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AN EULERIAN APPROACH TO THE ANALYSIS OF KRAUSE’S
CONSENSUS MODELS∗

C. CANUTO†, F. FAGNANI† , AND P. TILLI†

Abstract. In this paper we analyze a class of multiagent consensus dynamical systems inspired
by Krause’s original model. As in Krause’s model, the basic assumption is the so-called bounded
confidence: two agents can influence each other only when their state values are below a given
distance threshold R. We study the system under an Eulerian point of view considering (possibly
continuous) probability distributions of agents, and we present original convergence results. The limit
distribution is always necessarily a convex combination of delta functions at least R far apart from
each other: in other terms these models are locally aggregating. The Eulerian perspective provides
the natural framework for designing a numerical algorithm, by which we obtain several simulations
in 1 and 2 dimensions.
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1. Introduction. Recently, a large amount of literature from control theory and
information engineering has focused on the analysis of multiagent consensus models.
They consist of a set of agents V indexing a family of coupled dynamical systems: for
each j ∈ V we have a dynamic evolution xj(t) ∈ Rq, for t ∈ Z, governed by the law

(1) xj(t+ 1) = xj(t) +
∑
k∈V

Pjk(xk(t)− xj(t)).

P is, normally, a substochastic matrix so that the right-hand side can be read as
a convex combination of all the systems states xk(t). In P , structural properties
of the system are coded; for instance, the pairs (j, k) such that Pjk �= 0 naturally
describe a sort of communication network topology among the agents saying which
agents are affecting whom. P may be constant or depend on time, or it can be
deterministic or random. In a wide range of situations it has been shown that, for
any possible initial condition, all dynamics xj(t) converge to the same value, namely
to a so-called consensus value. Scientific fields where such models have appeared
include load balancing in computer networks, distributed inferential algorithms for
sensor networks, multiagent robots, and opinion dynamics models. For details, see
[4, 6, 7, 10, 11, 16, 15, 17, 18, 21] and the references therein.

The case analyzed in this paper is that when the matrix P explicitly depends
on the states of the agents, more precisely, when Pjk = Pjk(xk(t) − xj(t)). This is
a particularly natural choice in multiagent robots models, where the possibility of
communicating attenuates (and possibly vanishes) as distance grow [11], as well as
in opinion dynamics models, where it is generally assumed that the willingness to
change opinion follows a similar rule [16] (bounded confidence models). The most
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famous model of this type is Krause’s model [12], where communication drops down
beyond a threshold R:

(2) Pjk =

{
Nj(t)

−1 if |xj(t)− xk(t)| ≤ R,

0 otherwise,

where | · | is the Euclidean norm in Rq and Nj(t) is the number of agents k ∈ V
within distance R from xj(t) at time t. These state-dependent models are particularly
difficult to analyze, because the dynamical system (1) becomes nonlinear. Moreover,
in models like Krause’s, where Pjk is 0 if the two positions (opinions) xj(t) and xk(t)
are sufficiently far apart, there is the additional difficulty that the graph of possible
connections among the agents changes with time, and can possibly disconnect.

Some papers have treated these models by considering the time variations in the
matrix P as an exogenous signal [11], decoupled from the dynamics, and they show
that when making suitable assumptions on the long-range connections of the time-
varying communication graph, convergence to a consensus value is achieved. In [14]
a first general convergence result for the coupled model is presented: if the following
two conditions are satisfied:

• there is a threshold δ > 0 such that Pjk �= 0 yields Pjk ≥ δ,
• Pjk > 0 implies Pkj > 0,

then (1) always converges to a limit configuration {xk(∞)}. In the case of Krause’s
model, the limit configuration is characterized by the property that, for any two
agents i and j, xi(∞) and xj(∞) are either equal or their distance is larger than R.
If we assume that the initial positions xi(0) all stay in a hypercube K = [−L,L]q,
the set of limit positions Ω = {xi(∞)} will be a subset of K, in particular, |Ω| =
O(2L/R)q (independently of the number of agents). The exact cardinality of Ω of
course depends on the initial positions. Simulations (in the case q = 1) presented
in [2] seem to indicate that for a large number of agents uniformly distributed on
the interval, |Ω| ≈ L/R (the limit positions are about 2R apart). The authors in [2]
propose some stability argument considerations to explain the factor 2, but there is
no analytical proof of this result.

The convergence result in [14] shows two limitations: it does not apply to situ-
ations where Pjk depends continuously on the distance between the two agents and
tends (in particular becomes equal) asymptotically to 0. As a second point, it does not
give any idea of how the convergence depends on the total number of agents N ; in par-
ticular it does not give insight into the double limit behavior limt→+∞ limN→+∞ xj(t).
Since these models are particularly interesting for large values of N , we believe this
issue is a crucial one to understand.

The main goal of the present paper is to study the behavior of these models for
a large number of agents in any dimension. In order to achieve this, we believe that
a fundamental step is to study these dynamical models for continuous distributions
of agents. While some considerations in this sense are already given in [3], our point
of view is, however, different: we undertake in fact an “Eulerian” point of view, sub-
stituting labeled agents with probability measures of agents. Our results (Theorem
1, Proposition 3, and Corollary 4) show that, for a special important case of models
preserving global average, the algorithms, in any dimension q and for any finite second
moment initial agent distribution, converge to a limit configuration which is always
a convex combinations of deltas with reciprocal distance at least R. The core of our
convergence results is a Lyapunov stability method: we prove that the second moment
of the distribution of agents is a decreasing function of time. At the moment we do
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not have (except in the very special symmetric case, Corollary 6) any theoretical tool
for predicting the final number of deltas. In the final part of the paper, we present
a variety of numerical simulations in 1 and 2 dimensions, obtained by an algorithm
stemming from a natural approximation of the Eulerian dynamics. The algorithm
is a quantized version of the push-forward mapping (see also [20]); in this respect,
it shows analogies with certain classical finite-difference or finite-volume schemes for
conservation laws, such as characteristics schemes or upwind schemes. It is quite sim-
ple to implement and shows amazing stability properties. As in the cited literature,
numerical simulations indicate that only local aggregation takes place and that the
limit configuration exhibits more than one delta even if we start from initial distribu-
tions with connected support. The actual number of these deltas seems to depend not
only on R and on the initial distribution, but also on the specific averaging scheme
used.

