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A CONTINUUM-MICROSCOPIC ALGORITHM FOR MODELING
FIBROUS, HETEROGENEOUS MEDIA WITH DYNAMIC

MICROSTRUCTURES∗

JENNIFER YOUNG† AND SORIN MITRAN‡

Abstract. Many materials undergo reconfiguration of microscopic structure in response to ap-
plied stress. Computing the mechanical behavior of such materials at the continuum level requires
a locally valid stress-strain relation. Due to the dynamic microstructure reconfiguration, such re-
lations are difficult to obtain analytically. Numerical simulation of the microscopic dynamics is an
alternative, albeit one that is computationally expensive. Continuum-microscopic (CM) interaction
algorithms seek to reduce computational cost by microscopic simulation over some small fraction of
the continuum time step of interest, enough to determine the locally valid stress-strain relationship,
assumed to hold over the entire continuum time step. One difficulty with this approach is the prob-
lem of recreating a valid microscopic configuration at the start of the next continuum time step.
In most previous CM algorithms, the microscopic structure at the beginning of a new continuum
time step is assumed to obey some predefined statistical distribution. This paper extends current
CM methods by applying a probability distribution function (PDF) estimation procedure to describe
local microscopic states within each continuum computational cell. The estimated PDFs are extrapo-
lated forward over a continuum time step to recreate new microscopic configurations. This procedure
captures local variability in the microscopic structure. The algorithm is applied to a generic fibrous
material with randomly oriented, cross-linked fibers. Numerical results show that the procedure fur-
nishes continuum stress and strain values to within 5-10% of those obtained from averaging a full
microscopic simulation. The computational time is reduced by a factor of two in serial computation
and by an order of magnitude when the PDF estimation procedures are computed in parallel.
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1. Introduction. Due to the discrete nature of matter, multiple spatial and
temporal scales exist in many natural phenomena. These different scales can be gov-
erned by unique physical laws, and the matter itself may be characterized differently
at each scale [14, 17]. For illustrative purposes, consider an ideal gas. At the scale
where individual gas molecules are observable, molecular dynamics can be utilized
to describe the motion of these discrete elements [24]. At a larger scale, where the
molecules can no longer be distinguished from one another, the gas can be char-
acterized as a continuum and modeled by the Euler equations of fluid dynamics
[22]. Molecular dynamics could still be used at this larger scale to model the mo-
tion of the gas; however, doing so would incur a large computational expense due to
the large number of molecules in the system [1, 14, 29]. The continuum assumption
allows for fast computations and is a valid choice for materials with homogeneous
or regularly patterned discrete structures [1, 19]. However, if the medium has a
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heterogeneous structure, a purely continuum based model will likely fail to capture
the true mechanical properties and behavior of the system [11, 29].

Creating accurate and efficient models of heterogeneous media is computationally
challenging. A class of algorithms that shows promise for modeling such materials is
known as continuum-microscopic (CM) methods. These methods combine a detailed
model of the material’s microstructure with a faster continuum model of the medium
[14]. CM models have thus far been employed for materials whose microstructure is
known or can be consistently approximated by an assumed configuration [14, 17, 21].
However, there are many examples of media that do not conform to these assumptions.
For example, fibrous materials often have complex, nonuniform, discrete structures
that deform and rearrange in response to applied forces [12, 37].

In this article, a novel CM algorithm is presented to model heterogeneous media
with dynamic microstructures. This algorithm is able to retain memory of a material’s
microstructure over time so that local mechanical properties induced by changes in
the microscopic configuration [34] can be accurately computed and passed on to the
continuum equations throughout the simulation. The method is based on statistical
sampling and the generation and extrapolation of probability distribution functions
for the microstructure data.

After a presentation of pertinent background information, the new algorithm
will be described. Its utility will then be demonstrated on an example fibrous
material.

