
L 0 0 I__ 0 0
[ Hu] {Hm]
- -1Aa [V, WV A [V, V
o @ @ vl [ veoval [
1 2_0 0 | 0 0
0 0
Qalv, Vol @ o7 ¢ |
1ALV, 2 P 0} 0 Iy,
=|U, U ,
[ 1 2] O O ] 0 0
0 0

where
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le] T
=[Vy Vy]'Pp.
{Hm [V) 2]" Pra

Note that P; is row orthogonal. This yields that

My M| [T, M |? T T _ Iy O
[ 0 H22 0 H22 _[Vl VQ] PIPI[VI V?]_ 0 ]yfq s

which together with Lemma 1 gives (15), and thus
q = rank(I1;;) = rank(S}).

Argument 2. Now we consider Trace(S gHS »)- Since A is nonsingular, V; is column
orthogonal, and

St:[Az A3][A2 A3]T ~ T
AAY 0 O r T
:[Ul U2] Ql Q? 0 0 0 0 [Ul U2] Ql QQ 0 ,
0o o0 I 0 0 0 10 0 I
Sy = A, AT i
9 0 [AV, O, T, VIAT 0 0
=[U, U2]|:01 02 I] 0 0 0
L 0 0 0]
@ Q@ O0\"

we obtain

Trace(S"S,) = Trace((AAT) "L (AV,IT,,TIE VIAT)) = Trace( V11,11 V)
= Trace(TI;; 1} );
i.e., (16) holds true.
Argument 3. For any G € R™*! denote
Gy
Gy
G=H'G= , G, € R™, G, € RUr—ax!, Gy € Rm7)xt,
Gy
Gy
G4 c R(m—n)xl.

It is obvious that

T
GTS8,G=G"(H"SH)G = [ gﬂ [ g; ]

GTS,G=G"(H"SyH)G = GI ;11T G,.

(18)

We have using (16) and (18) that
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G is a solution of the optimization problem (3)

G TGy
& G =1I;,, Trace(GI NI, G;) = Trace(I1;;I1{))
2 2

al o

= =1,

Gol LGy

Gl GlT = ]q(by Lemma 2 with g1 = Gl,QQ = GQ,B = HHHlTl,/.L = (q, T = l)
g<i<y.

“Uel-[5 &)
= Z’
Gy 0 G

G, € RUr—9x(=9) ig column orthogonal and Z € R/ is orthogonal,

I, 0
-7 0 Gy

S G=[UQA TV, Vy] U,Q, Uyl z
Gs1 G
Gu Gy

G G
:<U1Q1AT[V1 VyGo | + [ U1 Qs Uz]{Ggl GSQ})Z
41 42

where [Gn @) = [@]ZT, Gy e RUVX Gy e ROVXIZ0 Gy e RUmmxa,

and G42 c R (m—n)x(i=q)_
Argument4. Since [V, Vy]and [U; @, U,;Q, U,] are orthogonal, it holds for
any NV, € RV(=9 and Ny € R™ that
NIV, =0, N iscolumn orthogonal & N| = V,G,,

G, € Rr—9x(=9) ig column orthogonal,

and

NQT Ul Ql - 0
G31 G32
No=lvie il J
G41 G42
G31 c R(n,—y)xq’ G32 c R(n—y)x(l—q)’ G41 c R(m—n)xq, G42 c R(m—n)x(l—q).

Hence, we have that G € R™*!is a solution of the optimization problem (1) if and only if

{qélé%
G=(UQA [V, Ni]+N5)Z,

where Z e R™ is orthogonal, N; € R"*(=9 is column orthogonal satisfying
NIV, =0, and Ny € R™! is any matrix satisfying NI U, Q, = 0.

To have high cluster quality, a specific clustering result must have a tight within-
class relationship, while the between-class relationship should be remote. With this ob-
jective, the ratio Trace(S{) /Trace(S$), that is, the ratio of the between-class distance
to within-class distance, is an important measure of how well Trace(S{) is maximized
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while Trace(S$) is minimized in the reduced space [18]. The following result reveals the
conditions under which the ratio Trace(S{) /Trace(S$) obtained by a solution of the
optimization problem (3) is greater than the ratio Trace(S;)/Trace(S,,) of the full-
dimension data.