Our results do not encompass convergence results in [14] but rather complement
them, extending convergence to other important models not covered in [14], and
above all, they push analysis towards the key direction of distributions of positions
(opinions). Our results bring in genuinely new ideas from measure transportation
theory and merge them with a Lyapunov stability argument. We believe this type of
technique can be applied also to different consensus models (heterogeneous models,
gossip models) and will be useful for further progress in this area.

We conclude this section with some further bibliographical notes. Eulerian mul-
tiagent systems have also been considered in pedestrian flow models in [19, 20] based
on the new modeling perspective proposed in [5].

In the context of multiagent robots, the authors of [7] study modifications of
Krause’s model, leading to algorithms which have the property of preserving connec-
tivity of the communication graph, and they show that such algorithms converge to
consensus. Related papers dealing with coupled second order dynamics have been
studied in [8, 9].

1.1. Notation. We report some basic notation used in this paper:

• |x| and |x|∞ denote, respectively, the Euclidean and the sup norm of x ∈ Rq;
• ||f ||∞ denotes the infinity norm of the Rq-valued function f ;
• whenever an integral is on the full domain (typically Rq or Rq ×Rq), we will
use the simplified symbol

∫
.

2. Assumptions and formulation of the problem. We start by rewriting
model (1). We recall that we have a family V of N agents, each of which is the
location of an evolution law. We assume that the evolution of all systems takes place
over the lattice 0, τ, 2τ, . . . , where τ > 0 is a fixed time. For the sake of notational
simplicity, for every agent j ∈ V , we keep writing xj(t) for xj(τt) with t ∈ N. The
evolution law of every agent will be written as

(3) xj(t+ 1) = xj(t) + τuj(t),

where the vector uj(t) ∈ Rq plays the role of a velocity for the evolution of agent j at
time t. The velocity law is constructed in the following way. We start from a bounded
function ξ : Rq → R+ such that ξ(x) = ξ(−x) for all x, and we put

(4) uj(t) =
1

N

∑
k∈V

ξ(xk(t)− xj(t))(xk(t)− xj(t)).
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The coupling of (3) and (4) gives rise to a system as in (1) with

Pjk = τN−1ξ(xk(t)− xj(t)).

Notice that P is substochastic if τN−1
∑

k∈V ξ(xk(t) − xj(t)) ≤ 1 for every j ∈ V .
An a priori condition which makes this inequality surely hold is τ ||ξ||∞ ≤ 1.

Krause’s model (2) does not fit into this framework because of the presence of the
normalizing factor, which is not a function of the difference xk(t)− xj(t); however, a
properly rescaled version of it does fit. It is sufficient to consider

(5) ξ(x) = 1B(0,R)(x),

where B(0, R) is the closed ball centered in 0 of radius R, and take any τ ∈]0, 1]. In
other terms, instead of normalizing by Nj(t) (the number of agents with distance R
from xj(t)), we normalize by the total number of agents. Numerical simulations with
the two models exhibit a very similar structure in their limit configuration; the only
difference consists of a minor velocity of the mass transfer observed in our model (5)
as opposed to Krause’s (2), due to the larger normalization.

An interesting property shared by all models described by (3)–(4) is that the
barycenter of the global system is preserved. Indeed, because of the symmetry prop-
erty ξ(x) = ξ(−x), we immediately see that

∑
j∈V uj(t) = 0 for all t ∈ N. Hence,

(6)
1

N

∑
k∈V

xk(t) =
1

N

∑
k∈V

xk(0).

This property does not hold for (2).
There is a natural continuous-time version of the system we have introduced. It

is sufficient to consider ẋj(t) = uj(t) where now t ∈ R+, with the same choice for
the velocities uj(t) as in (4). In this paper we will not consider the continuous-time
model, whose study is deferred to a future paper. Some partial considerations in this
direction can be found in [5].

2.1. The Eulerian point of view. When the number of agents N is very large,
one can identify the set of agents with a mass distribution μt in Rq, which varies in
time1 according to a suitable strategy based on some communication model, as in the
previous section. In this identification, borrowing terminology from fluid dynamics,
we abandon the “Lagrangian” point of view used above (in which the independent
variable j labels individual agents and each of them is observed in its evolution) in
favor of an “Eulerian” point of view, in which the independent variable x denotes a
point in space occupied at each time by an infinitesimal mass of agents. Since agents
are neither created nor destroyed, the total mass of μt is preserved, and hence we
may assume that μt is a probability measure in Rq. As before, the time variable t
can be discrete as well as continuous, whereas the model is continuous in space by
construction. This means that the mass distribution μt can be in principle any Borel
probability measure in Rq: for instance, a large number of agents uniformly distributed
in an interval [a, b] can be well represented by a normalized Lebesgue measure on [a, b].
Another example is the discrete space model of the previous section, which reduces
to a particular case of the continuous-space model (see the end of the next section).

1Throughout this and subsequent sections, we use the subscript t to denote dependence on time,
and not differentiation with respect to t. Similarly, any object f(t, x) depending on both the time
variable t and the space variable x will be denoted by ft(x).
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The initial condition is therefore a probability measure μ0 in Rq which is assigned
and represents the initial spatial configuration of agents.

We start from the model (3)–(4) with ξ : Rq → R assumed to be bounded,
measurable, nonnegative, and with the property that ξ(x) = ξ(−x) for all x ∈ Rq.
We now construct the corresponding Eulerian model. To write down the dynamics
at the level of probability measures, we suppose that, at time t, we have a mass
distribution of agents μt. The agents having position (or opinion) x ∈ Rq (or, more
precisely, the infinitesimal mass of agents μt(dx) at x) move from position x at time t
to position γt(x) at time t+1 which, according to the original model (3), we represent
as

(7) γt(x) = x+ τVt(x).

The velocity field Vt(x) has to correspond to the uj(t)’s and we thus choose it as

(8) Vt(x) =

∫
(y − x)ξ(y − x) dμt(y)

(we recall our standing notational assumption of not indicating the integration domain
when it is the full domain).

