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NEW COMPUTABLE NECESSARY CONDITIONS FOR
THE REGULARITY THEORY OF OPTIMAL

TRANSPORTATION

PAUL W.Y. LEE

Abstract. We give new computable necessary conditions for a
class of optimal transportation problems to have smooth solutions.

1. Introduction

Let µ and ν be two Borel probability measures on the manifold
M and let c : M × M −→ R be a cost function. In the optimal
transportation problem, one looks for a Borel map which minimizes
the following total cost among all Borel maps ϕ : M −→ M which
push µ forward to ν:

∫

M

c(x, ϕ(x))dµ(x)

Here the push forward ϕ∗µ of a measure µ by a Borel map ϕ is the
measure defined by ϕ∗µ(U) = µ(ϕ−1(U)) for all Borel sets U ⊆ M .
Under some mild assumptions on the cost c and the measures µ, ν,

the above problem has a unique solution [4, 17, 3, 5, 1, 8]. This
unique solution is called the optimal map. There are various recent
breakthroughs in understanding the regularity of the optimal map
[16, 18, 13, 14, 11]. The most important one is the introduction of
a geometric object called the Ma-Trudinger-Wang (MTW) curvature.
After the work of [16, 18, 13], it is clear that certain non-negativity
condition on the MTW curvature, called MTW condition, is necessary
for the regularity theory of optimal maps. However, if the cost is not
given by an explicit formula, then it is very hard to compute the MTW
curvature and the MTW condition. When the cost c is given by square
of a Riemannian distance, the following is the only known computable
condition which is necessary for the MTW condition.

Theorem 1.1. [13] Let d be a Riemannian distance function on the
manifold M and assume that the cost c is given by c = d2. Then the
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MTW curvature satisfies

MTW(u, 0, w) = K(u, w)(|u|2|w|2 − 〈u, w〉2)

where K(u, w) is the sectional curvature of the plane spanned by u and
w.
In particular if the cost c satisfies the weak MTW condition (A3w) ,

then the sectional curvature is non-negative.

The purpose of this paper is twofold. First, we consider cost func-
tions arising from natural mechanical systems. More precisely, let 〈·, ·〉
be a Riemannian metric on the manifold M and let | · | be the cor-
responding norm. Let V : M −→ R be a smooth function on the
manifold M , called the potential, and let L : TM → R be the La-
grangian defined by L(x, v) = 1

2
|v|2 − V (x). The cost functions that

we are interested in are given by

(1.1) c(x, y) = inf

∫ 1

0

L(γ(t), γ̇(t))dt,

where the infimum is taken over all smooth curves γ(·) satisfying γ(0) =
x and γ(1) = y.
In the first part of the paper, we give computable necessary condi-

tions for the cost defined in (1.1) to satisfy the weak MTW condition
(A3w) (see Theorem 4.1). The following is a simple corollary of The-
orem 4.1.

Theorem 1.2. Let x be a maximum point of the potential V . Assume
that V also satisfy the following

∇Vx = 0 and HessVx = 0.

Let u and w be two tangent vectors based at x. Then the MTW curva-
ture for the cost c defined in (1.1) satisfies

MTW(u, 0, w) = 〈R(w, u)w, u〉+
1

20

〈

∇2
w∇u∇Vx, u

〉

.

In particular if the cost c satisfies the weak MTW condition (A3w) ,
then the following holds

〈R(w, u)w, u〉+
1

20

〈

∇2
w∇u∇Vx, u

〉

≥ 0

for all orthogonal pairs (u, w) of tangent vectors 〈u, w〉 = 0.

We remark that the condition HessVx = 0 is not completely necessary
and it can be replaced by a more complicated condition (see Theorem
4.1). Note that when the potential V ≡ 0, the cost c is given by the
square of the corresponding Riemannian distance d and Theorem 1.2
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reduces to Theorem 1.1. As a corollary of Theorem 1.2, we have the
following.

Corollary 1.3. Let A be a n× n matrix satisfying

(〈Au,w〉+ 〈Au,w〉)2 + 2 〈Au, u〉 〈Aw,w〉 > 0

for a pair of vectors (u, w) in R
n which are orthogonal 〈u, w〉 = 0.

Let V : Rn → R be a potential satisfying

V (x) = −〈Ax, x〉2 +O(|x|5) as |x| → 0

and let L be the Lagrangian defined by L(x, v) = 1
2
|v|2−V (x) where | · |

is the Euclidean norm.
Then the MTW curvature for the cost c defined in (1.1) does not

satisfy the weak MTW condition (A3w) .

In the second part of the paper, we focus on the case c = d2, where
d is a Riemannian distance on the manifold M . We go beyond Theo-
rem 1.1 and consider higher order necessary conditions for the MTW
conditions. More precisely, according to Theorem 1.1, the Riemann-
ian manifold M necessarily has non-negative sectional curvature if the
cost c = d2 satisfies the MTW conditions. However, when the sec-
tional curvature is only non-negative, Theorem 1.1 does not tell us
anything about the MTW conditions near where the sectional curva-
ture vanishes. To understand the MTW conditions near these points,
we consider the higher order Taylor expansion of the MTW curvature
in the v-variable. If we assume that the sectional curvature K(u, w)
of the plane spanned by u and w vanishes, then the zeroth order term
in the Taylor expansion of the MTW curvature MTW(u, v, w) in v at
the origin vanishes by Theorem 1.1. Therefore, if the MTW curvature
satisfies MTW(u, v, w) ≥ 0 for all small enough v, then necessarily the
first order term in the Taylor expansion vanishes and the second order
term is non-negative. As a result, we get new necessary conditions for
the cost d2 to satisfy the weak MTW condition (Theorem 5.1). When
the manifold is two-dimensional, the conditions are simplified and give
the following simple result.

Theorem 1.4. Assume that M is a two dimensional Riemannian man-
ifold with Riemannian distance function d. If the cost c = d2 satisfies
the weak MTW condition (A3w) , then M has non-negative Gauss
curvature and the Riemannian curvature R satisfies

3 〈(∇u∇wR)(w, u)w, u〉2 ≤ 2
〈

(∇2
wR)(w, u)w, u

〉〈

(∇2
uR)(w, u)w, u

〉

for each pair (u, w) of orthogonal vectors 〈u, w〉 = 0 which spanned a
plane with zero sectional curvature (i.e. 〈R(u, w)u, w〉 = 0).



4 PAUL W.Y. LEE

As an example, we consider the two dimensional Euclidean space R2

equipped with the metric

(1.2) 〈u, v〉 = e2f(x)u · v,

where u ·w denotes the usual dot product and f(x, y) = x3y+ ax2y2+
xy3 + a4y

4.
For these Riemannian metrics, the Gauss curvature is zero at the

origin and nonzero everywhere else if a ≤ −3. As a result of Theorem
1.4, we get the following.

Theorem 1.5. Assume that the Riemannian distance d is defined by
the Riemannian metric 〈·, ·〉 given in (1.2). If the cost c = d2 satisfies
the weak MTW condition (A3w) , then

a ≤ −

√

27

2
.

2. Background: The MTW Curvature

In this section, we will review some basic facts about the optimal
transportation problem and the definition of the Ma-Trudinger-Wang
(MTW) curvature. The assumptions in the theorems stated in this
section are simplified to avoid heavy notation. The corresponding the-
orems with relaxed assumptions can be found, for instance, in [19].
Let 〈·, ·〉 be a Riemannian metric on a manifold M and let V : M →

R be a smooth function which is bounded above. Let L : TM → R be
the Lagrangian defined by

L(x, v) =
1

2
|v|2 − V (x).

In this paper, we are mainly interested in the cost c defined by

(2.1) c(x, y) = inf

∫ 1

0

L(γ(t), γ̇(t))dt,

where the infimum is taken over all smooth curves γ(·) satisfying γ(0) =
x and γ(1) = y.
Curves t 7→ γ(t) which achieve the above infimum are called curves

of least action and they satisfy the following equation (see [12])

(2.2) ∂2
t γ = −∇Vγ .