1.1. CM models. CM methods combine the modeling of two scales (length,
time, or both), usually governed by different physical laws, into one algorithm [14].
The general idea behind CM methods is to utilize information obtained from short
evolutions of a very detailed model of the material to update or predict information
for longer evolutions of a less detailed model where presumably computations can be
done more efficiently [14]. The main CMmethods include the heterogeneous multiscale
method (HMM) [13], the adaptive mesh and algorithm refinement (AMAR) method
[17], and the equation-free method (EFM) [21]. In HMM there are typically two nu-
merical schemes: one at the continuum level (e.g., a discretized conservation law) and
one at the microscopic level (e.g., a system of molecular dynamics equations). The
continuum model requires the computation of numerical data such as fluxes, forces,
or mechanical parameters in order to advance. The microscopic model computes this
missing information and passes it to the macroscopic model so that it can move for-
ward. HMM has been applied in many scientific areas such as gas kinetics [36], fluids
[30], and elasticity [1]. AMAR combines the ideas of grid refinement with the utiliza-
tion of different equations at different refinement levels. Adaptive mesh refinement is
used to better resolve a problem’s solution in an area of the domain. If the refinement
changes the spatial scale by several orders of magnitude, the material’s description
and governing physical laws may also change. The physical laws of this finer scale
are used to update the variables in the refined area. The results are then utilized
to update the solution on the overlying coarser grid. AMAR has been demonstrated
for modeling shock waves and fluid shear [17]. EFM has the same goal as HMM to
improve the solution of a continuum level problem by using microscopic scale informa-
tion. The difference is that, in EFM, the continuum level equations are never explicitly
advanced. The microscopic equation solutions are used to predict what the contin-
uum variables will be at the next macroscopic time step. EFM has been applied to
numerous subjects, including population dynamics [6], disease evolution [10], peptide
folding [20], and chemical reactions [26].
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The basic steps of each of these CM methods are listed in the following algorithm.
At the start of continuum time step p, denoted tp0:

1. Create a microscopic instantiation of the system at time tp0.
2. Advance the microscopic system m microscopic time steps of length Δtmicro

from tp0 to tpm, where Δtmicro � dt (the continuum time step).
3. Apply an averaging operator to the collected microscopic data from these

m microsteps, and utilize the results to update the macroscopic data for
continuum step p.

4. Advance the continuum level system one large time step of length dt from tp0
to tp+1

0 .
5. Repeat steps 1–4 for continuum step p+ 1.

A schematic of this process is shown in Figure 1.

Fig. 1. A schematic of the steps in a CM algorithm.

As stated in the Introduction, CM models have thus far been utilized under
the assumption that the material’s microstructure is known or can be reasonably
approximated by a known distribution function (e.g., a uniform or normal distribution
of the discrete elements) [14, 17, 21], making step 1 of the process simple to perform.
However, in materials like those described in the next section, their microstructures
are highly heterogeneous and experience many changes and fluctuations over time;
thus their microscopic configuration is generally unknown [11]. The method presented
in this article extends the basic CM algorithm to model these types of materials.

1.2. Fibrous materials. Fibrous materials are chosen as a class of materials
upon which to demonstrate this new algorithm. Fibrous materials refer to media
composed of fibers embedded in a matrix material (fibrous composites) [32] or fibers
entangled together in a network [33]. Examples include fiberglass [32], fabrics [11],
paper [9], various engineered metal composites [12], and biological materials such as
the cell cytoskeleton, cartilage, and connective tissues [2]. At a macroscopic scale these
materials are often simulated with purely continuous models [3, 15] or with models
that utilize homogenization methods [19, 25, 27]. However, use of these techniques
has come into question due to these materials’ inhomogeneous microscopic structures
[11]. To demonstrate the new algorithm, a generic fibrous material will act as a test
case. Future work will focus on the utilization of this algorithm for modeling the
cell cytoskeleton; thus the fibrous material presented here is constructed with this
biological material in mind.
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CM models have been utilized for modeling heterogeneous media that obey one of
the following assumptions: (1) the heterogeneities are assumed to be periodic [12, 16];
(2) AMAR was utilized for a small region of the material, while the rest of the medium
is assumed to be homogeneous [17]; or (3) the highly heterogeneous microstructure is
known from the beginning and does not change during the simulation [29]. Many of
the materials mentioned above have nonperiodic, time-varying heterogeneous struc-
tures throughout their entire domain. For such materials, the instantiation procedure
in Step 1 should produce a microstructure that represents a configuration to which
the original microstructure could have evolved if it had been simulated for the full
time interval. Current CM methods do not retain information about the material’s
microstructure from one continuum time step to the next and thus have no way of
making an informed prediction of the microscopic configuration at future points in
time. The algorithm presented here can instead make predictions of future microstates
based on past microstates.

