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Abstract

Anonymous mobile robots are often classified into synchronous, semi-synchronous and asynchronous
robots when discussing the pattern formation problem. For semi-synchronous robots, all patterns
formable with memory are also formable without memory, with the single exception of forming a point
(i.e., the gathering) by two robots. (All patterns formable with memory are formable without memory
for synchronous robots, and little is known for asynchronous robots.) However, the gathering problem
for two semi-synchronous robots without memory (called oblivious robots in this paper) is trivially
solvable when their local coordinate systems are consistent, and the impossibility proof essentially
uses the inconsistencies in their coordinate systems. Motivated by this, this paper investigates the
magnitude of consistency between the local coordinate systems necessary and sufficient to solve the
gathering problem for two oblivious robots under semi-synchronous and asynchronous models. To dis-
cuss the magnitude of consistency, we assume that each robot is equipped with an unreliable compass,
the bearings of which may deviate from an absolute reference direction, and that the local coordinate
system of each robot is determined by its compass. We consider two families of unreliable compasses,
namely, static compasses with (possibly incorrect) constant bearings, and dynamic compasses the
bearings of which can change arbitrarily (immediately before a new look-compute-move cycle starts
and after the last cycle ends).
For each of the combinations of robot and compass models, we establish the condition on deviation φ
that allows an algorithm to solve the gathering problem, where the deviation is measured by the largest
angle formed between the x-axis of a compass and the reference direction of the global coordinate
system: φ < π/2 for semi-synchronous and asynchronous robots with static compasses, φ < π/4 for
semi-synchronous robots with dynamic compasses, and φ < π/6 for asynchronous robots with dynamic-
compasses. Except for asynchronous robots with dynamic compasses, these sufficient conditions are
also necessary.
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1 Introduction

Geometric pattern formation by anonymous mobile robots have gained much attention [1, 2, 3, 5,
6, 7, 8, 9, 12, 13, 14, 15, 16]. In the literature, a robot is represented by a point and repeatedly
executes a “look-compute-move” cycle, during which, it observes the positions of all robots (look
phase), computes the next position using a given algorithm (compute phase), and moves to that
position (move phase). A robot does not have access to a global coordinate system, and all its
computations are done in terms of its local coordinate system. The robots do not have identifiers,
are not equipped with communication devices, and execute the same algorithm.

The robots’ behaviors are in general asynchronous. Their executions of the look, compute and
move phases may be interleaved in the sense that a robot may observe, for instance, another robot
while it is moving.1 The robots are said to be semi-synchronous when the execution of their cycles
is assumed to be “instantaneous,” which intuitively means that a robot is never observed while it is
moving. Robots are said to be synchronous, if all of them always execute the instantaneous cycles
simultaneously. A robot is said to be oblivious, if it has no memory to remember its execution
history, and its computations depend only on what it is observing in the current cycle. A robot is
said to be non-oblivious, if it has sufficient memory to remember the whole execution history and
its action can depend also on what it has observed in the past.

The set of patterns formable by semi-synchronous oblivious robots is, by definition, a subset
of the patterns formable by semi-synchronous non-oblivious robots. This inclusion relation is
proper since the point formation (i.e., the gathering) problem for two robots is solvable for semi-
synchronous non-oblivious robots, but it is unsolvable for semi-synchronous oblivious robots, which
exhibits the impact of memory in forming a pattern [15]. Note that the gathering problem for
more than two semi-synchronous oblivious robots is solvable provided that a robot can count the
number of robots residing at the same point (i.e., detect multiple robots residing at the same
point). Interestingly, with the sole exception of gathering of two robots mentioned above, any
pattern formable by semi-synchronous non-oblivious robots is also formable by semi-synchronous
oblivious robots [17]. Thus, the memory helps only in the case of gathering two robots. All patterns
formable by non-oblivious synchronous robots are formable by oblivious synchronous robots, and
little is known for asynchronous robots. These facts motivate our study of the gathering problem
for two oblivious semi-synchronous and asynchronous robots.

The impossibility proof of the gathering problem for two oblivious semi-synchronous robots
relies on the “full” inconsistency of their local coordinate systems [15], while there is a simple
gathering algorithm when they are “fully” consistent. A natural question then arises; what is the
minimum magnitude of consistency between the local coordinate systems that is necessary and
sufficient to solve the gathering problem for two oblivious robots? We answer this question in the
paper for both semi-synchronous and asynchronous robots.

To discuss the magnitude of consistency, we consider that a robot is equipped with an unreliable

compass, the bearings of which may deviate from the absolute ones (i.e., the bearings of global
coordinate system), and assume that the compass determines the local coordinate system.

We consider two families of unreliable compasses with respect to the difference of timings that a
compass can change the bearings. A static compass never changes its (possibly incorrect) bearings
once an execution of algorithm starts. A dynamic compass, on the other hand, can change the
bearings arbitrary times immediately before a new look-compute-move cycle starts, after the last
cycle ends. We can consider a more general family of compasses which can change the bearings
even during the execution of a look-compute-move cycle. We however do not investigate this case
in this paper, since the impossibility of gathering in this case is trivial.

1 The robot however cannot determine its velocity, in particular, whether or not it is moving.
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To measure the magnitude of deviation of a compass from the global coordinate system, we use
the angle formed by the x-axis of the compass and the reference direction of the global coordinate
system. In this paper, we investigate the maximum deviation that is necessary and sufficient for
two oblivious robots to solve the gathering problem. We consider each of the four combinations of
robot and compass models, and essentially show the following results:

Semi-Synchronous Robots with Static Compasses (SS): There is a gathering algorithm for
two oblivious semi-synchronous robots that uses static compasses with maximum deviation
φ, if and only if 0 ≤ φ < π/2.

Semi-Synchronous Robots with Dynamic Compasses (SD): There is a gathering algorithm
for two oblivious semi-synchronous robots that uses dynamic compasses with maximum de-
viation φ, if and only if 0 ≤ φ < π/4.

Asynchronous Robots with Static Compasses (AS): There is a gathering algorithm for two
oblivious asynchronous robots that uses static compasses with maximum deviation φ, if and
only if 0 ≤ φ < π/2.

Asynchronous Robots with Dynamic Compasses (AD): There is a gathering algorithm for
two oblivious asynchronous robots that uses dynamic compasses with maximum deviation φ,
if 0 ≤ φ < π/6.

Note that whether or not 0 ≤ φ < π/6 is necessary is left as an open problem for asynchronous
robots with dynamic compasses.

The remainder of this paper is organized as follows: After briefly surveying related works in
Section 2, Section 3 defines formal models of robots and compasses. We discuss the solvability
of Gathering by semi-synchronous and asynchronous robots with compasses in Sections 4 and 5,
respectively. Finally, Section 6 concludes the paper.

2 Related Works

The set of geometric patterns formable/convergable2 by a set of anonymous semi-synchronous
robots was characterized by Suzuki and Yamashita for non-oblivious robots [15] and also for
oblivious robots [17]. From these two studies, it turns out that memory can help with the for-
mation/convergence of geometric patterns only in very specific cases. Indeed, non-oblivious and
oblivious semi-synchronous robots can solve formation/convergence for the same set of geometric
patterns, except for the formation of a point with exactly two robots3 (i.e. the gathering of two
robots). As for asynchronous robots, little is known, except that the gathering problem for more
than two robots is solvable [5, 6]. These positive results for the gathering problem rely on the
ability of robots to detect multiplicity or, in other words, the ability to count the number of robots
that share a given location. This assumption is indeed necessary. Otherwise, the gathering for
more than two robots is reducible to the problem of two robots [13].

Essentially, the difficulty in forming (and even in converging to) a pattern by robots lies in
the difficulty of breaking symmetry among the robots. In fact, any pattern is formable, given a
symmetry-breaking tool, like a compass. The use of a compass was first introduced by Flocchini
et al. [9]. They showed that asynchronous robots with limited visibility can solve the gathering

2Formation requires that all robots form the pattern within a finite number of steps, while convergence only
requires the robots to approach the pattern asymptotically.