THEOREM 5.
(i) Let G € R™! be any arbitrary solution of the optimization problem (3).
Then
Trace(S,"
G = arg max{ﬂg): G; is a solution of the
Trace(Sy')
(19) optimization problem (3)}
if and only if H
(20) l:q, G= UlQlAfTVlz—l—N,

where Z € R%1 is any orthogonal matriz and N € R™ 4 is any matriz satisfy-
mg./\/TUlQl =0.
(ii) For any solution G in the form (20) of the optimization problem (3),

Trace(S,) _ Trace(S¢)

21
(21) Trace(S,) ~ Trace(SS)

if and only if
(22) rank(Sy)Trace(S,) < Trace(St)Trace(Sng) Sy),
which, with the notation in Theorem 4, is equivalent to

VAV [[p < [[Allp[ Myl e

Proof. For any solution G' € R™*! of the optimization problem (3), Theorem 4
gives that

Trace(S¢) = Trace(GTS,G) = 1> ¢,
Trace(S¢) = Trace(GTS,G) = Trace(S\"5)),
Trace(S§) = Trace(GTS,G) =1 — Trace(SEHSb),
rank(S;) =
Trace(s; " Sw Trace(TyTHfy) = [Ty I3,
Trace(S,) = Trace((A V1) (AV,ITy) ") = [[A VI [,
Trace(S;) = Trace(AAT) = ||A|2,

and further if I = ¢, then G is of the form (20). Hence, Theorem 5 follows. O

It should be pointed out that Theorem 5 holds only for optimization problem (3) but

does not hold for the optimization problems, for example, for OLDA [13] and NLDA
2], [28].
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Clearly, Theorem 5 provides explicit necessary and sufficient conditions to ensure
that these minimal solutions lead to a larger ratio of between-class distance to
within-class distance, thereby achieving larger discrimination in the reduced subspace
than that in the original data space.

Noting that

1
Trace(Sng)Sb) > Trace(Sy)
[[Slla
and
[1S:ll2 = 1AI3,
we have the following result by using Theorem 5.
CoRrOLLARY 6. If
(23) rank(S)]| S|l < Trace(S;)

or, equivalently,

VAl <

then (21) holds true.

It is well known that one important property of the classical LDA is that it is equiva-
lent to maximum likelihood classification, assuming normal distribution for each data
class with the common covariance matrix. We will next derive a necessary and sufficient
condition under which this property also holds true for the ULDA on undersampled
problems. Classification in classical LDA based on the maximum likelihood estimation
is based on the Mahalanobis distance as follows: a test data h is classified as class j if

j = arg min(h — V)T S (h — cV)).
J

For the undersampled problem, it has been shown in [13] that for the G in Algorithm 1
the following holds for any test data h € R™:

(24) arg min{(h — ¢)7S (h — ¢0))} = arg min{|| GT(h — ¢0)|3}.
J J

The result below is a stronger one which establishes a necessary and sufficient condition,
ensuring (24) holds a true for a solution of the optimization problem (3).

THEOREM 7. With the notation in Theorem 4, let G € R™ ! be a solution of the
optimization problem (3). Then (24) holds for any test data h € R™ if and only if

(25) G=(U1Q: ATV Ni]+]0 J(fg])z

where Z € R™ s any orthogonal matriz, NB € RV(=9) s any column orthogonal
matriz satisfying N1 V| =0, and ./\/2 eR" mx(0) 4 any matriz satisfying ./\/2 U,Q, =0.
Proof. We have from Theorem 4 and its proof that
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<1<y,
G=(U,QqA TV, NiJ+NyZ

26
) <U1Q1AT[V1 VaGol+ [ U1 Qs Uz][gi gji])z’

where

G G
Ny = VyG,, Noy=[U @ UQ]{GE Giz]’

G, € R0 and Z e R™ are any column orthogonal matrix and orthogonal
matrix, respectively, [gji gjz] is arbitrary, Gs; € R"7*4 Gy € ROVXED Q) €