2. The macroscopic and microscopic models.

2.1. Macroscopic model. A generic, fibrous material with randomly oriented
fibers will be the test case for this algorithm. At the macroscopic level this material is
viewed as a continuum whose deformation is captured by the three-dimensional linear
elasticity equations. This equation set includes six independent equations of motion
derived from the time derivative of the infinitesimal strain tensor ε = 1

2 (∇u+(∇u)T ),
where u is the displacement vector. Three more equations are acquired via force
balance: ρutt = ∇ · σ with ρ the material’s density and σ the Cauchy stress tensor.
The equation set is closed by a constitutive law of the form

(1) σ = Cε,

where C is the stiffness tensor [23]. C contains the material’s mechanical properties.
It is here where the microscopic model will come into play since these properties vary
with space and time for heterogeneous media.

For the example in this article, the macroscopic domain will be a three-
dimensional, rectangular region that has dimensions 10 × 100 × 1 units. Each unit
has initial dimensions of length dx× dx× dx. Physically this may represent materials
like a strip of fabric, a metallic fibrous composite beam, or a section of plant stem. This
elastic material is rigidly constrained at its left edge and will have a distributed stress
applied to its right edge (see Figure 2). The domain is discretized into 1× 1× 1 unit
grid cells for the numerical solution of the elasticity equations. Within each grid cell
a microscopic scale model of the material is created. As the microstructure deforms
due to applied stresses, its average mechanical properties will change, and it is these
varying parameters that will be periodically passed to the macroscopic constitutive
law (see (1)) to keep it up to date. In Step 4 of the general CM method, the elasticity

Fig. 2. A discretized 10 × 100 × 1 unit elastic body. Each unit has initial dimensions of length
dx× dx× dx. It is rigidly constrained at its left edge and under an applied, distributed stress on its
right edge.
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equations are numerically advanced via a finite-volume, wave propagation algorithm
[23, 28]. The time unit used for computations in this paper is the continuum time
step dt. The mass of a 1× 1× 1 unit block will be denoted as m.

There is one side note before proceeding to the microscopic model: although the
linear elasticity equations are used, the fact that the constitutive law varies with time
introduces piecewise nonlinearity to the problem, expanding the realm of possible
applications.

2.2. Microscopic model. Each three-dimensional grid cell in the macro-
scopic domain is assigned an initial microstructure of an interconnected fiber net-
work. The fibers will be modeled as one-dimensional spring-like objects and will be
crosslinked to one another to form the network. Physically these crosslinks could,
for example, represent protein linking complexes in biological materials [2] or con-
tact points between neighboring fibers in fabrics [11]. The first three steps of the CM
method during the first cycle will now be described for this example. The next section
will contain the description of how Step 1 is carried out during subsequent cycles.

2.2.1. Step 1 (first initialization). Begin with a three-dimensional grid cell
with dimensions [xmin, xmax]× [ymin, ymax]× [zmin, zmax] (where xmax − xmin = dx,
ymax − ymin = dx, and zmax − zmin = dx). To set up the initial network, n fibers
are laid in the grid cell. This is done by placing one endpoint (x0, y0, z0) inside the
block: xmin ≤ x0 ≤ xmax, ymin ≤ y0 ≤ ymax, zmin ≤ z0 ≤ zmax. The second
endpoint (x1, y1, z1) is assigned by choosing the following: (1) a length L for the fiber
using a Gaussian distribution centered around a mean length L0, and (2) a direction
vector 〈xdir, ydir, zdir〉 established by uniform random number generation. The second
endpoint is thus computed by x1 = x0 + Lxdir, y1 = y0 + Lydir, z1 = z0 + Lzdir.
If this endpoint falls outside the block, the endpoint is revised to be the intersection
point of that fiber with the block wall through which it crosses. This fiber is flagged
as attached to the wall, which will be important for when the block is deformed (to
be explained shortly). The n fibers are assumed to be at their equilibrium lengths in
this initial state; however, strains could be assigned to each fiber if desired.

