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RIEMANNIAN OPTIMIZATION
ON TENSOR PRODUCTS OF GRASSMANN MANIFOLDS:

APPLICATIONS TO GENERALIZED RAYLEIGH-QUOTIENTS

O. CURTEF† ‡ , G. DIRR† , AND U. HELMKE†

Abstract. We introduce a generalized Rayleigh-quotient ρA on the tensor product of Grassman-
nians Gr⊗r(m,n) enabling a unified approach to well-known optimization tasks from different areas
of numerical linear algebra, such as best low-rank approximations of tensors (data compression), geo-
metric measures of entanglement (quantum computing) and subspace clustering (image processing).
We briefly discuss the geometry of the constraint set Gr⊗r(m,n), we compute the Riemannian gra-
dient of ρA, we characterize its critical points and prove that they are generically non-degenerated.
Moreover, we derive an explicit necessary condition for the non-degeneracy of the Hessian. Finally,
we present two intrinsic methods for optimizing ρA — a Newton-like and a conjugated gradient —
and compare our algorithms tailored to the above-mentioned applications with established ones from
the literature.

Key words. Riemannian optimization, Grassmann manifold, multilinear rank, best approxi-
mation of tensors, subspace clustering, entanglement measure, Newton method, conjugated gradient
method.
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1. Introduction. The present paper addresses a constrained optimization prob-
lem, subsuming and extending optimization tasks which arise in various areas of ap-
plications such as (i) low-rank tensor approximation problems from signal processing
and data compression, (ii) geometric measures of pure state entanglement from quan-
tum computing, (iii) subspace reconstruction problems from image processing and
(iv) combinatorial problems.

The problem can be stated as follows: Given a collection of integer pairs (mj , nj)
with 1 ≤ mj ≤ nj for j = 1, . . . , r and a Hermitian N × N matrix A with N :=
n1n2 · · ·nr, find the global maximizer of the trace function P 7→ tr(AP). Here, P
is restricted to the set of all Hermitian projectors P : CN → CN of rank M :=
m1m2 · · ·mr, which can be represented as a tensor product P := P1 ⊗ · · · ⊗ Pr of
Hermitian projectors Pj : Cnj → Cnj of rank mj . Thus, one is faced with the
constrained optimization task

max tr(AP) subject to P ∈ Gr⊗r(m,n), (1.1)

where Gr⊗r(m,n) denotes the set of all Hermitian projectors of the above tensor
type and (m,n) is a shortcut for

(
(m1, n1), . . . , (mr, nr)

)
. We will see that it makes

sense to call the above objective function P 7→ tr(AP) =: ρA(P) the generalized
Rayleigh-quotient of A with respect to the partitioning (m,n).

To the best of the authors’ knowledge, problem (1.1) has not been discussed in
the literature in this general setting. However, depending on the structure of A as
well as on the choice of (m,n), problem (1.1) relates to well-known numerical linear
algebra issues:

(i) For Hermitian matrices of rank-1, i.e. A = vv†, it reduces to a best low-rank
approximation problem for the tensor A ∈ Cn1×n2×···×nr which satisfies v = vec(A),
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cf. [21, 28]. Classical application areas of such low-rank approximations can be found
in statistics, signal processing and data compression [4, 20, 21, 31].

(ii) A recent application in quantum computing plays a central role in charac-
terizing and quantifying pure state entanglement. Here, the distance of a pure state
(tensor) to the set of all product states (rank-1 tensors) provides a geometric measure
for entanglement [6, 23, 34].

(iii) Moreover, the challenging task of recovering subspaces of possibly different
dimensions from noisy data — known as subspace detection or subspace clustering
problem in computer vision and image processing [33] — can also be cast into the
above setting. More precisely, for an appropriately chosen Hermitian matrix A the
subspace clustering task can be characterized by problem (1.1) in the sense that for
unperturbed data the global minima of the generalized Rayleigh-quotient are in unique
correspondence with the sought subspaces. Numerical experiments in Section 4 sup-
port that even for noisy data the proposed optimization yields reliable approximations
of the unperturbed subspaces.

(iv) In [3] a certain class of combinatorial problems are recast as optimization
problems for trace functions on the special unitary group. For the case when A
is a diagonal matrix, optimization task (1.1) is a generalization of the applications
mentioned in [3].

Our solution to problem (1.1) is based on the fact that the constraint set Gr⊗(m,n)
can be equipped with a Riemannian submanifold structure. This admits the use of
techniques from Riemannian optimization — a rather new approach towards con-
strained optimization exploiting the geometrical structure of the constraint set in
order to develop numerical algorithms [1, 14, 32]. In particular, we pursue two ap-
proaches: a Newton and a conjugated gradient method.

On a Riemannian manifold, the intrinsic Newton method is usually described
by means of the Levi-Civita connection, performing iterations along geodesics, see
[9, 29]. A more general approach via local coordinates was initiated by Shub in [27]
and further discussed in [1, 13]. Here, we follow the ideas in [13] and use a pair
of local parametrizations — normal coordinates for the push-forward and QR-type
coordinates for the pull-back — satisfying an additional compatibility condition to
preserve quadratic convergence. Thus we obtain an intrinsically defined version of
the classical Newton algorithm with some computational flexibility. Nevertheless, for
high-dimensional problems its iterations are expensive, both in terms of computa-
tional complexity and memory requirements. Therefore, we alternatively propose a
conjugated gradient method, which has the advantage of algorithmic simplicity at a
satisfactory convergence rate. In doing so, we suggest to replace the global line-search
of the classical conjugated gradient method by a one-dimensional Newton-step, which
yields a better convergence behavior near stationary points than the commonly used
Armijo-rule.

As mentioned earlier, depending on the structure of A, the above-specified prob-
lems (i), (ii), (iii) and (iv) are particular cases of the optimization task (1.1). For the
best low-rank approximation of a tensor the standard numerical approach is an alter-
nating least-squares algorithm, known as higher-order orthogonal iteration (HOOI)
[21]. Recently, several new methods also exploiting the geometric structure of the
problem have been published. Newton algorithms have been proposed in [8, 18],
quasi-Newton methods in [28], conjugated gradient and trust region methods in [17].
For high-dimensional tensors, all Riemannian Newton algorithms manifest similar
problems: too high computational complexity and memory requirements. Our conju-
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gated gradient method is however, a good candidate to solve large scale problems. It
exhibits locally a good convergence behavior, comparable to that of the quasi-Newton
methods in [28] at much lower computational costs, which considerably reduces the
necessary CPU time.

For the problem of estimating a mixture of linear subspaces from sampled data
points, cf. (iii), our numerical approach is an efficient alternative to the classical ones:
ad-hoc type methods such as K-subspace algorithms [16], or probabilistic methods
using a Maximum Likelihood framework for the estimation [30].

The paper is organized as follows. In Section 2, we familiarize the reader with the
basic ingredients of Riemannian optimization. In particular, we address the follow-
ing topics: the Riemannian submanifold structure of the constraint set Gr⊗r(m,n),
its isometry to the r-fold cartesian product of Grassmannians, geodesics and parallel
transport and the computation of the intrinsic gradient and Hessian for smooth ob-
jective functions. Section 3 is dedicated to the problem of optimizing the generalized
Rayleigh-quotient ρA, including also a detailed discussion on its relation to problems
(i), (ii), (iii) and (iv). Moreover, an analogy to the classical Rayleigh-quotient is also
the subject of this section. We compute the gradient and the Hessian of the general-
ized Rayleigh-quotient and derive critical point conditions. We end the section with a
result on the generic non-degeneracy of its critical points. In Section 4, a Newton-like
and a conjugated gradient algorithm as well as numerical simulations tailored to the
previously mentioned applications are given.

2. Preliminaries.

2.1. Riemannian structure of Gr⊗r(m,n). We start our study on the op-
timization task (1.1) with a brief summary on the necessary notations and basic
concepts.

Let hern be the set of all Hermitian n×n matrices A, i.e. A ∈ Cn×n with A† = A,
where A† refers to the conjugate transpose of A. Moreover, let SUn be the Lie group
of all special unitary matrices and sun its Lie-algebra, i.e. Θ ∈ SUn if and only if
Θ†Θ = In, detΘ = 1 and, respectively, Ω ∈ sun if and only if Ω† = −Ω and tr(Ω) = 0.
The Grassmannian,

Grm,n := {P ∈ C
n×n | P = P † = P 2, tr(P ) = m}, (2.1)

is the set of all rank m Hermitian projection operators of Cn. It is a smooth and
compact submanifold of hern with real dimension 2m(n−m), whose tangent space at
P is given by

TPGrm,n = {[P,Ω] := PΩ− ΩP | Ω ∈ sun}, (2.2)

cf. [13]. Hence, every element P ∈ Grm,n and every tangent vector ξ ∈ TPGrm,n can
be written as

P = ΘΠm,nΘ
† and ξ = Θζm,nΘ

†, (2.3)

where Πm,n is the standard projector of rank m acting on Cn and ζm,n denotes a
tangent vector in the corresponding tangent space, i.e.

Πm,n =

[
Im 0
0 0

]
, ζm,n =

[
0 Z
Z† 0

]
, Z ∈ Cm×(n−m). (2.4)
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Whenever the values of m and n are clear from the context, we will use the shortcuts
Π and ζ. With respect to the Riemannian metric induced by the Frobenius inner
product of hern, the Grassmannian Grm,n is a Riemannian submanifold and the unique
orthogonal projector onto TPGrm,n is given by

ad2PX = [P, [P,X ]], X ∈ hern. (2.5)

We define the r−fold tensor product of Grassmannians Grmj,nj
, j = 1, . . . , r as

the set

Gr⊗r(m,n) := {P1 ⊗ · · · ⊗ Pr | Pj ∈ Grmj ,nj
, j = 1, . . . , r} (2.6)

of all rank-M Hermitian projectors ofCN withM := m1m2 · · ·mr andN := n1n2 · · ·nr,
which can be represented as a Kronecker product P1 ⊗ · · · ⊗ Pr. Here, (m,n) stands
for the multi index

(m,n) :=
(
(m1, n1), (m2, n2), . . . , (mr, nr)

)
. (2.7)

Then, Gr⊗r(m,n) can be naturally equipped with a submanifold structure as the
following result shows.