The mapping γt(x) which describes how the “mass” is moved by the dynamics
allows us, finally, to describe the measure dynamics, by putting

(9) μt+1 = γt#μt, t = 0, 1, 2, . . . ,

where γt# denotes the corresponding action on measures (called the push-forward of
a measure; see, e.g., [1]). This is formally defined by

(10) γt#μt(E) = μt(γ
−1
t (E)) for every Borel set E;

note that the measure μt+1 is completely determined by the identity

(11)

∫
f(x) dμt+1 =

∫
f(x+ τVt(x)) dμt

for every (nonnegative and Borel) function f . Choosing f to be the characteristic
function of a set E, for instance, makes this definition consistent with the intuitive
idea that a point x in the support of μt moves (at time t+1) to the point x+ τVt(x)
in the support of μt+1.

We now discuss the precise relation of this model with the original model (3)–(4).
Straightforward verification shows that if we consider sequences of atomic probability
measures

μt =
1

N

∑
j∈V

δxj(t)

(with |V | = N) solving (9), then the trajectories xj(t) solve (3)–(4).

3. Theoretical results. The main result of this section asserts the convergence
of the sequence of measures μt.

Theorem 1. Let ξ : Rq → R be a nonnegative, bounded, measurable function,
satisfying ξ(x) = ξ(−x) for all x ∈ Rq; assume that τ > 0 is such that τ ||ξ||∞ < 1.
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Consider the dynamical system (9) with γt defined by (7) and (8) with the initial con-
dition μ0 a probability measure on Rq with finite second moment. Then the sequence
of second moments of μt is nonincreasing, and the sequence of probability measures μt

converges in weak-star sense, as t → ∞, to a limit probability measure μ∞, namely,

lim
t→∞

∫
η(x) dμt(x) =

∫
η(x) dμ∞(x)

for every continuous test function η with compact support.
Remark 2. The weak-star convergence of μt to the probability measure μ∞ can

be strengthened a bit if we take into account that second moments are equibounded.
In fact, this implies that the family μt has moments of any order p < 2 which are
uniformly integrable, and hence (see, e.g., Proposition 7.1.5 in [1]) it follows that
μt �→ μ∞ with respect to any Wasserstein distance Wp with p ∈ [1, 2) (the reader is
referred to [1] for more details). Further information on the structure of μ∞ can be
obtained, with some extra assumptions on ξ.

Proposition 3. Suppose that the function ξ satisfies the following property:
there exist R > 0 and δ > 0 such that ξ(x) ≥ δ for every x ∈ Rq such that |x| < R.
Then, μ∞ is a purely atomic measure, whose atoms are a distance of at least R apart
from one another.

Note that, when the assumptions of the above proposition are verified, no matter
what the initial measure is, Dirac masses arise in the limit. Hence the weak-star topol-
ogy is natural in this context and we cannot hope for convergence in total variation.

These results have a straightforward reformulation in terms of the original dy-
namical system (3)–(4).

Corollary 4. Assume that ξ is as above and τ > 0 is such that τ ||ξ||∞ < 1.
Consider the dynamical system (3)–(4) with an initial condition xj(0). Then, there
exists a subset Ω contained in the convex hull of all xj(0)’s, such that for every j ∈ V
we have that xj(t) converges for t → +∞ to some ωj ∈ Ω.

Moreover, if ξ satisfies the extra property as in Proposition 3, then, if ω1 �= ω2

are both in Ω, we have |ω1 − ω2| ≥ R.
Proofs of the results above will be obtained in a number of intermediate technical

steps.

3.1. The proofs. The following bound, an easy consequence of the Cauchy–
Schwarz inequality, will be used later on:

|Vt(x)|2 ≤
∫

|y − x|2ξ(y − x)2 dμt(y)

≤ ‖ξ‖∞
∫

|y − x|2ξ(y − x) dμt(y), x ∈ Rq.

(12)

Note that this bound is useful only if μt has finite second order moment.
Lemma 5. Suppose that μt has finite second moment for some t ≥ 0. Then μt+1

has finite second moment too, and∫
|x|2 dμt+1(x)−

∫
|x|2 dμt(x)

≤ −τ(1− τ‖ξ‖∞)

∫∫
|y − x|2ξ(y − x) dμt(y) dμt(x).

(13)

Proof. Since μt has finite second moment and ξ is bounded, it follows from (12)
that Vt(x) ∈ L2(Rq;μt). As a consequence, μt+1 has finite second moment, because
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(11) with f(x) = |x|2 yields

∫
|x|2 dμt+1(x) =

∫
|x+ τVt(x)|2 dμt(x)

=

∫
|x|2 dμt(x) + 2τ

∫
x · Vt(x) dμt(x) + τ2

∫
|Vt(x)|2 dμt(x),

which can be rewritten as∫
|x|2 dμt+1(x)−

∫
|x|2 dμt(x)

= 2τ

∫
x · Vt(x) dμt(x) + τ2

∫
|Vt(x)|2 dμt(x).

(14)

Now expanding Vt(x) according to (8) and recalling that ξ(y − x) = ξ(x − y), we
obtain

2τ

∫
x · Vt(x) dμt(x) = 2τ

∫∫
x · (y − x)ξ(y − x) dμt(y) dμt(x)

= τ

(∫∫
x · (y − x)ξ(y − x) dμt(y) dμt(x)

+

∫∫
y · (x − y)ξ(x− y) dμt(x) dμt(y)

)

= −τ

∫∫
|y − x|2ξ(y − x) dμt(y) dμt(x).

(15)

On the other hand, using (12) to bound the last integral in (14) we have

τ2
∫

|Vt(x)|2 dμt(x) ≤ τ2‖ξ‖∞
∫∫

|y − x|2ξ(y − x) dμt(y) dμt(x).

Finally, plugging the last inequality and (15) into (14), one obtains (13).