Crosslinks between fibers are established next. This is done by taking each fiber
pair and finding the shortest distance between them. If this distance is below a certain
threshold value, then a crosslink has a probability P of forming. A random number
generator is used to pick a value x ∈ [0, 1]. If x < P , a crosslink forms and is added
to the system as a new short fiber connecting the two original fibers. Figure 3 shows
an example grid cell containing a crosslinked network

2.2.2. Step 2. If the grid cell walls deform due to applied stresses, the fiber
network will react to the change. Natural systems tend to move toward an equilibrium
state. From thermodynamics theory this state is characterized by maximum entropy
or equivalently minimal energy [7]. The fibers in the microstructure can be moved
by solving an energy minimization problem. Mechanically the fibers are treated as
spring-like objects; thus their total potential energy is given by

(2) U =
M∑
j=1

[
kj
2
(Lj − Lj

0)
2

]
,

where M is the total number of fiber segments and crosslinks, kj is the spring con-

stant, and Lj and Lj
0 are the current and equilibrium lengths, respectively, of fiber

or crosslink segment j. The current length Lj is found using the segment’s current
endpoints
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Fig. 3. A three-dimensional microscopic network of crosslinked fibers. The block has initial
dimensions of length dx× dx× dx.

Lj =

√
(xj

1 − xj
0)

2 + (yj1 − yj0)
2 + (zj1 − zj0)

2.

The values xj
1, y

j
1, z

j
1, x

j
0, y

j
0, z

j
0 are the variables of the energy function in (2). A nec-

essary condition for a minimum of (2) is that

∂U/∂xj
1 = 0, ∂U/∂xj

0 = 0,

∂U/∂yj1 = 0, ∂U/∂yj0 = 0,

∂U/∂zj1 = 0, ∂U/∂zj0 = 0

for all internal fiber segments j. (Endpoints of fibers attached to a grid cell wall
move with that wall and are fixed during the energy minimization procedure.) These
partial derivatives produce a large nonlinear system of equations which is solved via
an iterative, gradient search algorithm [5].

Once a position of minimal energy for the network has been found, the elastic
parameters for the block in this state are computed. For any given control volume
that contains sufficient fibers for the material to be approximated as a continuum, the
stiffness tensor is anisotropic. Computation of the 21 independent components of C in
each finite volume cell is costly. A more economical approach to mimic anisotropicity
is adopted here. The actual computation is carried out on a fine grid in which each
finite volume cell is considered to be isotropic. In each such cell, two Lamé parameters
determine the stiffness tensor. Now consider a coarser grid formed by coalescing a
number of isotropic finite volume cells. The homogenized volume stiffness tensor for a
control volume on the coarser grid is anisotropic. We do not compute this anisotropic
stiffness tensor but rather model its response by the inhomogeneous array of isotropic
finite volume cells contained in the coarser grid cell. In effect we are replacing the
difficulty of carrying out a least squares fit for 21 components of the anisotropic
stiffness tensor on a coarser grid by adopting a finer grid of isotropic cells.

Utilizing these ideas, the stiffness tensor C for each block can be found by com-
puting the shear and Young’s moduli of the material (which can then be converted to
the two Lamé parameters). An estimate of the Young’s modulus Ek of the fiber net-
work block at microstep k can be obtained by solving a least squares problem for the
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following three equations: σii = Ekεii, i = 1, 2, 3. Stresses σii are calculated by first
computing the sum of Hookean forces in the i direction of all fiber segments attached
to the two walls with normal vectors in the i direction. The total force is then con-
verted to a stress by dividing by the area of the wall. The strain εii is computed using
the displacements of the block from equilibrium. Once Ek has been estimated, the
shear modulus μk is found by utilizing established relationships involving the Poisson
ratio and bulk modulus of compressibility [23]. Once Ek and μk have been computed,
they are converted to the Lamé coefficients λk and μk, and the algorithm proceeds to
the next microstep.