Proposition 2.1. The r−fold tensor product of Grassmannians Gr⊗r(m,n) is

a smooth and compact submanifold of herN of real dimension 2

r∑

i=1

mi(ni −mi).

Proof. We consider the following smooth action

σ : SU(n)× herN → herN , (Θ, Y ) 7→ ΘYΘ†,

of the compact Lie group

SU(n) := {Θ := Θ1 ⊗ · · · ⊗Θr | Θj ∈ SUnj
} ⊂ SUN . (2.8)

Let X ∈ herN be of the form X := Π1 ⊗ · · · ⊗ Πr, where Πj denotes the standard

projector in Grmj ,nj
. Then, the orbit O(X) := {ΘXΘ†| Θ ∈ SU(n)} of X coincides

with Gr⊗r(m,n). By [14] (pp. 44–46) we conclude that the r−fold tensor product
of Grassmannians is a smooth and compact submanifold of herN . Moreover, O(X) ∼=
SU(n)/Stab(X), where the stabilizer subgroup of X is given by

Stab(X) := {Θ ∈ SU(n) | ΘXΘ† = X}

= {Θ ∈ SU(n) | ΘjΠjΘ
†
j = Πj , j = 1, . . . , r}.

It follows easily that the dimension of Stab(X) is

r∑

i=1

[m2
i+(ni−mi)

2−1] and therefore,

dim (Gr⊗r(m,n)) = dim SU(n)− dim Stab(X) = 2

r∑

j=1

mj(nj −mj)

is the dimension of the r−fold tensor product of Grassmannians.
Remark 2.2. (a) Let V ⊗W denote the tensor product of finite dimensional vec-

tor spaces V and W , cf. [12, 19] and let X⊗Y : V ⊗W → V ⊗W be the tensor product
of X ∈ End(V ) and Y ∈ End(W ), given by v ⊗ w 7→ Xv ⊗ Y w, for all v ∈ V and
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w ∈W. Moreover, let BV and BW be bases of V andW , respectively. Then, the matrix
representation of X ⊗ Y with respect to the product basis {v ⊗ w | v ∈ BV , w ∈ BW }
of V ⊗W is given by the Kronecker product of the matrix representations of A and B
with respect to BV and BW . This clarifies the relation between the “abstract” tensor
product of linear maps and the Kronecker product of matrices and justifies the term
“tensor product” of Grassmannians when we refer to Gr⊗r(m,n).
(b) It is a well-known fact that the Grassmannian Grm,n is diffeomorphic to the Grass-
mann manifold Grassm,n of all m−dimensional subspaces of Cn, cf.[14]. Therefore,
Grm1,n1

⊗Grm2,n2
is diffeomorphic to

{V1 ⊗ V2 | V1 ∈ Grassm1,n1
, V2 ∈ Grassm2,n2

} ⊂ GrassM,N , (2.9)

where M := m1m2 and N := n1n2.

Both items (a) and (b) readily generalize to an arbitrary number of Grassmannians.

We conclude this subsection by pointing out an isometry between the r−fold
tensor product of Grassmannians Gr⊗r(m,n) and the direct r−fold product of Grass-
mannians

Gr×r(m,n) := {(P1, . . . , Pr) | Pj ∈ Grmj ,nj
, j = 1, . . . , r}. (2.10)

The vector spaces herN and hern1
× · · · × hernr

endowed with the inner products

〈X,Y 〉 := tr(XY ) (2.11)

and

〈
(X1, . . . , Xr), (Y1, . . . , Yr)

〉
:= tr(X1Y1) + · · ·+ tr(XrYr), (2.12)

induce a Riemannian submanifold structure on Gr⊗r(m,n) and Gr×r(m,n), respec-
tively.

Proposition 2.3. The map

ϕ : Gr×r(m,n) → Gr⊗r(m,n) , (P1, . . . , Pr) 7→ P1 ⊗ · · · ⊗ Pr (2.13)

is a diffeomorphism between Gr×r(m,n) and Gr⊗r(m,n). Moreover, ϕ is a global
Riemannian isometry when the right-hand side of (2.12) is replaced by

M1 tr(X1Y1) + · · ·+Mr tr(XrYr), (2.14)

with Mj :=
r∏

k=1, k 6=j

mk, for j = 1, . . . , r.

Note that the isometry between Gr×r(m,n) and Gr⊗r(m,n) is very special, as
in general the map

hern1
× · · · × hernr

→ herN , (X1, . . . , Xr) 7→ X1 ⊗ · · · ⊗Xr (2.15)

fails even to be injective. For the proof of Proposition 2.3 we refer to the Appendix.
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2.2. Geodesics and parallel transport. It is well-known that every Rie-
mannian manifold M carries a unique Riemannian or Levi-Civita connection ∇,
e.g. [1, 14, 32]. By means of ∇, one defines parallel transport and geodesics as
follows. Let t 7→ X (t) be a vector field along a curve γ on M, i.e. X (t) ∈ Tγ(t)M for
all t ∈ R. Then, X is defined to be parallel along γ if

∇γ̇(t)X (t) = 0 (2.16)

for all t ∈ R. Given ξ ∈ Tγ(0)M, there exists a unique parallel vector field X along γ
such that X (0) = ξ and the vector X (t) ∈ Tγ(t)M is called the parallel transport of ξ
to Tγ(t)M along γ. In particular, γ is called a geodesic on M, if γ̇ is parallel along γ.

For the Grassmann manifold Grm,n, the curve t 7→ γ(t) = e−t[ξ,P ]Pet[ξ,P ] de-
scribes the geodesic through P ∈ Grm,n in direction ξ ∈ TPGrm,n, i.e. γ(t) satisfies
equation (2.16) with initial conditions γ(0) = P and γ̇(0) = ξ. Similarly, it can be
verified that the parallel transport of η ∈ TPGrm,n to Tγ(t)Grm,n along the geodesic

through P in direction ξ is given by η 7→ e−t[ξ,P ]ηet[ξ,P ]. These notions can be
straight-forward generalized to the direct product of Grassmannians Gr×r(m,n).

2.3. The Riemannian gradient and Hessian. First, let us recall that the
Riemannian gradient at P ∈ M of a smooth objective function f : M → R on a
Riemannian manifold M is defined as the unique tangent vector gradf(P ) ∈ TPM
satisfying

df(P )(ξ) = 〈gradf(P ), ξ〉 (2.17)

for all ξ ∈ TPM, where df(P ) denotes the differential (tangent map) of f at P .
Moreover, if ∇ is the Levi-Civita connection on M, then the Riemannian Hessian of
f at P is the linear map Hf (P ) : TPM → TPM defined by

Hf (P )ξ = ∇ξ gradf(P ), (2.18)

for all ξ ∈ TPM. Now, if M is a submanifold of a vector space V , then (2.17) and

(2.18) simplify as follows. Let f̃ and X̃ be smooth extensions of f and of the vector
field gradf , respectively. Then,

grad f(P ) = πP
(
∇f̃(P )

)
, Hf (P )ξ = πP (DX̃ (P )ξ), (2.19)

where πP is the orthogonal projection onto TPM and ∇f̃ denotes the standard gra-
dient of f̃ on V .

For the generalized Rayleigh-quotient ρA on Gr×r(m,n), explicit formulas of the
gradient and Hessian will be given in Section 3.3.

3. The generalized Rayleigh-quotient. Let Gr⊗r(m,n) be the r−fold tensor
product of Grassmannians with (m,n) as in (2.7) and let A ∈ herN , N = n1n2 · · ·nr.
In the following, we analyze the constrained optimization problem

max
P∈Gr⊗r(m,n)

tr(AP), (3.1)

which comprises problems from different areas, such as multilinear low-rank approx-
imations of a tensor, geometric measures of entanglement, subspace clustering and
combinatorial optimization. These applications are naturally stated on a tensor prod-
uct space. However, for the special case of the Grassmann manifold they can be
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reformulated on a direct product space. To this purpose, we define the generalized
Rayleigh-quotient of the matrix A as

ρA : Gr×r(m,n) → R, ρA(P1, . . . , Pr) := tr
(
A(P1 ⊗ · · · ⊗ Pr)

)
. (3.2)

Based on the isometry between Gr⊗r(m,n) and Gr×r(m,n), we can rewrite problem
(3.1) as an optimization task for ρA

max
(P1,...,Pr)∈Gr×r(m,n)

ρA(P1, . . . , Pr). (3.3)

In general this is not the case, as we have already pointed out in (2.15).
The term “generalized Rayleigh-quotient” is justified, since for r = 1 we obtain

the classical Rayleigh-quotient ρA(P ) = tr(AP ). In the sequel we want to point out
some similarities and differences between the generalized and the classical Rayleigh-
quotient. It is well known that under the assumption that there is a spectral gap
between the eigenvalues of A ∈ herN , there is a unique maximizer and a unique mini-
mizer of the classical Rayleigh-quotient of A. Unfortunately, this is no longer the case
for the generalized Rayleigh-quotient ρA. Global maximizers and global minimizers
exist since the generalized Rayleigh-quotient is defined on a compact manifold, but
unlike the classical case, it admits also local extrema as the following example shows.
For the case when A is of rank one we refer to Example 3 in [21].

Example 3.1. Let A = diag(λ1, λ2, λ3, λ4) ∈ her4 be a diagonal matrix with
λ2 > λ3 > λ4 > λ1 and P ∗

1 , P
∗
2 ∈ Gr1,2 of the form

P ∗
1 =

[
1 0
0 0

]
and P ∗

2 =

[
0 0
0 1

]
. (3.4)

The maximum of ρA is obvious less or equal to λ2. Since ρA(P
∗
1 , P

∗
2 ) = λ2, we have

(P ∗
1 , P

∗
2 ) as the global maximizer of ρA. From (3.33) it follows that all (P1, P2) ∈

Gr1,2×Gr1,2 with P1 and P2 diagonal, are critical points of ρA. In particular (P ∗
2 , P

∗
1 )

is a critical point of ρA with ρA(P
∗
2 , P

∗
1 ) = λ3 < λ2. Moreover, one can check by

computing the Hessian of ρA at (P ∗
2 , P

∗
1 ) , see (3.39), that (P ∗

2 , P
∗
1 ) is actually a local

maximizer of ρA. Comparative to the classical Rayleigh-quotient, this strange behavior
results from the fact that not all 4× 4 permutation matrices are of the form Θ1 ⊗Θ2,
with Θ1, Θ2 ∈ SU2.