3 Two oblivious robots can converge to a point with a naive algorithm that consists of always moving toward the
midpoint of their positions.
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problem when every robot has access to a correct compass. Souissi et al. [14] extended the above
result to the situation where compasses are eventually consistent. A compass is said to be eventually
consistent if it is unstable and inaccurate for some arbitrary long period, but eventually stabilizes
to show the accurate direction.

In contrast, an unreliable compass may never correctly indicate the correct direction, although
its maximum deviation is bounded. This type of compass was first introduced by Katayama
et al. [12]. They showed that the gathering problem for two oblivious asynchronous robots is
solvable if their compasses are either 1) static whose deviation is less than π/6, or 2) dynamic
whose deviation is less than π/8.

Some other work has focused on fault-tolerant formation/convergence for anonymous robots.
Let F be the number of faulty robots. Cohen et al. [7] showed that convergence to a point is solvable
for n asynchronous robots by simply converging to their center of gravity, even if some of the robots
may possibly crash (as long as there exists a non-faulty robot). Bouzid et al. [3, 4] proposed three
Byzantine resilient convergence algorithms in one-dimensional space; 1) for synchronous robots
provided n > 2F , 2) for semi-synchronous robots provided n > 3F , and 3) for asynchronous
robots provided n > 4F . Agmon et al. [1] showed that 1) there is no Byzantine resilient gathering
algorithm for semi-synchronous robots even if F = 1, and 2) there is a Byzantine resilient gathering
algorithm for synchronous robots if and only if n ≥ 3F + 1.

Finally, effects of sensor/control errors in convergence to a point were discussed by Cohen and
Peleg [8] and Yamamoto et al. [16], assuming that the robots are aware of the global coordinate
system. They measured sensor/control errors by a pair of the maximum angle and distance errors,
and obtained necessary and/or sufficient conditions for robots to have a convergence algorithm in
terms of the pair.

3 System Model and Problem Definition

Robot with Compass:
In this paper, we investigate an autonomous mobile robot system R consisting of two oblivious

robots r0 and r1 working in a two dimensional Euclidean space R2, where R is the set of real
numbers. The robots are anonymous and do not have identifiers; the subscript i of ri is used only
for the purpose of explanation. Let ri(t) be the coordinates in the global x-y coordinate system Z
of a robot ri at time t. The configuration C(t) of R at time t is defined by (r0(t), r1(t)).

The robots do not have access to Z, and each robot ri at time t observes, computes and moves
in its local x-y coordinate system Z(i,t). The origin of Z(i,t) is always at the current position of ri,
and the direction of the x-axis corresponds to the bearings of its compass. Z, Z(0,t) and Z(1,t) are
right-hand systems. Thus, for any point with coordinates p in Z, its coordinates Z(i,t)(p) in Z(i,t)

are calculated by:

Z(i,t)(p)
T = sci(t)

(

cosφi(t) sinφi(t)
− sinφi(t) cosφi(t)

)

(p− ri(t))
T ,

where the scaling ratio sci(t) (with 0 < sci(t) < ∞) is the ratio of the unit length in Z to that in
Z(i,t), and the deviation φi(t) (with −π < φi(t) ≤ π) is the angle formed by the x-axes of Z and
Z(i,t). The deviation abstracts the compass, and Z(i,t)(ri(t)) = 0 always holds. Since the scaling
ratio and the compass (i.e., deviation) may change as time goes, the local coordinate system Z(i,t)

may change accordingly.

Look-Compute-Move Cycle of Robot:
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Each oblivious robot ri repeatedly executes the look-compute-move cycle. The local coordi-
nate system Z(i,t), and thus both the scaling ratio sci(t) and the compass deviation φi(t) remain
unchanged during a cycle (i.e., from look to move).

Suppose that a robot, say r0, starts executing the cycle at time t0. In the look phase, r0 observes
the other robot r1 and obtains the coordinates of r1’s position in the local coordinate system Z(0,t0).
We assume that this observation is an instantaneous action; r0 obtains Z(0,t0)(r1(t)) as the result of
observation, where t is a time instant in the look phase. If the gathering has already been achieved,
then r0 observes exactly one point at the origin.4

Next, robot r0 computes, based on the coordinates Z(0,t0)(r1(t)), the coordinates in Z(0,t0) of
its next position. The algorithm is simply a total function ψ on R

2. That is, when the compute
phase finishes, r0 obtains ψ(Z(0,t0)(r1(t))), as the coordinates of its next position.

In the move phase, r0 moves linearly toward coordinates ψ(Z(0,t0)(r1(t))) in Z(0,t0) at a (possibly
variable) finite speed that r0 cannot control. Since Z(i,t) does not change during the look-compute-
move cycle, Z(0,t0) is the current local coordinate system of r0. The move phase may be too short
for r0 to reach the next position, and thus r0 may finish the current execution of the look-compute-
move cycle on the way to its next position. We however assume that the move phase is long enough
to move over a small distance δ (in Z).5

We make three simplifying assumptions that incur no loss of generality. Let N denote the set
of non-negative integers.

1. Each execution of the look-compute-move cycle starts at the time at which the observation
action is taken in the cycle.

2. The system is initialized at time 0, i.e., the first observation action is taken by a robot at 0.

3. The set of time instants at which the robots start executions of the look-compute-move cycle
(or equivalently, the time instants at which they take observation actions) is N. A robot is
said to be activated at a time t ∈ N, if it starts executing the cycle at t.

Execution:
Given an algorithm and an initial configuration C(0), let us observe the behavior of robot

system R. Let C(t) be the configuration of R at t ∈ N. An infinite sequence E : C(0), C(1), . . .
is called an execution of R. Recall that C(t) is the configuration at time t, in which at least one
robot is activated. An execution must be fair in the sense that both robots are activated infinitely
many times in any infinite execution.

Asynchronous and Semi-Synchronous Robots:
Robots are said to be asynchronous if we do not make any assumption on the execution of the

look-compute-move cycle. Thus, a robot may be moving (move phase) while the other robot starts
the look phase.

Robots are said to be semi-synchronous if every execution of the cycle is instantaneous. An
execution of the cycle started at time t ∈ N is said to be instantaneous, if the look and the compute
phases immediately finish at t and the move phase finishes before t+ 1.

Static and Dynamic Compasses:
A compass is a φ-compass if φ ≥ |φi(t)| for every i ∈ {0, 1} and all t ∈ N, i.e, a compass such

that the absolute value of the deviation angle is bounded by φ. A compass is said to be static if φi(t)

4 The converse (one point at origin implies gathering) may not hold for asynchronous robots. See the definition
of the gathering problem.

5 Obviously, no gathering algorithm exists if a robot can finish the move phase at any position between the current
and the next position.
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is constant in t. A compass is said to be dynamic if it can change its bearings at any time t ∈ N,
prior to the look phase. A φ-static compass is a φ-compass that is static and a φ-dynamic compass
is a φ-compass that is dynamic.

Gathering Problem:
Let L = {(p,p) : p ∈ R

2} be the set of all configurations in which two robots are co-located.
An execution E : C(0), C(1), . . . is called a gathering execution, if there are a configuration C ∈ L
and a time instant f ∈ N such that C(t) = C holds for all t ≥ f . An algorithm is said to be a
gathering algorithm, if for any configuration C(0), every execution E : C(0), C(1), . . . with initial
configuration C(0) is a gathering execution.

An algorithm is given as a function and is deterministic. Nevertheless, execution E is not
uniquely determined from a given initial configuration C(0). Execution E varies depending on
many factors, e.g., when each robot is activated, how and when each scale ratio and compass
change, how far each robot moves, and so on. We consider that all of these factors are controlled
by an adversary playing against the gathering algorithm. This paper investigate the problem of
designing a gathering algorithm.

