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AN OPTIMAL BLOCK ITERATIVE METHOD AND

PRECONDITIONER FOR BANDED MATRICES

WITH APPLICATIONS TO PDES ON IRREGULAR DOMAINS∗

MARTIN J. GANDER† , SÉBASTIEN LOISEL‡ , AND DANIEL B. SZYLD§

Abstract. Classical Schwarz methods and preconditioners subdivide the domain of a partial differential equation into
subdomains and use Dirichlet transmission conditions at the artificial interfaces. Optimized Schwarz methods use Robin (or
higher order) transmission conditions instead, and the Robin parameter can be optimized so that the resulting iterative method
has an optimized convergence factor. The usual technique used to find the optimal parameter is Fourier analysis; but this is
only applicable to certain regular domains, for example, a rectangle, and with constant coefficients. In this paper, we present a
completely algebraic version of the optimized Schwarz method, including an algebraic approach to find the optimal operator or
a sparse approximation thereof. This approach allows us to apply this method to any banded or block banded linear system of
equations, and in particular to discretizations of partial differential equations in two and three dimensions on irregular domains.
With the computable optimal operator, we prove that the optimized Schwarz method converges in no more than two iterations,
even for the case of many subdomains (which means that this optimal operator communicates globally). Similarly, we prove
that when we use an optimized Schwarz preconditioner with this optimal operator, the underlying minimal residual Krylov
subspace method (e.g., GMRES) converges in no more than two iterations. Very fast convergence is attained even when the
optimal transmission operator is approximated by a sparse matrix. Numerical examples illustrating these results are presented.

AMS subject classifications. 65F08, 65F10, 65N22, 65N55

Key words. Linear systems, banded matrices, block matrices, Schwarz methods, optimized Schwarz methods, iterative
methods, preconditioners.

1. Introduction. Finite difference or finite element discretizations of partial differential equations
usually produce matrices which are banded, or block banded (e.g., block tridiagonal, or block pentadiagonal).
In this paper, we present a novel iterative method for such block and banded matrices, guaranteed to converge
in at most two steps, even in the case of many subdomains. Similarly, its use as a preconditioner for minimal
residual methods also achieves convergence in two steps. The formulation of this method proceeds by
appropriately replacing a small block of the matrix in the iteration operator. As we will show, approximations
of this replacement also produce very fast convergence. The method is based on an algebraic rendition of
optimized Schwarz methods.

Schwarz methods are important tools for the numerical solution of partial differential equations. They are
based on a decomposition of the domain into subdomains, and on the (approximate) solution of the (local)
problems in each subdomain. In the classical formulation, Dirichlet boundary conditions at the artificial
interfaces are used; see, e.g., [27], [33], [36], [41]. In optimized Schwarz methods, Robin and higher order
boundary conditions are used in the artificial interfaces, e.g., of the form ∂nu(x) + pu(x). By optimizing the
parameter p, one can obtain optimized convergence of the Schwarz methods; see, e.g., [4], [6], [8], [7], [17],
[13], [14], [15], [22], and also [19]. The tools usually employed for the study of optimized Schwarz methods
and its parameter estimation are based on Fourier analysis. This limits the applicability of the technique to
certain classes of differential equations, and simple domains, e.g., rectangles or spheres.

Algebraic analyses of classical Schwarz methods were shown to be useful in their understanding and
extensions; see, e.g., [2], [10], [20], [29], [40]. In particular, it follows that the classical additive and mul-
tiplicative Schwarz iterative methods and preconditioners can be regarded as the classical block Jacobi or
block Gauss-Seidel methods, respectively, with the addition of overlap; see section 2. Inspired in part by the
earlier work on algebraic Schwarz methods, in this paper, we mimic the philosophy of optimized Schwarz
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2 Optimal block method and preconditioner for banded matrices

methods when solving block banded linear systems; see also [24], [25], [26]. Our approach consists of opti-
mizing the block which would correspond to the artificial interface (called transmission matrix), so that the
spectral radius of the iteration operator is reduced; see section 3. With the optimal transmission operator,
we show that the new method is guaranteed to converge in no more than two steps, see section 4. Such
optimal iterations are sometimes called nilpotent [32], see also [30], [31]. When we use our optimal approach
to precondition a minimal residual Krylov subspace method, such as GMRES, the preconditioned iterations
are also guaranteed to converge in no more than two steps.

Because the calculation of the optimal transmission matrices is expensive, we propose two general ways of
approximating them. We can approximate some inverses appearing in the expression of the optimal matrices,
e.g., by using an incomplete LU factorization (see also [38, 39] on parallel block ILU preconditioners). We
also show how to approximate the optimal transmission matrices using scalar (O0s), diagonal (O0) and
tridiagonal (O2) transmission matrices or using some prescribed sparsity pattern.

For a model problem, we compare our algebraic results to those that can be obtained with Fourier analysis
on the discretized differential equation; see section 5. Since the new method is applicable to any (block)
banded matrix, we can use it to solve systems arising from the discretization of PDEs on unstructured meshes,
and/or on irregular domains, and we show in section 6 how our approach applies to many subdomains, while
still maintaining convergence in two iterations when the optimal transmission matrices are used.

In section 7, we present several numerical experiments. These experiments show that our methods can be
used either iteratively or as preconditioners for Krylov subspace methods. We show that the optimal trans-
mission matrices produce convergence in two iterations, even when these optimal transmission matrices are
approximated using an ILU factorization. We also show that our new O0s, O0 and O2 algorithms generally
perform better than classical methods such as block Jacobi and restricted additive Schwarz preconditioners.
We end with some concluding remarks in section 8.

2. Classical block iterative methods. Our aim is to solve a linear system of equations of the form
Au = f , where the n× n matrix A is either banded, or block-banded, or, more generally, it has the form

A =







A11 A12 A13

A21 A22 A23

A32 A33 A34

A42 A43 A44






. (2.1)

In most practical cases, where A corresponds to a discretization of a differential equation, one has that
A13 = A42 = O, i.e., they are zero blocks. Each block Aij is of order ni × nj , i, j = 1, . . . , 4, and

∑

i ni = n.
We have in mind the situation where n1 ≫ n2 and n4 ≫ n3, as illustrated, e.g., in Fig. 2.1.

2.1. Block Jacobi and block Gauss-Seidel methods. Consider first the following two diagonal
blocks (without overlap)

A1 =

[
A11 A12

A21 A22

]

, A2 =

[
A33 A34

A43 A44

]

, (2.2)

which are square, but not necessarily of the same size; cf. the example in Fig. 2.1 (left). The Block Jacobi
preconditioner (or block diagonal preconditioner is)

M−1 = M−1
BJ =

[
A−1

1 O
O A−1

2

]

=

2∑

i=1

RT
i A

−1
i Ri, (2.3)

where the restriction operators are

R1 = [ I O ] and R2 = [ O I ],

which have order (n1 + n2) × n and (n3 + n4) × n, respectively. The transpose of these operators, RT
i are

prolongation operators. The standard block Jacobi method, using these two blocks has an iteration operator
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Fig. 2.1. Left: A 400 × 400 band matrix partitioned into 4 × 4 blocks. Right: The corresponding solution to a boundary
value problem.

of the form

T = TBJ = I −M−1
BJA = I −

∑

RT
i A

−1
i RiA.