R(m=mxa G, € RPx(=9 "and furthermore

SEH = U, QA TA (U, Q)7
= (U, QA TV )0 QAT V)T + (U, QA T V) (U, AT V)T,

and for j =1, ...,k

_(U1Q1A7TV2)T_
(UlQTQ)T Sl U QA TVy UQy Uyl =0,
L U, ]
[(U,@A7TVy)T] _ (U, A TVy)T
(UIQQ)T ) = (U1Q2)T ¢
I Uy J ur

So,

(h— TS (h— ) = ||(U, QAT V) (h — D)3+ (U1 AT V3) T (h — )3
j=1,....k

(27)  arg min{(h — ) TS (A — ¢0)} = arg min||(U, QAT V)T (h— 0|3,
J J

and
vy _ i — =z7( | (U @ATV)T(h—M)}
G'(h—c9)=2 ({QQT(IUIQlATIVQ)T(h—C)
(28) Gh GL1[(U, Q)T
L@ @Y o-9)
j=1,... .k

Sufficiency. Let (25) hold. Then [gﬁ] =0, and for any test data » € R™ and for
j=1 ...,k
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(U, ATV )T (h = )

(sr@arvyr e 0421[(“@2”})(1”)]’

GT(h—cW) =27
Uy

1G(h— D)3 = (U, QAT V)T (h — )]
T
+H<92T<U1Q1ATVQ>T+[G£ op)|F -
2
arg minl| G (h — ¢)|[3 = arg minl| (U, QAT V)7 (h — c)3,
J J

the above equalities together with (27) give that (24) holds for any test data h € R™.
Necessity. Note that (24) holds for any test data h € R™, so it also holds true for any
test data h of the form

h:C+[U1Q2 Ug]x, l'éRm_y.
For such h, it holds that

arg min{(h — ¢/) 78 (h — )} = arg min|| (U, QAT V)T (e — D)2,
J J

(U, ATV (e =)+ [G Ghlz

GT(h— b)) = 2T
(h =) Gh Ghle

IGT(h = DI = [(U1@ATV) (e — D) +[Gf Ghlal3 + 1G5, GhIall3,

and

arg min | G (h — )|} = arg min]| (U, Qa7 V1) (e — ) +[6F G Jul}.

Hence, we obtain by using (24) that
(G5 Ghl=0.

Equivalently,

= (U, QA "[Vy Nil+]o0 ./,\\/'2])27

where Z is orthogonal, and N; = V,G, is column orthogonal and satisfies that
NIV =i VIV =0, Ny =[U,Qy U,][$2), and N3 U,Q =0. O
Note that any solution G of the optimization problem (3) is of the form (26); thus,

A*TVI A*TVQQQ
G:[U1Q1 Uy Q, U2] Gy Gso Z,
Gy Gy

2

_ _ G G-
1G5 = 1A~T Vil + 1o Tv2g2||%+H[G31 Gﬂ
41 42

’
F
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and
ATV, ATV,
(30) Gl = G G > ([[A~TVy ATTVLG ], > 1A VL,
Gy Gy
*
where || - | p and || - ||, denote the Frobenius norm and nuclear norm, respectively. It is
easy to see that the first inequality in (30) becomes an equality if and only if

[gi} gi] = 0, and the second one becomes an equality if and only if A=7 V,G, vanishes

(i.e., | = q) since A~ T V,G, is of full column rank if [ > ¢. Therefore, the following result
is a direct consequence of Theorems 5 and 7.

TuEOREM 8. With the notation in Theorem 4, let G be a solution of the optimization
problem (3). Then the following four statements are equivalent:

(i) Equations (19) and (24) hold simultaneously for any test data h € R™.

(ii)
(31) G=U QA TV, Z, Z € R?™4 s orthogonal.

(i) G is a solution of the optimization problem (3) with minimum Frobenius norm;
i.e.,

G = arg min{||G||p: G, is a solution of the optimization problem (3)}.

(iv) G is a solution of the optimization problem (3) with minimum nuclear norm;'
i.e.,

G = arg min{||G||,: G, is a solution of the optimization problem (3)}.