Noetherian Termination
The definition of a gathering algorithm is based on the Noetherian termination. It does not

request a gathering algorithm to eventually terminate. All gathering algorithms that we present
in this paper are of this type. A stronger (and perhaps more conventional) definition additionally
imposes the termination condition upon a gathering algorithm. We will observe that the gathering
algorithms for semi-synchronous robots in Section 4 are transformable into gathering algorithms
satisfying the termination condition.6

4 Semi-Synchronous Robots with Compasses

In this section, we investigate the gathering problem for two oblivious semi-synchronous anonymous
mobile robots with static and then dynamic compasses. By definition, if the problem is solvable
for the robots with φ-dynamic compasses, it is also solvable for the robots with φ-static compasses.
We establish, for each of the static and the dynamic cases, the tight bound on φ for the problem
to become solvable.

Consider, for an algorithm, a finite execution E : C(0), C(1), . . . , C(f) with an initial configura-
tion C(0), and an execution E ′ : C ′(0), C ′(1), . . . with an initial configuration C ′(0). If C ′(0) = C(f),
then the concatenation EE ′ of E and E ′, i.e., C(0), C(1), . . . , C(f)(= C ′(0)), C ′(1), . . ., is an exe-
cution with initial configuration C(0), since the robots are semi-synchronous.7 In this section, we
implicitly rely on this property.

4.1 Semi-Synchronous Robots with Static Compasses

We now investigate the static case, i.e., the gathering problem for two oblivious robots with static
compasses under the semi-synchronous model. Since the compasses are static, let φi(t) = φi for
i ∈ {0, 1}. The following theorem is a restatement of Theorem 3.1 of [15].

Theorem 1 [15] There is no gathering algorithm for two oblivious anonymous robots with π/2-
static compasses, under the semi-synchronous model.

6 This transformation is not applicable to the gathering algorithms for asynchronous robots in Section 5.
7 Asynchronous robots do not have this property, since a robot in E may still be engaged in its move phase at

time f .
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Figure 1: An illsutration of Algorithm Aφ
SS.
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Figure 2: The move of a robot state Rotate who looks the other robot at p in its local coordinate
system.

We present an algorithm Aφ
SS

8, and show that it is a correct gathering algorithm for two
oblivious semi-synchronous robots with φ-static compasses, provided that 0 ≤ φ < π/2. Recall
that an algorithm ψ is a total function on R

2. For any p = (u, v) ∈ R
2 \ {0}, let arg(p) = ω be

the argument (or phase) of p, i.e., 0 ≤ ω < 2π and (u, v) = |p|(cos ω, sinω). Angles are calculated
modulo 2π in the sequel.

Algorithm Aφ
SS(p)

G(athered): If p = 0 then Aφ
SS(p) = 0.

A(pproach): If 0 < arg(p) ≤ π then Aφ
SS(p) = p.

R(otate): If π < arg(p) ≤ 3π/2 + φ then Aφ
SS(p) = (−|p|, 0).

W(ait): If 3π/2 + φ < arg(p) ≤ 2π then Aφ
SS(p) = 0.

Fig. 1 illustrates Algorithm Aφ
SS(p). It dvides the plane into four regions Gathered, Approach,

Rotate, and Wait, and asks a robot to take the move corresponding to the region to which the

8SS of Aφ
SS stands for Semi-synchronous robots with Static compasses.
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current position p of the other robot belongs. Each region is specified by the angle of its boundary
(except Gathered, whose region is a singleton {0}). For example, in the case of Approach, the
corresponding region is specified by two boundary angles 0 and π. A robot moves toward the
other robot in state A (Approach), it moves westward (i.e., negative direction) on its local x-axis
in state R (Rotate), and stops in state W (Wait). The robots in state G (Gathered) state are co-
located, and no further actions are necessary. Although the actions at A, W and G are intuitive,
the action at R is less straightforward. Figure 2 illustrates the move of a robot in state Rotate who
looks the other robot at p in its local coordinate system. We shall observe in more details how it
rotates, which is the core of Aφ

SS. In general, the state of a robot depends both on its current local
coordinate system and the current position of the other robot.

Let C(0) be a configuration and E : C(0), C(1), . . . be an execution (of Aφ
SS on R) with initial

configuration C(0), where C(t) = (r0(t), r1(t)) is the configuration at time instant t, i.e., ri(t)
(i ∈ {0, 1}) is the location of ri in Z at time t. The state pair S(C(t)) of configuration C(t) at time
t is a pair (s0, s1), where si (i ∈ {0, 1}) is the state of robot ri at time t. As mentioned, si may
depend both on C(t) and Z(i,t).

First of all, we confirm that state G corresponds to a “goal” configuration. Suppose that the
state of a robot, say r0, is G at time t. Since Z(0,t)(r1(t)) = 0, r0(t) = r1(t) and the state of r1
at t is also G. Since they do not move in the time interval [t, t+ 1] regardless of whether they are
activated or not at t, we obtain that C(t′) = C(t) ∈ L for all t′ ≥ t. We can thus conclude that

Aφ
SS is correct if there is a time instant t ∈ N such that S(C(t)) = (G,G).
Since the state of a robot is G if and only if the state of the other robot is G, then S(C(t)) 6∈

{(G, s), (s,G)|s ∈ {A,R,W}}. By the definition of Aφ
SS , S(C(t)) = (W,W ) obviously never occurs;

the execution never reaches a deadlock configuration C(t) such that S(C) = (W,W ), in which
neither robots move.

We next examine the case in which E reaches a configuration C(t) such that S(C(t)) ∈
{(W,A), (A,W )}. The robot in state A, say r0, moves toward r1, while r1, in state W , stays
motionless in time interval [t, t + 1]. By definition, if the distance between r0 and r1 is δ or less,
then r0 has reached the position of r1 by t+1 and S(C(t+1)) = (G,G) holds. If r0 has not reached
the position of r1 at t+ 1, S(C(t+ 1)) = S(C(t)) = (A,W ) and the distance between r0 and r1 is
now shorter, since the position of r0 at t+ 1 lies on the line segment r0(t)r1(t). We thus conclude

that Aφ
SS is correct if there is a time instant t ∈ N such that S(C(t)) ∈ {(W,A), (A,W )}.

We have already shown that Aφ
SS is correct if S(C(0)) ∈ {(G,G), (A,W ), (W,A)}. If S(C(0))

is in none of (G,G), (A,W ), (W,A), then the robots “rotate” the line segment r0(t)r1(t) coun-
terclockwise until a state pair of either (A,W ) or (W,A) occurs. This task is done by robots in
R (i.e., Rotate) state. The rest of this subsection is essentially devoted to showing this. We now
summarize some of the basic properties observed above.

Property 1

1. State pair (G,G) corresponds to a goal configuration.

2. For any configuration C(t), S(C(t)) ∈ {(G,G), (A,A), (R,R), (A,R), (A,W ), (R,A), (R,W ),
(W,A), (W,R)}.

3. If a configuration C(t) such that S(C) ∈ {(A,W ), (W,A)} is reached, then a goal configuration
(G,G) will be reached eventually.

Lemma 1 Suppose that φ0 = φ1. Then Aφ
SS correctly solves the gathering problem for two

oblivious robots under the semi-synchronous model.
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Figure 3: An illustration used in the proof of Lemma 1.

Proof Recall that C(t) = (r0(t), r1(t)) is the configuration at time t. The coordinates of the posi-
tion of robot ri (i ∈ {0, 1}) in Z at t are denoted by ri(t) = (xi(t), yi(t)). By Property 1, it suffices to
show that E eventually reaches a configuration C(f) such that S(C(f)) ∈ {(G,G), (A,W ), (W,A)}
for some f ∈ N.