The iterative method is then, for a given initial vector u0, uk+1 = Tuk + M−1f , k = 0, 1, . . ., and its
convergence is linear with an asymptotic convergence factor ρ(T ), the spectral radius of the iteration operator;
see, e.g., the classical reference [42].

Similarly, the Block Gauss-Seidel iterative method for a system with a coefficient matrix (2.1) is defined
by an iteration matrix of the form

T = TGS = (I −RT
2 A

−1
2 R2A)(I −RT

1 A
−1
1 R1A) =

1∏

i=2

(I − RT
i A

−1
i RiA),

where the corresponding preconditioner can thus be written as

M−1
GS = [I − (I −RT

2 A
−1
2 R2A)(I −RT

1 A
−1
1 R1A)]A

−1. (2.4)

2.2. Additive and multiplicative Schwarz methods. Consider now the same blocks (2.2), with
overlap, and using the same notation we write the new blocks with overlap as

A1 =





A11 A12 A13

A21 A22 A23

A32 A33



 , A2 =





A22 A23

A32 A33 A34

A42 A43 A44



 . (2.5)

The corresponding restriction operators are again

R1 = [ I O ] and R2 = [ O I ], (2.6)

which have now order (n1+n2+n3)×n and (n2+n3+n4)×n, respectively. With this notation, the additive
and multiplicative Schwarz preconditioners (with or without overlap) are

M−1
AS =

2∑

i=1

RT
i A

−1
i Ri and M−1

MS = [I − (I −RT
2 A

−1
2 R2A)(I −RT

1 A
−1
1 R1A)]A

−1, (2.7)

respectively; see, e.g., [36], [41]. By comparing (2.3) and (2.4) with (2.7) one concludes that the classical
Schwarz preconditioners can be regarded as Block Jacobi or Block Gauss-Seidel with the addition of overlap;
for more details, see [14].
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2.3. Restricted additive and multiplicative Schwarz methods. From the preconditioners (2.7),
one can write explicitly the iteration operators for the additive and multiplicative Schwarz iterations as

TAS = I −
2∑

i=1

RT
i A

−1
i RiA (2.8)

and TMS =

1∏

i=2

(I −RT
i A

−1
i RiA),

respectively. The additive Schwarz iteration (with overlap) associated with the iteration operator in (2.8)
is usually not convergent; this is because it holds that with overlap

∑
RT

i Ri > I. The standard approach

is to use a damping parameter 0 < γ < 1 so that the iteration operator TR(γ) = I − γ
∑2

i=1 R
T
i A

−1
i RiA is

such that ρ(TR(γ)) < 1; see, e.g., [36], [41]. We will not pursue this strategy here. Instead we consider the
Restricted Additive Schwarz (RAS) iterations [3], [11].

The RAS method consists of using the local solvers with the overlap (2.5), with the corresponding
restriction operators Ri, but use the prolongations R̃T

i without the overlap, which are defined as

R̃1 =

[
I O
O O

]

and R̃2 =

[
O O
O I

]

, (2.9)

having the same order as the matrices Ri in (2.6), and where the identity in R̃1 is of order n1 + n2 and
that in R̃2 of order n3 + n4. These restriction operators select the variables without the overlap. Note that
we have now

∑
R̃T

i Ri = I. In this way, there is no “double counting” of the variables on the overlap, and,
under certain hypothesis, there is no need to use a relaxation parameter to obtain convergence; see [11], [14]
for details. Thus, the RAS iteration operator is

TRAS = I −
∑

R̃T
i A

−1
i RiA. (2.10)

Similarly, one can have Restricted Multiplicative Schwarz (RMS) [3], [28], and the iteration operator is

T = TRMS =

1∏

i=2

(I − R̃T
i A

−1
i RiA) = (I − R̃T

2 A
−1
2 R2A)(I − R̃T

1 A
−1
1 R1A), (2.11)

although in this case the R̃T
i are not necessary to avoid double counting. We include this method just for

completeness.

3. Convergence factor for modified restricted Schwarz methods. Our proposed new method
consists of replacing the transmission matrices A33 (lowest right corner) in A1 and A22 (upper left corner)
in A2 so that the modified operators of the form (2.10) and (2.11) have small spectral radii, and thus, the
corresponding iterative methods have fast convergence. Let the replaced blocks in A1 and in A2 be

S1 = A33 +D1, and S2 = A22 +D2, (3.1)

respectively, and let us call the modified matrices Ãi, i.e., we have

Ã1 =





A11 A12 A13

A21 A22 A23

A32 S1



 , Ã2 =





S2 A23

A32 A33 A34

A42 A43 A44



 ; (3.2)

cf. (2.5). We consider additive and multiplicative methods in the following two subsections.

3.1. Modified restricted additive Schwarz methods. With the above notation, our proposed
modified RAS iteration operator is

TMRAS = I −
∑

R̃T
i Ã

−1
i RiA, (3.3)
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and we want to study modifications Di so that ‖TMRAS‖ ≪ 1 for some suitable norm. This would imply of
course that ρ(TMRAS) ≪ 1. Finding the appropriate modifications Di is analogous to finding the appropriate
parameter p in optimized Schwarz methods; see our discussion in section 1 and references therein.

To that end, we first introduce some notation. Let E3 be the (n1 + n2 + n3) × n3 matrix given by
ET

3 = [ O O I ], and let E1 be the (n2 + n3 + n4)× n2 matrix given by ET
1 = [ I O O ]. Let

A−1
1 E3 =: B

(1)
3 =





B31

B32

B33



 , A−1
2 E1 =: B

(2)
1 =





B11

B12

B13



 , (3.4)

i.e., the last block column of A−1
1 , and the first block column of A−1

2 , respectively. Furthermore, we denote

B̃
(1)
3 =

[
B31

B32

]

, B̃
(2)
1 =

[
B12

B13

]

, (3.5)

i.e., pick the first two blocks of B
(1)
3 of order (n1 + n2) × n3, and the last two blocks of B

(2)
1 of order

(n3 + n4)× n2. Finally, let

ĒT
1 = [ I O ] and ĒT

2 = [ O I ], (3.6)

which have order (n1 + n2)× n and (n3 + n4)× n, respectively.

Lemma 3.1. The new iteration matrix (3.3) has the form

T = TMRAS =

[
O K
L O

]

, (3.7)

where

K = B̃
(1)
3 (I +D1B33)

−1
[
D̄1E

T
1 −A34Ē

T
2

]
, L = B̃

(2)
1 (I +D2B11)

−1
[
−A21Ē

T
1 +D2Ē

T
2

]
. (3.8)

Proof. We can write

Ã1 = A1 + E3D1E
T
3 , Ã2 = A2 + E1D2E

T
1 .

Using the Sherman-Morrison-Woodbury formula (see, e.g., [21]) we can explicitly write Ã−1
i in terms of A−1

i

as follows

Ã−1
1 = A−1

1 −A−1
1 E3(I +D1E

T
3 A

−1
1 E3)

−1D1E
T
3 A

−1
1 =: A−1

1 − C1, (3.9)

Ã−1
2 = A−1

2 −A−1
2 E1(I +D2E

T
1 A

−1
2 E1)

−1D2E
T
1 A

−1
2 =: A−1

2 − C2, (3.10)

and observe that ET
3 A

−1
1 E3 = B33, E

T
1 A

−1
2 E1 = B11.