2.2.3. Step 3. Once the m microsteps have been taken, two least squares ap-
proximation functions will be created: one for the (tpk, λk) data and the other for the
(tpk, μk) data (k = 0 . . .m). These functions will then be used to extrapolate λ and

μ at time
tp0+tp+1

0

2 , the midpoint of the continuum step to be taken in Step 4. These
Lamé coefficients will be used to update the stiffness tensor C, which will be held
constant over the macroscopic update from tp0 to tp+1

0 .
As a demonstration of the changes in mechanical properties that can occur at the

microscopic level, consider a one block network under a uniaxial, extensional strain.
The two walls with equations of plane x = xmin and x = xmax will be moved outward
a distance Δx during each microstep (see Figure 4). The Young’s modulus of the
network was computed after each microstep and is also plotted in Figure 4. This fiber
network exhibits strain hardening. As the network is strained, the fibers tend to align
themselves in the direction of strain to minimize their stored energy. This creates a
more parallel set of fibers which increases the Young’s modulus of the network. These
results are corroborated by other computational models of fiber networks [4, 9] and
have also been demonstrated experimentally [8, 35].
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Fig. 4. (Left) Original block (solid line) under an extensional strain (dashed line) in the x
direction. (Right) The Young’s modulus versus strain curve for a block of crosslinked fibers under a
uniaxial, extensional strain.

3. Microscopic reinstantiation. After the continuum level equations have ad-
vanced a large time step, the microstructure must be recreated so that updated me-
chanical parameters can be computed. The uniform and normal distributions used
to lay down the fibers initially cannot be used in future CM cycles because the mi-
crostructure has changed. Evidence of this is shown in Figure 5. The distribution of
one of the two orientation angles of the fibers is shown initially at time t00 and at time
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Fig. 5. A histogram of one of the two fiber orientation angles initially at time t00 (left) and after
several microsteps at time t0m (right) during which the network is uniaxially, extensionally strained.
The distribution shifts toward smaller angles as the fibers align themselves with the axis of strain.

t0m (after the network was extensionally strained for m microsteps). The distribution
shifts toward smaller angles as the fibers align themselves with the axis of strain.

In order to recreate the network at a future point in time, a prediction of the
distribution of fiber orientation angles and strains is needed. To accomplish this task,
each fiber’s two angles θ and φ that define its direction in three-dimensional space
and its strain ε are collected during each microstep tp0 to tpm of Step 2. Nonparametric
probability distribution function (PDF) estimation techniques such as kernel estima-
tion are used to approximate the underlying PDFs of the collected data sets for each
microstep [31].

Three single variable PDFs f(θ), g(φ), and h(ε) cannot be used to describe the
data because θ, φ, and ε are not statistically independent (see Table 1). A joint
PDF F (θ, φ, ε) should be estimated. However, to avoid the computational expense of
multivariate PDF estimation, extrapolation, and data regeneration, a different method
was devised. The correlation coefficient r between angles θ and φ is very low compared
to the r values between each angle and the strain; thus single variable PDFs f(θ)
and g(φ) are created for the two angles. The PDF for the fiber strain is established
as follows. The range of θ is [−π

2 ,
π
2 ], and the range of φ is [0, π]. Each range is

divided into m bins of equal length π
m as follows: [−π

2 + π
m i,−π

2 + π
m (i + 1)] for θ

and [ πmj, π
m (j + 1)] for φ with i = 0 . . .m− 1, j = 0 . . .m− 1. Fiber k has orientation

angles θk ∈ [−π
2 + π

m i,−π
2 + π

m (i + 1)], φk ∈ [ πmj, π
m (j + 1)] for some i, j bin pair.

Fiber strain εk is recorded in bin i, j. Once all fiber strains have been binned, a mean
μij and standard deviation σij of strain data in each bin pair i, j are computed and
used to construct a local normal distribution N(μij , σij) of strains. Altogether, these
local distributions form a global piecewise distribution for the fiber strain. During

Table 1

Correlation coefficients between fiber orientation angles and strain.

Variable 1 Variable 2 Correlation Coefficient
ε θ 0.51
ε φ 0.39
θ φ 0.071
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reinstantiation, fiber k is assigned two angles θk, φk from f(θ) and g(φ), and its strain
is assigned using the following distribution:

H(ε) = N(μij , σij) when θk ∈
[
−π

2
+

π

m
i,−π

2
+

π

m
(i+ 1)

]
, φk ∈

[ π
m
j,

π

m
(j + 1)

]
.