While for the classical Rayleigh-quotient one knows that the maximizer and min-
imizer are orthogonal projectors onto the space spanned by the eigenvectors corre-
sponding to the largest and, respectively, smallest eigenvalues of A, it is difficult to
provide an analog characterization for the global extrema of the generalized Rayleigh-
quotient for an arbitrary matrix A. But, for particular A and r such a characterization
is possible.
(a) If r = 2 and A is of rank one, i.e. A = vec(Y )vec(Y )†, with Y ∈ Cn1×n2 , then
the generalized Rayleigh-quotient can be rewritten as

ρA(P1, P2) = tr[vec(Y )vec(Y )†(P1 ⊗ P2)] = tr(Y †P1Y P2). (3.5)

Under the assumption that Y has full rank and distinct singular values there exist one
maximizer and one minimizer. The maximizer (P ∗

1 , P
∗
2 ) ∈ Gr×2(m,n) of ρA is given

by the orthogonal projectors onto the space spanned by the m∗ := min{m1,m2} left,
respective right singular vectors corresponding to the largestm∗ singular values. Sim-
ilar for the minimizer, the singular vectors corresponding to the smallest m∗ singular
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values.
(b) If r is arbitrary and A diagonalizable via a transformation of SU(n) = {Θ1⊗· · ·⊗
Θr | Θj ∈ SUnj

}, then we can assume without loss of generality that A is diagonal.
Moreover, if A can be written as Λ1 ⊗ · · · ⊗ Λr, with Λj diagonal, which is always
the case when A = A1 ⊗ · · · ⊗Ar, Aj ∈ hernj

, then the generalized Rayleigh-quotient
becomes a product of r decoupled classical Rayleigh-quotients. Hence, there is one
maximizer and one minimizer. However, there is a dramatic change if A cannot be
written as a Kronecker product of diagonal matrices. In this case ρA has also lo-
cal extrema, as Example 3.1 shows. From (3.33) one can immediately formulate the
following critical point characterization.

Proposition 3.2. Let A ∈ herN be diagonal. Then, (P1, . . . , Pr) ∈ Gr×r(m,n)
is a critical point of ρA if and only if Pj are permutations of the standard projectors
Πj, for all j = 1, . . . , r.

3.1. Applications. There is a wide range of applications for problem (3.3) in
areas such as signal processing, computer vision and quantum information. We briefly
illustrate the broad potential of (3.3) by four examples.

3.1.1. Best multilinear rank-(m1, . . . ,mr) tensor approximation. The prob-
lem of best approximation of a tensor by a tensor of lower rank is important in areas
such as statistics, signal processing and pattern recognition. Unlike in the matrix
case, there are several rank concepts for a higher order tensor, [21, 28]. For the scope
of this paper, we focus on the multilinear rank case.

A finite dimensional complex tensor A of order r is an element of a tensor product
V1 ⊗ · · · ⊗ Vr, where V1, . . . , Vr are complex vector spaces with dim Vj = nj . Such
an element can have various representations, a common one is the description as an
r−way array, i.e. after a choice of bases for V1, . . . , Vr, the tensor A is identified with
[ai1...ir ]

n1,...,nr

i1=1,...,ir=1 ∈ C
n1×n2×···×nr , see e.g. [28]. The j−th way of the array is referred

to as the j−th mode of A. A matrix X ∈ Cqj×nj acts on a tensor A ∈ Cn1×n2×···×nr

via mode−j multiplication ×j , i.e.

(A×j X)i1...ij−1k1ij+1...ir =

nj∑

k2=1

ai1...ij−1k2ij+1...irxk1k2
, (3.6)

cf. [20, 28].

It is always possible to rearrange the elements of A along one or, more general,
several modes such that they form a matrix. Let l1, . . . , lq and c1, . . . , cp be ordered
subsets of 1, . . . , r such that {l1, . . . , lq}∪{c1, . . . , cp} = {1, . . . , r}. Moreover, consider
the products Nk := nlk+1

· · ·nlq , N
′
k := nck+1

· · ·ncp , for k = 0, . . . , q − 1 and k =
0, . . . , p−1, respectively. Then, the matrix unfolding of A along (l1, . . . , lq) is a matrix
A(l1,...,lq) of size N0 ×N ′

0 such that the element in position (i1, . . . , ir) of A moves to
position (s, t) in A(l1,...,lq), where

s := ilq +

q−1∑

k=1

(ilk − 1)Nk and t := icp +

p−1∑

k=1

(ick − 1)N ′
k. (3.7)

As an example, for a third order tensor A ∈ C2×2×2 we obtain the following matrix
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unfoldings as in [20]

A(1) =

[
a111 a112 a121 a122
a211 a212 a221 a222

]
, A(2) =

[
a111 a112 a211 a212
a121 a122 a221 a222

]
,

A(3) =

[
a111 a121 a211 a221
a112 a122 a212 a222

]
.

The multilinear rank of A ∈ Cn1×···×nr is the r−tuple (m1, . . . ,mr) such that

m1 = rank A(1) , . . . , mr = rank A(r). (3.8)

To refer to the multilinear rank of A we will use the notation rank-(m1, . . . ,mr) or
rank A = (m1, . . . ,mr). Given a tensor A ∈ Cn1×···×nr , we are interested in finding
the best rank-(m1, . . . ,mr) approximation of A, i.e.

min
rank(B)≤(m1,...,mr)

‖A− B‖. (3.9)

Here, ‖A‖ is the Frobenius norm of a tensor, i.e. ‖A‖2 = 〈A,A〉 with

〈A,B〉 = vec(A)†vec(B) =

n1,...,nr∑

i1,...,ir=1

āi1...irbi1...ir . (3.10)

Here, vec(A) refers to the matrix unfolding A(1,...,r) ∈ CN×1. In the matrix case, the
solution of the optimization problem (3.9) is given by a truncated SVD, cf. Eckart-
Young theorem [7]. However, for the higher-order case, there is no equivalent of the
Eckart-Young theorem. According to the Tucker decomposition [31] or the higher or-
der singular value decomposition (HOSVD) [20], any rank-(m1, . . . ,mr) tensor can be
written as a product of a core tensor S and r Stiefel matrices X1 ∈ Cm1×n1 , . . . , Xr ∈
C

mr×nr , i.e.

B = S ×1 X1 ×2 · · · ×r Xr, X†
jXj = Imj

, j = 1, . . . , r.

Thus, solving (3.9) is equivalent to solving the maximization problem

max
X1,...,Xr

‖A ×1 X1 ×2 · · · ×r Xr‖
2, (3.11)

with X†
jXj = Imj

, j = 1, . . . , r, see e.g. [8]. Using vec−operation and Kronecker
product language, one has

vec(A×1 X1 ×2 · · · ×r Xr) = vec(A)†(X1 ⊗ · · · ⊗Xr). (3.12)

According to (3.10) and the properties of the trace function, the best multilinear
rank-(m1, . . . ,mr) approximation problem becomes

max
(P1,...,Pr)∈Gr×r(m,n)

tr
(
A(P1 ⊗ · · · ⊗ Pr)

)
, (3.13)

with A = vec(A)vec(A)† and Pj = XjX
†
j , j = 1, . . . , r.
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3.1.2. A geometric measure of entanglement. The task of characterizing
and quantifying entanglement is a central theme in quantum information theory.
There exist various ways to measure the difference between entangled and product
states. Here, we discuss a geometric measure of entanglement, which is given by
the Euclidean distance of z ∈ C

N with ‖z‖ = 1 to the set of all product states
P = {x1 ⊗ · · · ⊗ xr | xj ∈ Cnj , ‖xj‖ = 1}, i.e.

δE(z) := min
x∈P

‖z − x‖2. (3.14)

Since any minimizer of δE is also a maximizer of

max
xj∈C

nj , ‖xj‖=1
|z†(x1 ⊗ · · · ⊗ xr)|, (3.15)

and vice versa, computing the entanglement measure (3.14) is equivalent to solving

max
(P1,...,Pr)∈Gr×r(m,n)

tr
(
A(P1 ⊗ · · · ⊗ Pr)

)
, (3.16)

with A = zz† and P1 = x1x
†
1, . . . , Pr = xrx

†
r. Note that (3.16) actually constitutes a

best rank−(1, . . . , 1) tensor approximation problem [6].

3.1.3. Subspace clustering. Subspace segmentation is a fundamental problem
in many applications in computer vision (e.g. image segmentation) and image pro-
cessing (e.g. image representation and compression). The problem of clustering data
lying on multiple subspaces of different dimensions can be stated as follows:

Given a set of data points X = {xl ∈ Rn}Lj=1 which lie approximately in r ≥ 1
distinct subspaces Sk of dimension dk, 1 ≤ dk < n, identify the subspaces Sk without
knowing in advance which points belong to which subspace.

Every dk dimensional subspace Sk ⊂ Rn can be defined as the kernel of a rank
mk = n− dk orthogonal projector Pk of Rnk , with nk = n as

Sk = {x ∈ R
n | Pkx = 0}. (3.17)

Therefore, any point x ∈
r
∪

k=1
Sk satisfies

‖P1x‖ · ‖P2x‖ · · · ‖Prx‖ = 0, (3.18)

which is equivalent to

tr(xx⊤P1) tr(xx
⊤P2) · · · tr(xx

⊤Pr) = tr
(
(xx⊤ ⊗ · · · ⊗ xx⊤)(P1 ⊗ · · · ⊗ Pr)

)
= 0.

(3.19)
Thus, the problem of recovering the subspaces Sk from the data points X can be
treated as the following optimization task:

min
P∈Gr×r(m,n)

L∑

l=1

r∏

k=1

‖Pkxl‖
2 = min

P∈Gr×r(m,n)
tr
(
A(P1 ⊗ · · · ⊗ Pr)

)
, (3.20)

with P := (P1, ..., Pr) and

A :=

L∑

l=1

xlx
⊤
l ⊗ · · · ⊗ xlx

⊤
l︸ ︷︷ ︸

r times

. (3.21)
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We mention that here we have used the same notation Gr×r(m,n) to refer to the
direct r−fold product of real Grassmannians.