Let us first consider the term with i = 1 in (3.3). We begin by noting that from (2.1) it follows that
R1A =

[
A1 E3A34

]
. Thus,

Ã−1
1 R1A = (A−1

1 − C1)
[
A1 E3A34

]
=
[
I − C1A1 A−1

1 E3A34 − C1E3A34

]
. (3.11)

We look now at each part of (3.11). First from (3.9), we have that C1A1 = B
(1)
3 (I +D1B33)

−1D1E
T
3 . Then

we see that C1E3A34 = B
(1)
3 (I +D1B33)

−1D1E
T
3 A

−1
1 E3A34 = B

(1)
3 (I +D1B33)

−1D1B33A34, and therefore

A−1
1 E3A34 − C1E3A34 = B

(1)
3 [I − (I +D1B33)

−1D1B33]A34 =

B
(1)
3 (I +D1B33)

−1(I +D1B33 −D1B33)A34 = B
(1)
3 (I +D1B33)

−1A34.

Putting this together we have

Ã−1
1 R1A =

[

I −B
(1)
3 (I +D1B33)

−1D1E
T
3 B

(1)
3 (I +D1B33)

−1A34

]

. (3.12)

+ 
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Fig. 3.1. ‖T‖, ‖T 2‖, and ρ(T ), for Di = βI for varying β. Laplacian.

It is important to note that the lower blocks in this expression, corresponding to the overlap, will not be
considered once it is multiplied by R̃T

1 . An analogous calculation produces

Ã−1
2 R2A =

[

B
(2)
1 (I +D2B11)

−1A21 I −B
(2)
1 (I +D2B11)

−1D2E
T
1

]

, (3.13)

and again, one should note that the upper blocks would be eliminated with the multiplication by R̃T
2 . We

remark that the number of columns of the blocks in (3.12) and (3.13) are not the same. Indeed, the first
block in (3.12) is of order (n1 + n2) × (n1 + n2 + n3), and the second is of order (n1 + n2) × n4, while the
first block in (3.13) is of order (n3 + n4)× n1 and the second is of order (n3 + n4)× (n2 + n3 + n4).

We apply the prolongations R̃T
i from (2.9) to (3.12) and (3.13), and collect terms to form (3.3). First

notice that the identity matrix in (3.3) and the identity matrices in (3.12) and (3.13) cancel each other. We
thus have

T =

[

B̃
(1)
3 (I +D1B33)

−1D1E
T
3 −B̃

(1)
3 (I +D1B33)

−1A34

−B̃
(2)
1 (I +D2B11)

−1A21 B̃
(2)
1 (I +D2B11)

−1D2E
T
1

]

=

[

B̃
(1)
3 (I +D1B33)

−1
[
D1E

T
3 −A34

]

B̃
(2)
1 (I +D2B11)

−1
[
−A21 D2E

T
1

]

]

=




B̃

(1)
3 (I +D1B33)

−1
[

D1Ẽ
T
3 −A34Ẽ

T
4

]

B̃
(2)
1 (I +D2B11)

−1
[

−A21Ẽ
T
1 +D2Ẽ

T
2

]



 , (3.14)

where the last equality follows from enlarging E3 = [ O O I ]T to Ẽ3 = [ O O I O ]T and

E1 = [ I O O ]T to Ẽ2 = [ O I O O ]T , and introducing Ẽ4 = [ O O O I ]T and

Ẽ1 = [ I O O O ]T . A careful look at the form of the matrix (3.14) reveals the block structure (3.7)
with (3.8).

Recall that our goal is to find appropriate matrices D1, D2 in (3.1) to obtain a small ρ(TMRAS). Given
the form (3.7) we obtained, it would suffice to minimize ‖K‖ and ‖L‖. As it turns out, even in simple cases,
the best possible choices of the matrices D1, D2, produce a matrix T = TMRAS with ‖T ‖ > 1 (although
ρ(T ) < 1); see for example the case reported in Fig. 3.1. In this case, we show the Laplacian with Di = βI.
We computed the value of ‖T ‖, ‖T 2‖, (the 2-norm) and ρ(T ), for varying values of the parameter β. We
also show an optimized choice of β given by solving an approximate minimization problem which we discuss

□ 

1 

1 

--e­

* 

/ 
/ 

li 
11 
1 1 
1 1 

1 1 
1 1 
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shortly. It can be appreciated that while ρ(T ) < 1 for all values of β ∈ [0, 1], ‖T ‖ > 1 for most of those
values. Furthermore the curve for ‖T 2‖ is pretty close to that of ρ(T ) for a wide range of values of β.

Thus, another strategy is needed. We proceed by considering T 2, which can easily be computed from
(3.7) to obtain

T 2 =

[
KL O
O LK

]

. (3.15)

Theorem 3.2. The asymptotic convergence factor of the modified RAS method given by (3.3) is bounded
by the product of the following two norms

‖(I +D1B33)
−1 [D1B12 −A34B13] ‖, ‖(I +D2B11)

−1 [D2B32 −A21B31] ‖. (3.16)

Proof. We consider T 2 as in (3.15). Using (3.8), (3.6), and (3.5), we can write

KL = B̃
(1)
3 (I +D1B33)

−1
[
D1Ē

T
1 −A34Ē

T
2

]
B̃

(2)
1 (I +D2B11)

−1
[
−A21Ē

T
1 +D2Ē

T
2

]

= B̃
(1)
3 (I +D1B33)

−1 [D1B12 −A34B13] (I +D2B11)
−1
[
−A21Ē

T
1 +D2Ē

T
2

]
, (3.17)

and similarly

LK = B̃
(2)
1 (I +D2B11)

−1 [D2B32 −A21B31] (I +D1B33)
−1
[
D1Ē

T
1 −A34Ē

T
2

]
.

Furthermore, let us consider the following products, which are present in KLKL and in LKLK,

KLB̃
(1)
3 = B̃

(1)
3 (I +D1B33)

−1 [D1B12 −A34B13] (I +D2B11)
−1 [D2B32 −A21B31] , (3.18)

LKB̃
(2)
1 = B

(2)
1 (I +D2B11)

−1 [D2B32 −A21B31] (I +D1B33)
−1 [D1B12 −A34B13] . (3.19)

These factors are present when considering the powers T 2k, and therefore, asymptotically their norm provides
the convergence factor in which T 2 goes to zero. Thus, the asymptotic convergence factor is bounded by the
product of the two norms (3.16).

3.2. Modified restricted multiplicative Schwarz methods. We now study the idea of using the
modified matrices (3.2) for the restricted multiplicative Schwarz iterations, obtained by modifying the iter-
ation operator (2.11), i.e., we have

T = TMRMS =

1∏

i=2

(I − R̃T
i Ã

−1
i RiA) = (I − R̃T

2 Ã
−1
2 R2A)(I − R̃T

1 Ã
−1
1 R1A) (3.20)

and its associated preconditioner.

From (3.12), (3.13), and (3.8), we see that

(I − R̃T
1 Ã

−1
1 R1A) =

[
O K
O I

]

, (I − R̃T
2 Ã

−1
2 R2A) =

[
I O
L O

]

.

As a consequence, putting together (3.20), we have the following structure

T = TMRMS =

[
O K
O LK

]

,

and from it, we can obtain the following result on its eigenvalues.

Proposition 3.3. Let

TMRAS =

[
O K
L O

]

, TMRMS =

[
O K
O LK

]

.

D 

+ + 
+-

+ +-
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If λ ∈ σ(TMRAS), then λ2 ∈ σ(TMRMS).