Figure 6 gives a visual representation of what is being done.

Fig. 6. The strain of a fiber is saved into an angle pair bin (based on its two orientation angles).
Once all strains have been stored in these bins, a mean and standard deviation are calculated for the
data within each bin pair. These values are then used to create a normal distribution for the strains
in each bin pair.

As an initial test of this data collection procedure, the original network with n
fibers was simulated from time t00 to t0m. The PDFs generated at time t0m by the above
method were then used to create Q new fiber networks in the same strain state as the
original network at time t0m. The Young’s modulus of the original network at t0m was
compared to the average Young’s modulus of the Q networks at t0m. This test was done
for increasing n. By the law of large numbers, as the number of fibers is increased, the
relative error between the Young’s moduli of the original and new networks should
decrease [18]. Preliminary results did not show convergence, with the new networks
consistently coming out with an average Young’s modulus approximately 10% lower
than that of the original network. The source of the problem was identified as the
energy minimization. An energy correction algorithm was developed to solve this
problem and is described in the next section.

3.1. Energy correction. At t0m when microscopic data are collected, the orig-
inal network is in a state of minimal energy. When a new network is instantiated at
t0m, it has different crosslink connectivity than the original network. It is likely not
in a minimal energy state upon instantiation and thus settles to a lower energy state
when the energy minimization is applied. Lower energy translates to a lower Young’s
modulus. Figure 7 gives a visual description of what is happening.

The goal is to create a new network at time t0m with stored energy U0 (the energy
of the original network at time t0m) that is also in a state of minimal energy. The
entropy maximization problem of thermodynamics finds the equilibrium state of a
system with maximum entropy S constrained to have a particular energy U0 [7]. Due
to the equivalence of the principles of maximum entropy and minimum energy, the
solution to the Max(S) problem will have energy U0 and be in a state of minimal
energy. In statistical mechanics, the entropy is defined as S = kB lnΩ, where Ω is
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Fig. 7. The cross data represents the total energy of the original network through several
strain/energy minimization steps. The circle and square data sets represent the total energy in
two reconstructed networks. In this example, the two new networks were created at time t04 with the
data collected from the original network at time t04. Once created, the two new networks were run
through the energy minimization algorithm. The initial energy of the new networks is close to that
of the original network; however, there is a steep drop in energy when the energy minimization is
applied due to the new networks’ different crosslink connectivity.

the total number of possible equilibrium states of the system and kB is Boltzmann’s
constant. For simple systems with few components, an expression for S can easily
be established. It is difficult to do so for complex systems such as the fiber network
in this example; thus a modified extremum problem back in the context of energy
minimization is formulated. The goal is to have both U(X) = U0 and ∇U(X) = 0 be
true for the new network (where X represents the minimization problem variables).
To guarantee the creation of a network that fulfills both criteria, an algorithm based
on the concepts of a root-finding, bisection method was developed.

First, two angles and a strain εi are assigned to each fiber via the method described
previously. Energy minimization is then applied. Typically the resulting total energy
U1 is lower than the desired U0 value. If U1 < U0, then this energy state is marked
as a lower bound for the bisection method. To create an upper energy bound, begin
with the same initial fiber configuration and strain assignment εi. However, modify
each εi as

(3) εnewi = Kεi,

where K is a constant greater than 1. This will raise all the strains of all the fibers by
the same percentage. The energy minimization is then run on this system to find its
final energy state U2. If U2 > U0, then an upper bound has been found. If U2 < U0,
then process (3) is repeated with a larger K value. Once an upper bound and a lower
bound have been found, bisection can be used to find a K value that will result in
a network whose minimal energy state has total energy U0. Figure 8 shows several
steps of the process. This method has been shown to produce the same results as the
entropy maximization problem for simple systems [38].