For best multilinear rank tensor approximation and subspace clustering applica-
tions, numerical experiments are presented at the end of Section 4.

3.1.4. A combinatorial problem. Let Λ = (λjk)
n2,n1

j=1,k=1 be a given array of
positive real numbers and let m1 ≤ n1, m2 ≤ n2 be fixed. Find m1 columns and m2

rows such that the sum of the corresponding entries λjk is maximal, i.e. solve the
combinatorial maximization problem

max
J⊂{1,...,n2}

|J|=m2

max
K⊂{1,...,n1}

|K|=m1

∑

j∈J, k∈K

λjk. (3.22)

We can permute m1 columns and m2 rows of Λ by right and left multiplication with
permutations of the standard projectors Π1 and Π2, respectively. Hence, problem
(3.22) is solved by finding permutation matrices σ1 and σ2 which maximize:

∑

i,j

(Πσ2
ΛΠσ1

)ij , (3.23)

where
∑

i,j is the sum over all entries and Πσ1
:= σ⊤

1 Π1σ1, Πσ2
:= σ⊤

2 Π2σ2. The sum
in (3.23) can be written as

∑

i,j

(Πσ2
ΛΠσ1

)ij =
∑

i,j

(
(Πσ1

⊗Πσ2
)vec(Λ)

)

ij

= tr

(
A(Πσ1

⊗Πσ2
)

)
, (3.24)

where A := diag(vec(Λ)). The last equality in (3.24) holds since Πσ1
⊗Πσ2

is diagonal,
too. According to Proposition 3.2, we have the following equivalence

max
σ1, σ2

tr

(
A(Πσ1

⊗Πσ2
)

)
≡ max

(P1,P2)∈Gr×2(m,n)
tr

(
A(P1 ⊗ P2)

)
. (3.25)

Hence, we can embed the combinatorial maximization problem (3.22) into our con-
tinuous optimization task (3.3). The generalization of (3.22) to Λ being an arbitrary
multi-array is straight-forward.

Problems of this type arise in multi-decision processes such as the following. As-
sume that a company has n1 branches and each branch produces n2 goods. If λjk
denotes the gain of the j−th branch with the k−th good, then one could be interested
to reduce the number of producers and goods to m1 and m2, respectively, which give
maximum benefit.

3.2. Riemannian optimization. We continue our investigation of problem
(3.3) by computing the gradient and the Hessian of ρA. In the following lemma
we establish multilinear maps ΨA,j, which will enable us to derive clear expressions
for the gradient and the Hessian of ρA.

Lemma 3.3. Let A ∈ herN and (X1, . . . , Xr) ∈ hern1
× · · · × hernr

. Then, for all
j = 1, . . . , r there exists a unique map ΨA,j : hern1

× · · · × hernr
→ C

nj×nj such that

tr
(
A(X1 ⊗ · · · ⊗XjZ ⊗ · · · ⊗Xr)

)
= tr

(
ΨA,j(X1, . . . , Xr)Z

)
(3.26)



12 O. CURTEF, G. DIRR AND U. HELMKE

holds for all Z ∈ Cnj×nj . In particular, one has

tr

(
A(X1 ⊗ · · · ⊗Xr)

)
= tr

(
ΨA,1(In1

, X2, . . . , Xr)X1

)

= · · · = tr

(
ΨA,r(X1, . . . , Xr−1, Inr

)Xr

)
.

(3.27)

Moreover, for A := A1 ⊗ · · · ⊗Ar the maps ΨA,j exhibit the explicit form

ΨA,j(X1, . . . , Xr) =

(
r∏

k=1, k 6=j

tr(AkXk)

)
AjXj . (3.28)

Proof. Fix j and consider the linear functional

Z 7→ λA(Z) := tr
(
A(X1 ⊗ · · · ⊗XjZ ⊗ · · · ⊗Xr)

)
.

By the Riesz representation theorem, there exists a unique Bj ∈ Cnj×nj such that
λA(Z) = tr

(
BjZ

)
for all Z ∈ Cnj×nj . Therefore, the map ΨA,j is given by

(X1, . . . , Xr) 7→ ΨA,j(X1, . . . , Xr) := Bj . It is straightforward to show that ΨA,j is
multilinear in X1, . . . , Xr. Now, choosing Z := Xj and Xj := Inj

in (3.26) immedi-
ately yields (3.27). Moreover, (3.28) follows from the trace equality

tr
(
A1X1 ⊗ · · · ⊗AjXjZ ⊗ · · · ⊗ArXr

)
=

( r∏

k=1, k 6=j

tr(AkXk)

)
tr(AjXjZ).

Thus the proof of Lemma 3.3 is complete.
Remark 3.4. The linear maps ΨA,j constructed in the above proof are almost

identical to the so-called partial trace operators — a well-known concept from multi-
linear algebra and quantum mechanics [2].

Next, we show how to compute ΨA,j(X1, . . . , Xr) for given (X1, . . . , Xr) ∈ hern1
×

· · · × hernr
if A is not a pure tensor product A1 ⊗ · · · ⊗Ar.

Lemma 3.5. Let A ∈ herN and (X1, . . . , Xr) ∈ hern1
× · · · × hernr

. Then, the
(s, t)−position of ΨA,j(X1, . . . , Xr) ∈ Cnj×nj is given by

nl∑

il=1, l 6=j
l=1,...,r

e⊤i1 ⊗ · · · ⊗ e⊤s ⊗ · · · ⊗ e⊤irA(X1 ⊗ · · · ⊗Xr)ei1 ⊗ · · · ⊗ et ⊗ · · · ⊗ eir , (3.29)

where {eil}
nl

il=1 denotes the standard basis of Cnl .
Proof. Let 1 ≤ s, t ≤ nj . Then, the element in the (s, t) position of the matrix

ΨA,j(X1, . . . , Xr) is given by

e⊤s ΨA,j(X1, . . . , Xr)et = tr

(
ΨA,j(X1, . . . , Xr)ete

⊤
s

)

= tr

(
A(X1 ⊗ · · · ⊗Xjete

⊤
s ⊗ · · · ⊗Xr)

)

= tr

(
A(X1 ⊗ · · · ⊗Xr)(In1

⊗ · · · ⊗ ete
⊤
s ⊗ · · · ⊗ Inr

)

)
.
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Hence, (3.29) follows from the identity Inl
=

nl∑
il=1

eile
⊤
il
.

Remark 3.6. Let A ∈ herN and (X1, . . . , Xr) ∈ hern1
× · · · × hernr

. A straight-
forward consequence of the identity

tr

(
A(X1 ⊗ · · · ⊗ Z ⊗ · · · ⊗Xr)

)†

= tr

(
A(X1 ⊗ · · · ⊗ Z† ⊗ · · · ⊗Xr)

)
, (3.30)

for all Z ∈ Cnj×nj , shows that ΨA,j(X1, . . . , Inj
, . . . , Xr) is Hermitian. For simplic-

ity of writing, whenever (P1, . . . , Pr) ∈ Gr×r(m,n) is understood from the context,
we use the following shortcut

Âj := ΨA,j(P1, . . . , Inj
, . . . , Pr). (3.31)

Now, we can give an explicit formula for the Riemannian gradient of ρA and derive
necessary and sufficient critical point conditions.

Theorem 3.7. Let A ∈ herN , P := (P1, . . . , Pr) ∈ Gr×r(m,n) and let ρA be the
generalized Rayleigh-quotient on Gr×r(m,n). Then, one has the following:

(i) The gradient of ρA at P with respect to the Riemannian metric (2.12) is

gradρA(P ) =
(
ad2P1

Â1, . . . , ad
2
Pr
Âr

)
. (3.32)

(ii) The critical points of ρA on Gr×r(m,n) are characterized by

[Pj , Âj ] = 0 (3.33)

i.e. Pj, j = 1, . . . , r is the orthogonal projector onto an mj−dimensional invariant

subspace of Âj.
Proof. (i) Fix P := (P1, . . . , Pr) ∈ Gr×r(m,n) and let ρ̃A denote the canonical

smooth extension of ρA to hern1
× · · · × hernr

. Then,

Dρ̃A(P )(X) =
r∑

j=1

tr
(
A(P1 ⊗ · · · ⊗Xj ⊗ · · · ⊗ Pr)

)
=

r∑

j=1

tr(ÂjXj), (3.34)

for all X := (X1, . . . , Xr) ∈ hern1
× · · · × hernr

. From (2.12), we obtain that the

gradient of ρ̃A at P is given by ∇ρ̃A(P ) = (Â1, . . . , Âr). Thus, according to (2.5) and
(2.19),

grad ρA(P ) =
(
ad2P1

Â1, . . . , ad
2
Pr
Âr

)
. (3.35)

(ii) P := (P1, . . . , Pr) ∈ Gr×r(m,n) is a critical point of ρA iff grad ρA(P ) = 0. This
is equivalent to

Pj [Pj , Âj ] = [Pj , Âj ]Pj , (3.36)

for all j = 1, . . . , r. By multiplying (3.36) once from the left with Pj and once from

the right with Pj , we obtain that PjÂj = PjÂjPj and ÂjPj = PjÂjPj . Hence, the

conclusion [Pj , Âj ] = 0 holds for all j = 1, . . . , r.

As a consequence of Theorem 3.7, we immediately obtain the following necessary
and sufficient critical point condition.
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Corollary 3.8. Let A ∈ herN , P := (P1, . . . , Pr) ∈ Gr×r(m,n) and let Θj ∈

SUnj
be such that Θ†

jPjΘj = Πj , where Πj is the standard projector in Grmj ,nj
. We

write

Θ†
jÂjΘj =

[
Ψ′

j Ψ′′′
j

Ψ′′′†
j Ψ′′

j

]
, (3.37)

with Ψ′
j ∈ hermj

, Ψ′′
j ∈ hernj−mj

, and Ψ′′′
j ∈ C

mj×(nj−mj). Then P is a critical point
of ρA if and only if

Ψ′′′
j = 0, (3.38)

for all j = 1, . . . , r.