The state pair S(C(0)) of initial configuration C(0) must contain A as the state of a robot
because φ0 = φ1, and there is nothing to show if S(C(0)) ∈ {(G,G), (A,W ), (W,A)}. Hence
we need to prove the lemma only for configurations C(0) such that S(C(0)) ∈ {(A,R), (R,A)}.
Without loss of generality, we assume the following:

1. φ0 = φ1 = 0,

2. S(C(0)) = (R,A),

3. r0(0) = (x0(0), y0(0)) = 0, i.e., the position of r0 is at the origin in Z, and

4. y1(0) < 0.9

We assume that E never reaches a configuration C(f) such that S(C(f)) ∈ {(G,G), (A,W ), (W,A)}
and derive a contradiction. Because x0(1) ≤ 0, y0(1) = 0 and y1(1) ≤ 0, S(C(1)) ∈ {G,G), (W,A), (R,A)},
which implies that S(C(1)) = (R,A), since S(C(1)) 6∈ {(G,G), (W,A)}. Hence S(C(t)) = (R,A)
holds for all t ∈ N.

Note that x0(t) ≤ 0, y0(t) = 0, and y1(t) ≤ 0 hold. Let α(t) = arg(Z(0,t)(r1(t))). By definition,
π < α(t) ≤ 2π − φ. Let T = {t1, t2, . . .} be the time instants at which r0 is activated. T is an
infinite set, since the execution is fair. Obviously, by definition α(ti) < α(ti + 1) for any i ∈ N,
which implies that α(t) converges to an angle α ≤ 2π − φ. By the definition of state R, 3π/2 ≤ α.

We now derive a contradiction. Let U = {u1, u2, . . .} be the time instants at which r1 is
activated. U is also an infinite set, since the execution is fair. Robot r1 is in state A at any time
instant ui ∈ U . If r1 reaches the next position at ui + 1, y1(ui + 1) = 0 and the state pair of
C(ui + 1) is either (G,G) or (W,A), a contradiction. Thus, it moves by at least δ in time interval
[ui, ui + 1]. Since 3π/2 ≤ α(ui) < 2π − φ, y1(ui + 1) − y1(ui) > δ| sin(2π − φ)| (see Fig. 3 for an
illustration). It is a contradiction, since y1(t) ≤ 0 for any t ∈ N. �

Lemma 2 Suppose that φ0 6= φ1. Then, Aφ
SS correctly solves the gathering problem for two

oblivious robots under the semi-synchronous model.

9 Observe that the state pair of C(0) is either (G,G), (A,W ) or (W,A) if y1(0) = 0.
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Figure 4: Illustrations of the four cases PP, PN, NP and NN used in the proof of Lemma 2.

Proof It suffices to show, by Property 1, that E eventually reaches a configuration C(f) such that
S(C(f)) ∈ {(G,G), (A,W ), (W,A)} for some f ∈ N. Since φ0 6= φ1, we assume φ0 < φ1 without
loss of generality. Since φ < π/2, the angle formed by their x-axes is less than π. Consider C(t)
for any t ∈ N. Let o(t) be the intersection of the x-axes of Z(0,t) and Z(1,t). We may assume
that a robot is not on the x-axis of the other at t, since S(C(t)) 6∈ {(G,G), (A,W ), (W,A)}. Let
Z(i,t)(p) = (x(i,t)(p), y(i,t)(p)) for i ∈ {0, 1} and p ∈ R

2. By definition, for i ∈ {0, 1}, x(i,t)(o(t))
and x(i,t)(ri(t)) are the x-coordinates, in Z(i,t) at time t, of the intersection o(t) and the position
of ri, respectively. According to their relative positions on the x-axis of Z(i,t), we partition the
configurations that may occur in E into four classes:

P(ositive)P(ositive): x(0,t)(o(t)) < x(0,t)(r0(t)) and x(1,t)(o(t)) < x(1,t)(r1(t))

P(ositive)N(egative): x(0,t)(o(t)) < x(0,t)(r0(t)) and x(1,t)(o(t)) > x(1,t)(r1(t))

N(egative)P(ositive): x(0,t)(o(t)) > x(0,t)(r0(t)) and x(1,t)(o(t)) < x(1,t)(r1(t))

N(egative)N(egative): x(0,t)(o(t)) > x(0,t)(r0(t)) and x(1,t)(o(t)) > x(1,t)(r1(t))

Fig. 4 illustrates these four cases. In the following, we show that E eventually reaches a configura-
tion C(f) such that S(C(f)) ∈ {(G,G), (A,W ), (W,A)}, for each of the four cases to which C(0)
may belong: PP, PN, NP and NN.

10



Case NN: Suppose that C(0) is in class NN, which implies that S(C(0)) = (R,A). In this case, by
using an argument similar to the one used in the proof of Lemma 1, we can show that E eventually
reaches a configuration C(f) such that S(C(f)) ∈ {(G,G), (W,A)}.
Case PN: Suppose that C(0) is in class PN, which implies that S(C(0)) ∈ {(R,R), (R,W )}. Since
r0 goes west and r1 goes west or stays motionless and thus r0 decreases its x-coordinate and r1
does not increase its x-coordinate (without changing their y-coordinates) in their local coordinate
systems, E eventually reaches a configuration C(f) in class NN. Thus, this case is reduced to Case
NN.
Case NP: Suppose that C(0) is in class NP, which implies that S(C(0)) = (A,A). Since the robots
move toward each other’s position, E eventually reaches a configuration C(f) in class PN, unless
it reaches a configuration C(f) such that S(C(f)) = (G,G) directly. Thus, this case is reduced to
Case PN.
Case PP: Suppose finally that C(0) is in class PP, which implies that S(C(0)) = (A,R). Since
r0 never reaches the x-axis of Z(1,t), and r1 decreases its x-coordinate in Z(1,t), it follows that E
eventually reaches a configuration C(f) in class PN. Thus, this case is also reduced to Case PN. �

By Lemmas 1 and 2, we derive the following theorem.

Theorem 2 For any 0 ≤ φ < π/2, Algorithm Aφ
SS for two oblivious robots that uses φ-static

compasses solves the gathering problem, under the semi-synchronous model.

4.2 Semi-Synchronous Robots with Dynamic Compasses

We investigate the gathering problem for two semi-synchronous robots with φ-dynamic compasses
for some φ. Unlike the previous subsection, φi(t) can now vary in time, as long as |φi(t)| ≤ φ always
holds.

The proof of Theorem 3.1 of [15] shows that an algorithm solves the gathering problem under the
semi-synchronous model, only if there is a configuration such that one robot, say r0, moves to the
position of r1 while r1 stays motionless. We can restate this condition, using the notation introduced
in Subsection 4.1, as follows: A gathering algorithm is correct, only if there is a configuration C
such that the corresponding state pair S(C) is either (A,W ) or (W,A). We say that a configuration
C is stable if S(C) is determined uniquely, regardless of the current local coordinate systems Z(i,t).
Following the proof of Theorem 3.1 in [15] for semi-synchronous robots, and additionally taking
into account that they have dynamic compasses, we have the following property.

Property 2 An algorithm solves the gathering problem for two oblivious semi-synchronous robots
with dynamic compasses, only if there is a stable configuration C such that S(C) is either (A,W )
or (W,A).

Theorem 3 There is a gathering algorithm for two oblivious semi-synchronous robots with φ-
dynamic compasses, only if φ < π/4.

Proof It suffices to show that there is no gathering algorithm for φ = π/4. We assume that such
an algorithm exists, called ALG, in order to derive a contradiction. Then, by Property 2, there is a
stable configuration C such that the corresponding state pair S(C) is either (A,W ) or (W,A). We
assume, without loss of generality, that C = ((0, 0), (1, 0)) and S(C) = (W,A). Since C is stable
and φ0(t) can be ±π/4, we have that S(C ′) = S(C ′′) = (W,A), where C ′ = ((0, 0), (

√
2/2,

√
2/2)),

and C ′′ = ((0, 0), (
√
2/2,−

√
2/2)).