Corollary 6. Assume that ξ is as above and τ > 0 is such that τ ||ξ||∞ < 1. If
μ0 has finite second moment, then

(a) every μt has finite second moment, and the sequence of moments is decreasing;
(b) the series of integrals

(16)
∞∑
t=0

∫∫
|x− y|2ξ(y − x) dμt(x) dμt(y)

is convergent.

Proof. Due to Lemma 5, every μt has finite second moment, and the sequence
of moments is decreasing due to (13), because by assumption τ‖ξ‖∞ < 1. Moreover,
(13) can be rewritten as

∫∫
|y − x|2ξ(y − x) dμt(y) dμt(x)

≤ 1

τ(1 − τ‖ξ‖∞)

(∫
|x|2 dμt(x) −

∫
|x|2 dμt+1(x)

)
.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

250 C. CANUTO, F. FAGNANI, AND P. TILLI

Summing this inequality over t yields

T∑
t=0

∫∫
|y − x|2ξ(y − x) dμt(y) dμt(x)

≤ 1

τ(1 − τ‖ξ‖∞)

(∫
|x|2 dμ0(x)−

∫
|x|2 dμT (x)

)

≤ 1

τ(1 − τ‖ξ‖∞)

∫
|x|2 dμ0(x)

and the claim follows since T is arbitrary.
Lemma 7. For every test function η ∈ C∞(Rq) having compact support, the limit

(17) lim
t→∞

∫
η(x) dμt(x)

exists and is finite.
Proof. To prove the result, it suffices to prove that the series

(18)

∞∑
t=0

∣∣∣∣
∫

η(x) dμt+1(x)−
∫

η(x) dμt(x)

∣∣∣∣
is convergent (indeed, in this case the series obtained by removing the absolute values
is still convergent, which means that the limit in (17) exists and is finite).

Let

H = ‖D2η‖∞
be the sup norm of the Hessian matrix of η. According to (11), we have for every
t ≥ 0

(19)

∫
η(x) dμt+1(x) −

∫
η(x) dμt(x) =

∫ (
η(x+ τVt(x)) − η(x)

)
dμt(x).

On the other hand, for x, z ∈ Rq we have by Taylor’s formula

η(x+ z)− η(x) = ∇η(x) · z +R(x, z),

where the error R(x, z) satisfies the estimate

(20) |R(x, z)| ≤ H |z|2.
If we plug this expansion into (19) with the choice z = τVt(x), we obtain∫

η(x) dμt+1(x) −
∫

η(x) dμt(x)

= τ

∫
∇η(x) · Vt(x) dμt(x) +

∫
R(x, τVt(x)) dμt(x),

and hence using first (20) and then (12) we obtain∣∣∣∣
∫

η(x) dμt+1(x)−
∫

η(x) dμt(x)

∣∣∣∣
≤ τ

∣∣∣∣
∫

∇η(x) · Vt(x) dμt(x)

∣∣∣∣
+Hτ2‖ξ‖∞

∫∫
|y − x|2ξ(y − x) dμt(y) dμt(x).

(21)
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To estimate the integral involving ∇η, we express Vt(x) according to (8) to find∫
∇η(x) · Vt(x) dμt(x)

=

∫∫
∇η(x) · (y − x)ξ(y − x) dμt(y) dμt(x)

=
1

2

∫∫ (∇η(x) −∇η(y)
) · (y − x)ξ(y − x) dμt(y) dμt(x)

(the last inequality follows from the general fact that
∫∫

F (x, y) dμt(y) dμt(x) =∫∫
F (y, x) dμt(y) dμt(x), because the measure μt ⊗ μt is symmetric about the di-

agonal, combined with the property ξ(x − y) = ξ(y − x)). But the function ∇η is
Lipschitz continuous with constant H , and hence we have the estimate∣∣∣∣

∫
∇η(x) · Vt(x) dμt(x)

∣∣∣∣ ≤ H

∫∫
|x− y|2ξ(y − x) dμt(x) dμt(y)

which, plugged into (21), yields∣∣∣∣
∫

η(x) dμt+1(x)−
∫

η(x) dμt(x)

∣∣∣∣(22)

≤ H(τ + τ2‖ξ‖∞)

∫∫
|y − x|2ξ(y − x) dμt(y) dμt(x).

Summing over t and using Corollary 6, we finally obtain that the series in (18) is
convergent.

We are now ready to prove the convergence result.
Proof of Theorem 1. From Lemma 7, we know that the probability measures

μt converge, in the sense of distributions, to some distribution μ∞. But since μ∞
is nonnegative, it is necessarily a Radon measure in Rq by the Riesz representation
theorem. Moreover, by semicontinuity of the total variation, we have μ∞(Rq) ≤ 1. To
prove that equality occurs, it suffices to show that the family of probability measures
μt is precompact. By well-known results (see, e.g., [1, pp. 108–109]), this follows
immediately from (13), which shows that the second moment of μt is nonincreasing
with respect to t (and hence moments are equibounded).

Proof of Proposition 3. We start by observing that, if μt converges (in the weak-
star topology of measures) to μ∞, then the product measures μt ⊗ μt (thought of
as measures on R2q = Rq × Rq) converge to μ∞ ⊗ μ∞. Then, since moments of the
second order are equibounded, μ∞ has finite second order moment, and we can pass
to the limit in the following integral:∫∫

|x− y|2ξ(y − x) dμ∞(x)dμ∞(y) = lim
t→∞

∫∫
|x− y|2ξ(y − x) dμt(x)dμt(y).

But, since the series in (16) is convergent, this limit is zero, i.e.,∫∫
|x− y|2ξ(y − x) dμ∞(x)dμ∞(y) = 0.

Now take any two distinct points x, y ∈ Rq, both in the support of μ∞ (if no such pair
of points exists, then the support of μ∞ reduces to a single point; i.e., μ∞ is a single
Dirac mass). It is a general fact that (x, y) ∈ Rq × Rq belongs to the support of the
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product measure μ∞ ⊗ μ∞. If |x − y| < R, then since x �= y and by the assumption
made on ξ, we have that

|y − x|2ξ(y − x) > 0,

and the same inequality holds in some neighborhood A of (x, y). But since (x, y)
belongs to the support of μ∞ ⊗ μ∞, we obtain∫∫

|x− y|2ξ(y − x) dμ∞(x)dμ∞(y)

≥
∫∫

A

|x− y|2ξ(y − x) dμ∞(x)dμ∞(y) > 0,

a contradiction. Then, necessarily, |x − y| ≥ R whenever x, y are two distinct points
in the support of μ∞. It follows that the support of μ∞ is a discrete set of points
with mutual distances at least R.