We now summarize the main findings in this section. Theorem 3 provides a char-
acterization of all optimal solutions to the ULDA problem (3). Further properties of the
optimal solutions are then explored in Theorems 5, 7, and 8. Theorem 5 shows that all
optimal solutions to problem (3) that maximize the ratio of between-class distance to
within-class distance are characterized by (20). Theorem 7 shows that all optimal
solutions to problem (3) that solve the maximum likelihood classification problem in
classical LDA are characterized by (25). Taking the intersection of the above two sets
of solutions, i.e., satisfying both (20) and (25), yields (31) which characterizes all opti-
mal solutions to (3) that have both properties of the optimal ratio of between-class dis-
tance to within-class distance as well as maximum likelihood classification. Moreover,
Theorem 8 shows that the solutions characterized by (31) are exactly those solutions of
the optimization problem (3) with minimal Frobenius and/or nuclear norm.

We further note that it is natural to pick the minimum-norm transformation G
among all possible solutions to (3), and this is the current practice, perhaps because
there is no better reason for other choices of G. With the above remarks, the significance
of our results is that we have now provided a good justification for preferring the
minimum-norm transformation over other possible solutions.

'For any matrix, its nuclear norm is defined as the sum of all its singular values.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/20/12 to 147.8.230.103. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

838 DELIN CHU, SIONG THYE GOH, AND Y. S. HUNG

4. Numerical experiments.

4.1. A new ULDA algorithm. The results in section 3 lead to the following new
ULDA algorithm, in which the minimal solution G = U; Q;A~T V; of the optimization
problem (3) is used as the optimal transformation in ULDA.

AvrcoriTHM 3 (ProPOSED ULDA METHOD).
Input: data matrix A € R™*" class number k.
Output: transformation matrix G
1. Compute economic QR factorization (1);
2. Compute R, and R3 by (10);
3. Compute the economic QR factorization (1) with column pivoting and then
compute the economic QR factorization (1);
4. Compute the economic QR factorization (13) with column pivoting;
5. Solve the upper triangular linear system of equations A”Y; = V; and then
compute G = U,0Q, Y.

Obviously, Algorithm 3 is eigendecomposition-free and SVD-free and can be carried
out by means of four economic QR factorization with/without pivoting.

In the following we perform extensive experimental studies to evaluate and demon-
strate the efficiency of our Algorithm 3. We perform a detailed comparison of Algo-
rithms 1, 2, and 3 in terms of the classification accuracy and the computational time.

First, we estimate the computational complexities of Algorithms 1, 2, and 3 in
Table 1, in which

g =rank(S;) =rank(H;) < k-1

and
y = rank(S;) = rank(H;) =rank([H, H,])<n-1

We consider only the undersampled case, that is, m > n.

Table 1 implies that the computational complexities of Algorithms 2 and 3 are much
lower than that of Algorithm 1. It can also be seen that Algorithm 3 has a lower
computational complexity than Algorithm 2.

Remark 1. In Table 1, the following computational costs for QR factorization and
SVD are used [31]:

Computational complexity for QR factorization of ® € R™ " with m > n.

Full QR factorization: 4m*n + 21’ — 2mn?;

Economic QR factorization: 4mn? — %ni";

Full QR factorization with column pivoting: (4m?*n — 4mn? + 3 n®) + (4mnp—
2p*(m + n) +3p?), p = rank(0©);

Economic QR factorization with column pivoting: 2mn? —2n? + (4mnp—
252 (m + n) + £ p°);

Computational complexity for SVD (@ = ULVT, U, = U(:,1:n)) of ® € R™*"

with m > n.
T:4mn? —3nd;
%, Vidmn? + 8n?;
U, Z:4m?n — 8mn?;
Uy, Z: 14mn? — 2n3.
U, =, Vidm?n + 8mn? + 9n?;
Uy, Z, V:14dmn? + 8nd.
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TaBLE 1
Computational complezities of Algorithms 1, 2, and 3.

The computational complexity of Algorithm 1.

Step 1: O(mn),

Step 2: 14mn? — 2n3,

Step 3: 2myk + 14yk?* — 2k3,
Step 4: 2myq.

The computational complexity of Algorithm 2.