Proof. Let [x, v]T be the eigenvector of TMRAS corresponding to λ, i.e.,

[
O K
L O

] [
x
v

]

= λ

[
x
v

]

.

Thus, Kv = λx, and Lx = λv. Then, LKv = λLx = λ2v, and the eigenvector for TMRMS corresponding to
λ2 is [x, λv]T .

Remark 3.4. We note that the structure of (3.7) is the structure of a standard Block Jacobi iteration
matrix for a “consistently ordered matrix” (see, e.g., [42], [43]), but our matrix is not of a Block Jacobi
iteration. We note then that a matrix of this form has the property that if µ ∈ σ(T ), then −µ ∈ σ(T ); see,
e.g., [34, p. 120, Prop. 4.12]. This is consistent with our calculations of the spectra of the iteration matrices.
Note that for consistently ordered matrices ρ(TGS) = ρ(TJ)

2; see, e.g., [42, Corollary 4.26]. Our generic
block matrix A is not consistently ordered, but in Proposition 3.3 we proved a similar result.

Observe that in Proposition 3.3 we only provide half of the eigenvalues of TMRMS ; the other eigenvalues
are zero. Thus we have that ρ(TMRMS) = ρ(TMRAS)

2, indicating a much faster asymptotic convergence of
the multiplicative version.

4. Optimal and optimized transmission matrices. In the present section, we discuss various
choices of the transmission matrices D1 and D2. We first show that, using Schur complements, the it-
eration matrix T can be made nilpotent. Since this is an expensive procedure, we then discuss how an ILU
approximation can be used to obtain a method which converges very quickly. We finally look at sparse
approximations inspired from the optimized Schwarz literature.

4.1. Schur complement transmission conditions. We want to make the convergence factor (3.16)
equal to zero and so we set

D1B12 −A34B13 = O and D2B32 −A21B31 = O, (4.1)

and solve for D1 and D2. We consider the practical case when A13 = A42 = O. From the definition (3.4),
we have that A43B12 +A44B13 = O or B13 = −A−1

44 A43B12 and similarly, B31 = −A−1
11 A12B32. Combining

with (4.1), we find the following equations for D1 and D2:

(D1 +A34A
−1
44 A43)B12 = O and (D2 +A21A

−1
11 A12)B32 = O. (4.2)

This can be achieved by using the following Schur complements:

D1 = −A34A
−1
44 A43 and D2 = −A21A

−1
11 A12; (4.3)

we further note that this is the only choice if B12 and B32 are invertible. We note that B12 and B32 are
often of low rank and then there may be cheaper choices for D1 and D2 that produce nilpotent iterations.

Although the above methods can be used as iterations, it is often beneficial to use them as preconditioners
for Krylov subspace solvers such as GMRES or MINRES; see, e.g., [34], [35]. For example, the MRAS
preconditioner is

M−1
MRAS =

∑

R̃T
i Ã

−1
i Ri. (4.4)

Similarly, we can have a Modified Restricted Multiplicative Schwarz preconditioner corresponding to the
iteration matrix (3.20). If the Schur complements (4.3) are used for the transmission matrices, then the
Krylov space solvers will converge in at most two steps:

Proposition 4.1. Consider a linear system with coefficient matrix of the form (2.1), and a minimal
residual method for its solution with either the MRAS preconditioner (4.4), or with the MRMS preconditioner,
with Ãi of the form (3.2) and Di (i = 1, 2) solutions of (4.2). Then, the preconditioned minimal residual
method converges in at most two iterations.

+ 
□ 
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Proof. We can write T 2 = (I − M−1A)2 = p2(M
−1A) = 0, where p2(z) = (1 − z)2 is a particular

polynomial of degree 2 with p2(0) = 1. Thus, the minimal residual polynomial q2(z) of degree 2 also satisfies
q2(z) = 0.

4.2. Approximate Schur complements. The factors A−1
11 and A−1

44 appearing in (4.3) pose a problem
in practice since the matrices A11 and A44 are large. Hence it is desirable to solve approximately the linear
systems

A44X = A43 and A11Y = A12. (4.5)

There are of course many computationally attractive ways to do this, including incomplete LU factorizations
(ILU) of the block A44 [34] (or of each diagonal block in it in the case of multiple blocks, see section 6, where
the factorization can be performed in parallel) or the use of sparse approximate inverse factorizations [1]. In
our experiments in this paper we use ILU to approximate the solution of systems like (4.5). An experimental
study showing the effectiveness of ILU in this context is presented later in section 7.

4.3. Sparse transmission matrices. The Schur complement transmission matrices (4.3) are dense.
We now impose sparsity structures on the transmission matrices D1 and D2:

D1 ∈ Q1 and D2 ∈ Q2,

where Q1 and Q2 denote spaces of matrices with certain sparsity patterns. The optimized choices of D1 and
D2 are then given by solving the following nonlinear optimization problems:

min
D1∈Q1

‖(I +D1B33)
−1 [D1B12 −A34B13] ‖, min

D2∈Q2

‖(I +D2B11)
−1 [D2B32 −A21B31] ‖. (4.6)

As an approximation, one can also consider the following linear problems:

min
D1∈Q1

‖D1B12 −A34B13‖, min
D2∈Q2

‖D2B32 −A21B31‖. (4.7)

Successful sparsity patterns have been identified in the optimized Schwarz literature. Order 0 methods
(“OO0”) use diagonal matrices D1 and D2 while order 2 methods (“OO2”) include off-diagonal components
that represent tangential derivatives of order 2; this corresponds to using tridiagonal matrices D1 and D2.
For details, see, [13], [14], and further section 5. Inspired from the OO0 and OO2 methods, we propose the
following schemes. The O0s scheme uses Di = βiI, where βi is a scalar parameter to be determined. The
O0 scheme uses a general diagonal matrix Di and the O2 scheme uses a general tridiagonal matrix Di.

We choose the Frobenius norm for the linear minimization problem (4.7). For the O0s case, we obtain

β0 = argmin
β

‖βB12 −A34B13‖F = argmin
β

‖β vec(B12)− vec(A34B13)‖2

= vec(B12)
T
vec(A34B13)/vec(B12)

T
vec(B12), (4.8)

where the Matlab vec command produces here an n3 · n2 vector with the matrix entries. In the O0 case, we
look for a diagonal matrix D1 = diag(d1, . . . , dn3

) such that

D1 = argmin
D

‖DB12 −A34B13‖F , (4.9)

(and similarly for D2). The problem (4.9) can be decoupled as n3 problems for each nonzero of D1 using
each column of B12 and A34B13 to obtain

di = argmin
d

‖d(B12)i − (A34B13)i‖F = (B12)
T
i (A34B13)i/(B12)

T
i (B12)i, (4.10)

where we have used the notation Xi to denote the ith column of X . Observe that the cost of obtaining β0

in (4.8) and that of obtaining the n3 values of di in (4.10) is essentially the same. Similarly, the O2 method
leads to least squares problems.

D 
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Remark 4.2. The methods O0s, O0 and O2 rely on having access to the matrices Bij. Computing the
matrices Bij is exactly as difficult as computing the Schur complement, which can then be used to produce
nilpotent iterations as per subsection 4.1. Furthermore, any approximation to the Bij can be used to produce
approximate Schur complement transmission matrices as per subsection 4.2. In either case, it is not obvious
that there is an advantage to approximating these exact or approximate Schur complements sparsely. It
remains an open problem to compute sparse matrices Di without having access to the Bij.