Consider an execution starting with initial configuration C(0) = ((0, 0), (0, 1)), assume that
φ0(0) = π/4 and φ1(0) = −π/4. Then S(C(0)) = (W,W ), a contradiction. �

11
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Figure 5: An illustration of Algorithm Aφ
SD.

We next present an algorithm Aφ
SD and show that it is a correct gathering algorithm for two

oblivious semi-synchronous robots with φ-dynamic compasses, provided that 0 ≤ φ < π/4.10 For
any p ∈ R

2 and angle ω, Let ρω(p) = q, where

qT =

(

cosω − sinω
sinω cosω

)

pT ,

that is, ρω(p) is the point obtained by rotating p by angle ω with respect to the rotation center 0.

Algorithm Aφ
SD(p)

G(athered): If p = 0 then Aφ
SD(p) = 0.

A(pproach): If π/2 + φ < arg(p) ≤ 3π/2 − φ then Aφ
SD(p) = p.

W(ait): If −π/2 + φ < arg(p) ≤ π/2 − φ then Aφ
SD(p) = 0.

R(otate): If π/2 − φ < arg(p) ≤ π/2 + φ or 3π/2 − φ < arg(p) ≤ 3π/2 + φ (= −π/2 + φ),

then Aφ
SD(p) = ρπ

2
+φ(p).

An illustration of this algorithm is shown in Fig. 5. Like Aφ
SS, a robot moves toward the other

robot in state A (i.e., Approach) and stays there motionless in state W (i.e, Wait). Although the

action taken in state R (i.e., Rotate) seems slightly more complex than for Aφ
SS, the idea behind

the definition is similar to Aφ
SS . This additional complexity, illustrated in Fig. 6, comes from the

need to handle the dynamic compasses. Roughly, a robot at R rotates the line segment connecting
the current robots’ positions clockwise, until its deviation from the x-axis of Z becomes smaller
than π/2−φ(> 0). Since such a configuration C is stable and S(C) is either (A,W ) or (W,A), the
gathering is eventually achieved.

Just like with Aφ
SS , the state pair (G,G) corresponds to a goal (i.e., gathered) configuration. Un-

like with Aφ
SS , state pair (A,A) never occurs, in addition to the state pairs in {G, s), (s,G), (W,W )|s ∈

{A,R,W}}. Note that Item 3) of Property 1 does not hold for Aφ
SD, i.e., not all configurations C,

with S(C) ∈ {(A,W ), (W,A)}, are stable.

We explain the intention of the definition Aφ
SD(p) = ρπ/2+φ(p) of R. Suppose that an execution

reaches at time t a configuration C = (r0, r1), in which a robot, say r0, is in state R. For the

10SD of Aφ
SD stands for Semi-synchronous robots with Dynamic compasses.
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Figure 6: The move of a robot in state Rotate who looks the other robot at p in its local coordinate
system.

simplicity of the explanation, assume that r0 = 0, and that y1 > 0, where r1 = (x1, y1). Since r0 is
at R, π/2− φ < arg(Z(0,t)(r1)) ≤ π/2 + φ in Z(0,t). As |φ0(t)| ≤ φ, π/2− 2φ < arg(r1) ≤ π/2 + 2φ
in Z. The direction θ of the next position hence satisfies π < θ < arg(r1) + π(< 2π). Since
θ < arg(r1)+π, a robot at R, once activated, rotates the line segment r0r1 clockwise. Since π < θ,
the rotation of r0r1 never exceeds the x-axis of Z.

Theorem 4 For any 0 ≤ φ < π/4, Algorithm Aφ
SD for two oblivious robots that use φ-dynamic

compasses solves the gathering problem, under the semi-synchronous model.

Proof It suffices to show that any execution E = C(0), C(1), . . . eventually reaches a configuration
C(f) such that S(C(f)) = (G,G). We assume that there is a configuration C(0) such that there
is an execution E = C(0), C(1), . . . in which S(C(t)) 6= (G,G) holds for any t. We then derive
a contradiction. Let C(t) = (r0(t), r1(t)), where ri(t) = (xi(t), yi(t)) for i ∈ {0, 1}, and α(t) =
arg(r1(t)− r0(t)). If y1(0) = 0 holds, it is a contradiction since C(0) is a stable configuration such
that S(C(0)) is either (W,A) or (A,W ). Without loss of generality, we thus assume that r0(0) = 0
and y1(0) > 0. Hence 0 < α(0) < π.

By the respective definitions of states A and R, and by the above observation about R, we
obtain that 0 < α(t+ 1) ≤ α(t) for any t ∈ N. If a robot at R is activated only a finite number of
times, then there is an infinite subexecution C(f), C(f + 1), . . . such that S(C(t)) is either (A,W )
or (W,A) for any t ≥ f for some f ∈ N—a contradiction. A robot at R is thus activated infinitely
many times. Since a robot at R rotates segment r0(t)r1(t) clockwise whenever it is activated
(Fig. 7), and 0 < α(t) for all t ∈ N, then α(t) converges to an angle α > 0.

We again derive a contradiction. Since α(t) converges to α > 0 for any small ǫ > 0, there
is a time f ∈ N such that α(t) − α < ǫ for all t ≥ f . Because an activation of r1 does not
increase α(t), we may assume without loss of generality that only r0 is activated after f . Let
τ = π/2− φ(= π − (π/2 + φ)).

For convenience, imagine that r1(f) = 0 and r0(f) = (−1, 0). Since r1 is not activated after f ,
r1 stays at 0. Let ℓ (resp. ℓ′) be a half line ended at 0 (resp. (−1, 0)) with π − ǫ (resp. π − τ)
being the angle it makes with the x-axis, and let p be the intersection of ℓ and ℓ′ (see Fig. 8 for
illustration).

13
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Figure 7: Illustrations to explain why α(t) monotonically decreases, which are used in the proof of
Theorem 4.

Since τ ≫ ǫ, p is in the second quadrant. Let X = r0(f)(= (−1, 0)), r0(f + 1), . . . be the
polygonal chain constructed from the positions of r0 after f . It is easy to observe that X is entirely
contained within the triangle formed by vertices 0,p and (−1, 0). This is a contradiction with the
fact that |r0(t+ 1)− r0(t)| ≥ δ and arg(r0(t+ 1)− r0(t)) ≥ π − (τ + ǫ), for any t ≥ f . �

Remark 1 Algorithms Aφ
SS and Aφ

SD run forever. Let us modify them by replacing Gathered into
the following Terminate:

T(erminate): If p = 0 then terminate.

The modified Aφ
SS and Aφ

SD then eventually terminate at a gathered configuration because the

original Aφ
SS and Aφ

SD have the following property: For any execution E : C(0), C(1), . . ., there is
a time instant f ∈ N such that S(C(f)) = (G,G), and for any f ∈ N such that S(C(f)) = (G,G),
S(C(t)) = (G,G) holds for any t ≥ f .

5 Asynchronous Robots with Compasses

We now address the case of asynchronous mobile robots. As emphasized earlier, a main difference
between asynchronous and semi-synchronous robots is that in the former case, a concatenation
EE ′ of a finite execution E and an execution E ′ may not be a correct execution, even if the last
configuration C(f) of E is the initial configuration of E ′. This is because, due to the asynchrony
of the three phases, one of the two robots may be caught in the middle of its move phase in C(f)

14
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Figure 8: An illustration of a contradictive situation in the proof of Theorem 4.

in E . We say that a robot is settled at time t if 1) it is not activated at t, or 2) it is activated at t
and it will not change its position until it is next activated. Obviously EE ′ is a correct execution,
if both robots are settled at time f .