4. Symmetries. We are not able, in general, to predict the number of deltas
which will appear in the limit configuration starting from a given initial measure μ0

(even when μ0 is the uniform distribution). However, some further information on
μ∞ can be obtained in the presence of symmetries.

We have the following result.
Proposition 8. Consider an isometry T : Rq → Rq with T (x) = Ux+b for some

orthogonal matrix U and vector b ∈ Rq. Assume that ξ is U -invariant (ξ ◦ U = ξ).
If μt is the solution of (9) with respect to the initial condition μ0, then T#μt is the
solution of (9) with respect to the initial condition T#μ0.

Proof. Define

Wt(x) =

∫
(y − x)ξ(y − x) d(T#μt)(y).

It follows from the U -invariance of ξ and the definition of push-forward measure that,
for all x ∈ Rq,

Wt(T (x)) =

∫
(y − T (x))ξ(y − T (x)) d(T#μt)(y)

=

∫
(T (y)− T (x))ξ(T (y)− T (x)) dμt(y)

= U

∫
(y − x)ξ(y − x) dμt(y) = UVt(x).

Notice now that∫
f(x) d(T#μt+1)(x) =

∫
f(T (x)) dμt+1(x)

=

∫
f(T (x+ Vt(x))) dμt(x) =

∫
f(T (x) + UVt(x)) dμt(x)

=

∫
f(T (x) +Wt(T (x))) dμt(x)

=

∫
f(x+Wt(x)) d(T#μt)(x),

which proves the claim.
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This has some interesting consequences.
Corollary 9. Consider an isometry T : Rq → Rq with T (x) = Ux + b, and

assume that ξ is U -invariant (ξ ◦ U = ξ). Then,

T#μ0 = μ0 ⇒ T#μ∞ = μ∞.

A probability measure μ is said to have a radial symmetry with respect to x0 ∈ Rq

if for any rotation T centered in x0 we have that T#μ = μ. We can now present our
last result.

Corollary 10. Let ξ be a radial function and let Vt(x) be given by (8). If μ0

has radial symmetry with respect to x0, then μ∞ = δx0 .
Proof. By Corollary 9, we have that μ∞ also has radial symmetry with respect

to x0, and since it must be a finite combination of deltas, it has to coincide with
δx0 .

5. A numerical algorithm. In this section, we introduce a spatially discrete
Eulerian measure dynamics, which approximates the dynamics described by (9). A
numerical algorithm is then naturally associated with it and will be detailed hereafter.
In the next section, through numerical simulations in 1 and 2 dimensions we will
apply the algorithm to provide some insight into the actual asymptotic behavior of
the solutions of our model.

The algorithm we are going to describe can be interpreted as a simple charac-
teristics scheme in the language of finite-difference methods for classical conservation
laws, or as a particular upwind scheme in the language of finite-volume methods. In
our opinion, what is perhaps remarkable and of some interest is its direct connection
with the push-forward of measures, a powerful tool which allows one to extend the
concept of conservation law beyond the classical framework. Indeed, on the basis of
the new theoretical perspective introduced in our previous paper [5], other authors
[20] have developed an analogous algorithm and applied it to the modeling of pedes-
trian flows. Some of the properties of the algorithm that we just mention below have
been thoroughly investigated in [20], to which we refer the reader for further details.

We denote bym(A) the Lebesgue measure of a measurable set A. Let us introduce
a partition D of Rq made of mutually disjoint, bounded Borel sets D. Given any
E ∈ D, we have by (10)

(23) μt+1(E) = μt

(
γ−1
t (E)

)
=

∑
D∈D

μt

(
D ∩ γ−1

t (E)
)
.

Now, we make the following assumptions:
(i) In each D ∈ D, μt is approximated by a multiple of the Lebesgue measure

therein; i.e., there exists a nonnegative constant ρDt such that

(24) μt|D ∼ ρDt dx|D;

the mass density ρDt is uniquely determined by the condition μt(D) = ρDt
∫
D
dx,

whence ρDt = μt(D)/m(D).
(ii) In each D ∈ D, γt is approximated by an affine invertible mapping γD

t ; more
precisely, we assume that in D the velocity Vt is approximated by a constant
velocity V D

t , so that γD
t is defined by

(25) γD
t (x) = x+ τV D

t .

Note that such a γD
t is but a translation parallel to the axes, so that m(X) =

m(γD
t (X)) for any measurable X ⊆ D (see Figure 1).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

254 C. CANUTO, F. FAGNANI, AND P. TILLI

D

γD
t (D)

E

γD
t

Fig. 1. Pictorial representation of the “push-forward” algorithm.

Using these approximations in (23), we obtain

μt+1(E) = ρEt+1m(E) ∼
∑
D∈D

ρDt m(D ∩ (
γD
t

)−1
(E)) =

∑
D∈D

ρDt m(γD
t (D) ∩ E),

which provides the following discrete counterpart of (9), i.e., the approximate dynam-
ics for the local mass densities:

(26) ρEt+1 ∼
∑
D∈D

m(γD
t (D) ∩ E)

m(E)
ρDt ∀E ∈ D.

Note that this expression and Figure 1 suggest an analogy between the numerical
algorithm we are going to introduce and a (forward) characteristic scheme for the
finite-difference discretization of the scalar conservation law

(27)
∂

∂t
ρt + div(Vtρt) = 0.

The algorithm is obtained by specifying the partition D and the choice of the veloc-
ities V D

t , and by equating the left-hand side to the right-hand side in the previous
approximate relation.