Here we abuse notation and denote the covariant derivative by ∂t. The
same convention will be used throughout this paper.
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If t 7→ γ(t) is a curve of least action with initial velocity v, then the
c-exponential map expc is defined by

expc(v) = γ(1).

Note that, unlike the Riemannian case, t 7→ expc(tv) is not a curve of
least action in general.
Let µ and ν be two Borel probability measures with compact sup-

ports on the manifold M . We recall that the optimal transportation
problem is the following minimization problem:
Find a Borel map which minimizes the following total cost among

all Borel maps ϕ : M −→ M which push µ forward to ν:
∫

M

c(x, ϕ(x))dµ(x)

Here the push forward ϕ∗µ of a measure µ by a Borel map ϕ is the
measure defined by ϕ∗µ(U) = µ(ϕ−1(U)) for all Borel sets U ⊆ M .

Theorem 2.1. Suppose that the cost c is given by (2.1) and the mea-
sure µ is absolutely continuous with respect to the Lebesgue measure.
Then there is a solution ϕ (called the optimal map) to the above optimal
transportation problem which is unique µ-almost everywhere. More-
over, there exists a Lipschitz function f : M → R such that the unique
optimal map ϕ is given by

ϕ(x) = expc(∇f(x)).

Next, we discuss the main object of this paper, the Ma-Trudinger-
Wang (MTW) curvature. Let u, v, and w be vectors based at the point
x. The MTW curvature MTW is defined by

MTW(u, v, w) = −
3

2
∂2
t ∂

2
sc(σ(t), exp

c(v + sw))
∣

∣

∣

s=t=0
,

where σ is any curve with initial velocity u (i.e. ∂tσ
∣

∣

∣

t=0
= u).

Finally, we can state the MTW conditions. Let O be the set of all
pairs of points (x, y) contained in the product M ×M such that

(1) there exists a unique curve of least action γ satisfying γ(0) = x
and γ(1) = y,

(2) the map d expc

∣

∣

∣

TxM
is a submersion at γ̇(0).

It is known that the cost function c is smooth on the set O (see, for
instance, [12]) and the MTW curvature is well-defined. Let Õ be the

subset of all initial velocities ∂tγ
∣

∣

∣

t=0
in the definition of O. Then the

weak MTW condition is given by the following:
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The cost c satisfies the weak MTW condition (A3w) on a subset M
of O if

MTW(u, v, w) ≥ 0

on the set

{(u, v, w)|v ∈ Õ, (x, expc(v)) ∈ M, 〈u, w〉 = 0},

The relevance of these conditions to the regularity theory of optimal
maps can be found in [16, 13, 14, 11, 18, 15, 7, 8, 9, 10, 6].

3. The Ma-Trudinger-Wang curvature and the

Riemannian curvature

In this section, we give a formula for the MTW curvature in terms
of the change in the Riemannian curvature and the Hessian of the
potential along curves of least action. Before stating the precise result,
let us introduce the following notations. Let u, v, and w be tangent
vectors based at the point x and let τ 7→ γs(τ) be the curve of least

action with initial velocity v + sw (i.e. ∂τγs

∣

∣

∣

τ=0
= v + sw). Let τ 7→

Us(τ) be the parallel translation of the vector u along the curve τ 7→
γs(τ). Let τ 7→ Js(τ) be a vector field defined along the curve τ 7→
γs(τ), called Jacobi field. It is defined as the solution of the following
Jacobi equation

∂2
τJ +R(∂τγ, J)∂τγ +HessVγ(J) = 0.

We assume that the Jacobi field J(·) also satisfies the following bound-
ary conditions Js(0) = u, Js(1) = 0, and Js(τ) 6= 0 for all time τ in the
interval (0, 1).

Theorem 3.1. The MTW curvature is given by

MTW(u, v, w)

=
3

2

∫ 1

0

∫ τ̄

0

∂2
s 〈R(∂τγ, J)∂τγ +HessVγ(J), U〉 dτdτ̄

∣

∣

∣

s=0
.

(3.1)

Proof. The Jacobi field J satisfies the following Jacobi equation

∂2
τJ +R(∂τγ, J)∂τγ +HessVγ(J) = 0.

It follows that

∂τ 〈∂τJ, U〉+ 〈R(∂τγ, J)∂τγ, U〉+ 〈HessVγ(J), U〉 = 0.
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If we integrate with respect to the variable τ , then the above equation
becomes

〈U, ∂τJ〉
∣

∣

∣

τ=0
= 〈U, ∂τJ〉

∣

∣

∣

τ=τ̄
+

∫ τ̄

0

〈R(∂τγ, J)∂τγ +HessVγ(J), U〉 dτ

= ∂τ 〈U, J〉
∣

∣

∣

τ=τ̄
+

∫ τ̄

0

〈R(∂τγ, J)∂τγ +HessVγ(J), U〉 dτ.

Now if we integrate again with respect to τ̄ and use the boundary
conditions for J , then we have

〈U, ∂τJ〉
∣

∣

∣

τ=0

= −〈u, u〉+

∫ 1

0

∫ τ̄

0

〈R(∂τγ, J)∂τγ +HessVγ(J), U〉 dτdτ̄ .
(3.2)

By [12, Theorem 3.1], we know that the MTW curvature is given by

MTW(u, v, w) =
3

2
∂2
s 〈U, ∂τJ〉

∣

∣

∣

τ=s=0
.

The result follows from this and (3.2). �

4. Zeroth Order Condition for Natural Mechanical

Actions

In this section, we give the proof of the following main theorem.

Theorem 4.1. Let x be a maximum point of the potential V . Let u
and w be two tangent vectors based at x. Then the MTW curvature for
the cost c defined in (2.1) satisfies

MTW(u, 0, w) =
3

2

(

∫ 1

0

∫ τ̄

0

2 〈R(∂τ w̄, ũ)∂τ w̄, u〉

+

〈

HessVx(ũ),

∫ τ

0

R(∂τ w̄, w̄)udτ

〉

+
〈

∇2
w̄∇ũ∇Vx, u

〉

dτdτ̄

)
∣

∣

∣

∣

∣

s=0

,

where ũ and w̄ satisfies the following linear ordinary differential equa-
tion

∂2
τu = −HessVx(u),

w̄ satisfies the initial conditions

w̄
∣

∣

∣

τ=0
= 0 ∂τ w̄

∣

∣

∣

τ=0
= w,
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and ũ satisfies the boundary conditions

ũ
∣

∣

∣

τ=0
= u, ũ

∣

∣

∣

τ=1
= 0, ũ 6= 0 if 0 < τ < 1.

Let us first give the proof of Theorem 1.2.

Proof of Theorem 1.2. Since HessxV = 0, we have w̄ = τw and ũ =
(1− τ)u. If we substitute this back into the formula for MTW(u, 0, w)
in Theorem 4.1, then we have

MTW(u, 0, w)

=
3

2

∫ 1

0

∫ τ̄

0

2(1− τ) 〈R(w, u)w, u〉

+ τ 2(1− τ)
〈

∇2
w∇u∇Vx, u

〉

dτdτ̄
∣

∣

∣

s=0

= 〈R(w, u)w, u〉+
1

20

〈

∇2
w∇u∇Vx, u

〉

.

�

Proof of Theorem 4.1. First let us note that the cost c is smooth at the
point (x, x). Indeed, since x is a maximum point of the potential V ,
the constant curve γ(·) ≡ x is the unique minimizer satisfying γ(0) = x
and γ(1) = x. Let τ 7→ J(τ) be a vector field defined along γ which
satisfies the Jacobi equation

∂2
τJ +R(∂τγ, J)∂τγ +HessVγ(J) = 0.

Since γ ≡ x and ∂τγ = 0, it follows that

∂2
τJ +HessVx(J) = 0.