5.1 Asynchronous Robots with Static Compasses

In Subsection 4.1, we presented Algorithm Aφ
SS and showed as Theorem 2 that it correctly solves the

gathering problem for two oblivious robots using φ-static compasses under the semi-synchronous
model, if 0 ≤ φ < π/2. We now show that Theorem 2 can be extended to asynchronous robots; i.e.,

we show that Aφ
SS correctly solves the gathering problem for two oblivious robots using φ-static

compasses under the asynchronous model, if 0 ≤ φ < π/2. We then conclude by Theorem 1 that
there is a gathering algorithm for two oblivious asynchronous robots using static compasses with
maximum deviation φ, if and only if 0 ≤ φ < π/2.

We keep with the notation defined in Subsection 4.1, and follow the scenario that we adopted
in the proof of Theorem 2. We show the correctness of Aφ

SS under the asynchronous model, taking
into account features that characterize an asynchronous execution. Like semi-synchronous robots,
S(C) 6∈ {(G, s), (s,G), (W,W )|s ∈ {A,R,W}} for any configuration C. Hence the execution never
reaches a deadlock configuration C, in which neither robot can move, before reaching (G,G). How-
ever, unlike semi-synchronous robots, state pair (G,G) no longer characterizes a goal configuration,
since an asynchronous robot may still be unsettled. In other words, it may be moving away without
noticing that the gathering had just been completed.11

In order to handle such configurations C(t) at which a robot is not settled, we also pay attention
to times ai(t) and bi(t) with i ∈ {0, 1}, where ai(t) (resp. bi(t)) is the last time before (and including)
t (resp. the first time after (and including) t) at which robot ri is activated. If ri is activated at t,
then ai(t) = bi(t) = t. If ri is not activated at t, then ri is not activated in time interval (ai(t), bi(t)).
Like Subsection 4.1, let us start with the simple case of φ0 = φ1.

11 We call such a configuration a pseudo-gathered configuration in the next subsection.
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Lemma 3 Suppose that φ0 = φ1. Then Aφ
SS correctly solves the gathering problem for two

oblivious robots under the asynchronous model.

Proof Our proof is very similar to that of Lemma 1. Let C(0) be any initial configuration.
Consider any execution E : C(0), C(1), . . ., where ri(t) = (xi(t), yi(t)) for any i ∈ {0, 1} and t ∈ N.
Except that both states of robots are G, S(C(0)) must contain A as the state of a robot. Thus,
S(C(0)) ∈ {(G,G), (A,R), (A,W ), (R,A), (W,A)} holds.

If S(C(0)) = (G,G), then by the definition of Aφ
SS , S(C(t)) = (G,G) for any t ∈ N, i.e., the

gathering completes.
If S(C(0)) ∈ {(A,W ), (W,A)}, then only the robot with state A, say r0, can move (toward r1)

at C(0), and thus S(C(1)) = (A,W ). Hence, E eventually reaches a configuration C(t) (possibly
after taking a number of configurations C such that S(C) = (A,W )) such that S(C(t)) = (G,G).
Let t0 be the earliest time instant t at which S(C(t)) = (G,G) holds.

We observe that both robots are settled. The state of r1 is W at a1(t0) and hence r1 is settled

at t0. Robot r0 (whose state at a0(t0) is A) is also settled at t0 since, by the definition of Aφ
SS , the

next position of r0 at a0(t0) is the position of r1. It follows that gathering completes, like the case
where S(C(0)) = (G,G).

We continue with the cases where S(C(0)) ∈ {((A,R), (R,A)}. Like the proof of Lemma 1,
assume without loss of generality that:

1. φ0 = φ1 = 0,

2. S(C(0)) = (R,A),

3. r0(0) = (x0(0), y0(0)) = 0, i.e., the position of r0 is at the origin in Z, and

4. y1(0) < 0.12

By the same argument used in the proof of Lemma 1, y1(t) ≤ 0 holds for any t ∈ N. If y1(t) = 0
for some t ∈ N, then let t0 be the earliest time instant t at which y1(t) = 0 holds. It follows that
S(C(t0)) ∈ {(W,A), (G,G)}, and r1 is settled at t0 (because r1(t0) is the next position of r1 at
a1(t0)). If r0 is settled at t0, the gathering eventually completes since it reduces to the case where
S(C(0)) ∈ {(W,A), (G,G)}.

If r0 is not settled at t0, then r0 is moving (or will move) in the negative direction on its x-
axis, since S(C(a0(t0))) = (R,A). Thus r0 is settled at b0(t0) and S(C(b0(t0))) = (W,A). If r1 is
settled at b0(t0), then the gathering eventually completes as discussed above. If r1 is not settled at
b0(t0), then S(C(t1)) ∈ {(W,A), (G,G)} and both r0 and r1 are settled at t1, where t1 = b1(b0(t0)).
Therefore, the gathering eventually completes.

To derive a contradiction, we next assume that y1(t) = 0 does not hold for any t ∈ N. By the
same argument used in the proof of Lemma 1, E eventually reaches a configuration C(t) such that
S(C(t)) = (W,A). Let t0 be the first time instant t such that S(C(t)) = (W,A) holds. If both
r0 and r1 are settled at t0, the gathering eventually completes, leading to a contradiction. If r0 is
not settled and is moving (or will move) in the negative direction on its x-axis at t0, the gathering
eventually completes by a similar argument as above. A contradiction is thus derived. �

Lemma 4 Suppose that φ0 6= φ1. Then Aφ
SS correctly solves the gathering problem for two

oblivious robots under the asynchronous model.

12 The state pair of C(0) is any of (G,G), (A,W ) or (W,A) if y1(0) ≥ 0.
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Proof Again, our proof is similar to that of Lemma 2. We continue to use the same concepts and
notations, but introduce them again for the convenience of the reader.

Consider any configuration C(0) and any execution E = C(0), C(1), . . . starting at C(0), where
C(t) = (r0(t), r1(t)) for any t ∈ N. We assume φ0 < φ1 without loss of generality. Since φ < π/2, we
denote by o(t) the intersection of the x-axes of Z(0,t) and Z(1,t). Let Z(i,t)(p) = (x(i,t)(p), y(i,t)(p))
for any i ∈ {0, 1} and p ∈ R

2. By definition, x(i,t)(o(t)) and x(i,t)(ri(t)) are the x-coordinates, in
Z(i,t) at time t, of the intersection o(t) and the position of ri, respectively.

As explained in the proof of Lemma 2, under the semi-synchronous model, we could assume
without loss of generality that a robot is not on the x-axis of the other at t. Unfortunately, in the
asynchronous model, we can no longer assume this. That is, a robot can possibly be located at o(t)
at t. Taking this into account, we partition the configurations into four classes as follows. (The
partition is slightly different from the one defined in the proof of Lemma 2.)

P(ositive)P(ositive): x(0,t)(o(t)) < x(0,t)(r0(t)) and x(1,t)(o(t)) < x(1,t)(r1(t))

P(ositive)N(egative): x(0,t)(o(t)) < x(0,t)(r0(t)) and x(1,t)(o(t)) ≥ x(1,t)(r1(t))

N(egative)P(ositive): x(0,t)(o(t)) ≥ x(0,t)(r0(t)) and x(1,t)(o(t)) < x(1,t)(r1(t))

N(egative)N(egative): x(0,t)(o(t)) ≥ x(0,t)(r0(t)) and x(1,t)(o(t)) ≥ x(1,t)(r1(t))

(Case NN) Suppose that C(0) is in class NN, which implies that S(C(0)) ∈ {(W,A), (R,A), (G,G)}.
We can show that gathering eventually completes in the first two cases, by using arguments similar
to those in the proof of Lemma 3. The last case obviously completes gathering.
(Case PN) Suppose that C(0) is in class PN, which implies that S(C(0)) ∈ {(R,R), (R,W )}.
Since a robot ri at R moves in the negative direction along its x-axis and thus decreases its x-
coordinate (without changing its y-coordinate) in its local coordinate system, E eventually reaches
a configuration C(f) in class NN for the first time at f .