Results of the convergence test comparing the original Young’s modulus to the
new networks’ average Young’s modulus supplementing the strain binning method
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Fig. 8. Several steps of the energy correction algorithm. The line is the target energy value U0.
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Number Relative
of Error

Fibers n (E − E0)/E0

200 0.13
500 0.0592
1000 0.03
2000 0.00512
5000 0.004509
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Fig. 9. The table shows the relative error in Young’s modulus between the new networks (with
average modulus E) and the original network (with modulus E0) for increasing numbers of fibers
n. Strains were assigned using the binning method and energy correction algorithm described above.
The log-log graph shows the number of fibers versus the relative error in Young’s modulus. Data are
shown with the dashed lines, and the solid line is the line of best fit through the data. The convergence
rate is found to be close to linear at −1.15.

with this energy correction algorithm are shown in Figure 9. The relative errors ap-
proach the 0.5% range, and the rate of convergence is approximately linear at −1.15.

3.2. Extrapolation. The algorithm will now be extended to reinstantiate net-
works at a later point in time tp+1

0 utilizing the data collected during microsteps
tp0–t

p
m. PDFs f(θ) and g(φ) are constructed for the angle data at each microstep tpj ,

j = 0 . . .m; thus, for clarity, they will be denoted as f(θ, tpj ) and g(φ, tpj ). The goal
is to understand how these PDFs evolve over time in order to predict their shape
at tp+1

0 (the start of the next continuum step). To do this, N evenly spaced angle
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Number Relative

of Error at tp+1
0

Steps m (E − E0)/E0

5 0.1682
10 0.0813
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20 0.0217
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Fig. 10. The relative error between the original block’s Young’s modulus at time tp+1
0 and

the average Young’s modulus of the Q reinstantiated blocks at time tp+1
0 for increasing numbers of

microsteps m used in the PDF extrapolation algorithm, in table and log-log plot form.

values θi = −π
2 + π

N−1 (i− 1) and φi =
π

N−1(i− 1) with i = 1 . . .N are chosen. Their

function values at time tpj are computed as f(θi, t
p
j ) and g(φi, t

p
j ) with i = 1 . . .N and

j = 0 . . .m. This gives m+1 coordinate pairs per angle i for both θ and φ as follows:

(tp0, f(θi, t
p
0)), (t

p
1, f(θi, t

p
1)), . . . , (t

p
m, f(θi, t

p
m)),(4)

(tp0, g(φi, t
p
0)), (t

p
1, g(φi, t

p
1)), . . . , (tm, g(φi, t

p
m)).(5)

Least square approximation functions denoted Θ̂i(t) and Φ̂i(t) are created for the data
in (4)–(5) for each θi and φi. To create the predicted PDF of angle θ at time tp+1

0 ,

the coordinate pairs (θi, Θ̂i(t
p+1
0 )) for i = 1 . . .N are interpolated using cubic splines.

The same is done for angle φ. Similar procedures are done to extrapolate forward in
time the mean and variance of the strains in each angle bin pair. The target energy of
the network U0 at time tp+1

0 is computed from the continuum level variables at time
tp+1
0 . All of this information is then used in the reinstantiation procedure in Step 1
for time tp+1

0 .
To test this extrapolation algorithm, data were gathered for microsteps t00 to t0m of

a network of fibers (see Figure 3) placed under a uniaxial, extensional strain. PDFs of
the data were predicted for a future point in time tp+1

0 by using the method described
above. Q new networks were instantiated from these PDFs at time tp+1

0 . Although
these Q networks are created using the same PDFs, they differ in structure since the
data generation process involves random number generators. The average Young’s
modulus of the Q networks at tp+1

0 was compared to the Young’s modulus of the
original network at tp+1

0 (which was fully simulated to tp+1
0 for this comparison). The

results for various numbers of microsteps m are shown in Figure 10 in the table. As
one would expect, the error decreases for increasing m values. The Q networks were
then strained for an additional q steps from tp+1

0 to tp+1
q to qualitatively compare the

evolution of their Young’s moduli to that of the original network. Figure 11 shows
the evolution of the Young’s modulus of the original network (thick line) and that of
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Fig. 11. Plots depicting the Young’s modulus versus strain of the original block (thick line) from

tp0 to tp+1
q and the Young’s modulus versus strain of several reinstantiated network blocks (thin lines)

from tp+1
0 to tp+1

q . These reinstantiated networks were generated by utilizing PDFs extrapolated at

time tp+1
0 from data collected from tp0 to tpm of the original network. The two plots show two different

m value simulations (m = 10, 20).

several of the Q reinstantiated networks (thin lines). The two figures show the results
for two different m values (10 and 20).