The point x is a maximum point of the potential V , so the Hessian of
the potential HessV is non-positive definite. Therefore, if J satisfies

the boundary conditions J
∣

∣

∣

τ=0
= J

∣

∣

∣

τ=1
= 0, then J ≡ 0. It follows

from [12, Theorem 7.6] that the map d expc

∣

∣

∣

TxM
has full rank at the

origin. Therefore, the cost function c is smooth at the point (x, x) by
[12, Theorem 7.7] (see also Section 2).
Let us first introduce some notations. Let τ 7→ γs,t(τ) be the curve

of least action with initial velocity tv + sw. Let τ 7→ Us,t(τ) be the
parallel translation of the vector u along the curve τ 7→ γs,t(τ). Let
τ 7→ Js,t(τ) be the Jacobi field defined along the curve τ 7→ γs,t(τ)
which satisfies the conditions Js,t(0) = u, Js,t(1) = 0, and Js,t(τ) 6= 0
for all τ in the interval (0, 1).
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If we expand the term ∂2
s 〈R(∂τγ, J)∂τγ, U〉 in (3.1), then we have

∂2
s 〈R(∂τγ, J)∂τγ, U〉

=
〈

(∂2
sR)(∂τγ, J)∂τγ, U

〉

+
〈

R(∂2
s∂τγ, J)∂τγ, U

〉

+
〈

R(∂τγ, ∂
2
sJ)∂τγ, U

〉

+
〈

R(∂τγ, J)∂
2
s∂τγ, U

〉

+
〈

R(∂τγ, J)∂τγ, ∂
2
sU
〉

+ 2 〈(∂sR)(∂s∂τγ, J)∂τγ, U〉

+ 2 〈(∂sR)(∂τγ, ∂sJ)∂τγ, U〉+ 2 〈(∂sR)(∂τγ, J)∂s∂τγ, U〉

+ 2 〈(∂sR)(∂τγ, J)∂τγ, ∂sU〉+ 2 〈R(∂s∂τγ, ∂sJ)∂τγ, U〉

+ 2 〈R(∂s∂τγ, J)∂s∂τγ, U〉 + 2 〈R(∂s∂τγ, J)∂τγ, ∂sU〉

+ 2 〈R(∂τγ, ∂sJ)∂s∂τγ, U〉 + 2 〈R(∂τγ, ∂sJ)∂τγ, ∂sU〉

+ 2 〈R(∂τγ, J)∂s∂τγ, ∂sU〉 .

(4.1)

By (1) of Lemma 8.1, (4.1) simplifies to

∂2
s 〈R(∂τγ, J)∂τγ, U〉

∣

∣

∣

s=t=0
= 2 〈R(∂s∂τγ, J)∂s∂τγ, U〉

∣

∣

∣

s=t=0
.

If we apply (2) of Lemma 8.1, (1) of Lemma 8.2, and Lemma 8.3,
then the above becomes

(4.2) ∂2
s 〈R(∂τγ, J)∂τγ, U〉

∣

∣

∣

s=t=0
= 2 〈R(∂τ w̄, ũ)∂τ w̄, u〉 .

If we expand the other term ∂2
s 〈HessVγ(J), U〉 in (3.1), then we have

∂2
s 〈HessVγ(J), U〉 =

〈

HessVγ(J), ∂
2
sU
〉

+
〈

∂2
s (HessVγ(J)), U

〉

+ 2 〈∂s(HessVγ(J)), ∂sU〉 .

(4.3)

By (1) and (2) of Lemma 8.2, (4.3) becomes

∂2
s 〈HessVγ(J), U〉

∣

∣

∣

s=t=0
=
〈

∂2
s (HessVγ(J)), U

〉

+

〈

HessVx(ũ),

∫ τ

0

R(∂τ w̄, w̄)udτ

〉

∣

∣

∣

s=t=0
.

By (1) of Lemma 8.3, it follows that

∂2
s 〈HessVγ(J), U〉

∣

∣

∣

s=t=0
=
〈

∇2
w̄∇ũ∇Vγ, u

〉

+

〈

HessVx(ũ),

∫ τ

0

R(∂τ w̄, w̄)udτ

〉

.

Finally we combine this with (4.2) and Theorem 3.1 to finish the
proof. �
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5. Higher Order Conditions in the Riemannian Case

In this section, we consider the first and the second order terms of
the MTW curvature in the v-variable. More precisely, we will prove
the following second main result of the paper.

Theorem 5.1. Let d be a Riemannian distance function on the man-
ifold M . Assume that the cost function c is given by c = d2 Then the
MTW curvature satisfies

∂tMTW(u, tv, w)
∣

∣

∣

t=0

=
1

2
〈(∇wR)(w, u)v, u〉+

1

4
〈(∇vR)(w, u)w, u〉

and

∂2
tMTW(u, tv, w)

∣

∣

∣

t=0

=
1

10

〈

(∇2
wR)(v, u)v, u

〉

−
1

5
〈R(v, u)u,R(v, w)w〉

+
4

15
〈R(v, u)v, R(w, u)w〉+

2

5
〈(∇v∇wR)(w, u)v, u〉

+
1

10

〈

(∇2
vR)(w, u)w, u

〉

−
1

5
〈R(w, u)u,R(v, w)v〉

+
4

15
(〈R(w, u)v, R(w, u)v〉+ 〈R(v, u)w,R(w, u)v〉)

+
1

3
(〈R(w, u)v, R(v, w)u〉+ 〈R(v, u)w,R(v, w)u〉) .

The proof of Theorem 5.1 will be postponed to Section 7. For the rest
of this section, we will state and prove the consequences of Theorem
5.1.

Theorem 5.2. Let d be a Riemannian distance of non-negative sec-
tional curvature on the manifold M . Assume that the cost c = d2

satisfies the condition (A3w) . Then for each pair (u, w) of orthogonal
vectors 〈u, w〉 = 0 for which the plane spanned by u and w has zero
sectional curvature, we have

(5.1) 〈(∇wR)(w, u)v, u〉 = 0
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and

G(u, v, w) :=
1

10

〈

(∇2
wR)(v, u)v, u

〉

−
1

5
〈R(v, u)u,R(v, w)w〉

+
2

5
〈(∇v∇wR)(w, u)v, u〉+

1

10

〈

(∇2
vR)(w, u)w, u

〉

+
4

15
(〈R(w, u)v, R(w, u)v〉+ 〈R(v, u)w,R(w, u)v〉)

+
1

3
(〈R(w, u)v, R(v, w)u〉+ 〈R(v, u)w,R(v, w)u〉) ≥ 0.

Proof. We extend the vectors u, v, w to vector fields U, V,W , respec-
tively. Moreover, we assume that U, V,W are constant vector fields
in a geodesic normal coordinate neighborhood of the point x. By as-
sumption, the function 〈R(W,U)W,U〉 has a minimum at x. It follows
that

〈(∇vR)(w, u)w, u〉 = V 〈R(W,U)W,U〉 = 0.

This proves the first equality. For the inequality involving G, we
need to show that R(u, w)u = R(w, u)w = 0. Indeed, we know that
R(u, ·)u is a symmetric operator. Since the manifold has non-negative
sectional curvature, R(u, ·)u is non-negative definite. We also have
〈R(u, w)u, w〉 = 0, so it follows that R(u, w)u = 0. A similar argument
shows that R(w, u)w = 0. �

Proof of Theorem 1.4. Since the manifold M is two dimensional, v =
au+ bw for some constants a and b. It follows that (5.1) becomes

0 = 〈(∇wR)(w, u)v, u〉 = b 〈(∇wR)(w, u)w, u〉 .

However, by the proof of Theorem 5.2, 〈(∇wR)(w, u)w, u〉 = 0.
Therefore, (5.1) is satisfied automatically.
Since the Riemannian curvature R satisfies R(u, w)u = R(w, u)w = 0

and M is 2-dimensional, the term G is simplified to

G(u, v, w) =
1

10

〈

(∇2
wR)(v, u)v, u

〉

+
2

5
〈(∇v∇wR)(w, u)v, u〉+

1

10

〈

(∇2
vR)(w, u)w, u

〉

=
3b2

5

〈

(∇2
wR)(w, u)w, u

〉

+
ab

10
〈(∇w∇uR)(w, u)w, u〉

+
ab

2
〈(∇u∇wR)(w, u)w, u〉+

a2

10

〈

(∇2
uR)(w, u)w, u

〉

.