5. Asymptotic convergence factor estimates for a model problem using Fourier analysis.

In this section we consider a problem on a simple domain, so we can use Fourier analysis to calculate the
optimal parameters as is usually done in optimized Schwarz methods; see, e.g., [13]. We use this analysis to
compute the asymptotic convergence factor of the optimized Schwarz iterative method, and compare it to
what we obtain with our algebraic counterpart.

The model problem we consider is −∆u = f in the (horizontal) strip Ω = R × (0, L), with Dirichlet
conditions u = 0 on the boundary ∂Ω, i.e., at x = 0, L. We discretize the continuous operator on a grid whose
interval is h in both the x and y directions; i.e., with vertices at (jh, kh). We assume that h = L/(m+ 1),
so that there are m degrees of freedom along the y axis, given by y = h, 2h, . . . ,mh. The stiffness matrix is
infinite and block-tridiagonal of the following form,

A =









. . .
. . .

. . .

−I E −I
−I E −I

. . .
. . .

. . .









,

where I is the m×m identity matrix and E is the m×m tridiagonal matrix E = tridiag(−1, 4,−1). This
is the stiffness matrix obtained when we discretize with the Finite Element Method using piecewise linear
elements. Since the matrix is infinite, we must specify the space that it acts on. We look for solutions in the
space ℓ2(Z) of square-summable sequences. In particular, a solution to Au = b must vanish at infinity. This
is similar to solving the Laplace problem in H1

0 (Ω), where the solution also vanishes at infinity.

We use the subdomains Ω1 = (−∞, h)× (0, L) and Ω2 = (0,∞)× (0, L), leading to the decomposition







A11 A12 O O
A21 A22 A23 O
O A32 A33 A34

O O A43 A44






=













. . .
. . .

. . .

−I E −I
−I E −I

−I E −I
−I E −I

. . .
. . .

. . .













, (5.1)

i.e., we have in this case n2 = n3 = m.

In optimized Schwarz methods, one uses either Robin conditions (OO0) on the artificial interface, or a
second order tangential condition (OO2). If we discretize these transmission conditions using the piecewise
linear spectral element method (i.e., by replacing the integrals with quadrature rules), we get that Si =
1
2E + hpI for the OO0 iteration, where the scalar p is typically optimized by considering a continuous
version of the problem, and using Fourier transforms; see, e.g., [13]. Likewise, for the OO2 iteration, we
get that Si =

1
2E + (hp− 2q

h )I + q
hJ , where J is the tridiagonal matrix tridiag(1, 0, 1), and where p and q

are optimized using a continuous version of the problem. In the current paper, we have also proposed the
choices Si = E − βI (O0) and Si = E − βI + γJ (O2). The O2 and OO2 methods are related via

4− β = 2 + hp− 2q

h
and γ − 1 =

q

h
− 1

2
.

However, the O0 method is new and is not directly comparable to the OO0 method, since the off-diagonal

1 1 
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entries of E − βI cannot match the off-diagonal entries of E/2 + pI.1

We now obtain an estimate of the convergence factor for the proposed new method.

Lemma 5.1. Let A be given by (5.1). For S1 = A33 +D1 with D1 = −βI and β ∈ R, the convergence
factor estimate (3.16) is

‖(I +D1B33)
−1(D1B12 −A34B13)‖ = max

k=1,...,m

∣
∣
∣
∣

−β + e−w(k)h

1− βe−w(k)h

∣
∣
∣
∣
e−2w(k)h, (5.2)

where w(k) = w(k, L, h) is the unique positive solution of the relation

cosh (w(k)h) = 2− cos

(
π kh

L

)

. (5.3)

Note that w(k) is a monotonically increasing function of k ∈ [1,m].

Proof of Lemma 5.1. Let F be the symmetric orthogonal matrix whose entries are

Fjk =

√

m+ 1

2
sin(πjk/(m+ 1)). (5.4)

Consider the auxiliary problem




A11 A12 O
A21 A22 A23

O A32 A33









C1

C2

C3



 =





O
O
F



 (5.5)

Observe that since F 2 = I, we have that




B31

B32

B33



 =





C1

C2

C3



F. (5.6)

We can solve (5.5) for the unknowns C1, C2, C3. By considering (5.1), and since A34 = [−I O O . . .],
we see that





A11 A12 O O
A21 A22 A23 O
O A32 A33 −I











C1

C2

C3

F






=





O
O
O



 .

Hence, we are solving the discrete problem






(Lhu)(x, y) = 0 for x = . . . ,−h, 0, h and y = h, 2h, . . . ,mh;

u(2h, y) =
√

m+1
2 sin(πky/L) for y = h, 2h, . . . ,mh; and

u(x, 0) = u(x, L) = 0 for x = . . . ,−h, 0, h;

(5.7)

where the discrete Laplacian Lh is given by

(Lhu)(x, y) = 4u(x, y)− u(x− h, y)− u(x+ h, y)− u(x, y − h)− u(x, y + h).

The two basic solutions to the difference equation are:

u±(x, y) = e±w(k)x sin(πky/L),

1In OO0, the optimized p is positive because it represents a Robin transmission condition. The best choice of ph is small
and hence the corresponding row sums of Ãi are almost zero, but positive. We have chosen Di = −βI in order to achieve
similar properties for the rows our Ãi.
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where w(k) is the unique positive solution of (5.3).

The subdomain Ω1 does not contain the x = ∞ boundary, but it does contain the x = −∞ boundary.
Since we are looking for solutions that vanish at infinity (which, for Ω1, means x = −∞), the unique solution
for the given Dirichlet data at x = 2h is therefore

u(x, y) =

(√

m+ 1

2
e−2w(k)h

)

ew(k)x sin(πky/L).

Using (5.4), this gives the formula








C1

C2

C3







=








...
FD(3h)
FD(2h)
FD(h)







,

where D(ξ) is the diagonal m×m matrix whose (k, k)th entry is e−w(k)ξ. Hence, from (5.6),








B31

B32

B33







=








...
FD(3h)F
FD(2h)F
FD(h)F







.

In other words, the matrix F diagonalizes all the m×m blocks of B
(1)
3 . Observe that F also diagonalizes J

and E = 4I − J , and hence all the blocks of A; see the right-hand-side of (5.1). A similar reasoning shows

that F diagonalizes also the m×m blocks of B
(2)
1 :








B11

B12

B13







=








FD(h)F
FD(2h)F
FD(3h)F

...







.

Hence, the convergence factor estimate (3.16) for our model problem, is given by

‖(I +D1B33)
−1(D1B12 −A34B13)‖ = ‖F (I − βD(h))−1(−βD(2h) +D(3h))F‖,

which leads to (5.2).

Lemma 5.2. Consider the cylinder (−∞,∞) × (0, L), where L > 0 is the height of the cylinder. Let
h > 0 be the grid parameter and consider the domain decomposition (5.1). In the limit as the grid parameter
h tends to zero, the optimized parameter β behaves asymptotically like

βopt = 1− c

(
h

L

)2/3

+O(h), (5.8)

where c = (π/2)2/3 ≈ 1.35. The resulting convergence factor is

ρopt = 1−
(
32πh

L

)1/3

+O(h2/3). (5.9)

Proof. We begin this proof with some notation and a few observations. Let

r(w, h, β) =
−β + e−wh

1− βe−wh
e−2wh.