For the rest of this section we are concerned with the computation of the Rie-
mannian Hessian of ρA and also with its non-degeneracy at critical points.

Theorem 3.9. Let A ∈ herN and P := (P1, . . . , Pr) ∈ Gr×r(m,n). Then, the
Riemannian Hessian of ρA at P is the unique self-adjoint operator

HρA
(P ) : TPGr×r(m,n) → TPGr×r(m,n),

ξ := (ξ1, . . . , ξr) 7→ HρA
(P )(ξ) :=

(
H1(ξ), . . . ,Hr(ξ)

)
,

(3.39)

defined by

Hj(ξ) := −adPj
ad

Âj
ξj +

r∑

k=1,k 6=j

ad2Pj
ΨA,j(P1, . . . , Inj

, . . . , ξk, . . . , Pr), (3.40)

where Âj is the shortcut for ΨA,j(P1, . . . , Inj
, . . . , Pr).

Proof. Let (X̃1, . . . , X̃r) denote a smooth extension of grad ρA to hern1
×· · ·×hernr

.

According to (3.32), we can choose P 7→ X̃j(P ) = ad2Pj
Âj . Then,

DX̃j(P )(X) = adXj
adPj

Âj + adPj
adXj

Âj

+
r∑

k=1,k 6=j

ad2Pj
ΨA,j(P1, . . . , Inj

, . . . , Xk, . . . , Pr),
(3.41)

for all P := (P1, . . . , Pr) and X := (X1, . . . , Xr) in hern1
× · · · × hernr

. Notice that,
the derivative of the linear map Pk 7→ ΨA,j(P1, · · · , Inj

, . . . , Pk, . . . , Pr) in direction
Xk ∈ hernk

(k 6= j) is ΨA,j(P1, . . . , Inj
, . . . , Xk, . . . , Pr). Applying (2.5) and (2.19),

the Riemannian Hessian of ρA at P ∈ Gr×r(m,n) is given by (3.39) and (3.40). Here,
we have used the following two facts:

(i) Clearly, ad
Âj
ξj is skew-hermitian and hence

− adPj
ad

Âj
ξj = adPj

adξj Âj (3.42)

is in the tangent space TPj
Grmj ,nj

for all ξj ∈ TPj
Grmj ,nj

.

(ii) A straightforward computation shows that adξjadPj
Âj is in the orthogonal com-

plement of TPj
Grmj ,nj

and hence

ad2Pj
adξjadPj

Âj = 0 (3.43)
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for all ξj ∈ TPj
Grmj ,nj

.

By restricting the tangent vectors (ξ1, . . . , ξr) ∈ TPGr×r(m,n) to the vectors
of the form (0, . . . , ξj , . . . , 0), it follows immediately a necessary condition for the
non-degeneracy of the Hessian at local extrema.

Theorem 3.10. Let A ∈ herN , and P ∈ Gr×r(m,n) be a local maximizer (local
minimizer) of ρA. If HρA

(P ) is non-degenerate, then for all j = 1, . . . , r the equality

σ(Ψ′
j) ∩ σ(Ψ

′′
j ) = ∅, (3.44)

holds with Ψ′
j and Ψ′′

j as in (3.37). Here, σ(X) denotes the spectrum of X.
Remark 3.11. In the case when A ∈ herN can be diagonalized by elements in

SU(n) = {Θ1 ⊗ · · · ⊗ Θr | Θj ∈ SUnj
}, condition(3.44) is also sufficient for the

nondegeneracy of the Hessian of ρA at local extrema.

In the remaining part of the section we derive a genericity statement concerning
the critical points of the generalized Rayleigh-quotient. The result is a straightforward
consequence of the parametric transversality theorem [15]. Let V, M, N be smooth
manifolds and F : V×M → N a smooth map. Moreover, let T(A,P )F : V ×TPM →
TF (A,P )N denote the tangent map of F at (A,P ) ∈ V × M. We say that F is
transversal to a submanifold S ⊂ N and write F ⋔ S if

ImT(A,P )F +TF (A,P )S = TF (A,P )N , (3.45)

for all (A,P ) ∈ F−1(S). Then, the parametric transversality theorem states the
following.

Theorem 3.12. ([15]) Let V, M, N be smooth manifolds and S a closed sub-
manifold of N . Let F : V × M → N be a smooth map, let A ∈ V and define
FA : M → N , FA(P ) := F (A,P ). If F ⋔ S, then the set

{A ∈ V | FA ⋔ S} (3.46)

is open and dense.
Now, let fA : M → R be a smooth function depending on a parameter A ∈ V

and consider the map

F : V ×M → T∗M, F (A,P ) := dfA(P ), (3.47)

where T∗M is the cotangent bundle of M and dfA(P ) denotes the differential of fA
at P ∈ M. With these notations, our genericity result reads as follows.

Theorem 3.13. Let M , V and F be as above and let S be the image of the zero
section in T∗M. If F ⋔ S then for a generic A ∈ V the critical points of the smooth
function fA : M → R are non-degenerate.

Proof. Fix A ∈ V and define

FA : M → T∗M, FA(P ) := F (A,P ) (3.48)

From the Transversality Theorem 3.12 it follows that the set

R := {A ∈ V | FA ⋔ S} (3.49)

is open and dense in V if F ⋔ S. In the following, we will prove that FA ⋔ S is
equivalent to the fact that the Hessian of fA is non-degenerate in the critical points.
This will prove the theorem.
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First, notice that Pc ∈ F−1
A (S) if and only if Pc ∈ M is a critical point of fA.

Therefore, the transversality condition

ImTPc
FA +TFA(Pc)S = TFA(Pc)T

∗M, (3.50)

is equivalent to

ImTPc
FA +T0S = T0T

∗M. (3.51)

To rewrite this condition (3.51) in local coordinates, let ϕ : U → W ⊂ TPc
M be a

chart on an open subset U ⊂ M around Pc such that ϕ−1(0) = Pc and Dϕ
−1(0) = id.

Then define

f̃A := fA ◦ ϕ−1 : W → R. (3.52)

Moreover, ϕ induces a chart ψ : π−1(U) → W × T∗
Pc
M ⊂ TPc

M × T∗
Pc
M around

FA(Pc) via

ψ(γ) = (x, (Dϕ−1(x))∗(γ)), x := ϕ ◦ π(γ), (3.53)

Here, π : T∗M → M refers to the natural projection and (Dϕ−1(x))∗(γ) := γ ◦
Dϕ−1(x). Thus, for

F̃A := ψ ◦ FA ◦ ϕ−1 :W →W × T∗
Pc
M (3.54)

one has F̃A(x) = (x, df̃A(x)). Since transversality of FA to S is preserved in local
coordinates, (3.51) is equivalent to

ImDF̃A(0) + TPc
M×{0} = TPc

M× T∗
Pc
M. (3.55)

Then DF̃A(0) = (id, d2f̃A(0)) yields that (3.55) is fulfilled if and only if d2f̃A(0) is

nonsingular. Finally, the conclusion follows form the identity HessfA(Pc) = d2f̃A(0)
which is satisfied due to the fact that Pc is a critical point and Dϕ−1(0) = id.
Here, HessfA(Pc) denotes the Hessian form corresponding to the Hessian operator
via HessfA(Pc)(x, y) = 〈HfA(Pc)x, y〉 for all x, y ∈ TPc

M.
For the generalized Rayleigh-quotient, we obtain the following result.
Corollary 3.14. The critical points of the generalized Rayleigh-quotient are

generically non-degenerate.
Proof. Set M := Gr×r(m,n), V := herN . For the simplicity, we will identify the

cotangent bundle T∗M with the tangent bundle TM and work with the map

F : V ×M → TM, (A,P ) 7→ gradρA(P ), (3.56)

instead of (3.47), where gradρA(P ) is the Riemannian gradient of ρA at P . We will
show that F ⋔ S, where S is now the image of the zero section in TM, i.e.

ImT(A,P )F +TF (A,P )S = TF (A,P )TM, (3.57)

for all (A,P ) ∈ V × M with gradρA(P ) = 0. As in the proof of Theorem 3.13, we
rewrite the transversality condition (3.57) in local coordinates, i.e.

ImDF̃ (A, 0) + TPM×{0} = TPM× TPM, (3.58)
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where

F̃ := ψ ◦ F ◦ (id× ϕ−1) : V ×W →W × TPM. (3.59)

Here, ϕ : U → W ⊂ TPM is a chart around P with ϕ−1(0) = P and Dϕ−1(0) = id
and ψ : π−1(U) → W × TPM ⊂ TPM× TPM is the corresponding induced chart
around F (A,P ). With this choice of charts, we obtain

F̃ (A, x) = (x,∇ρ̃A(x)), (3.60)

where ρ̃A := ρA ◦ ϕ−1 :W → R. Since A 7→ ρ̃A(0) is linear, one has

DF̃ (A, 0)(X, ξ) =
(
ξ,∇ρ̃X(0) + d2f̃A(0)ξ

)
. (3.61)

Thus, condition (3.58) holds if and only if

Im∇ρ̃(·)(0) + Im d2f̃A(0) = TPM. (3.62)

Finally, we will show that Im∇ρ̃(·)(0) = TPM which clearly guarantees (3.62). Let

ξ := (ξ1, . . . , ξr) ∈
(
Im∇ρ̃(·)(0)

)⊥
, then we obtain

0 = 〈∇ρ̃X(0), ξ〉 = dρ̃X(0)ξ = dρX(P )ξ

= tr

(
X(

r∑

j=1

P1 ⊗ · · · ⊗ ξj ⊗ · · · ⊗ Pr)

)
,

(3.63)

for all X ∈ herN . Notice, that the equality dρ̃X(0)ξ = dρX(P )ξ follows from
Dϕ−1(0) = id. Therefore,

r∑

j=1

P1 ⊗ · · · ⊗ ξj ⊗ · · · ⊗ Pr = 0 (3.64)

and this holds if and only if ξ1 = 0, . . . , ξr = 0, since alls summands in (3.64) are

orthogonal to each other. Thus, we have proved that F̃ ⋔ TPM × {0} and hence
F ⋔ S. From the Theorem 3.13 it follows immediately that the critical points of the
generalized Rayleigh-quotient are generically non-degenerate.