Let us extend u and v to vector fields U and W , respectively, which
are constant in a geodesic normal coordinate neighborhood. Since the
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Gauss curvature at x vanishes and the covariant derivatives satisfy

∇UV
∣

∣

∣

x
= ∇V U

∣

∣

∣

x
= ∇UU

∣

∣

∣

x
= ∇V V

∣

∣

∣

x
= 0, it follows that

〈(∇u∇wR)(w, u)w, u〉 = ∇U∇W 〈R(W,U)W,U〉
∣

∣

∣

x

= ∇W∇U 〈R(W,U)W,U〉
∣

∣

∣

x
= 〈(∇w∇uR)(w, u)w, u〉 .

Therefore, the formula for G simplifies to

G(u, v, w) =
3b2

5

〈

(∇2
wR)(w, u)w, u

〉

+
3ab

5
〈(∇w∇uR)(w, u)w, u〉+

a2

10

〈

(∇2
uR)(w, u)w, u

〉

.

(5.2)

Since the manifoldM has non-negative Gauss curvature and has zero
Gauss curvature at x. We have

〈

(∇2
wR)(w, u)w, u

〉

= ∇2
W 〈R(W,U)W,U〉

∣

∣

∣

x
≥ 0.

Therefore, if the quadratic in (5.2) satisfies G(u, v, w) ≥ 0 for all v,
then the discriminant is non-positive and it follows that

3 〈(∇w∇uR)(w, u)w, u〉2 ≤ 2
〈

(∇2
wR)(w, u)w, u

〉〈

(∇2
uR)(w, u)w, u

〉

.

�

6. Example

In this section, we discuss the proof of Theorem 1.5. Recall that we
consider the following Riemannian metric 〈·, ·〉 on R

2:

(6.1) 〈u, v〉 = e2f(x)u · v.

Let us denote the gradient and the Laplacian of the usual Euclidean
metric by ∇ and ∆, respectively. Let ∇̃ and R be, respectively, the
Levi-Civita connection and the Riemannian curvature of the Riemann-
ian metric 〈·, ·〉.

Lemma 6.1. The Levi-Civita connection ∇̃ and the Riemannian cur-
vature R of the metric 〈·, ·〉 are given by

∇̃∂x∂y = ∇̃∂y∂x = fx∂y + fy∂x, ∇̃∂x∂x = −∇̃∂y∂y = fx∂x − fy∂y

K = −(∆f) · e−2f

where K denotes the Gauss curvature with respect to the Riemannian
metric 〈·, ·〉.
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Proof. It follows immediately from, for instance, [2, Theorem 1.159].
�

Proposition 6.2. Let f(x, y) = x3y+ax2y2+xy3. Then the Riemann-
ian metric defined by (6.1) has non-negative Gauss curvature if

(6.2) a ≤ −3.

Proof. A computation shows that

∆f(x, y) = 2ax2 + 12xy + 2ay2.

It follows from Lemma 6.1 that the Gauss curvature is non-negative
if and only if the quadratic 2ax2 + 12xy + 2ay2 is non-positive. This,
in turn, is equivalent to a < 0 and 144− 16a2 ≤ 0. �

Proof of Theorem 1.5. Assume that the cost c = d2 satisfies the weak
MTW conditon. By Proposition 6.2 and Theorem 1.1, we have a ≤ −3.
Let U and W be two constant vector fields which are orthonormal
with respect to the Euclidean metric. Assume that U

∣

∣

∣

(0,0)
= u and

W
∣

∣

∣

(0,0)
= w. Then

〈R(U,W )U,W 〉 = e4fK =

= −e2f (∆f)

= −e2f (2ax2 + 12xy + 2ay2).

(6.3)

It follows from Lemma 6.1 that

∇UU
∣

∣

∣

(0,0)
= ∇UW

∣

∣

∣

(0,0)
= ∇2

UU
∣

∣

∣

(0,0)
= ∇2

UW
∣

∣

∣

(0,0)
= 0.

Therefore,

(6.4)
〈

∇̃2
uR(u, w)u, w

〉

= ∇̃2
U 〈R(U,W )U,W 〉

∣

∣

∣

(0,0)
.

Since ∇̃g = e−2f∇g for each smooth function g, it follows from
Lemma 6.1 again that

〈

∇̃u∇̃g, u
〉

= 〈∇u∇g, u〉 .

It follows from this, (6.3), and (6.4) that
〈

∇̃2
uR(u, w)u, w

〉

= −4(au2
1 + 6u1u2 + au2

2).

Similar calculations show that
〈

∇̃2
wR(u, w)u, w

〉

= −4(aw2
1 + 6w1w2 + aw2

2)
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and
〈

∇̃w∇̃uR(u, w)u, w
〉

= −4(au1w1 + 3u1w2 + 3w1u2 + au2w2).

Since u and w are orthogonal, we can assume that w is given by
w = −u2∂x + u1∂y. It follows that

3 〈(∇w∇uR)(w, u)w, u〉2

− 2
〈

(∇2
wR)(w, u)w, u

〉〈

(∇2
uR)(w, u)w, u

〉

= 16[(27− 2a2)u4
2 + (18− 4a2)u2

1u
2
2 + (27− 2a2)u4

1].

(6.5)

If 27 − 2a2 > 0, then we can set u1 = 0 and see that the above
expression is positive for some u. This contradicts with Theorem 5.1.

Therefore, we have a ≤ −
√

27
2
. Finally, we remark that the expression

in (6.5) is non-positive if a ≤ −
√

27
2
. �

7. Proof of Theorem 5.1

In this section, we will give the proof of Theorem 5.1. Let us first
recall the notation that we are using. Let τ 7→ Us,t(τ) be the parallel
translation of the vector u along the geodesic τ 7→ γs,t(τ) := exp(τ(tv+
sw)). Let τ 7→ Js,t(τ) be the Jacobi field defined along the geodesic γs,t
which satisfies the conditions Js,t(0) = u, Js,t(1) = 0, and Js,t(τ) 6= 0
for all τ in the interval (0, 1).
First, it follows from (1) of Lemma 8.1 and (4.1) that

∂t∂
2
s 〈R(∂τγ, J)∂τγ, U〉

∣

∣

∣

s=t=0

=
〈

R(∂2
s∂τγ, J)∂t∂τγ, U

〉

+
〈

R(∂t∂τγ, J)∂
2
s∂τγ, U

〉

+ 2 〈(∂sR)(∂s∂τγ, J)∂t∂τγ, U〉+ 2 〈(∂sR)(∂t∂τγ, J)∂s∂τγ, U〉

+ 2 〈R(∂s∂τγ, ∂sJ)∂t∂τγ, U〉+ 2∂t(〈R(∂s∂τγ, J)∂s∂τγ, U〉)

+ 2 〈R(∂s∂τγ, J)∂t∂τγ, ∂sU〉+ 2 〈R(∂t∂τγ, ∂sJ)∂s∂τγ, U〉

+ 2 〈R(∂t∂τγ, J)∂s∂τγ, ∂sU〉
∣

∣

∣

s=t=0
.

By (2’) of Lemma 8.1, (1) of Lemma 8.2, Lemma 8.3, (1) of Lemma
9.1, and (1) of Lemma 9.3, the above equation simplifies to

∂t∂
2
s 〈R(∂τγ, J)∂τγ, U〉

∣

∣

∣

s=t=0

= 2τ(1− τ) 〈(∇wR)(w, u)v, u〉+ 2τ(1− τ) 〈(∇wR)(v, u)w, u〉

+ 2∂t(〈R(∂s∂τγ, J)∂s∂τγ, U〉)
∣

∣

∣

s=t=0
.

(7.1)
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By (1) of Lemma 8.2, (2) of Lemma 9.1, and (1) of Lemma 9.3, we
also have

∂t(〈R(∂s∂τγ, J)∂s∂τγ, U〉)
∣

∣

∣

s=t=0
= 〈(∂tR)(∂s∂τγ, J)∂s∂τγ, U〉

∣

∣

∣

s=t=0
.