If both robots are settled at f , the case is reduced to Case NN. If r1 is settled at f , the case
is also reduced to Case NN, as follows: C(0) is in class PN, S(C(0)) =(R, R)or(R,W ), only r0 is
activated at time 0, and r1 is activated at time 1 while r0 is still moving. Finally, if r0 is settled
at f , consider the time b1(f) at which r1 is activated next time after f . It is easy to observe that
C(b1(f)) is in NN and S(C(b1(f))) ∈ {(W,A), (R,A)}. Since r1 is settled at b1(f), as above, the
case is reduced to Case NN.
(Case NP) Suppose that C(0) is in class NP, which implies that S(C(0)) ∈ {(A,A), (W,A)}. If
S(C(0)) = (W,A), then obviously the gathering eventually completes. By similar arguments to
those used to show Case PN and Lemma 2, the case is reduced to Case NN, or else gathering
completes.
(Case PP) Suppose that C(0) is in class PP, which implies that S(C(0)) = (A,R). Applying
arguments similar to Case PN and the proof of Lemma 2, the case is reduced to Case PN, unless
gathering completes. �

By Lemmas 3 and 4, we have the following theorem.

Theorem 5 For any 0 ≤ φ < π/2, Algorithm Aφ
SS for two oblivious robots using φ-static compasses

solves the gathering problem, under the asynchronous model.

Remark 2 At the end of Section 4, we modified Aφ
SS by replacing the action Gathered into Ter-

minate, and showed that the modified Aφ
SS is a gathering algorithm for semi-synchronous robots

with the termination condition. The modified Aφ
SS however is not a correct gathering algorithm
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Figure 9: An illsutration of Algorithm Aφ
AD.

for asynchronous robots, as the following counter-example shows. Let C(0) = ((0, 0), (0,−1) and
suppose that the unit distances of Z and Z(i,t) are the same, i.e., sci(t) = 1 for all i ∈ {0, 1} and
t ∈ N and that the compasses have no deviation, i.e., φ0 = φ1 = 0. Then S(C(0)) = (R,A).
Consider the following scenario:

Time 0: r0 and r1 are activated, where S(C(0)) = (R,A).

Time Interval (0,1): r1 moves and reaches (0, 0), but r0 does not move.

Time 1: r1 is activated, where S(C(0)) = (G,G). Then r1 halts.

Time Interval (1,2): r0 moves and reaches (−1, 0).

Time 2: r0 is activated, where S(C(2)) = (W,A). Since r1 has terminated, neither robot can
move.

This shows that the modified Aφ
SS is not a correct gathering algorithm for asynchronous robots.

5.2 Asynchronous Robots with Dynamic Compasses

We present a gathering algorithm Aφ
AD for two oblivious asynchronous robots using dynamic com-

passes, and show its correctness, provided 0 ≤ φ < π/6.13

Algorithm Aφ
AD(p)

G(athered): If p = 0 then Aφ
AD(p) = 0.

A(pproach): If 2π/3 + φ ≤ arg(p) < 3π/2 then Aφ
AD(p) = p.

W(ait): If −π/2(= 3π/2) ≤ arg(p) ≤ π/3− φ then Aφ
AD(p) = 0.

R(otate): If π/3 − φ < arg(p) < 2π/3 + φ then Aφ
AD(p) = ρ 2π

3
+2φ(p).

Figs. 9 and 10 illustrate Algorithm Aφ
AD and the move of a robot in state R (Rotate) who looks

the other robot at p in its local coordinate system under Algorithm Aφ
AD, respectively. We show

the correctness of Aφ
AD.

13 AD of Aφ
AD stands for Asynchronous robots with Dynamic compasses.
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Figure 10: The move of a robot in state Rotate who looks the other robot at p in its local coordinate
system under Algorithm Aφ

AD.

Theorem 6 For any 0 ≤ φ < π/6, Algorithm Aφ
AD for two oblivious robots using φ-dynamic

compasses solves the gathering problem, under the asynchronous model.

Proof Consider any configuration C(0) and any execution E = C(0), C(1), . . . of Aφ
AD with initial

configuration C(0). For any t ∈ N, let C(t) = (r0(t), r1(t)) and ri(t) = (xi(t), yi(t)). By the

definition of Aφ
AD, we have S(C(t)) ∈ {(G,G), (A,W ), (W,A), (A,R), (R,A), (W,R), (R,W )} for

any t ∈ N. In the following, we show that E is a gathering execution.
A configuration C(t) such that S(C(t)) = (G,G) is said to be pseudo gathered if S(C(t′)) 6=

(G,G) for some t′ > t, or equivalently, if a robot is not settled at t. Unlike semi-synchronous robots’

execution, E (of Aφ
AD) may reach a pseudo gathered configuration.

Suppose that C(t) is a pseudo gathered configuration and a robot, say r0, is not settled. Since
the state of r1 is G (i.e., stay motionless), the execution can reach the same configuration C(t+1)
even if r1 is not activated at t. Formally, if C(t) is a pseudo gathered configuration, then E ′ =

C(0), C(1), . . . , C(t− 1), C(t+ 1), C(t+ 2), . . . is also an execution of Aφ
AD.

The proof is by contradiction: We assume that E is not a gathering execution and derive a
contradiction. If E is not a gathering execution, then there is an execution E ′ such that it is
not a gathering execution and does not contain a pseudo gathered configuration. Without loss of
generality, we also assume that pseudo gathering execution never appear in E .

If y0(0) = y1(0), since 0 ≤ φ < π/6, C(0) is stable and S(C(0)) ∈ {(A,W ), (W,A), (G,G)} by

the definition of Aφ
AD. Since the case where S(C(0)) = (G,G) is trivial, let us assume, without loss

of generality, that S(C(0)) = (A,W ). Then obviously, r0 always move toward r1 by the definition

of Aφ
AD and the gathering eventually completes. We thus assume y0(0) < y1(0) without loss of

generality.
To show the correctness of Aφ

SD in Subsection 4.2, we observed that a robot at R rotates the line
segment connecting the current robots’ positions clockwise until the state pair becomes either (W,A)

or (A,W ). The scenario of the correctness proof of Aφ
AD is similar. Define α(t) = arg(r1(t)−r0(t)),

provided that y0(t) < y1(t).
For the time being, we assume (1) y0(t) < y1(t) for any t ∈ N (and hence 0 < α(t) < π), and

(2) 0 < α(t + 1) ≤ α(t). The verification of their correctness is the core of the proof and will be
given later.

Obviously α(t) converges to an angle α ≥ 0 (under the above two assumptions). Indeed, α = 0;
that is, α(t) converges to 0. To observe this, let us assume that α > 0. Then we can derive
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a contradiction, by an argument which is identical to the last three paragraphs of the proof of
Theorem 4.

When α(t) ≈ 0, by the definition of Aφ
AD, C(t) is stable14 and S(C(t)) = (W,A). We now show

that the gathering eventually completes from such C(t), which contradicts the assumption that E
is not a gathering execution.

Suppose that E eventually reaches a configuration C(t) such that α(t) ≈ 0. Since α(t) ≈ 0, C(t)
is stable and S(C(t)) = (W,A). Moreover, C(t′) is stable and S(C(t′)) = (W,A) for all t′ ≥ t. Let
f = max{b0(t), b1(t)}. Then, r0 is settled after (and including) time f . By definition, E eventually
reaches (G,G).

Now we return to the verification of the two assumptions mentioned above. That is, we prove
(1) y0(t) < y1(t) and (2) 0 < α(t+ 1) ≤ α(t), for any t ∈ N.

To this end, we still need a few more concepts. Let si(t) be the state of robot ri at time t.
That is, letting S(t) = S(C(t)), S(t) = (s0(t), s1(t)). Since a robot, say r0, may not be settled at t,
s0(t) may not coincide with the action s∗0(t)(= s0(a0(t))) that r0 is engaging at t. (For consistency,
we assume that s∗i (t) = W if robot ri has never been activated yet.) Let S∗(t) = (s∗0(t), s

∗

1(t)) =
(s0(a0(t)), s1(a1(t))).

