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On Affine Invariant Descriptors Related to SIFT∗

R. Sadek†, C. Constantinopoulos‡, E. Meinhardt†, C. Ballester†, and V. Caselles†

Abstract. Using a classical result on algebraic invariants of the unimodular group, we present in this paper some
basic geometric affine invariant quantities, and we use them to construct some distinctive descriptors
for object detection. Although full affine invariance cannot be guaranteed due to noncommutativity
of camera blur with affine maps and the domain problem (that is, the difficulty of finding an affine
covariant domain), the proposed descriptors behave more robustly than SIFT with respect to affine
deformations. This is supported by our comparisons both with the version of SIFT computed on
an affine normalized neighborhood, and with ASIFT, which solves both the previously mentioned
camera blur and domain problems by cleverly sampling the orbit of affine transformations of the
images.
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1. Introduction. Object recognition in computer vision can be briefly defined as the task
of finding a given object in an image or in a video sequence. Usually the object itself is
defined by an image and may vary in scale and pose with respect to the image where the
object is searched for. In recent years, an extensive huge literature has developed on object
recognition motivated by its numerous applications, in particular, applications to object or
image recognition in large databases, such as the web itself [51, 52, 8, 28, 50, 42], or to image
classification [6, 7].

The starting point of most approaches is the computation of keypoints and their feature
descriptors. In order to deal with real applications, computed feature descriptors have to be
invariant with respect to a set of image distortions. Let us briefly comment on the main ones.

First, let us mention the invariance with respect to blur. Image blur is the result of many
factors: out-of-focus camera, aperture diffraction, motion blur, pixel sampling, interpolation,
etc. Inverting the blur is an ill-posed problem. A typical way to obtain features invariant to
blur is to use a multiscale representation of the images. When the blur kernel has a small
support, then at some scale the effect of the blur will disappear.
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Second, ignoring the camera blur and assuming that the two images to be compared
are taken from different positions and/or orientations, we need feature descriptors that are
invariant with respect to projective transformations. Since this is a too general class, if the
objects we are searching for can be locally approximated by a plane, then we can restrict
the required invariance to the set of affine transformations. This approach is commonly used
in practice and is the object of interest in this paper. There are many approaches that
satisfy affine invariance with different degrees of approximation: from Euclidean invariance
to approximately affine invariance. If we introduce the camera blur into the picture, then we
need descriptors that are invariant with respect to affine transforms determined by the change
of position of the camera. The trouble comes from the fact that affine transforms do not
commute, in general, with the blur kernel [39]. Assuming, as we will do in this paper, that the
blur kernel is radial, only rotations and translations commute with it. These parameters can be
normalized by geometric affine invariant descriptors computed on the image. The remaining
parameters cannot. They are the scale parameter corresponding to the camera zoom, and
the camera axis longitude and latitude. Thus, following [38, 39], we are led to distinguish
between geometric affine invariance (corresponding to an ideal pinhole camera, with no blur)
and camera affine invariance that also models the camera blur. In order to get camera affine
invariance, some authors have proposed simulating the remaining set of parameters by suitably
sampling the affine orbits of both images. This is the case of Ferns [21, 41] or the variant of
SIFT called ASIFT [38]. This may be very important in practice since in many cases there
may be big scale and/or tilt changes between the two images that are compared.

Now, there is the invariance with respect to contrast changes which may be due to illumi-
nation variations, different gamma corrections, etc. Ignoring camera blur, exact invariance to
contrast changes is assured by using morphological operations to construct the features and
their descriptors, e.g., the level lines of the image [25, 10] or the gradient directions which
describe the normals to the level lines [8, 28]. Another possibility, also used in the literature,
is the binarization of the gray level comparison between pairs of pixels in a neighborhood of a
keypoint [21, 41]. In practice, morphological operations are often complemented by weighting
the results with a local contrast measure, such as the norm of the image gradient. When
camera blur comes into play, it mixes level lines and changes their geometry. Since the two
images may be taken from different viewpoints, this cannot be addressed by only simulating
the blur with the scale space, and one also needs to simulate the camera axis longitude and
latitude, as proposed in [39].

Noise, yet another distortion, is an inevitable artifact of image acquisition. It is due mainly
to physical effects which are not taken into account and to the sampling and quantization
of pixels. Noise invariance is probably impossible to achieve. The best we can aim for is
noise robustness. This is achieved by defining suitable descriptors and a suitable metric for
comparing these descriptors instead of comparing them by equality. This requires a threshold
on the distance of two descriptors, or some other criterion to accept or reject matched features.

Finally, let us mention occlusions. They correspond to a basic operation in image forma-
tion and are perhaps the most important distortion. However, it is very difficult to model
occlusions directly, so they are generally ignored as a source of invariance in the context of
detection or recognition. The possibility to detect partially occluded objects is based on the
use of local features that describe small parts of objects. Thus, we can say that occlusion
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invariance is achieved by using only local features (points, curves, patches, etc.).