Given any step-size h > 0, consider the lattice xj = jh, with j = (j1, . . . , jq) ∈ Zq,
and define the cells

D̄j = xj + h[−1/2, 1/2]q

centered at xj ; for the sake of simplicity, from now on let us write ρjt for ρ
Dj

t and
similarly for all other variables. The approximate velocity in the cell Dj is defined as

V j
t = Vt(xj), where, according to (8), we set

Vt(xj) =
∑
k∈Zq

∫
Dk

(y − xj)ξ(y − xj)ρ
k
t dy.
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With these definitions, we consider the following algorithm:

(28) ρjt+1 =
∑
k∈Zq

m(γk
t (Dk) ∩Dj)

m(Dj)
ρkt ∀j ∈ Zq.

Remark 11. This algorithm guarantees local (hence, global) conservation of mass.
Indeed, the local mass ρktm(Dk) contained at time t in the cell Dk contributes to the
local mass in the cell Dj at time t+ 1 by the quantity

m(γk
t (Dk) ∩Dj)

m(Dj)
ρktm(Dj) = m(γk

t (Dk) ∩Dj)ρ
k
t ;

summing up over j, one has∑
j∈Zq

m(γk
t (Dk) ∩Dj)ρ

k
t = m(γk

t (Dk))ρ
k
t = m(Dk)ρ

k
t ,

which expresses the desired conservation property.
Remark 12. The piecewise constant approximations introduced above in (i) and

(ii) lead to a first order consistency error in h and τ . Obviously, higher order approx-
imations are possible. In particular, as far as (24) is concerned, one could look for a
polynomial density function ρDt , say ρDt ∈ Qr(D) (the space of polynomials over D of
degree ≤ r in each spatial variable); in this case, we require exactness of the moments
of μt up to the order r, i.e.,∫

D

xmdμt =

∫
D

xmρDt dx ∀xm ∈ Qr(D).

Similarly, in (25) the constant V D
t could be replaced by a higher order polynomial

function, provided the resulting map γD
t remains invertible.

Finally, from now on we assume that the time step τ is chosen in such a way that
the following Courant–Friedrichs–Lewy (CFL) condition is fulfilled for each t:

(29)
τ

h
max
k∈Zq

|V k
t |∞ ≤ 1,

where | · |∞ denotes the maximum norm in Rq. This choice simplifies our scheme, in
that the image γk

t (Dk) of the cell Dk is just contained in the union of the 3q cells Dj

having |j− k|∞ ≤ 1. Thus, the algorithm described in (28) can be made more precise
as follows:

(30) ρjt+1 =
∑

k : ‖j−k‖∞≤1

m(γk
t (Dk) ∩Dj)

m(Dj)
ρkt ∀j ∈ Zq.

Obviously, condition (29) is not mandatory for the stability of our scheme: a less
stringent choice of τ is indeed admissible, provided the numerical domain of depen-
dence of each cell at time t+ 1 is allowed to be as large as needed. However, one has
to remember that assumption (ii) above yields sufficiently accurate results only if τ
is small enough.

Example 1. Let us detail the 1D version of the above algorithm. To this end, let
us set λ = τ

h , and let us observe that for any k ∈ Z,

γk
t (Dk) ∩Dk−1 =

{
(xk−1/2 + τV k

t , xk−1/2) if V k
t < 0,

∅ if V k
t ≥ 0,
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whence

(31)
m(γk

t (Dk) ∩Dk−1)

m(Dk−1)
=

{
−λV k

t if V k
t < 0,

0 if V k
t ≥ 0,

= λ(V k
t )−,

where x+ = max(x, 0) and x− = max(0,−x) denote as usual the positive and negative
parts of the number x. Similarly,

γk
t (Dk) ∩Dk+1 =

{
∅ if V k

t ≤ 0,

(xk+1/2, xk+1/2 + τV k
t ) if V k

t > 0,

whence

(32)
m(γk

t (Dk) ∩Dk+1)

m(Dk+1)
=

{
0 if V k

t ≤ 0,

λV k
t if V k

t > 0,
= λ(V k

t )+.

Finally,

γk
t (Dk) ∩Dk =

{
(xk−1/2, xk+1/2 + τV k

t ) if V k
t ≤ 0,

(xk−1/2 + τV k
t , xk+1/2) if V k

t ≥ 0,

whence

(33)
m(γk

t (Dk) ∩Dk)

m(Dk)
=

{
1 + λV k

t if V k
t ≤ 0,

1− λV k
t if V k

t ≥ 0,
= 1− λ(V k

t )− − λ(V k
t )+.

We now use (31) with k = j+1, (32) with k = j−1, and (33) with k = j. Substituting
into (30) and setting, for the sake of simplicity,

cm = λ(V j−1
t )+,

c0 = 1− λ(V j
t )− − λ(V j

t )+,

cp = λ(V j+1
t )−,

(34)

we immediately obtain the scheme

(35) ρjt+1 = cm ρj−1
t + c0 ρ

j
t + cp ρ

j+1
t ∀j ∈ Z.

Note that if the velocities are of constant sign, then the scheme reduces to

(36) ρjt+1 = ρjt −
⎧⎨
⎩
λ(V j

t ρ
j
t − V j−1

t ρj−1
t ) (positive velocities),

λ(V j+1
t ρj+1

t − V j
t ρ

j
t ) (negative velocities);

i.e., the scheme can be regarded as a finite-volume upwind scheme [13] applied to the
conservation law

∂

∂t
ρt +

∂

∂x
(Vtρt) = 0.

Example 2. By exploiting the tensor-product structure of the grid, the 2D version
of our algorithm is easily obtained from the 1D version. Indeed, for any j = (j1, j2) ∈
Z2, one has

(37)

ρ
(j1,j2)
t+1 = cmm ρ

(j1−1,j2−1)
t + c0m ρ

(j1,j2−1)
t + cpm ρ

(j1+1,j2−1)
t

+ cm0 ρ
(j1−1,j2)
t + c00 ρ

(j1,j2)
t + cp0 ρ

(j1+1,j2)
t

+ cmp ρ
(j1−1,j2+1)
t + c0p ρ

(j1,j2+1)
t + cpp ρ

(j1+1,j2+1)
t ,
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where each coefficient cαβ = cαcβ , with α, β ∈ {m, 0, p}, is the product of two 1D
coefficients defined as in (34) through the values of the x- and y-components of the ve-
locity, respectively; each coefficient is computed in the cell indicated by the associated
mass density. Thus, the scheme is equivalent to a genuinely multidimensional version
of the upwind scheme for the conservation law (27); here, the expression “genuinely
multidimensional” refers to the fact that the numerical fluxes of a given cell (whose
sides are always aligned with the coordinate axes) are updated by considering neigh-
boring cells not only in the horizontal and vertical directions, but also in the oblique
directions. Our experience indicates that this feature is essential for approximating
the formation of an atomic measure, for otherwise the resulting algorithm turns out
to be both inaccurate and nonrobust.