□ 
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Then, the convergence factor estimate (5.2) is bounded by and very close to (cf. the argument in [23])

ρ(L, h, β) = max
w∈[w(1),w(m)]

|r(w, h, β)|,

where w(k) = w(k, h, L) is given by (5.3). Clearly, r(w, h, 0) < r(w, h, β) whenever β < 0, hence we will
optimize over the range β ≥ 0. Conversely, we must have 1−βe−wh > 0 for every w ∈ [w(1), w(m)], to avoid
an explosion in the denominator of (5.2). By using the value w = w(1), we find that

0 ≤ β < 2− cos(πh/L) +
√

(3− cos(πh/L))(1− cos(πh/L)) = 1 + π
h

L
+O(h2). (5.10)

We are therefore optimizing β in a closed interval [0, βmax] = [0, 1 + πh/L+O(h2)].

We divide the rest of the proof into seven steps.

Step 1: we show that βopt is obtained by solving an equioscillation problem. We define the set W (β) =
W (L, h, β) = {w > 0 such that |r(w, h, β)| = ρ(L, h, β)}, and we now show that, if ρ(β) = ρ(L, h, β) is
minimized at β = βopt, then #W (βopt) > 1. By the Envelope Theorem [23], if W (β) = {w∗} is a singleton,
then ρ(β) = ρ(L, h, β) is a differentiable function of β and its derivative is ∂

∂β |r(w∗, h, β)|. Since

∂

∂β
r(w, h, β) =

e−2wh − 1

(βe−wh − 1)2
e−2wh, (5.11)

we obtain

0 =
dρ

dβ
(βopt) =

e−2w∗h − 1

(βopte−w∗h − 1)2
e−2w∗hsgn(r),

which is impossible. Therefore, #W (βopt) ≥ 2; i.e., βopt is obtained by equioscillating r(w) at at least two
distinct points of W (β).

Step 2: We find the critical values of r(w) = r(w, h, β) as a function of w alone. By differentiating, we
find that the critical points are ±wmin, where

wmin = wmin(β, h) = − ln

(

1

4

3 + β2 −
√

9− 10 β2 + β4

β

)

h−1. (5.12)

In the situation β > 1, wmin is complex, and hence there is no critical point. In the situation β = 1, we have
wmin = 0, which is outside of the domain [w(1), w(m)] of r(w). Since r(w) is differentiable over its domain
[w(1), w(m)], its extrema must be either at critical points, or at the endpoints of the interval; i.e.,

W (βopt) ⊂ {w(1), wmin, w(m)}.

We now compute βopt by assuming that2 W (βopt) = {w(1), wmin}. For this value of βopt, we will verify (in
Step 7) that if we choose any β < βopt then ρ(β) ≥ r(w(1), h, β) > r(w(1), h, βopt) = ρ(βopt), and hence no
β < βopt is optimal. A similar argument applies to the case β > βopt.

Step 3: We now consider the solution(s) of the equioscillation problem W (βopt) = {w(1), wmin}, and we
show that r(w(1)) > 0 and r(wmin) < 0, and that r(w(1)) + r(wmin) = 0. Since W (β) = {w(1), wmin}, we
must have that wmin > w(1). If we had that r(w(1)) = r(wmin), the mean value theorem would yield another
critical point in the interval (w(1), wmin). Therefore, it must be that r(w(1)) + r(wmin) = 0. We now check
that, r(wmin) < 0. Indeed, r(w) is negative when w is large, and r(+∞) = 0. If we had r(wmin) > 0, there
would be a w′ > wmin such that r(w′) < 0 is minimized, creating another critical point. Since wmin is the
only critical point, it must be that r(wmin) < 0. Hence, r(w(1)) > 0.

2In practice, we tried the three possibilities W (βopt) = {w(1), wmin}, {w(1), w(m)}, {wmin, w(m)}. It turns out that the
first one is the correct one. In analyzing the first case, the proof that the remaining two cases do not give optimal values of β
arises naturally.



14 Optimal block method and preconditioner for banded matrices

Step 4: We show that there is a unique solution to the equioscillation problem W (βopt) = {w(1), wmin},
characterized by r(w(1)) + r(wmin) = 0. From (5.11), we see that ∂r

∂β (w(1), h, β) < 0, and likewise,

∂(r(wmin(β, h), h, β))

∂β
=

∂r

∂β
(wmin, h, β) +

=0
︷ ︸︸ ︷

∂r

∂w
(wmin, h, β)

∂wmin

∂β
(β, h) < 0.

Combining the facts that r(w(1)) > 0 and r(wmin) < 0 are both decreasing in β, there is a unique value of
β = βopt such that r(w(1)) + r(wmin) = 0; this βopt will minimize ρ(L, h, βopt) under the assumption that
W (β) = {w(1), wmin}.

Step 5: We give an asymptotic formula for the unique βopt solving the equioscillation problem
W (βopt) = {w(1), wmin}. To this end, we make the ansatz3 β = 1− c(h/L)2/3, and we find that

r(w(1)) = 1− 2π

c

(
h

L

)1/3

+O(h2/3) and (5.13)

r(wmin) = −1 + 4
√
c

(
h

L

)1/3

+O(h2/3). (5.14)

Hence, the equioscillation occurs when c = (π/2)2/3.

Step 6: We now show that the equioscillationW (βopt) = {w(1), wmin} occurs when wmin ∈ (w(1), w(m)).
Let βopt = 1− c(h/L)2/3 +O(h). Then, from (5.12) and (5.3),

wmin =

√
c

L1/3h2/3
+ O(h2/3) < w(m) =

arccosh(3)

h
+O(h),

provided that h is sufficiently small.

Step 7: If β < βopt, then ρ(β) > ρ(βopt). Indeed, we see from (5.11) that ∂r
∂β (w1, h, β) < 0. Hence, if

β < βopt, then ρ(β) ≥ r(w1, h, β) > r(w1, h, βopt) = ρ(βopt). A similar argument shows that if β > βopt, then
ρ(β) > ρ(βopt).

We therefore conclude that the βopt minimizing ρ(β) is the unique solution to the equioscillation problem
W (βopt) = {w(1), wmin}, and its asymptotic expansion is given by (5.8). We compute a series expansion of
ρ(L, h, 1− c(h/L)2/3) to obtain (5.9).

This shows that the O0 method converges at a rate similar to the OO0 method. In a practical problem
where the domain is not a strip, or the partial differential equation is not the Laplacian, if one wants to
obtain the best possible convergence factor, then one should solve the nonlinear optimization problem (4.6).
We now consider the convergence factor obtained when instead the linear minimization problem (4.7) is
solved.

Lemma 5.3. For our model problem, the solution of the optimization problem

β0 = argmin
β

‖(−βB12 + B13)‖

is

β0 =
3

2

((
1 +

√
2
)2/3 − 1

)

s

3

√

1 +
√
2

, (5.15)

where

s−1 = 2− cos

(
π h

L

)

+

√

3− cos

(
π h

L

)
√

1− cos

(
π h

L

)

. (5.16)

3This ansatz is inspired from the result obtained in the OO0 case, cf. [13] and references therein.

□ 
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The resulting asymptotics are

β0 = 0.894 . . .− 2.8089 . . . (h/L) +O(h2) and ρ0 = 1− 62.477 . . . (h/L) +O(h2). (5.17)

We mention that the classical Schwarz iteration as implemented, e.g., using RAS, is obtained with β = 0,
yielding the asymptotic convergence factor

1− 9.42 . . . (h/L) +O(h2).