4. Full simulation results. The rectangular macroscopic domain in Figure 2
was utilized for a full scale test. The novel CM algorithm was applied to simulate
the deformation of this domain under an extensional strain. The results from this
simulation will be denoted as the microscopic reinstantiation (MR) case. As a means
for comparison, a full microscopic (FM) simulation was also done, where the original
fiber network in each grid cell was simulated for the full time interval and no reinstan-
tiation was done. Error assessments will be made by comparing MR and FM data in
the same grid cells.

The elastic body begins in a zero strain state. It is rigidly constrained on its left
boundary while a distributed stress is applied to its right boundary in the form of
σxx = sin(βt), where t is time and β is a scaling parameter. Figure 12 shows examples
of the comparison in Young’s moduli of the FM versus MR simulations for four of
the 1,000 blocks in the domain. The two curves take on the same general trend in
each block. Time plots of macroscopic stress variable σxx for the right half of the full
macroscopic domain for the FM and MR cases are shown side by side in Figure 13.
The results are qualitatively similar. The average relative error over time in σxx over
a subset of all grid cells is shown in Figure 14. In general the errors are in the range
of 5–10%.

There is an approximately 50–75% reduction in computational time with the MR
simulation versus the FM simulation. With parallelization, the MR simulation took
approximately 10 hours to run, and the FM simulation took approximately 30 hours.

There are several things to note from these results. First one can see that there is
more variability of the Young’s modulus in the MR case versus the FM case, which is to
be expected. The MR case has a different network reinstantiated at each continuum
step, while the FM case follows the deformation of the original network through
the full simulation. As seen from the data in Figure 11, the Young’s moduli of the
reinstantiated networks can vary, even though their average is close to the original
network’s value. This variability is due to randomness in the reinstantiation procedure
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Fig. 12. Plots of the Young’s modulus of four microscopic blocks for the FM (solid line) and
MR (dashed line) cases at the midpoint of each continuum step.

such as topology of crosslinks and the number of fibers that end up attached to the
walls. Unlike Figure 11, Figure 12 shows only one MR path over time for each block.
Other runs with the same starting data will produce different curves, the average
behavior of which should converge to the FM data. The general behavior of the
evolution of the Young’s modulus of the MR and FM cases is qualitatively similar,
and they produce qualitatively and quantitatively similar stress fields.

5. Conclusion. This research effort has focused on the development of a novel
algorithm to model heterogeneous media with time-varying microstructures. Due to
computational limitations, the approach to modeling heterogeneous media has often
been to ignore the inhomogeneities of the material in a purely continuum based model.
Changing mechanical properties due to changes in the material’s microstructure are
not captured by such methods. CM models are one possible way of incorporating
microscopic information into a macroscopic model. The problem with current CM
algorithms is that the microscopic data are discarded after each continuum step, and
no memory of the microstructure is retained. In media such as fibrous materials, this
is a problem because the microstructure changes in response to applied stresses.

The new method developed here performs the basic CM algorithm but with
the added feature that the microscopic data are saved in the form of probability
distribution functions. These PDFs are then extrapolated forward in time and are
utilized to instantiate a microstructure at the next continuum step that resembles the
microstructure of the original network at the same future point in time. This method
provides an accurate way of determining the local elastic parameters (both in space
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Fig. 13. Plots of σxx at three time steps for the right half of the full macroscopic domain for
the FM (left column) and MR (right column) cases. Units of stress are (m/(dx · dt2)).

and in time) that are then passed on to the continuum level equations to close the
system.

The CM algorithm presented here offers substantial computational savings over
an FM simulation. One goal of future work will be to reduce computational expense
even further by examining ways to speed up the energy minimization procedure and
also reduce the number of necessary microscopic reinstantiations through sampling
techniques. The method has been demonstrated for modeling a generic fibrous ma-
terial; however, future work will feature applications to biological materials with the
added complexity of viscous damping forces from interstitial fluids. In conclusion,
this new method offers a computationally efficient algorithm for modeling continuous
media that takes into account the varying mechanical properties of its heterogeneous
microstructure.
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