Steps 1 and 2: 4mn® 4§ n® + O(n?)

Step 3: 4(n+ k)?n — 4(n+ k)n® + 3n® + 4(n+ k)ny — 2y°(2n + k) + 5% + 4n’y + 2% — 2mp?,
Step 4: 14yk> — 243,

Step 5: 2mn(k — 1) 4+ 2ny(k — 1) + y*(k — 1).

The computational complexity of Algorithm 3.

Steps 1 and 2: 4mn® — §n® + O(n?).

Step 3: 2n(n—1)? =2(n —1)3 4+ [dn(n — 1)y = 2y*(n+n —1) +3
Step 4: 2y(k—1)2 —=2(k—1)> + [dy(k— g —2¢@(y + k— 1) + 3] <
Step 5: 2mng + 2nyq + y*q.

4.2. Numerical results. In this subsection we experiment on four face databases,
the ORL face database, AR face database, FERET face database, and Palmprint da-
tabase, to demonstrate the efficiency of Algorithm 3. These face databases are described
as follows.

The ORL face database is available at http://www.cl.cam.ac.uk/research/dtg/
attarchive/facedatabase.html. This database consists of 400 different images, 10 for
each of 40 distinct subjects. All of the images in the ORL face database were resized
to 32 x 32 pixels.

The AR face database is available at http://www2.ece.ohio-state.edu/~aleix/
ARdatabase.html. A subset of the AR database was used in our experiment. This subset
includes 1680 color images corresponding to 120 persons’ faces (70 men and 50 women).
Images feature frontal view faces with different facial expressions, illumination condi-
tions, and occlusions (sunglasses and scarf). The pictures of 120 individuals (65 men and
55 women) were taken in two sessions; 28 face images (each session containing 14) of
these 120 individuals were used in our experiment. The face portion of each image was
manually cropped and then resized to 50 x 40 pixels.

The FERET face database is available at http://www.itl.nist.gov/iad /humanid/
feret/feret master.html. This database has become a standard database for testing
the state-of-the-art face recognition algorithms. A subset of the FERET database
was used in our experiment. This subset includes 1000 images of 200 individuals (each
one has 5 images). It is composed of the images whose names are marked with two-
character strings: “ba”, “bj”, “bk”, “be”, and “bf”. This subset involves variations in facial
expression, illumination, and pose. In our experiment, the facial portion of each original
image was automatically cropped based on the locations of eyes and mouths, and the
cropped images were resized to 80 x 80 pixels and further preprocessed by histogram
equalization.

The Palmprint database is available at http://www4.comp.polyu.edu.hk/
“biometrics/. This database contains 100 different palms. Six samples from each of
these palms were collected in two sessions, where three samples were captured in each
session. All images from the Palmprint database were compressed to 64 x 64 pixels.
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TABLE 2
Data structures.

Data m (data dimension) 7 (training size) &k (number of classes)  (Number of test data)
ORL 1024 200 40 200
AR 2000 840 120 840
FERET 6400 600 200 400
Palmprint 4096 300 100 300

Table 2 summarizes the data structures in our experiments.

For all data sets above, we performed our study by repeated random splitting into
training and test sets using the following algorithm: within each class, we randomly re-
ordered the data and then for each class with size n;, the first [0.5n,] data were used as
the training data and the others were used as test data, whereby [-] is the ceiling func-
tion. The splitting was repeated 10 times.

The experiments were conducted by using the Osprey workstation cluster with 8GB
RAM located at the Center for Computational Science and Engineering, National Uni-
versity of Singapore.

We compare the classification accuracies (%) and the ratio of between-class distance
to within-class distance of Algorithms 1, 2, and 3, and in the original data space, respec-
tively, in Tables 3 and 4. We also compare the CPU time of Algorithms 1, 2, and 3 in
Table 5. The standard deviations of classification accuracies are given in brackets in
Table 3.

In the following experiments, we consider different solutions of the optimization
problem (3) as the optimal transformations of ULDA and then compare their classifica-
tion performances:

TaABLE 3
Comparison of 1-NN average classification accuracies (%) for Algorithms 1, 2, and 3, and the original
data space, with standard deviations (in brackets).