Therefore, it follows from (2’) of Lemma 8.1 and Lemma 8.3 that

∂t(〈R(∂s∂τγ, J)∂s∂τγ, U〉)
∣

∣

∣

s=t=0
= τ(1− τ) 〈(∇vR)(w, u)w, u〉 .

If we combine this with (7.1), then we have

∂t∂
2
s 〈R(∂τγ, J)∂τγ, U〉

∣

∣

∣

s=t=0

= 2τ(1− τ) 〈(∇wR)(w, u)v, u〉+ 2τ(1− τ) 〈(∇wR)(v, u)w, u〉

+ 2τ(1− τ) 〈(∇vR)(w, u)w, u〉 .

Therefore, by Theorem 4.1, we have

∂tMTW(u, tv, w)
∣

∣

∣

t=0

=
1

4

(

〈(∇wR)(w, u)v, u〉+ 〈(∇wR)(v, u)w, u〉

+ 〈(∇vR)(w, u)w, u〉
)

.

Finally, by taking covariant derivative of the property

〈R(w, u)v, u〉 = 〈R(v, u)w, u〉

of the Riemannian curvature R, we have

∂tMTW(u, tv, w)
∣

∣

∣

t=0

=
1

2
〈(∇wR)(w, u)v, u〉+

1

4
〈(∇vR)(w, u)w, u〉 .
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By (1) of Lemma 8.1, (1) of Lemma 8.2, (1) and (2) of Lemma 9.1,
(1) of Lemma 9.3, if we differentiate (4.1) twice with respect to t, then

∂2
t ∂

2
s 〈R(∂τγ, J)∂τγ, U〉

∣

∣

∣

t=s=0

= 2
〈

(∂2
sR)(∂t∂τγ, J)∂t∂τγ, U

〉

+ 2
〈

R(∂t∂
2
s∂τγ, J)∂t∂τγ, U

〉

+ 2
〈

R(∂t∂τγ, ∂
2
sJ)∂t∂τγ, U

〉

+ 2
〈

R(∂t∂τγ, J)∂t∂
2
s∂τγ, U

〉

+ 2
〈

R(∂t∂τγ, J)∂t∂τγ, ∂
2
sU
〉

+ 4 〈(∂t∂sR)(∂s∂τγ, J)∂t∂τγ, U〉

+ 4 〈(∂sR)(∂t∂τγ, ∂sJ)∂t∂τγ, U〉+ 4 〈(∂t∂sR)(∂t∂τγ, J)∂s∂τγ, U〉

+ 4 〈(∂sR)(∂t∂τγ, J)∂t∂τγ, ∂sU〉 + 4 〈R(∂s∂τγ, ∂t∂sJ)∂t∂τγ, U〉

+ 2
〈

(∂2
tR)(∂s∂τγ, J)∂s∂τγ, U

〉

+ 2
〈

R(∂2
t ∂s∂τγ, J)∂s∂τγ, U

〉

+ 2
〈

R(∂s∂τγ, ∂
2
t J)∂s∂τγ, U

〉

+ 2
〈

R(∂s∂τγ, J)∂
2
t ∂s∂τγ, U

〉

+ 4 〈R(∂s∂τγ, J)∂t∂τγ, ∂t∂sU〉 + 4 〈R(∂t∂τγ, ∂t∂sJ)∂s∂τγ, U〉

+ 4 〈R(∂t∂τγ, ∂sJ)∂t∂τγ, ∂sU〉 + 4 〈R(∂t∂τγ, J)∂s∂τγ, ∂t∂sU〉
∣

∣

∣

s=t=0
.

By (2’) of Lemma 8.1, Lemma 8.3, (3) of Lemma 9.1, Lemma 9.2,
(1) and (2)of Lemma 9.3, the above equation simplifies to

∂2
t ∂

2
s 〈R(∂τγ, J)∂τγ, U〉

∣

∣

∣

t=s=0

= 2(1− τ)τ 2
〈

(∇2
wR)(v, u)v, u

〉

+ 2(1− τ)τ 2 〈R(R(v, w)w, u)v, u〉

+
2τ(τ − 1)(τ − 2)

3
(〈R(v, R(w, u)w)v, u〉+ 〈R(w,R(v, u)v)w, u〉)

+ 4(1− τ)τ 2 〈(∇v∇wR)(w, u)v, u〉+ 4(1− τ)τ 2 〈(∇v∇wR)(v, u)w, u〉

+ 2(1− τ)τ 2
〈

(∇2
vR)(w, u)w, u

〉

+ 2(1− τ)τ 2 〈R(R(v, w)v, u)w, u〉

+ 2(1− τ)τ 2 〈R(w, u)R(v, w)v, u〉+ 2(1− τ)τ 2 〈R(v, u)R(v, w)w, u〉

+ 2(1− τ)τ 2 〈R(w, u)v, R(v, w)u〉+ 2(1− τ)τ 2 〈R(v, u)w,R(v, w)u〉

+
4τ(τ − 1)(τ − 2)

3
(〈R(v, R(w, u)v)w, u〉+ 〈R(w,R(w, u)v)v, u〉)

−
4τ(τ − 1)(τ + 1)

3
(〈R(v, R(v, w)u)w, u〉+ 〈R(w,R(v, w)u)v, u〉) .
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We simplify the above equation further by using the property of the
Riemannian curvature R.

∂2
t ∂

2
s 〈R(∂τγ, J)∂τγ, U〉

∣

∣

∣

t=s=0

= 2(1− τ)τ 2
〈

(∇2
wR)(v, u)v, u

〉

− 4(1− τ)τ 2 〈R(v, u)u,R(v, w)w〉

+
4τ(τ − 1)(τ − 2)

3
〈R(v, u)v, R(w, u)w〉

+ 8(1− τ)τ 2 〈(∇v∇wR)(w, u)v, u〉

+ 2(1− τ)τ 2
〈

(∇2
vR)(w, u)w, u

〉

− 4(1− τ)τ 2 〈R(w, u)u,R(v, w)v〉

+ 2(1− τ)τ 2 〈R(w, u)v, R(v, w)u〉+ 2(1− τ)τ 2 〈R(v, u)w,R(v, w)u〉

+
4τ(τ − 1)(τ − 2)

3
(〈R(w, u)v, R(w, u)v〉+ 〈R(v, u)w,R(w, u)v〉)

−
4τ(τ − 1)(τ + 1)

3
(〈R(w, u)v, R(v, w)u〉+ 〈R(v, u)w,R(v, w)u〉) .

If we integrate the above twice with respect to τ and multiply by
3/2, then we have

∂2
tMTW(u, tv, w)

∣

∣

∣

t=0

=
1

10

〈

(∇2
wR)(v, u)v, u

〉

−
1

5
〈R(v, u)u,R(v, w)w〉

+
4

15
〈R(v, u)v, R(w, u)w〉+

2

5
〈(∇v∇wR)(w, u)v, u〉

+
1

10

〈

(∇2
vR)(w, u)w, u

〉

−
1

5
〈R(w, u)u,R(v, w)v〉

+
4

15
(〈R(w, u)v, R(w, u)v〉+ 〈R(v, u)w,R(w, u)v〉)

+
1

3
(〈R(w, u)v, R(v, w)u〉+ 〈R(v, u)w,R(v, w)u〉) .