Suppose that y0(t) < y1(t). We partition the working space R
2 of the robots into two half

planes delimited by the line L connecting their positions. Recall that α(t) is the angle that L forms
with the x-axis of Z. We assume that both half planes contain L as a part, and denote by Γ0(t)
(resp. Γ1(t)) the left-hand (resp. right-hand) side half plane of L. Robot ri may or may not be
activated at time t. However, if ri is activated, it calculates and moves toward the next position,
the coordinates of which are expressed by di(t) in Z.

15

As mentioned, we may assume y0(0) < y1(0) without loss of generality. We then prove the
following four statements: For any t ≥ 1,

1. y0(t) < y1(t),

2. 0 < α(t) ≤ α(t− 1),

3. di(t) ∈ Γi(t) for i ∈ {0, 1}, and

4. S∗(t) 6= (A,A).

Recall that we assume that E is not a gathering execution and does not contain a pseudo
gathered configuration. The proof is by induction on t. Since the base case is obvious, let us
concentrate on the induction step.

(A) First we show y0(t) < y1(t). In the proof, we implicitly use the fact that R always decreases
the robot’s y-coordinate. Assume that y0(t) ≥ y1(t) to derive a contradiction. Assume first that
r0 is activated at t − 1 (r1 may or may not be activated at t − 1). Let v = a1(t − 1) ≤ t − 1.
Since y0(v) < y1(v), s1(v) ∈ {A,W}. If s1(v) = W , then y1(t) = y1(t − 1). Since r0 is activated
at t − 1, y0(t) ≤ y1(t − 1) and the equality holds only if s0(t − 1) = A. If s0(t − 1) = A, and
y0(t) = y1(t − 1) = y1(t), then S(t) = (G,G) (since y0(t − 1) < y1(t − 1)), a contradiction. If
s1(v) = A, since S∗(u) 6= (A,A) for all v ≤ u ≤ t− 1, s∗0(u) ∈ {R,W} for all v ≤ u ≤ t− 1, which
implies that y0(t) ≤ y0(v) ≤ y1(t). If y0(t) = y0(v) = y1(t), then we can conclude S(t) = (G,G), a
contradiction. If y0(t) < y0(v) or y0(v) < y1(t), it directly implies y0(t) < y1(t), a contradiction.

Assume next that r1 is activated at t − 1. Let v = a0(t − 1) ≤ t − 1. If s0(v) = R, then
y0(t) < y0(t− 1) ≤ y1(t), a contradiction. If s0(v) =W , then y0(v) = y0(t) = y0(t− 1) < y1(t− 1),

14Recall that a configuration C is said to be stable if S(C) is determined uniquely, regardless of the current local
coordinate systems Z(i,t).

15 The coordinates of the next position in Z(i,t) is Aφ
AD(p), where p represents the coordinates of the other robot

in Z(i,t).
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a contradiction is derived, since s1(t − 1) ∈ {A,W} and thus y0(t) = y1(t) implies S(t) = (G,G).
If s0(v) = A, since S∗(u) 6= (A,A) for all v ≤ u ≤ t − 1, s1(u) 6= A, which implies that s1(u) is
always W , a contradiction, since y0(t) ≤ y1(v) = y1(t) and y0(t) = y1(t) implies S(t) = (G,G).

(B) Second we show 0 < α(t) ≤ α(t − 1). If both of the robots are settled at t − 1, then the
claim is obvious, since di(t − 1) ∈ Γi(t − 1) for i ∈ {0, 1}, y0(t) < y1(t), 0 < α(t) ≤ α(t − 1), and
S(t) 6= (G,G).

If robot r0 is not settled at t− 1, then d0(a0(t− 1)) ∈ Γ0(a0(t− 1)) and α(t− 1) ≤ α(a0(t− 1)),
which implies that d0(a0(t − 1) ∈ Γ0(t − 1). Then by the same argument as above, 0 < α(t) ≤
α(t− 1), since y0(t) < y1(t). The case in which r1 is not settled at t− 1 is symmetrical.

(C) Third we show di(t) ∈ Γi(t) for i ∈ {0, 1}. Since we showed y0(t) < y1(t) in (A) and

0 ≤ α(t) < α(t− 1) in (B), the claim is obvious by the definition of Aφ
AD.

(D) Finally we show S∗(t) 6= (A,A). There are two cases to be considered. Assume first that r0
is activated at t. Since s0(t) = A, 2π/3 ≤ α(t) < π (because y0(t) < y1(t)). Let v = a1(t) ≤ t− 1.
Since s1(v) = A, 0 < α(v) ≤ π/2 + φ. Since π/2 + φ < 2π/3 (because φ < π/6), a contradiction is
derived, since α(t) ≤ α(v).

Next assume that r1 is activated at t. Let v = a0(t) ≤ t − 1. Since S∗(u) 6= (A,A) for any
v ≤ u ≤ t− 1, s0(v) = A, and s1(u) = W for any v ≤ u ≤ t− 1 (since r1 can take either A or W ),
a contradiction.

�

6 Concluding Remarks

This paper investigates the gathering problem for two oblivious anonymous mobile robots under
disagreement of local coordinate systems. To discuss the magnitude of consistency between the
local coordinate systems, we assumed that each robot is equipped with an unreliable compass, the
bearings of which may deviate from an absolute reference direction, and that the local coordinate
system of each robot is determined by its compass. We considered four classes of robot systems,
which are specified by the combination of synchrony assumption (semi-synchronous/asynchronous
robots) and compass models (static/dynamic), and established the maximum deviation φ allow-
ing an algorithm to solve the gathering problem for each class: φ < π/2 for semi-synchronous
and asynchronous robots with static compasses, φ < π/4 for semi-synchronous robots with dy-
namic compasses, and φ < π/6 for asynchronous robots with dynamic-compasses. Except for
asynchronous robots with dynamic compasses, these sufficient conditions are also necessary. As for
a necessary condition on φ for asynchronous robots with dynamic-compasses we could show that
φ < π/6 is necessary for almost all cases, and thus conjecture it and would like to leave it as a
challenging future work. The results are summarized in Table 1.

Conjecture 1 Condition φ < π/6 is necessary for asynchronous oblivious robots with dynamic-
compasses to have a gathering algorithm.

Remarks 1 and 2 emphasize that the modified Aφ
SS is a gathering algorithm for semi-synchronous

robots with the termination property, but is not for asynchronous robots. An interesting question is
hence to ask if there is a gathering algorithm for asynchronous oblivious robots with the termination
property. The gathering process with termination property could be viewed as a process of obtaining
a point that the robots will gather as their common knowledge, and common knowledge is in general
impossible to obtain under asynchronous setting. The plausible answer is thus “NO,” and we would
like to conjecture it. However, in order to complete a proof, we first need to deeply understand
why gathering with termination is possible for semi-synchronous robots, despite that they share
some asynchronous nature with asynchronous robots.
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Table 1: The summary of results about two oblivious-robot gathering with unreliable compasses.

Compass
Static Dynamic

Timing model
S.Synch

Possible φ < π/2 (Sec. 4.1) φ < π/4 (Sec. 4.2)
Impossible φ ≥ π/2 ( [13, 15]) φ ≥ π/4 (Sec. 4.2)

Asynchronous
Possible φ < π/2 (Sec. 5.1) φ < π/6 (Sec. 5.2)

Impossible φ ≥ π/2 (deduction) φ ≥ π/4 (deduction)

As a final note, in [17], the authors show that there is no gathering algorithm for oblivious
robots under the semi-synchronous model even if the symmetricity of the initial configuration is
1 (i.e., even if the deviation of their local coordinate systems is less than π). We would like to

note that this fact does not contradict to Theorem 2 since Algorithm Aφ
SS relies on the existence

of upper bound φ.
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