Data Algorithm 1 Algorithm 2 Algorithm 3 The original data space
ORL 94.4000 (1.2247) | 94.4000 (1.2247) | 94.4000 (1.2247) 89.1500 (1.9200)
AR 95.5357 (0.5195) | 95.5357 (0.5195) | 95.5357 (0.5195) 85.1667 (1.0108)
FERET 70.8250 (1.7177) | 70.8250 (1.7177) | 70.8250 (1.7177) 58.9250 (2.7014)
Palmprint | 99.3000 (0.5538) [ 99.3000 (0.5538) | 99.3000 (0.5538) 97.6667 (0.9888)

TABLE 4

Comparison of average ratio of between-class distance to within-class distance for Algorithms 1,2, and 3,
and the original data space.

Data Algorithm 1 Algorithm 2 Algorithm 3 The original data space
ORL 1.2385 x 10%® | 1.2096 x 10%* | 1.1870 x 10% 1.4950
AR 1.8020 x 10?7 | 9.7702 x 10%® | 8.2030 x 10% 1.7305
FERET 7.2614 x 10%7 1.1219 x 10% 1.0432 x 10% 2.1525
Palmprint | 1.2173 x 10 | 3.0686 x 10* | 3.7712 x 10% 3.6737
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TABLE 5
Comparison of average CPU time (seconds) used by Algorithms 1, 2, and 3.

Data Algorithm 1 | Algorithm 2 | Algorithm 3
ORL 0.2200 0.0510 0.0400
AR 10.9370 1.9430 1.3770
FERET 9.8440 1.9350 1.5810
Palmprint 1.5870 0.3300 0.2820

o (=U,QA TV, € R™ je., the output G of Algorithm 3;
e Let [= ¢+ 34, with i =0,1, ...,10, recover V, from the QR factorization of
V; then take

(32) G=U,QAT[Vy VyG]e R™,
where

X=rand(y —¢.l—q).  [G2R]=qr(X,0).
Note that for any A, € R"™*! with N'Y U, @, = 0, it holds that

./\/2TSt./\/2:0, NQTSbNQZO, NQTSU)NQZO,

which means that Ny does not contain any useful discriminant information.
Hence, to remove redundancy as far as possible, G in (32) does not contain such
Ny
Tables 6 and 7 record the average 1-NN classification accuracies achieved and the
ratio of between-class distance to within-class distance in the reduced space by different
G with different [ above over the 10 experiments. The standard deviations of classifica-
tion accuracies are given in brackets in Table 6.
It is clear from Tables 3-7 that the following hold:
e Algorithms 1, 2, and 3 achieve similar classification accuracies. This is consis-
tent with the fact that the transformation G produced by Algorithms 1, 2, and 3
are theoretically equivalent (since it holds that ¢ = k — 1 for 4 data sets AR,
ORL, FERET, and Palmprint).
e Algorithms 2 and 3 are much faster than Algorithm 1, and Algorithm 3 is faster
than Algorithm 2.
e For 4 data sets AR, ORL, FERET, and Palmprint, it has been verified that

rank([ 4y As]) = rank(4,) + rank(43), ie.,

(33)
rank(S;) = rank(S,) + rank(S,,).

Consequently, we have from the proof of Theorem 5 that

Trace(S{) = Trace(SiHSb) =rank(S,;) = ¢,
Trace(S$) =1 — Trace(SSf)Sb) =1l—q.
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TABLE 6
Comparison of 1-NN average classification accuracies (%) for different G with different I, with standard
deviations (in brackets).