8. Appendix 1: Lemmas for Natural Mechanical Actions

In the two appendices, we give the proof of various lemmas used in
the previous sections. The first appendix is devoted to those lemmas
which are related to the natural mechanical actions. The rest of the
lemmas needed only in the Riemannian case are done in the second
appendix. Let us first recall our notations. Let u, v, and w be tangent
vectors based at a point x which is a critical point of the potential V .
Let τ 7→ γs,t(τ) be the curve of least action with initial velocity tv+sw.
Let τ 7→ Us,t(τ) be the parallel translation of the vector u along the
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curve τ 7→ γs,t(τ). Let τ 7→ Js,t(τ) be the Jacobi field defined along the
curve τ 7→ γs,t(τ) by the Jacobi equation

∂2
τJ +R(∂ + τγ, J)∂τγ +HessV (J) = 0

and satisfies the conditions Js,t(0) = u, Js,t(1) = 0, and Js,t(τ) 6= 0 for
all τ in the interval (0, 1). Let τ 7→ v̄(τ) be the solution to the initial
value problem

∂2
τ v̄ = −HessVx(v̄), v̄

∣

∣

∣

τ=0
= 0, ∂τ v̄

∣

∣

∣

τ=0
= v.

Similarly, let w̄ be the solution to the above initial value problem with
v replace by w. Let ũ be the solution to the boundary value problem

∂2
τ ũ = −HessVx(ũ), ũ

∣

∣

∣

τ=0
= u, ũ

∣

∣

∣

τ=1
= 0, ũ 6= 0 if 0 < τ < 1.

Lemma 8.1. The family of curves γ satisfies the following:

(1) ∂τγ
∣

∣

∣

s=t=0
= 0,

(2) ∂tγ
∣

∣

∣

s=t=0
= v̄, ∂sγ

∣

∣

∣

s=t=0
= w̄,

In particular, if we are in the Riemannian case where the potential
V ≡ 0, then we have

(2′) ∂tγ
∣

∣

∣

s=t=0
= τv, ∂sγ

∣

∣

∣

s=t=0
= τw.

Proof. Recall that γ satisfies the Newton’s equation ∂2
τγ = −∇Vγ with

initial condition ∂τγ
∣

∣

∣

τ=0
= tv + sw. Since x is a critical point of

the potential V , it follows that γ
∣

∣

∣

s=t=0
≡ x is the solution to the

above initial value problem with s = t = 0. Therefore, (1) follows
immediately from this.
If we differentiate the Newton’s equation with respect to t, then we

have
R(∂tγ, ∂τγ)∂τγ + ∂2

τ∂tγ = ∂t∂
2
τγ = −HessVγ(∂tγ).

If we set s = t = 0 and apply (1), we have

∂2
τ∂tγ

∣

∣

∣

s=t=0
= −HessVx(∂tγ

∣

∣

∣

s=t=0
).

We also have the initial conditions

∂tγ
∣

∣

∣

t=s=τ=0
= 0, ∂τ∂tγ

∣

∣

∣

t=s=τ=0
= v.

It follows that v̄ = ∂tγ
∣

∣

∣

s=t=0
. �

Lemma 8.2. The family U of parallel vector fields satisfies
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(1) ∂sU
∣

∣

∣

s=t=0
= ∂tU

∣

∣

∣

s=t=0
= 0,

(2) ∂2
sU
∣

∣

∣

s=t=0
=
∫ τ̄

0
R(∂τ w̄, w̄)udτ ,

(3) ∂2
t U
∣

∣

∣

s=t=0
=
∫ τ̄

0
R(∂τ v̄, v̄)udτ .

In particular, ∂2
sU
∣

∣

∣

s=t=0
= ∂2

tU
∣

∣

∣

s=t=0
= 0 in the Riemannian case

where V ≡ 0.

Proof. Since the family is parallel, we have ∂τU = 0. Therefore, we
have

0 = ∂s∂τU = R(∂sγ, ∂τγ)U + ∂τ∂sU.

If we evaluate at s = t = 0 and apply (1) of Lemma 8.1, then we have

∂τ∂sU
∣

∣

∣

s=t=0
= 0.

Therefore, ∂sU
∣

∣

∣

s=t=0
is constant in τ and we have

∂sU
∣

∣

∣

s=t=0
= ∂sU

∣

∣

∣

τ=s=t=0
= ∂su = 0.

For the proof of (2), we apply ∂τU = 0 again and get

∂τ∂
2
tU
∣

∣

∣

s=t=0
= ∂t∂τ∂tU +R(∂τγ, ∂tγ)∂tU

∣

∣

∣

s=t=0

= ∂2
t ∂τU + ∂t(R(∂τγ, ∂tγ)U) +R(∂τγ, ∂tγ)∂tU

∣

∣

∣

s=t=0

By (1) and (2) of Lemma 8.1, the above equation becomes

∂τ∂
2
tU
∣

∣

∣

s=t=0
= ∂2

t ∂τU +R(∂t∂τγ, ∂tγ)U
∣

∣

∣

s=t=0

= R(∂τ v̄, v̄)u.

If we integrate with respect to the τ -variable, then

∂2
tU
∣

∣

∣

s=t=0,τ=τ̄
= ∂2

tU
∣

∣

∣

τ=s=t=0
+

∫ τ̄

0

R(∂τ v̄, v̄)udτ

=

∫ τ̄

0

R(∂τ v̄, v̄)udτ.

By (2’) of Lemma 8.1, v̄ = τv in the Riemannian case. It follows
from the skew symmetry of the Riemannian curvature that

∂2
tU
∣

∣

∣

s=t=0
= 0.

�
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Lemma 8.3. The family of Jacobi fields J satisfies

J
∣

∣

∣

s=t=0
= ũ

In particular, if we are in the Riemannian case where the potential
V = 0, then we have

J
∣

∣

∣

s=t=0
= (1− τ)u.

Proof. Recall that the Jacobi equation is

∂2
τJ +R(∂τγ, J)∂τγ +HessVγ(J) = 0.

If we set s = t = 0 and apply (1) of Lemma 8.1, then the above equation
becomes

∂2
τJ +HessVx(J)

∣

∣

∣

s=t=0
= 0.

We also have the boundary conditions J
∣

∣

∣

τ=0
= u and J

∣

∣

∣

τ=1
= 0. It

follows that J
∣

∣

∣

s=t=0
= ũ.

In the Riemannian case, V ≡ 0 and the above equation becomes

∂2
τJ
∣

∣

∣

s=t=0
= 0. If we combine this with the boundary conditions, we

have J
∣

∣

∣

s=t=0
= (1− τ)u. �

9. Appendix 2: Lemmas for the Riemannian case

Let us first recall and specialize our notations used in the previous
appendix to the Riemannian case. Let u, v, and w be tangent vectors
at a point x and let τ 7→ γs,t(τ) := exp(τ(tv+sw)) be the geodesic with
initial velocity tv + sw. Let τ 7→ Us,t(τ) be the parallel translation of
the vector u along the curve τ 7→ γs,t(τ). Let τ 7→ Js,t(τ) be the Jacobi
field defined along the curve τ 7→ γs,t(τ) which satisfies the conditions
Js,t(0) = u, Js,t(1) = 0, and Js,t(τ) 6= 0 for all τ in the interval (0, 1).

Lemma 9.1. The family of geodesics γ satisfies the following:

(1) ∂2
s∂τγ

∣

∣

∣

s=t=0
= ∂2

t ∂τγ
∣

∣

∣

s=t=0
= 0,

(2) ∂t∂s∂τγ
∣

∣

∣

s=t=0
= ∂s∂t∂τγ

∣

∣

∣

s=t=0
= 0.

(3) ∂t∂
2
s∂τγ

∣

∣

∣

s=t=0
= τ 2R(v, w)w, ∂s∂

2
t ∂τγ

∣

∣

∣

s=t=0
= τ 2R(w, v)v,

(4) ∂2
t ∂s∂τγ

∣

∣

∣

s=t=0
= τ 2R(v, w)v, ∂2

s∂t∂τγ
∣

∣

∣

s=t=0
= τ 2R(w, v)w.

Proof. For (1), we have

(9.1) ∂2
s∂τγ = ∂τ∂

2
sγ +R(∂sγ, ∂τγ)∂sγ.
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Since γ
∣

∣

∣

t=0
= exp(sτw) is a geodesic in the variable s, we have

∂2
sγ
∣

∣

∣

s=t=0
= 0.

Therefore, if we set s = t = 0, then (9.1) becomes

∂2
s∂τγ

∣

∣

∣

s=t=0
= R(∂sγ, ∂τγ)∂sγ

∣

∣

∣

s=t=0
.