In other words, our algorithm is asymptotically 62.477/9.42 ≈ 6.6 times faster than a classical Schwarz
iteration, in the sense that it will take about 6.6 iterations of a classical Schwarz method to equal one of
our O0 method, with the parameter β = β0, if h is small. An optimized Schwarz method such as OO0
would further improve the asymptotic convergence factor to 1 − ch1/3 + . . . (where c > 0 is a constant) –
this indicates that one can gain significant performance by optimizing the nonlinear problem (4.6) instead
of (4.7).

Proof of Lemma 5.3 By proceeding as in the proof of Lemma 5.1, we find that

‖(−βB12 +B13)‖ = max
w∈{w(1),...,w(m)}

|(β − e−wh)e−2wh|.

We thus set

r0(w) = r0(w, β, h) = (β − e−wh)e−2wh.

The function r0(w) has a single extremum at w∗ = w∗(h, β) = (1/h) ln(3/(2β)). We further find that

r0(w
∗) =

4

27
β3,

independently of h. We look for an equioscillation by setting

r0(w(1, L, h), β0, h) = r0(w
∗(β0, h), β0, h);

that is,

4

27
β3
0 + s−2β0 + s−3 = 0.

Solving for the unknown β yields (5.3) and (5.15). Substituting β = β0 and w = w(1) into (5.2) and taking
a series expansion in h gives (5.17).

6. Multiple diagonal blocks. Our analysis so far has been restricted to the case of two (overlapping)
blocks. We show in this section that our analysis applies to multiple (overlapping) blocks. To that end, we
use a standard trick of Schwarz methods to handle the case of multiple subdomains, if they can be colored
with two colors.

Let Q1, . . . , Qp be restriction matrices, defined by taking rows of the n× n identity matrix I; cf. (2.6).

Let Q̃T
1 , . . . , Q̃

T
p be the corresponding prolongation operators, such that

I =

p
∑

k=1

Q̃T
kQk;

cf. (2.9). Given the stiffness matrix A, we say that the domain decomposition is two-colored if

QT
i AQj = O for all |i − j| > 1.

□ 
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In this situation, if p is even, we can define

R1 =








Q1

Q3

...
Qp−1








and R2 =








Q2

Q4

...
Qp







. (6.1)

We make similar definitions if p is odd, and also assemble R̃1 and R̃2 in a similar fashion.

The rows and columns of the matrices R1 and R2 could be permuted in such a way that (2.6) holds.
(For an example of this, see Fig, 7.6, bottom-right.) Therefore, all the arguments of the previous sections as
in the rest of the paper hold, mutatis mutandis. In particular, the optimal interface conditions D1 and D2

give an algorithm that converges in two steps, regardless of the number of subdomains (see also [16] for the
required operators in the case of an arbitrary decomposition with cross points).

Although it is possible to “physically” reorder R1 and R2 in this way, it is computationally more
convenient to work with the matrices R1 and R2 as defined by (6.1). We now outline the computations
needed to obtain the optimal transmission matrices (or their approximations).

The matrices A1 and A2, defined by Ai = RiAR
T
i , similar to (2.5), are block diagonal. The matrices E1

and E3 are defined by

Ei = R̃iR
T
3−i,

and the matrices B
(1)
3 and B

(2)
1 are defined by

B
(1)
3 = A−1

1 E3 and B
(2)
1 = A−1

2 E1;

cf. (3.4). Since the matrices A1 and A2 are block diagonal, we have retained the parallelism of the p
subdomains.

We must now define the finer structures, such as B12 and A34. We say that the kth row is in the kernel
of X if Xek = 0, where ek = [0, . . . , 0, 1, 0, . . . , 0]T is the usual basis vector. Likewise, we say that the kth

column is in the kernel of X if eTkX = 0. We define the matrix B12 to be the rows of B
(2)
1 that are not in

the kernel of R1R̃
T
2 . We define the matrix B13 to be the rows of B

(2)
1 that are in the kernel of R1R

T
2 , and we

make similar definitions for B32 and B31; cf. (3.4). The matrix A34 is the submatrix of A2 whose rows are
not in the kernel of R1R̃

T
2 , and whose columns are in the kernel of R1R

T
2 . We make similar considerations

for the other blocks Aij .

This derivation allows us to define transmission matrices defined by (4.7) in the case of multiple diagonal
overlapping blocks.

7. Numerical Experiments. We have three sets of numerical experiments. In the first set, we use an
advection-reaction-diffusion equation with variable coefficients discretized using a finite difference approach.
We consider all permutations of square- and L-shaped regions; 2 and 4 subdomains; additive and multi-
plicative preconditioning; as iterations and used as preconditioners for GMRES with the following methods:
nonoverlapping block Jacobi; overlapping block Jacobi (RAS); our O0s, O0, O2 and Optimal methods and
their ILU approximations. Our second set of experiments uses a space shuttle domain with a finite element
discretization. We test our multiplicative preconditioners and iterations for two and eight subdomains. In
our third set of experiments, we validate the asymptotic analysis of Section 5 on a square domain.

7.1. Advection-reaction-diffusion problem. For these numerical experiments, we consider a finite
difference discretization of a two-dimensional advection-reaction-diffusion equation of the form

ηu−∇ · (a∇u) + b · ∇u = f, (7.1)
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Fig. 7.1. Square domain, two subdomains. Left: iterative methods; Right: GMRES. Top: additive; bottom: multiplicative.

where

a = a(x, y), b =

[
b1(x, y)
b2(x, y)

]

, η = η(x, y) ≥ 0, (7.2)

with b1 = y − 1/2, b2 = −(x− 1/2), η = x2 cos(x + y)2, a = (x+ y)2ex−y. We consider two domain shapes,
a square, and an L-shaped region4.

Note that this problem is numerically challenging. The PDE is nonsymmetric, with significant advection.
The diffusion coefficient approaches 0 near the corner (x, y) = (0, 0), which creates a boundary layer that
does not disappear when h → 0. Our numerical methods perform well despite these significant difficulties.
In Fig. 2.1 (right), we have plotted the solution to this problem with the forcing f = 1. The boundary layer
is visible in the lower-left corner. Since the boundary layer occurs at a point and the equation is elliptic
in the rest of the domain, the ellipticity is “strong enough” that there are no oscillation appearing in the
solution for the discretization described below.

For the finite difference discretization, we use h = 1/21 in each direction resulting in a banded matrix
with n = 400 (square domain) and n = 300 (L-shaped domain) and a semiband of size 20. We preprocess
the matrix using the reverse Cuthill-McKee algorithm; see, e.g., [18]. This results in the matrix depicted in

4An anonymous reviewer points out that concave polygonal domains can give rise to polylogarithmic singularities on the
boundary. However, our use of homogeneous Dirichlet conditions prevents this situation from arising. We also note [5], which
studies the case of when such singularities really do occur.
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Fig. 7.2. Square domain, four subdomains. Left: iterative methods; Right: GMRES. Top: additive; bottom: multiplicative.

Fig. 2.1 (left). In the same figure, we show the two subdomain partition used, i.e., with n1 = n4 = 180 and
n2 = n3 = 20.