Unfortunately, for best multilinear rank tensor approximation and subspace clus-
tering problems, we cannot conclude from Corollary 3.14 that the critical points of
ρA are generically non-degenerate. In these cases, the resulting matrices A are re-
stricted to a thin subset of herN and thus the genericity statement with respect herN
in Corollary 3.14 does not carry over straight-forwardly.

4. Numerical Methods. Exploiting the geometrical structure of the constraint
set Gr×r(m,n), we develop two numerical methods, a Newton-like and a conjugated
gradient algorithm, for optimizing the generalized Rayleigh-quotient ρA, with A ∈
herN , N := n1n2 · · ·nr.
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4.1. Newton-like algorithm. The intrinsic Riemannian Newton algorithm is
described by means of the Levi-Civita connection taking iteration steps along geodesics
[9, 29]. Sometimes geodesics are difficult to determine, thus, here we are interested in a
more general approach, which introduces the Newton iteration via local coordinates,
see [1, 13, 27]. More precisely, we follow the ideas in [13] and use a pair of local
coordinates on Gr×r(m,n), i.e. normal coordinates and QR-coordinates.

Recall that, a local parametrization∗ of Gr×r(m,n) around a point P := (P1, . . . , Pr)
is a smooth map

µP : TPGr×r(m,n) → Gr×r(m,n)

satisfying the additional conditions

µP (0) = P and DµP (0) = idTPGr×r(m,n). (4.1)

Riemannian normal coordinates are given by the Riemannian exponential map

µexp
P (ξ) =

(
e−[ξ1,P1]P1e

[ξ1,P1], . . . , e−[ξr,Pr]Pre
[ξr,Pr ]

)
, (4.2)

while QR-type coordinates are defined by the QR-approximation of the matrix expo-
nential, i.e.

µQR
P (ξ) =

(
[X1]

†
Q P1 [X1]Q, . . . , [Xr]

†
Q Pr [Xr]Q

)
. (4.3)

Here [Xj ]Q denotes the Q−factor from the unique QR decomposition of Xj := I +
[ξj , Pj ].

Now, let P ∗ := (P ∗
1 , . . . , P

∗
r ) ∈ Gr×r(m,n) be a critical point of ρA. Choose

P ∈ Gr×r(m,n) in a neighborhood of P ∗ and perform the following Newton-like
iteration

P new := µQR
P (ξ), (4.4)

where ξ := (ξ1, . . . , ξr) ∈ TPGr×r(m,n) is a solution of the Newton equation

HρA
(P )ξ = − grad ρA(P ). (4.5)

Replacing the objects in (4.5) by their explicit form computed in the previous section,
we get the following Newton equation:

− adPj
ad

Âj
ξj +

r∑

k=1,k 6=j

ad2Pj
ΨA,j(P1, . . . , Inj

, . . . , ξk, . . . , Pr) = −ad2Pj
Âj , (4.6)

for all j = 1, . . . , r. As mentioned before, let Âj := ΨA,j(P1, . . . , Inj
, . . . , Pr). Solving

this system in the embedding space hern1
× · · · × hernr

requires a higher number of
parameters than necessary. However, exploiting the particular structure of the tangent
vectors

ξj = ΘjζjΘ
†
j = Θj

[
0 Zj

Z†
j 0

]
Θ†

j, (4.7)

∗Clearly, one can define a local parametrization more generally, i.e. without requiring the second
part of (4.1).
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allows us to solve (4.6) with the minimum number of parameters equal to the dimen-
sion of Gr×r(m,n). Thus, by multiplying (4.6) from the left with Θj and from the

right with Θ†
j, we obtain an equation in the variables Zj ∈ Cmj×(nj−mj), i.e.

Ψ′
jZj − ZjΨ

′′
j −

r∑

k=1,k 6=j

Φj(Zk) = Ψ′′′
j , (4.8)

where the terms Ψ′
j, Ψ

′′
j , Ψ

′′′
j and Φj(Zk) are computed in the following. Let

Θj =
[
Uj Vj

]
∈ SUnj

, (4.9)

where Uj and Vj are nj ×mj and nj × (nj −mj) matrices, respectively. Then,

Ψ′
j = U †

j ÂjUj , Ψ′′
j = V †

j ÂjVj , Ψ′′′
j = U †

j ÂjVj . (4.10)

For expressing Φj(Zk) with j < k , we introduce the multilinear operators ΨA,j,k :
hern1

× · · · × hernr
→ Cnj ·nk×nj ·nk defined in a similar way as ΨA,j by

tr
(
A(X1⊗· · ·⊗XjS⊗· · ·⊗XkT⊗· · ·⊗Xr)

)
= tr

(
ΨA,j,k(X1, . . . , Xr)(S⊗T )

)
, (4.11)

for all S ∈ Cnj×nj and T ∈ Cnk×nk . For convenience, we will use the following shortcut

Âjk := ΨA,j,k(P1, . . . , Inj
, . . . , Ink

, . . . , Pr) ∈ hernj ·nk
. (4.12)

Furthermore, we partition the matrix Âjk into block form

Âjk =: [âst]
nj

s,t=1, (4.15)

where each âst is an nk × nk matrix. Then, the linear map Φj : Cmk×(nk−mk) →
Cmj×(nj−mj) is given by

Zk 7→ Φj(Zk) := U †
j

[
tr(U †

k âstVkZ
†
k + ZkV

†
k â

†
stUk)

]nj

s,t=1
Vj . (4.16)

Finally, the complete Newton-like algorithm for the optimization of ρA on Gr×r(m,n)
is given by Algorithm 1.

Suggestions for implementation. (a) For an arbitrary matrix A ∈ herN , the

computation of Âj and Âjk is performed according to formula (3.29). This can be
simplified in the case of the applications described in Section 3.3.
Case 1. If A = vv†, with v = vec(A), A ∈ C

n1×···×nr , then

Âj = B(j) ·B
†
(j) ∈ hernj

and Âjk = C(j,k) · C
†
(j,k) ∈ hernjnk

, (4.17)

where B(j) and C(j,k) are the j−th mode and respectively (j, k)−th mode matrices

of the tensors B = A ×1 U
†
1 ×2 · · · ×k Ink

×k+1 · · · ×r U
†
r and C = A ×1 U

†
1 ×2 · · · ×j

Inj
×j+1 · · · ×k Ink

×k+1 · · · ×r U
†
r , respectively.

Case 2. If A =
L∑

l=1

xlx
†
l ⊗ · · · ⊗ xlx

†
l︸ ︷︷ ︸

r times

with xl ∈ Cn and L ∈ N, then

Âj =

L∑

l=1

( r∏

i=1
i6=j

‖Pixl‖
2
)
xlx

†
l and Âjk =

L∑

l=1

( r∏

i=1
i6=j,i6=k

‖Pixl‖
2
)
xlx

†
l ⊗ xlx

†
l . (4.18)
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ALGORITHM 1. N-like algorithm

Step 1. Starting point: Given P = (P1, . . . , Pr) ∈ Gr×r(m,n) choose

Θj =
[
Uj Vj

]
∈ SUnj

, U †
jUj = Imj

, V †
j Vj = Inj−mj

,

such that Pj = ΘjΠjΘ
†
j, for j = 1, . . . , r.

Step 2. Stopping criterion: ‖ gradρA
(P )‖/ρA(P ) < ε.

Step 3. Newton direction: Set

Âj := ΨA,j(P1, . . . , Inj
, . . . , Pr)

and compute Ψ′
j, Ψ

′′
j , Ψ

′′′
j as in (4.10), for j = 1, . . . , r.

Set

Âjk := ΨA,j,k(P1, . . . , Inj
, . . . , Ink

, . . . , Pr)

and compute Φj(Zk) as in (4.15) and (4.16), for j, k = 1, . . . , r, with j < k.
Furthermore, set Φk(Zj) = Φj(Zk)

† and solve the Newton equation

Ψ′
jZj − ZjΨ

′′
j −

r∑

k=1,k 6=j

Φj(Zk) = Ψ′′′
j , (4.13)

to obtain Zj ∈ Cmj×(nj−mj), for j = 1, . . . , r.

Step 4. QR-updates:

Θnew
j = Θj

[
Imj

−Zj

Z†
j Inj−mj

]

Q

and P new
j = ΘjΠjΘ

new†

j (4.14)

for all j = 1, . . . , r. Here [ ]Q refers to the Q part from the QR factorization.

Step 5. Set P := P new, Θ := Θnew and go to Step 2.

(b) To solve the system (4.8), one can rewrite it as a linear equation on Rd (d is the
dimension of Gr×r(m,n)) using matrix Kronecker products and vec−operations, then
solve this by any linear equation solver.

(c) The computation of geodesics on matrix manifolds usually requires the matrix
exponential map, which is in general an expensive procedure of order O(n3). Yet,
for the particular case of the Grassmann manifold Grm,n, Gallivan et.al. [10] have
developed an efficient method to compute the matrix exponential, reducing the com-
plexity order to O(nm2) (m < n). Our approach, however, is based on a first order
approximation of the matrix exponential e[ζ,Π] followed by a QR-decomposition to
preserve orthogonality/unitarity. Explicitly, it is given by

[
Im −Z
Z† In−m

]

Q

=W




D−1 ΣD−1 0
−Σ†D−1 D−1 0

0 0 In−2m


W †, (4.19)
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where Z = XΣY † with X ∈ SUm, Y ∈ C(n−m)×m, Y †
j Yj = Imj

and Σ ∈ Cm×m

diagonal. Furthermore,

W :=

[
X† 0 0
0 Y Y ′

]
∈ SUn, D :=

√
Im +Σ†Σ, (4.20)

where [Y Y ′] ∈ SUn−m is an unitary completion of Y . The computational complexity
of this QR-factorization is of order O((n−m)m2).

(d) The convergence of the algorithm is not guaranteed for arbitrary initial conditions
P ∈ Gr×r(m,n) and even in the case of convergence the limiting point need not
be a local maximizer of the function. To overcome this, one could for example test
if the computed direction is ascending, else take the gradient as the new direction.
Furthermore, one can make an iterative line-search in the ascending direction.

In the following theorem we prove that the sequence generated by Algorithm 1
converges quadratically to a critical point of the generalized Rayleigh-quotient ρA if
the sequence starts in a sufficiently small neighborhood of the critical point.