Finally, if we apply (1) of Lemma 8.1, then we obtain (1).
For (2), we have

∂τ∂t∂s∂τγ
∣

∣

∣

s=t=0

= R(∂τγ, ∂tγ)∂s∂τγ + ∂t∂τ∂s∂τγ
∣

∣

∣

s=t=0

= R(∂τγ, ∂tγ)∂s∂τγ + ∂t(R(∂τγ, ∂sγ)∂τγ) + ∂t∂s∂
2
τγ
∣

∣

∣

s=t=0
.

If we apply (1) of Lemma 8.1, then the above equation becomes

∂τ∂t∂s∂τγ
∣

∣

∣

s=t=0
= ∂t∂s∂

2
τγ
∣

∣

∣

s=t=0
.

Since γ is a geodesic for each t and s (i.e. ∂2
τγ = 0), it follows that

∂τ∂t∂s∂τγ
∣

∣

∣

s=t=0
= 0.

Therefore, ∂t∂s∂τγ
∣

∣

∣

s=t=0
is constant in τ and we have

∂t∂s∂τγ
∣

∣

∣

s=t=0
= ∂t∂s∂τγ

∣

∣

∣

τ=s=t=0
= ∂t∂s(tv + sw)

∣

∣

∣

s=t=0
= 0.

For (3), we have

∂τ∂t∂
2
s∂τγ

∣

∣

∣

s=t=0

= R(∂τγ, ∂tγ)∂
2
s∂τγ + ∂t∂τ∂

2
s∂τγ

∣

∣

∣

s=t=0

By (1) of Lemma 8.1, the above equation becomes

∂τ∂t∂
2
s∂τγ

∣

∣

∣

s=t=0
= ∂t∂τ∂

2
s∂τγ

∣

∣

∣

s=t=0
.

If we apply (1) of Lemma 8.1 again to the above equation, then we
obtain

∂τ∂t∂
2
s∂τγ

∣

∣

∣

s=t=0
= ∂t∂s∂τ∂s∂τγ + ∂t(R(∂τγ, ∂sγ)∂s∂τγ)

∣

∣

∣

s=t=0

= ∂t∂s∂τ∂s∂τγ +R(∂t∂τγ, ∂sγ)∂s∂τγ
∣

∣

∣

s=t=0
.
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By (2’) of Lemma 8.1, we have

∂τ∂t∂
2
s∂τγ

∣

∣

∣

s=t=0
= ∂t∂s∂τ∂s∂τγ + τR(v, w)w

∣

∣

∣

s=t=0

Since τ 7→ γ is a geodesic, the above equation becomes

∂τ∂t∂
2
s∂τγ

∣

∣

∣

s=t=0
= ∂t∂s(R(∂τγ, ∂sγ)∂τγ) + τR(v, w)w

∣

∣

∣

s=t=0
.

If we apply (1) and (2’) of Lemma 8.1, then we have

∂τ∂t∂
2
s∂τγ

∣

∣

∣

s=t=0

= R(∂t∂τγ, ∂sγ)∂s∂τγ +R(∂s∂τγ, ∂sγ)∂t∂τγ + τR(v, w)w
∣

∣

∣

s=t=0

= 2τR(v, w)w.

If we integrate the above equation in τ , then we get

∂t∂
2
s∂τγ

∣

∣

∣

s=t=0
= τ 2R(v, w)w + ∂t∂

2
s∂τγ

∣

∣

∣

τ=s=t=0

= τ 2R(v, w)w + ∂t∂
2
s (tv + sw)

∣

∣

∣

τ=s=t=0

= τ 2R(v, w)w.

This finishes the proof of (3).
For (4), we first apply (1) of Lemma 8.1.

∂τ∂
2
t ∂s∂τγ

∣

∣

∣

s=t=0
= R(∂τγ, ∂tγ)∂t∂s∂τγ + ∂t∂τ∂t∂s∂τγ

∣

∣

∣

s=t=0

= ∂t∂τ∂t∂s∂τγ
∣

∣

∣

s=t=0
.

By (1) of Lemma 8.1 again, the above equation becomes

∂τ∂
2
t ∂s∂τγ

∣

∣

∣

s=t=0
= ∂2

t ∂τ∂s∂τγ + ∂t(R(∂τγ, ∂tγ)∂s∂τγ)
∣

∣

∣

s=t=0

= ∂2
t ∂τ∂s∂τγ +R(∂t∂τγ, ∂tγ)∂s∂τγ

∣

∣

∣

s=t=0
.

By (2’) of Lemma 8.1, we have

∂τ∂
2
t ∂s∂τγ

∣

∣

∣

s=t=0
= ∂2

t ∂τ∂s∂τγ + τR(v, v)w
∣

∣

∣

s=t=0

= ∂2
t ∂τ∂s∂τγ

∣

∣

∣

s=t=0
.

Since τ 7→ γ is a geodesic, we get

∂τ∂
2
t ∂s∂τγ

∣

∣

∣

s=t=0
= ∂2

t ∂τ∂
2
τγ + ∂2

t (R(∂τγ, ∂sγ)∂τγ)
∣

∣

∣

s=t=0

= ∂2
t (R(∂τγ, ∂sγ)∂τγ)

∣

∣

∣

s=t=0
.
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By (1) and (2’) of Lemma 8.1, the above equation becomes

∂τ∂
2
t ∂s∂τγ

∣

∣

∣

s=t=0
= 2R(∂t∂τγ, ∂sγ)∂t∂τγ

∣

∣

∣

s=t=0

= 2τR(v, w)v
∣

∣

∣

s=t=0
.

Finally, if we integrate the above equation in τ , then we obtain

∂2
t ∂s∂τγ

∣

∣

∣

s=t=0
= τ 2R(v, w)v + ∂2

t ∂s∂τγ
∣

∣

∣

τ=s=t=0

= τ 2R(v, w)v + ∂2
t ∂s(tv + sw)

∣

∣

∣

s=t=0

= τ 2R(v, w)v.

�

Lemma 9.2. The family of parallel vector fields U satisfies

∂t∂sU
∣

∣

∣

s=t=0
=

τ 2

2
R(v, w)u, ∂s∂tU

∣

∣

∣

s=t=0
=

τ 2

2
R(w, v)u.

Proof. By (1) of Lemma 8.1, we have

∂τ∂t∂sU
∣

∣

∣

s=t=0
= ∂t∂τ∂sU +R(∂τγ, ∂tγ)∂sU

∣

∣

∣

s=t=0

= ∂t∂τ∂sU
∣

∣

∣

s=t=0
.

If we apply (1) of Lemma 8.1 again, then the above becomes

∂τ∂t∂sU
∣

∣

∣

s=t=0
= ∂t∂s∂τU + ∂t(R(∂τγ, ∂sγ)U)

∣

∣

∣

s=t=0

= ∂t∂s∂τU +R(∂t∂τγ, ∂sγ)U
∣

∣

∣

s=t=0
.

Since τ 7→ U is a parallel vector field, we get

∂τ∂t∂sU
∣

∣

∣

s=t=0
= R(∂t∂τγ, ∂sγ)U

∣

∣

∣

s=t=0
.

If we apply (1) and (2’) of Lemma 8.1, then we have

∂τ∂t∂sU
∣

∣

∣

s=t=0
= τR(v, w)u.

Since U
∣

∣

∣

τ=0
= u, we can integrate the above equation in τ and obtain

∂t∂sU
∣

∣

∣

s=t=0
=

τ 2

2
R(v, w)u+ ∂t∂sU

∣

∣

∣

τ=s=t=0
=

τ 2

2
R(v, w)u.

�

Lemma 9.3. The family of Jacobi fields J satisfies

(1) ∂sJ
∣

∣

∣

s=t=0
= ∂tJ

∣

∣

∣

s=t=0
= 0,
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(2) ∂2
t J
∣

∣

∣

s=t=0
= τ(τ−1)(τ−2)

3
R(v, u)v,

(3) ∂2
sJ
∣

∣

∣

s=t=0
= τ(τ−1)(τ−2)

3
R(w, u)w,

(4) ∂t∂sJ
∣

∣

∣

s=t=0
= τ(τ−1)

3
[(τ − 2)R(w, u)v − (τ + 1)R(v, w)u].