The extension to 3 or more dimensions is straightforward. More generally, replac-
ing densities by measures, our scheme can be viewed as a space-time discretization of
the continuous-time, continuous-space model

(38)
∂

∂t
μt + div(Vtμt) = 0,

which governs the evolution of the mass distributions μt when the time variable t
varies continuously rather than discretely. This equation must be thought of in the
sense of measures. Formally, if we multiply (38) by a smooth test function η(x) with
compact support, and we integrate in space (by part in the last term), we obtain

(39)
d

dt

∫
η(x) dμt(x) =

∫
∇η(x) · Vt(x) dμt(x).

This suggests the following notion of solution. We say that a family of probability
measures μt, t ≥ 0, is a solution of (38) if for every test function η(x), continuous
with compact support in Rq, the function

t �→
∫

η(x) dμt(x), t ≥ 0,

is absolutely continuous in [0,∞) and satisfies (39) for almost every t > 0. Note that
this definition makes sense for every initial probability measure μ0.

The study of continuous-time models will be detailed elsewhere.

6. Simulations. In this section, we illustrate the behavior of our model through
a variety of numerical simulations obtained by the algorithm described above. We
consider the 1D and 2D cases separately.

With any choice of initial measure μ0, cut-off function ξ, and mesh spacing h, the
algorithm generates a sequence of measures whose densities are piecewise constant on
the chosen mesh. As t → ∞, the subsequent experiments clearly indicate that they
converge to a steady state, represented by a finite distribution of “discrete deltas”
which agree with the statement of Proposition 3; i.e., they are a distance of at least
R apart from each other. We conjecture that perhaps a nontrivial adaptation of the
arguments given in section 3.1 could lead to a rigorous proof of this fact.

We refer to [2, 3] for related simulations based on the 1D model; 2D simulations,
although in a different context than ours, can be found in [15].

6.1. 1D simulations. The first set of simulations is relative to the initial mea-
sure μ0 whose density is the characteristic function of the interval [0.5, 1.5]. We report
the results for two choices of the weight function ξ: (i) the characteristic function ξ1,R
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Fig. 2. Position of discrete deltas versus log(1/R) (with h = 1/1600) for the piecewise constant
initial density.

of the interval [−R,R]; (ii) the piecewise linear hat function ξ2,R(z) = 1 − |z|/R.
In both cases, the observed asymptotic dynamics is consistent with the theoretical
prediction of Proposition 3; i.e., a finite number of deltas is created whose minimal
distance is invariably larger than R. Figure 2, obtained with ξ = ξ1,R and h = 1/1600,
provides a sort of “bifurcation diagram” in which the position of the discrete deltas in
the interval [0.5, 1.5] (represented on the horizontal axis) is plotted against log(1/R)
(represented on the vertical axis). This scenario appears to be quite robust with
respect to numerical discretization errors. Similar diagrams have been reported in
the recent literature (see [2] and the references therein), stemming from related but
different models.

Next, we investigate the influence of the weight ξ on the asymptotic patterns.
For both choices ξ = ξ1,R and ξ = ξ2,R and several values of R, we have monitored
the number #δ of deltas, as well as the interdelta distance, expressed by the ratios
σmin = dmin/R and σmax = dmax/R, where dmin and dmax are the minimal and
maximal distance between two consecutive deltas. Indeed, it is conjectured in the
literature mentioned above that this ratio should be around 2. Our results, given in
Table 1, suggest the existence of a limit intradelta distance significantly larger than
R, yet they also indicate a clear dependence on the particular weight assigned to the
neighboring agents in the communication graph.

Table 1

Number of deltas and intradelta distance as a function of R.

ξ = ξ1,R ξ = ξ2,R
R #δ σmin σmax #δ σmin σmax

0.10 4 2.367 2.450 5 1.800 2.175
0.08 5 2.250 2.635 7 1.646 1.802
0.06 7 2.250 2.472 9 1.792 1.930
0.04 11 2.167 2.250 14 1.583 1.812
0.02 22 2.208 2.333 28 1.583 1.792
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Fig. 3. Initial piecewise linear density (top left); discrete deltas at convergence (top right);
initial piecewise parabolic density (bottom left); discrete deltas at convergence (bottom right).

Finally, we consider two nonconstant initial distributions, a linear and a parabolic
one given by the left-hand plots of Figure 3. The resulting patterns of discrete deltas,
obtained at convergence for R = 0.04 with ξ = ξ1,R and h = 1/800, are shown in
the corresponding right-hand plots. The figures show a characteristic feature of the
communication model under investigation; namely, the mass transportation occurs
only locally (on a scale proportional to R) but not globally (on the scale of the support
of the initial density). Indeed, the strengths of the limit deltas retain the linear or
parabolic behavior of the initial data. The “bifurcation” diagram for such cases (see
Figure 4) indicates that the loss of symmetry does not destroy the mechanism of one-
by-one increment of the number of deltas as R decreases, observed above. The ratios
σmin and σmax are 2.125 and 2.292 (linear case) and 2.066 and 2.312 (parabolic case).

6.2. 2D simulations. As in the 1D situations, we start from an initial measure
μ0 whose density is the characteristic function of a bounded connected subset of
the plane: a square (Figure 5), a “horseshoe” or “Π-like” domain (Figure 6), and a
disk (Figure 7). Such initial supports are represented by the dashed lines in these
figures. We apply the algorithm described in section 5, using as cut-off function ξ the
characteristic function of the closed ball B(0, R) ⊆ Rq; the definition actually depends
upon the choice of the norm used to define the ball: let ξ2,R be the cut-off function
defined via the Euclidean norm |z|, and let ξ∞,R denote the function associated with
the maximum norm |z|∞.