ORL AR FERET Palmprint
I=gq 94.4000 (1.2247) | 95.5357 (0.5195) | 70.8250 (1.7177) | 99.3000 (0.5538)
I=q+3 | 94.4500 (1.7146) | 95.4881 (0.7865) | 71.1000 (1.3124) | 99.3000 (0.3266)
l=q+6 94.1000 (1.3191) | 95.5476 (0.7664) [ 70.6500 (1.2452) | 99.3333 (0.3350)
l=q+9 93.9000 (1.2855) | 95.4048 (0.6326) [ 70.7250 (1.4276) | 99.3667 (0.4534)
l=q+12 | 93.4500 (1.7212) | 95.4167 (0.7112) | 70.6000 (1.2945) | 99.2667 (0.4269)
I=q+15 | 93.2500 (1.8848) | 95.4048 (0.9528) | 70.3500 (1.1675) | 99.3000 (0.3786)
l=¢q+18 | 92.4000 (1.8364) | 95.2619 (0.5954) | 70.0500 (1.3096) | 99.2667 (0.4014)
I=¢+21 | 92.1500 (1.9551) | 95.2024 (0.7716) 70.1000 (1.3730 99.1667 (0.3590)
Il=q+24 | 92.0000 (1.8364) | 95.2857 (0.7226) 70.1750 (0.9682) | 99.0667 (0.4269)
l=q+27 | 92.1500 (2.2962) | 95.0119 (0.5906) | 69.8250 (1.0610) | 99.1667 (0.3350)
l=¢+30 | 91.6000 (1.8173) [ 94.9762 (0.7810) | 69.7250 (1.1803) | 99.1333 (0.4485)

TABLE 7
The average ratio of between-class distance to within-class distance in the reduced space for different G
with different I.

ORL AR FERET Palmprint
l= 1.1870 x 10%° | 8.2030 x 10%® | 1.0432 x 10% | 3.7712 x 10%

l=q+3 13.0000 39.667 66.3333 33.0000
l=q+6 6.5000 19.833 33.1667 16.5000
l=q+9 4.3333 13.222 22.1111 11.0000
l=q+12 3.2500 9.9167 16.5833 8.2500
l=q+15 2.6000 7.9333 13.2667 6.6000
l=q+18 2.1667 6.6111 11.0556 5.5000
l=q+21 1.8571 5.6667 9.4762 4.7143
l=q+24 1.6250 4.9583 8.2917 4.1250
l=gq+27 1.4444 4.4074 7.3704 3.6667
l=q+30 1.3000 3.9667 6.6333 3.3000

Thus, when [ = ¢, it holds that Trace(S$) = 0, which leads to the huge numerical values
in Table 4 and the second row of Table 7.

It should be pointed out that the equality rank([ Ay A3]) = rank(A,) 4 rank(43)
holds true for almost all A, and A3 with appropriate sizes, so the condition (33) holds for
almost all data sets. It is also worthy to note that condition (22) holds true in all our
experiments. This gives that the optimal transformation G produced by Algorithm 3
yields a larger ratio of between-class distance to within-class distance, thereby achieving
larger discrimination in the reduced subspace than that in the original data space.
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e Although the transformation G with the largest ratio of between-class distance
to within-class distance does not always achieve the best classification accuracy,
it always achieves at least comparable classification accuracy, and usually the
transformation G with a relatively small ratio of between-class distance to
within-class distance yields relatively low classification accuracy. Hence, our
numerical experiments confirm the well-known fact that the ratio of between-
class distance to within-class distance is a very important measure for data
cluster quality.

e The minimal solution G = U; Q;A~TV, always achieves comparative classifi-
cation accuracy compared with other solutions G in the form (32). Hence, it is
reasonable to select it as the optimal transformation of the ULDA.

4.3. Conclusions. In this paper, all solutions to the optimization problem (3) for
establishing ULDA have been characterized explicitly. With such a characterization, all
optimal solutions to problem (3) that further maximize the ratio of between-class dis-
tance to within-class distance and also solve the maximum likelihood classification pro-
blem have been obtained. It turns out that these optimal solutions are exactly the
solutions of the optimization problem (3) with minimum Frobenius norm and/or nucle-
ar norm. Hence, it is natural to pick such a minimum-norm transformation G among all
possible solutions to optimization problem (3) to be the transformation in ULDA. These
properties provide a good mathematical justification for preferring the minimum-norm
transformation over other possible solutions as the optimal transformation in ULDA.
The explicit characterization of all solutions of the optimization problem (3) has led to
Algorithm 3—a new and fast ULDA algorithm. Algorithm 3 is eigendecomposition-free
and SVD-free, and its effectiveness has been demonstrated by some real-world data sets.
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