Proof. The family J satisfies the Jacobi equation

∂2
τJ +R(∂τγ, J)∂τγ = 0

and the boundary conditions J
∣

∣

∣

τ=0
= u and J

∣

∣

∣

τ=1
= 0.

If we differentiate the Jacobi equation with respect to s and apply
(1) of Lemma 8.1, then we have

∂s∂
2
τJ = −∂s(R(∂τγ, J)∂τγ) = 0.

It follows that

0 = ∂s∂
2
τJ
∣

∣

∣

s=t=0

= ∂τ∂s∂τJ +R(∂sγ, ∂τγ)∂τJ
∣

∣

∣

s=t=0

= ∂2
τ∂sJ +R(∂sγ, ∂τγ)∂τJ + ∂τ (R(∂sγ, ∂τγ)J)

∣

∣

∣

s=t=0
.

By (1) of Lemma 8.1, we have

∂2
τ∂sJ

∣

∣

∣

s=t=0
= 0.

This together with the boundary conditions ∂sJ
∣

∣

∣

τ=0
= ∂sJ

∣

∣

∣

τ=1
= 0

give ∂sJ
∣

∣

∣

s=t=0
= 0. This finishes the proof of (1).

For (2), we differentiate the Jacobi equation with respect to t twice
and apply Lemma 8.1.

∂2
t ∂

2
τJ
∣

∣

∣

s=t=0
= −∂2

t (R(∂τγ, J)∂τγ)
∣

∣

∣

s=t=0

= −2R(∂t∂τγ, J)∂t∂τγ
∣

∣

∣

s=t=0
.

Therefore, by (2’) of Lemma 8.1 and Lemma 8.3, we have

(9.2) ∂2
t ∂

2
τJ
∣

∣

∣

s=t=0
= −2(1− τ)R(v, u)v.

On the other hand, by (1) of Lemma 8.1, we have

∂2
t ∂

2
τJ
∣

∣

∣

s=t=0
= ∂t∂τ∂t∂τJ + ∂t(R(∂tγ, ∂τγ)∂τJ)

∣

∣

∣

s=t=0

= ∂t∂τ∂t∂τJ +R(∂tγ, ∂t∂τγ)∂τJ
∣

∣

∣

s=t=0
.
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By (2’) of Lemma 8.1, the above equation becomes

∂2
t ∂

2
τJ
∣

∣

∣

s=t=0
= ∂t∂τ∂t∂τJ + τR(v, v)∂τJ

∣

∣

∣

s=t=0

= ∂t∂τ∂t∂τJ
∣

∣

∣

s=t=0

= ∂τ∂
2
t ∂τJ +R(∂tγ, ∂τγ)∂t∂τJ

∣

∣

∣

s=t=0
.

If we apply (1) of Lemma 8.1, then we have

∂2
t ∂

2
τJ
∣

∣

∣

s=t=0
= ∂τ∂

2
t ∂τJ

∣

∣

∣

s=t=0

= ∂τ∂t∂τ∂tJ + ∂τ∂t(R(∂tγ, ∂τγ)J)
∣

∣

∣

s=t=0

= ∂τ∂t∂τ∂tJ
∣

∣

∣

s=t=0
+ ∂τ (R(∂tγ, ∂t∂τγ)J)

∣

∣

∣

s=t=0
.

By (2’) of Lemma 8.1, we have

∂2
t ∂

2
τJ
∣

∣

∣

s=t=0
= ∂τ∂t∂τ∂tJ

∣

∣

∣

s=t=0
+ ∂τ (R(τv, v)J)

∣

∣

∣

s=t=0

= ∂τ∂t∂τ∂tJ
∣

∣

∣

s=t=0
.

By applying (1) of Lemma 8.1, the above equation becomes

∂2
t ∂

2
τJ
∣

∣

∣

s=t=0
= ∂2

τ∂
2
t J + ∂τ (R(∂tγ, ∂τγ)∂tJ)

∣

∣

∣

s=t=0

= ∂2
τ∂

2
t J
∣

∣

∣

s=t=0
.

If we combine this with (9.2), then we have

∂2
τ∂

2
t J = −2(1− τ)R(v, u)v.

This together with the boundary conditions ∂2
t J
∣

∣

∣

τ=0
= ∂2

t J
∣

∣

∣

τ=1
= 0

gives us

∂2
t J =

τ(τ − 1)(τ − 2)

3
R(v, u)v.

This finishes the proof of (2). The proof of (3) is the same with v and
w interchange.
For (4), we apply (1) of Lemma 8.1 and get

∂2
τ∂t∂sJ

∣

∣

∣

s=t=0

= ∂τ∂t∂τ∂sJ + ∂τ (R(∂τγ, ∂tγ)∂sJ)
∣

∣

∣

s=t=0

= ∂τ∂t∂τ∂sJ
∣

∣

∣

s=t=0
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If we apply again (1) of Lemma 8.1, we get

∂2
τ∂t∂sJ

∣

∣

∣

s=t=0

= ∂t∂
2
τ∂sJ +R(∂τγ, ∂tγ)∂τ∂sJ

∣

∣

∣

s=t=0

= ∂t∂
2
τ∂sJ

∣

∣

∣

s=t=0

= ∂t∂τ∂s∂τJ + ∂t∂τ (R(∂τγ, ∂sγ)J)
∣

∣

∣

s=t=0
.

Using the fact that τ 7→ γ is a geodesic and applying (1) of Lemma
8.1, we get

∂2
τ∂t∂sJ

∣

∣

∣

s=t=0

= ∂t∂τ∂s∂τJ +R(∂t∂τγ, ∂τ∂sγ)J) +R(∂t∂τγ, ∂sγ)∂τJ
∣

∣

∣

s=t=0
.

If we apply (2’) of Lemma 8.1 and Lemma 8.3, then we have

∂2
τ∂t∂sJ

∣

∣

∣

s=t=0

= ∂t∂τ∂s∂τJ
∣

∣

∣

s=t=0
+ (1− 2τ)R(v, w)u

= ∂t∂s∂
2
τJ + ∂t(R(∂τγ, ∂sγ)∂τJ)

∣

∣

∣

s=t=0
+ (1− 2τ)R(v, w)u.

By (1), (2’) of Lemma 8.1, and Lemma 8.3, we get

∂2
τ∂t∂sJ

∣

∣

∣

s=t=0

= ∂t∂s∂
2
τJ
∣

∣

∣

s=t=0
+ (1− 3τ)R(v, w)u.

If we apply the Jacobi equation and (1) of Lemma 8.1, then

∂2
τ∂t∂sJ

∣

∣

∣

s=t=0

= −∂t∂s(R(∂τγ, J)∂τγ)
∣

∣

∣

s=t=0
+ (1− 3τ)R(v, w)u

= −R(∂s∂τγ, J)∂t∂τγ)− R(∂t∂τγ, J)∂s∂τγ)
∣

∣

∣

s=t=0

+ (1− 3τ)R(v, w)u

By (2’) of Lemma 8.1 and Lemma 8.3, we have

∂2
τ∂t∂sJ

∣

∣

∣

s=t=0

= −(1− τ)(R(w, u)v +R(v, u)w) + (1− 3τ)R(v, w)u.
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Finally, by the first Bianchi identity, we have

∂2
τ∂t∂sJ

∣

∣

∣

s=t=0
= −2(1− τ)R(w, u)v − 2τR(v, w)u.

Using this and the boundary conditions ∂t∂sJ
∣

∣

∣

τ=0
= ∂t∂sJ

∣

∣

∣

τ=1
= 0, we

have

∂t∂sJ =
τ(τ − 1)

3
[(τ − 2)R(w, u)v − (τ + 1)R(v, w)u].

�
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