Theorem 4.1. Let A ∈ herN and P ∗ ∈ Gr×r(m,n) be a non-degenerate critical
point of the generalized Rayleigh-quotient ρA, then the sequence generated by the N-like
algorithm converges locally quadratically to P ∗.

Proof. For the critical point P ∗ ∈ Gr×r(m,n), the Riemannian coordinates

(4.2) and the QR- coordinates (4.3) satisfy the condition Dµexp
P∗ (0) = DµQR

P∗ (0) =
idTP∗Gr×r(m,n). Thus, according to Theorem 4.1. from [13] there exists a neighbor-

hood V ⊂ Gr×r(m,n) such that the sequence of iterates generated by the N-like
algorithm converges quadratically to P ∗ when the initial point P is in V .

4.2. Riemannian conjugated gradient algorithm. The quadratic conver-
gence of the Newton-like algorithm has the drawback of high computational complex-
ity. Solving the Newton equation (4.8) yields a cost per iteration of order O(d3),
where d is the dimension of Gr×r(m,n). In what follows, we offer as an alternative to
reduce the computational costs of the Newton-like algorithm by a conjugated gradient
method. The linear conjugated gradient (LCG) method is used for solving large sys-
tems of linear equations with a symmetric positive definite matrix, which is achieved
by iteratively minimizing a convex quadratic function x†Ax. The initial direction d0
is chosen as the steepest descent and every forthcoming direction dj is required to be

conjugated to all the previous ones, i.e. d†jAdk = 0, for all k = 0, · · · , j−1. The exact
maximum along a direction gives the next iterate. Hence, the optimal solution is found
in at most n steps, where n is the dimension of the problem. Nonlinear conjugated
gradient (NCG) methods use the same approach for general functions f : Rn → R,
not necessarily convex and quadratic. The update in this case reads as

xnew = x+ αd and dnew = −∇f(xnew) + βd,

where the step-size α is obtained by a line search in the direction d

α = argmin
t

f(x+ td) (4.21)

and β is given by one of the formulas: Fletcher-Reeves, Polak-Ribiere, Hestenes-
Stiefel, or other. We refer to [29] for the generalization of the NCG method to a
Riemannian manifold. For the computation of the step-size along the geodesic in
direction ξ, an exact line search — as in the classical case — is an extremely expensive
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procedure. Therefore, one commonly approximates (4.21) by an Armijo-rule, which
ensures at least that the step length decreases the function sufficiently. We, however,
have decided to compute the step-size by performing a one-dimensional Newton-step
along the geodesic, since in the neighborhood of a critical point one Newton step can
lead very close to the solution. Therefore, at P = (P1, · · · , Pr) ∈ Gr×r(m,n) the
step-size in direction ξ = (ξ1, · · · , ξr) ∈ TPGr×r(m,n) is given by

α = −
(ρA ◦ γ)′(0)

(ρA ◦ γ)′′(0)
(4.22)

where γ : I → Gr×r(m,n) is the unique geodesic through P in direction ξ.

Let Θ := (Θ1, · · · ,Θr) be such that ΘkPkΘ
†
k = Πk. Furthermore, let P new :=

(P new
1 , · · · , P new

r ) denote the updated point in Gr×r(m,n) via the QR-coordinates
as in (4.14). For the computation of the new direction, a “transport” of the old
direction ξ = (ξ1, · · · , ξr) from TPGr×r(m,n) to the tangent space TPnewGr×r(m,n)
is required. We use the following approximation for the paralle transport of ξ along
the geodesic through P in direction ξ

ξj 7→ Θnew
j

[
0 Zj

Z†
j 0

]
Θnew†

j , where Θnew
j = Θj

[
Imj

−Zj

Z†
j Inj−mj

]

Q

, (4.26)

for all j = 1, . . . , r.
The complete Riemannian conjugated gradient is presented as Algorithm 2.
It is recommended to reset the search direction to the steepest descent direction

after d iterations, i.e. Znew
k := −gnewk , k = 1, . . . , r, where d refers to the dimension of

the manifold. For the maximization of the generalized Rayleigh-quotient the initial
direction is Zk = gk and the update Znew

k = gnewk + β Zk.
The convergence properties of the NCG methods are in general difficult to ana-

lyze. Yet, under moderate supplementary assumptions on the cost function one can
guarantee that the NCG converges to a stationary point [24]. It is expected that the
proposed Riemannian conjugated gradient method has properties similar to those of
the NCG.

4.3. Numerical experiments. In this section we run several numerical exper-
iments suitable for the applications mentioned in Section 3.2, i.e. best rank approxi-
mation for tensors and subspace clustering, to test the Newton-like (N-like) and Rie-
mannian conjugated gradient (RCG) algorithms. The algorithms were implemented
in MATLAB on a personal notebook with 1.8 GHz Intel Core 2 Duo processor.

4.3.1. Best multilinear rank-(m1, . . . ,mr) tensor approximation.. To test
the performance of our algorithms we have considered several examples of large size
tensors of order 3 and 4 with entries chosen from the standard normal distribution
and estimated their best low-rank approximation. We have started with a truncated
HOSVD ([20]) and performed several HOOI iterates before we run our N-like and
RCG algorithms. Depending on the size of the tensor, the number of HOOI iterations
necessary to reach the region of attraction of a stationary point P ∗ ∈ Gr×r(m,n),
ranges from 10 to 100. As stopping criterion we have chosen that the relative norm
of the gradient ‖ gradρA

(P )‖/ρA(P ) is approximately 10−13.
Computational complexity. The computational complexity of the N-like

method is determined by the computation of the Hessian and the solution of the New-
ton equation (4.13). Thus, for the best rank-(m,m,m) approximation of a n× n× n
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ALGORITHM 2. RCG algorithm

Step 1. Starting point: Given P = (P1, . . . , Pr) ∈ Gr×r(m,n) choose

Θj =
[
Uj Vj

]
∈ SUnj

, U †
jUj = Imj

, V †
j Vj = Inj−mj

,

such that Pj = ΘjΠjΘ
†
j, for j = 1, . . . , r.

Initial direction: Set

Âj := ΨA,j(P1, . . . , Inj
, . . . , Pr),

compute Ψ′
j, Ψ

′′
j , Ψ

′′′
j as in (4.10) and take the steepest descent direction

Zj = −gj := −Ψ′′′
j ,

for j = 1, . . . , r. Denote Z := (Z1, . . . , Zr), g := (g1, . . . , gr).

Step 2. Stopping criterion: ‖ gradρA
(P )‖/ρA(P ) < ε.

Step 3. QR-updates:

Θnew
j = Θj

[
αImj

αZj

−αZ†
j αInj−mj

]

Q

, Pj = ΘjΠjΘ
new†

j , (4.23)

with the step-size given by α = −a/(b+ c), where

a :=
r∑

j=1

tr

(
Ψ′′′

j Z
†
j

)
, b :=

r∑

j=1

tr

(
Ψ′

jZjZ
†
j − ZjΨ

′′
jZ

†
j

)
,

c :=
r−1∑
j=1

r∑
k=j+1

ρA(P1, . . . , ξj , . . . , ξk, . . . , Pr),

for j = 1, . . . , r. The tangent vectors ξj are given in (4.7).

Step 4. Set P := P new and Θ := Θnew.

Step 5. New direction: Update Ψ′
j , Ψ

′′
j , Ψ

′′′
j as in (4.10) and compute the new

direction

Znew
j = −gnewj + β Zj , g

new
j := Ψ′′′

j , (4.24)

for j = 1, . . . , r. Here, β is given by the Polak-Ribiere formula

β =
〈gnew, gnew − g〉

〈g, g〉
(4.25)

Step 6. Set g := gnew, Z := Znew and go to Step 2.

tensor, the computation of the Hessian is dominated by tensor-matrix multiplications
and is of order O(n3m). Solving the Newton equation by Gaussian elimination gives a
computational complexity of order O(m3(n−m)3), i.e. the dimension of the manifold
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to the power of three. For the computational costs of the RCG method we have to
take into discussion only tensor-matrix multiplications, which give a cost per RCG
iteration of order O(n3m).

Experimental results and previous work. The problem of best low-rank
tensor approximation has enjoyed a lot of attention recently. Apart from the well
known higher order orthogonal iterations – HOOI ([21]), various algorithms which
exploit the manifold structure of the constraint set have been developed. We refer to
[8, 18] for Newton methods, to [28] for quasi-Newton methods and to [17] for conju-
gated gradient and trust region methods on the Grassmann manifold. Similar to the
Newton methods in [8, 18], our N-like method converges quadratically to a stationary
point of the generalized Rayleigh-quotient when starting in its neighborhood.

We have compared our algorithms with the existing ones in the literature: quasi-
Newton with BFGS, Riemannian conjugated gradient method which uses the Armijo-
rule for the computation of the step-size (CG-Armijo), and HOOI. The algorithms
were run on the same platform, identically initialized and with the same stopping
criterion. For the BFGS quasi-Newton and limited memory quasi-Newton (L-BFGS)
methods we have used the code available in [25].
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Fig. 4.1. Convergence for multilinear rank tensor approximation: number of iterations versus
the relative norm of the gradient ‖ gradρA(Pn)‖/ρA(Pn) at a logarithmic scale. Left: 100×100×100
tensor approximated by a rank-(5, 5, 5) tensor. Right: 100×150×200 tensor approximated by a rank-
(15, 10, 5) tensor.

Fig. 4.1 shows convergence results for two large size tensors 100× 100× 100 and
100×150×200 approximated by rank-(5, 5, 5) and rank-(15, 10, 5) tensors, respectively.
In Fig. 4.2 we plot the convergence behavior of the RCG method for the best rank-
(10, 10, 10) approximation of a 200 × 200 × 200 tensor (left) and for the best rank-
(5, 5, 5, 5) approximation of a 50 × 50 × 50 × 50 tensor. Due to the limited memory
space, we were not able to run the N-like and BFGS quasi-Newton algorithms for the
example on the left. Yet it was still possible to run RCG, L-BFGS, CG-Armijo and
HOOI.

In Table 4.1 we display the average CPU times necessary to compute a low rank
best approximation for tensors of different sizes and orders by N-like, RCG, BFGS
and L-BFGS quasi-Newton methods. We have performed 100 runs for each example.