The typical pattern of the limit densities is illustrated in Figure 8: in the most
generic situation, we find a cluster of four contiguous cells carrying nonzero densities,
surrounded by cells with vanishing density. It is easily seen that any combination
of values of the four nonzero densities is compatible with the time invariance of the
pattern, so the actual values depend on the initial mass and the evolution of the
discrete dynamical system. We are indeed able to prove that no limit pattern with
more than four contiguous cells is allowed, since such a configuration would induce
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Fig. 4. Position of discrete deltas versus log(1/R) (with h = 1/1600) for the piecewise linear
initial density.

Fig. 5. The square case for h = 1/64. Top left: R = 0.30; top right: R = 0.23; bottom left:
R = 0.15; bottom right: R = 0.10.
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Fig. 6. The horseshoe case for h = 1/64. Top left: R = 0.40; top right: R = 0.30; bottom left:
R = 0.15; bottom right: R = 0.08.

an unsteady mass transportation from the outer cells towards the center; the proof
will appear elsewhere, together with other theoretical properties of the algorithm. On
the other hand, symmetries may lead to a simplification of the limit pattern. Indeed,
for a mesh-size h = 1/N , we use 2N + 1 cells in each space direction; hence, the
(N + 1)th cell is symmetrically placed, and an initial symmetric distribution of mass
with respect to this cell is preserved. Thus, symmetry in the vertical (resp., horizontal)
direction leads to a limit pattern made of only two contiguous cells, placed along the
horizontal (resp., vertical) direction. Symmetry in both directions leads to a unique
limit cell. This is clearly documented in Figure 8.

Once a limit pattern has been detected, we associate to it a “discrete delta” of
the form aδx0 ; the point x0 is computed as the center of mass of the pattern, whereas
the coefficient a is the sum of the mass carried by the pattern, multiplied by h2.
Graphically, any such delta is represented, in all of the plots which form Figures 5–7,
by a dark circle, centered at x0 and having a radius proportional to a. Note that the
proportionality factor is the same for all deltas of the same plot, but it varies (for
aesthetic reasons only) from one plot to another; in other words, it is meaningful to
compare the “strength” of different deltas only within the same plot.

While Figures 5–7 show the limit distributions of deltas on a fixed mesh (h = 1/64)
as R varies, it is also interesting to investigate mesh convergence for a fixed value of



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

262 C. CANUTO, F. FAGNANI, AND P. TILLI

Fig. 7. The disk case for h = 1/64. Top left: R = 0.30; top right: R = 0.15; bottom left:
R = 0.10; bottom right: R = 0.08.

Table 2

The square case for R = 0.15: concentrated measures aδ at shown locations. Approximate
values of the constants a versus h.

1/h © Δ �
16 0.087 0.107 0.124
32 0.040 0.079 0.162
64 0.064 0.092 0.142

128 0.093 0.103 0.122
256 0.095 0.106 0.120

R. This is presented in Table 2, where the dependence of a upon h is reported for
the distribution of deltas shown in the figure on the left-hand side. Apart from the
initial case h = 1/16, which probably corresponds to a mesh too coarse to capture the
asymptotic features of the exact dynamical system, for the other values of h, mesh
convergence is clearly documented.
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Fig. 8. The square case for R = 0.15 and h = 1/16: structure of the limit densities.

Finally, we comment on Figures 5–7: globally speaking, they indicate the occur-
rence of a “bifurcation diagram” of concentrated measures, similar to those given in
one dimension; obviously, in two dimensions symmetries force more than one delta
to be simultaneously created as R exceeds a certain critical value. The square case
(Figure 5) is the most evident from this point of view, with the transition from 1 to
4 deltas, followed by 9–16 deltas, as R decreases. Note that the small deltas which
appear along the median axes in the plots on the right-hand side are numerically
spurious (i.e., their strength a tends to zero as h → 0): they collect all of the mass
initially contained in the cells placed along the median axes, a mass that by symme-
try cannot be attracted by any of the other deltas. We also note that the distance
between contiguous deltas is by far larger than R, ranging around 2R or more, as in
the 1D case.

Figure 6 provides an interesting example of an initial density, which is nonsym-
metric in the vertical direction. The limit mass distributions maintain a memory of
such a density, demonstrating that mass transportation takes place locally, within a
radius of order R, not globally.

This and the previous figures have been obtained using the infinity norm in the
definition of the cut-off ξ, i.e., using ξ∞,R; results with the Euclidean norm, i.e., with
ξ2,R, are structurally similar for these cases, although the actual values of the positions
and the strength of the deltas, as well as the critical values of R, may be different.
Figure 9 documents the influence of the norm on the limit patterns; the upper part
shows a substantial equivalence of the two patterns in the square case. The situation is
completely different for the disk case, since the theory says (Corollary 10) that starting
from a rotationally invariant initial measure, and using a rotationally invariant cut-
off function such as ξ2,R, the limit measure should be a single delta placed in the
center of symmetry. Figure 7 is precisely obtained with ξ2,R, yet more than one delta
appears for sufficiently small R. This is clearly the effect of using meshes that are not
rotationally invariant, so that the previous theoretical result cannot be reproduced at
the discrete level. The lower part of Figure 9 indeed documents a significant difference
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Fig. 9. The influence of the distance |x− y| used in the definition of the velocity Vt. Left-hand
side plots are obtained by the Euclidean distance; right-hand side plots are obtained by the maximum
norm distance. Squares: R = 0.15; disks: R = 0.10.

between the two limit patterns. On the other hand, the lower right plot in Figure 7
seems to indicate that, if R is sufficiently small and the mesh is sufficiently fine, then
the spurious deltas placed away from the center of symmetry become comparatively
weaker than the central one.
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[1] L. Ambrosio, N. Gigli, and G. Savarè, Gradient Flows in Metric Spaces and in the Space
of Probability Measures, Lectures Math. ETH Zurich, Birkhäuser Verlag, Basel, 2005.
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