Our results, summarized in Figs. 7.1–7.4, are organized as follows. Each figure consists of four plots. In
each figure, the top-left plot summarizes the convergence histories of the various additive iterations, while
the bottom-left plot summarizes the convergence histories of the multiplicative iterations. The right plots
give the corresponding convergence histories of the methods used as preconditioners for GMRES. Note that
the plots of the iterative methods use the Euclidian norm of the error while the plots of the GMRES methods
show the Euclidian norm of the preconditioned residual. For the iterative methods, we use a random initial
vector u0 and zero forcing f = 0. For GMRES, we use random forcing – the initial vector u0 = 0 is chosen
by the GMRES algorithm.

The methods labeled “Nonoverlapping” and “Overlapping” correspond to the nonoverlapping block
Jacobi and RAS preconditioners respectively; see section 2. Our new methods use Di = βiI (O0s), Di =
diagonal (O0), Di = tridiagonal (O2); see section 4. As noted in section 4, it will be preferable to compute
Bij approximately in a practical algorithm. To simulate this, we have used an incomplete LU factorization

(ILU) of blocks of A with threshold τ = 0.2/n3 to compute approximations B
(ILU)
ij to the matrices Bij .

From those matrices, we have then computed O0s (ilu), O0 (ilu), O2 (ilu) and Optimal (ilu) transmission
conditions D1 and D2.

We now discuss the results in Fig. 7.1 (square domain, two subdomains) in detail. The number of
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Fig. 7.3. L-shaped domain, two subdomains. Left: iterative methods; Right: GMRES. Top: additive; bottom: multiplicative.

iterations to reduce the norm of the error below 10−8 are 2 for the Optimal iteration (as predicted by our
theory), 22 for the O0 iteration, and 12 for the O2 iteration, for the additive variants. We also test the O0s
method with scalar matrices Di = βI. This method is not well suited to the present problem because the
coefficients vary significantly and hence the diagonal elements are not well approximated by a scalar multiple
of the identity. This explains why the O0s method requires over 200 iterations to converge. Both the optimal
Di and their ILU approximations converge in two iterations. For the iterative variants O2, O0, there is some
deterioration of the convergence factor but this only results in one extra iteration for the GMRES accelerated
iteration. The multiplicative algorithms converge faster than the additive ones, as expected.

We also show in the same plots the convergence histories of Block Jacobi (without overlap), and RAS
(overlapping). In these cases, the number of iterations to reduce the norm of the error below 10−8 are 179
and 59, respectively. One sees that the new methods are much faster than Block Jacobi and RAS methods.

In Fig. 7.2 (square domain, four subdomains) we also obtain good results, except that the O0s method
now diverges. This is not unexpected, since the partial differential equation has variable coefficients. Nev-
ertheless, the O0s method works as a preconditioner for GMRES. The tests for the L-shaped region are
summarized in Figs. 7.3 and 7.4. Our methods continue to perform well with the following exceptions. The
O0s methods continue to struggle due to the variable coefficients of the PDE. In Fig. 7.4, we also note that
the O2 iterations diverge. The reverse Cuthill-McKee ordering has rearranged the A22 and A33 and these
matrices are not tridiagonal. In the O2 algorithm, the sparsity pattern of the D1 and D2 matrices should be
chosen to match the sparsity pattern of the Aii blocks. In order to check this hypothesis, we reran the test
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Fig. 7.4. L-shaped domain, four subdomains. Left: iterative methods; Right: GMRES. Top: additive; bottom: multiplica-
tive.
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Fig. 7.5. Iterative methods without reverse Cuthill-McKee reordering; L-shaped, additive, four subdomains. Left: iterative
method, right: GMRES.
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Fig. 7.6. The space shuttle model and the solution (top-left), the domain decomposition (top-right), the corresponding
matrix partitioning (bottom-left) and the even-odd reordering of Section 6 (bottom-right).

without reordering the vertices with the reverse Cuthill-McKee algorithm. These experiments, summarized
in Fig. 7.5, confirm our theory: when the sparsity structure of D1 and D2 match the corresponding blocks
of A1 and A2, the method O2 converges rapidly.

7.2. Domain decomposition of a space shuttle with finite elements. In order to illustrate our
methods applied to more general domains, we solved a Laplace problem on a space shuttle model (Fig. 7.6,
top-left for the solution and top-right for the domain decomposition). We have partitioned the shuttle into
eight overlapping subdomains; the two rightmost subdomains are actually disconnected. This partition is
done purely by considering the stiffness matrix of the problem and partitioning it into eight overlapping
blocks (Fig. 7.6, top-right) – note as before that this matrix has been ordered in such a way that the
bandwidth is minimized, using a reverse Cuthill-McKee ordering of the vertices; this produces the block
structure found in Fig. 7.6 (bottom-left). In Fig. 7.6 (bottom-right), we show the block structure of the
same matrix once all the odd-numbered blocks have been permuted to the 1st and 2nd block rows and
columns and the even-numbered blocks have been permuted to the 3rd and 4th block rows and columns, as
per Section 6.

We have tested our multiplicative preconditioners on this space shuttle model problem with 2 and 8
subdomains (Fig. 7.7). We note that our optimized preconditioners (O0s, O0, O2 and Optimal) converge
faster than traditional Schwarz preconditioners (Nonoverlapping and Overlapping), even using the ILU

approximations B
(ILU)
12 and B

(ILU)
13 for the matrices B12 and B13. The exception is the O0s (ILU) iteration

with 8 subdomains, which diverges. However, this preconditioner works well with GMRES.

Because we are solving a Laplacian, the diagonal entries of A are all of similar size. As a result the O0s
preconditioner behaves in a manner which is very similar to the O0 preconditioner (and both precondition-
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Fig. 7.7. Convergence histories for the shuttle problem with two subdomains (top) and eight subdomains (bottom) with
the multiplicative preconditioners used iteratively (left) or with GMRES acceleration (right).

ers work well). The O2 preconditioner gives improved performance and the Optimal preconditioner gives
nilpotent iterations that converge in two steps independently of the number of subdomains. Similar results
were obtained with additive preconditioners.

7.3. Scaling experiments for a rectangular region with an approximate Schur complement.

We present an experimental study showing the effectiveness of ILU when used to approximate the solution of
systems with the atomic blocks, as in (4.5). To that end, we consider a simpler PDE, namely the Laplacian
on the rectangle (−1, 1)×(0, 1); i.e., a = 1, b = O, η = 0 in (7.2). We use two overlapping subdomains, which
then correspond to two overlapping blocks in the band matrix. We consider several systems of equations of
increasing order, by decreasing the value of the mesh parameter h. We show that for this problem, the rate
of convergence of our method when ILU is used, stays very close to that obtained with the exact solution of
the systems with the atomic blocks. Furthermore, in the one-parameter approximations to the transmission
matrices, the value of this parameter β computed with ILU is also very close to that obtained with the exact
solutions. See Fig. 7.8.

We mesh the rectangle (−1, 1)× (0, 1), with a regular mesh, with the mesh interval h. The vertices of
the first subdomain are all the vertices in (−1, h/2]× (0, 1), and the vertices of the second subdomain are
all the vertices in [−h/2, 1)× (0, 1). We choose h in such a way that there are no vertices on the line x = 0,
but instead the interfaces are at x = ±h/2. By ordering the vertices such that all the vertices in x < −h/2
occur first, then all the vertices with x = −h/2 occur second, then all the vertices with x = h/2 occur third,
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