Resume. First we mention that there is no guarantee that the N-like and
RCG iterations converge to a local maximizer of the generalized Rayleigh-quotient.
However, in the examples presented in Fig.4.1 and Fig.4.2 the limiting points are
local maximizers. As the numerical experiments have shown, the N-like method has
the advantage of fast convergence. Unfortunately, for large scale problems, the N-
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Fig. 4.2. Convergence for multilinear rank tensor approximation: number of iterations versus
the relative norm of the gradient ‖ gradρA(Pn)‖/ρA(Pn) at a logarithmic scale. Left: 200×200×200
tensor approximated by a rank-(10, 10, 10) tensor. Right: 50× 50× 50× 50 tensor approximated by
a rank-(5, 5, 5, 5) tensor.

Table 4.1

Average CPU Time

Tensor size and rank N-like RCG BFGS L-BFGS

50× 50× 50, rank-(7, 8, 5) 2 s 6 s 24 s 13 s
100× 100× 100, rank-(5, 5, 5) 70 s 75 s 150 s 94 s
200× 200× 200, rank-(5, 5, 5) - 11 min - 14 min
50× 50× 50× 50, rank-(5, 5, 5, 5) - 9 min 11 min -

like algorithm can not be applied, as mentioned before. Even when it is possible to
apply N-like algorithm, it needs a large amount of time per iteration. As an example,
for the best rank-(10, 10, 10) of a 180 × 180 × 180 tensor, one N-like iteration took
three minutes. Related algorithms which explicitly compute the Hessian and solve the
Newton equation, such as [8, 18], and those which approximately solve the Newton
equation such as the trust region method [17], face the same difficulty for large scale
problems. On the other hand, the low cost iterations of the RCG method makes it
a good candidate to solve large size problems. The convergence rate is comparative
to that of the BFGS quasi-Newton method in [25], but at much lower computational
costs. Our experiments exhibit the shortest CPU time for the RCG method. In the
examples in which the tensor was a small perturbation of a low-rank tensor, the RCG
algorithm exhibits quadratic convergence.

4.3.2. Subspace Clustering. The experimental setup consists in choosing r
subspaces in R3 (r = 2, 3 and 4) and collections of 200 randomly chosen† points on
each subspace. Then, the sample points are perturbed by adding zero-mean Gaussian
noise with standard deviation varying from 0% to 5% in the different experiments.
Now, the goal is to detect the exact subspaces or to approximate them as good as
possible. For this purpose, we apply our N-like and RCG algorithms to solve the
associated optimization task, cf. Section 3.1. The error between the exact subspaces

†The points have been generated by fixing an orthogonal basis within the subspaces and choosing
corresponding coordinates randomly with a uniform distribution over the interval [−5, 5].
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and the estimated ones is measured as in [33], i.e.

err :=
1

r

r∑

j=1

arccos

(
1

m2
j

| tr(Pj P̃j)|

)
, (4.27)

where Pj is the orthogonal projector corresponding to the exact subspace and P̃j the
orthogonal projector corresponding to the estimated one.
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Fig. 4.3. Left: Data points drawn from the union of two subspaces of dimension 2 (through
the origin) of R3. Right: Data points from the left figure slightly perturbed by zero mean Gaussian
noise with 5% standard deviation.

It can be easily checked that in the case of unperturbed data there is a unique
non-degenerate minimizer of ρA, and it yields the exact subspaces. Thus, we expect
that for noisy data the global minimizer still gives a good approximation. Since ρA
has many local optima, for an arbitrary starting point our algorithms can converge to
stationary points which lead to a significant error between the exact subspaces and
their approximation. Thus, in what follows, we briefly describe a method (PDA, see
below) for computing a suitable initial point which guarantees the convergence of our
algorithms towards a good approximation of the exact subspaces in our numerical
experiment:

The Polynomial Differential Algorithm (PDA) was proposed in [33]. It is a purely
algebraic method for recovering a finite number of subspaces from a set of data points
belonging to the union of these subspaces. From the data set finitely many homoge-
neous polynomials are computed such that their zero set coincides with the union of
the sought subspaces. Then, an evaluation of their derivatives at given data points
yields successively a basis of the orthogonal complement of subspaces one is interested
in. For noisy data, a slightly modified version of PDA [33] yields an approximation of
the unperturbed subspaces. This “first” approximation turned out to be a good start-
ing point for our iterative algorithms which significantly improved the approximation
quality.

For each noise level we perform 500 runs of the N-like and Local-CG algorithms
for different data sets and compute the mean error between the exact subspaces and
the computed approximations. As a preliminary step, we normalize all data points,
such that no direction is favored.

In Fig. 4.3, 400 randomly chosen data points which lie exactly in the union of two
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2-dimensional subspaces of R3 (left) and their perturbed‡ images (right) are depicted.
Moreover, the two plots display the exact subspaces (left) as well as the ones computed
by our N-like algorithm (right). The error between the exact subspaces and our
approximation is ca. 2◦, whereas the error for the PDA approximation is ca. 5◦.
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Fig. 4.4. Left: The mean error for noise levels from 0% to 5% and different number
of subspaces. The disconnected symbols refer to the initial error (PDA) and the corresponding
continuous lines refer to the error estimated by our algorithms. Right: Convergence of N-like
and RCG for subspace clustering: number of iterations versus the relative norm of the gradient
‖ gradρA(Pn)‖/ρA(Pn) at a logarithmic scale. Data points from 3 and resp. 4 subspaces perturbed
with 5% Gaussian noise. Average CPU time: ca. 0.4 and ca. 2 seconds for the N-like and RCG
algorithm, respectively (1.8 GHz Intel Core 2 Duo processor).

In Fig. 4.4, we plot the mean error (left) for different noise levels and different
number of subspaces. We have included also the mean error for the starting point of
our algorithms, i.e. for the PDA approximation. On the right we demonstrate the fast
convergence rate of the N-like and RCG algorithms for the case of 3 and, respectively,
4 subspaces.

Resume. Our numerical experiments have proven that (i) the minimization
task proposed in Section 3 is capable to solve subspace detection problems and (ii)
our numerical algorithms initialized with the PDA starting point yield an effective
method for computing a reliable approximation of the perturbed subspaces. How the
approximation of the perturbed subspaces varies when the noise in the data follows
some law of distribution, is the subject of future investigation.

5. Appendix.
Here we provide a proof of Proposition 2.3, which states that there exists a global

Riemannian isometry ϕ between Gr⊗r(m,n) and Gr×r(m,n).
Proof. The surjectivity of ϕ is clear from the definition of Gr⊗r(m,n). To prove

the injectivity of ϕ we use induction over r. Choose (P1, .., Pr), (Q1, . . . , Qr) ∈
Gr×r(m,n) such that P1 ⊗ · · · ⊗ Pr = Q1 ⊗ · · · ⊗Qr, i.e.

αijPr = βijQr for all i, j, (5.1)

where αij and βij are the entries of P1 ⊗ · · ·⊗Pr−1 and Q1⊗ · · ·⊗Qr−1, respectively.
Thus it exists γ ∈ C such that Pr = γQr. Since Pr and Qr have only 0 and 1 as
eigenvalues it follows that γ = 1 and Pr = Qr. Therefore, P1⊗· · ·⊗Pr = Q1⊗· · ·⊗Qr

‡Gaussian noise with 5% standard deviation
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implies that

P1 ⊗ · · · ⊗ Pr−1 = Q1 ⊗ · · · ⊗Qr−1 (5.2)

and the procedure can be repeated until we obtain Pj = Qj , for all j = 1, . . . , r. Thus
the injectivity of ϕ is proven. So ϕ is a continuous bijective map with continuous
inverse ϕ−1 due to the compactness of Gr×r(m,n). Moreover, the map ϕ is smooth
since the components of P1⊗· · ·⊗Pr are polynomial functions. Let P := (P1, . . . , Pr)
and P := P1 ⊗ · · · ⊗ Pr. Consider the tangent map of ϕ at P , i.e.

Dϕ(P ) : TPGr×r(m,n) → TPGr⊗r(m,n),

(ξ1, . . . , ξr) 7→
r∑

j=1

P1 ⊗ · · · ⊗ ξj ⊗ · · · ⊗ Pr.
(5.3)

With the inner products (2.11) and (2.12) defined on herN and hern1
× · · · × hernr

,
respectively, one has

〈Dϕ(P )ξ,Dϕ(P )η〉 =
r∑

j=1

Mj tr(ξjηj) = 〈ξ, η〉, Mj :=

r∏

k=1, k 6=j

mk. (5.4)

This implies that the tangent map Dϕ(P ) is a linear isometry. Thus, it is invert-
ible and therefore ϕ is a local diffeomorphism. Moreover, since ϕ is bijective it is a
global diffeomorphism, giving thus a global Riemannian isometry when the metric on
Gr×r(m,n) is defined by (2.14).
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ranges for applications in quantum control and quantum information, Linear and Multi-
linear Algebra, 56, (2008), pp. 27–51.

[7] C. Eckart, and G. Young, The approximation of one matrix by another of lower rank,
Psychometrika, 1, (1936), pp. 211–263.

[8] L. Elden, and B. Savas, A Newton-Grassmann method for computing the best multilinear
rank-(r1, r2, r3) approximation of a tensor, SIAM J. Matrix. Anal. Appl., 31(2), (2009),
pp. 248–271.

[9] D. Gabay, Minimizing a differentiable function over a differentiable manifold, Journal of Op-
timization Theory and Applications, 37(2), (1982), pp. 177–21.

http://arxiv.org/abs/1005.4854


OPTIMIZATION ON TENSOR PRODUCTS OF GRASSMANNIANS 29

[10] K. A. Gallivan, A. Srivastava, X. Liu, and P. Van Dooren, Efficient algorithms for in-
ferences on Grassmann manifolds, Proceedings of IEEE Conference on Statistical Signal
Processing, (2003), pp. 315–318.

[11] G. H. Golub, Matrix computations, Johns Hopkins University Press, Baltimore, Maryland,
3rd edition, 1996.

[12] W. Greub, Multilinear algebra, Springer-Verlag , New York, 1978.
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