Henceforth, we will use the term descriptor as a set of numbers computed from a local
feature. Thus, a descriptor is a vector in RN . Using this language, we can summarize a
general scheme for many methods of object recognition. The input of these methods is often
a pair of images u and v, and the output is a correspondence (or list of correspondences)
between parts of each image. The generic method consists of the following steps:

Keypoint or feature extraction: Extract the features on both images. Thus, we
form two sets of features Fu and Fv associated to each one of the input images.
Computation of descriptors: Compute the descriptors of each feature. A descriptor
is computed on an image patch centered at an extracted feature.
Matching: For each feature pi ∈ Fu find a matching feature qj ∈ Fv such that their
descriptors are as close as possible in the descriptor metric. Thus, we form a set M of
pairs of features (pi, qj).

By analyzing this set of correspondences we may extract a geometric transformation between
the two images. This transformation helps to group several correspondences in a geometrically
consistent way. This is usually done by the following step:

Clustering: Search in M for clusters of pairs of features that can be matched by the
same affinity (or some predefined kind of correspondence).

Finally, the last step is the following:

Verification: Verify that each cluster actually corresponds to an instance of u that
appears in v.

Clearly, this scheme is a simplification but gives a summarized description of the structure
of many methods. This paper is devoted to the generation of geometric affine invariant
quantities and their use in building up descriptors that behave more robustly than SIFT with
respect to affine transformations.

Many descriptors have been proposed to address the above set of invariances. Let us briefly
mention two of them: SIFT and Ferns. They will be reviewed in more detail in section 2. Other
variants will also be briefly discussed. The scale invariant feature transform (SIFT) [27, 28]
is a descriptor defined in terms of weighted histograms of gradient directions around a given
keypoint. The use of gradient directions provides robustness with respect to illumination
changes. Usually keypoints are maxima of some measure (e.g., corners, edge points, blobs)
often computed at different scales. The histograms of orientations (in the neighborhood of a
keypoint) used in the SIFT descriptor are computed on the Gaussian scale space of the image.
This normalizes the scale parameter. Since the method is also invariant to translations and
rotations of the image plane around the camera axis, four out of the six parameters of an
affine transform are normalized. The other two, the longitude and latitude of the camera
axis, cannot be normalized since their associated transformation does not commute with the
Gaussian kernel (assuming that the camera blur can be well approximated by a Gaussian).
The computation of orientation histograms provides partial invariance with respect to the
angle between the object’s plane and the optical axis (the latitude). In [28], Lowe studied the
robustness of SIFT with respect to latitude changes and provided some practical bounds on
their maximum variation, around 50◦, for SIFT to work.

It is important to note that the (geometric or camera) affine invariance is related not only
to the descriptor but also to the domain where it is computed. We will call this the domain
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problem. Notice that, due to the camera blur, the generation of domains that are related
by an affine transformation when the two images are taken by a camera from two different
viewpoints is not an obvious question. Thus we can also distinguish between geometric and
camera domain problems. Mikolajczyk and Schmid [31] addressed the computation of an
affine covariant domain, and by doing that they enforced the camera affine invariance of SIFT.
They proposed an affine normalization of the keypoint neighborhood based on an iterative
computation and normalization of the second moment matrix [14, 24, 23]. In this process,
the selection of the affine domain alternates with a simulation of the corresponding blur.
Thus, they attempt to compute a camera affine invariant domain; however, no proof of this
is provided. After this normalization, SIFT is computed, although other descriptors could be
used. Let us refer to this version of SIFT as SIFT+NN.

Using a different approach to impose the camera affine invariance and solve the domain
problem, Morel and Yu [38] proposed generating an orbit of affine deformations of one (or
both) images and apply SIFT to the simulated images, obtaining results that outperform
SIFT. Using the invariance properties of SIFT, the orbit was reduced to a simulation of the
longitude and latitude (tilt) parameters. Indeed, in [38] the authors propose a precise and
careful sampling of the orbit that takes into account the SIFT performance in scale and
angular (latitude) changes. In this way, they guarantee that the query image will have a
positive matching with one of the orbit images, specifically the nearest one. Moreover, they
proved mathematically that the resulting method is camera affine invariant, up to an arbitrary
precision. On the other hand, by providing the image orbits, a set of domains is generated,
and one of them will be similar to the domain in the query image. The feature descriptors
computed on these domains are relieved from the responsibility of being highly robust to big
affine transformations and, indeed, become camera affine invariant in this setting (modulo the
sampling of the orbit). This method is known as ASIFT [38].

Ferns [22, 41, 21] also addresses the problem of illumination and camera affine invariant
recognition. Although we leave the detailed description of it for section 2.4, let us point out
that, as in ASIFT, the camera affine invariance of the Ferns descriptor is obtained by the
construction of an orbit of affine deformations of the model image [22, 41, 21].

Finally, a different special affine invariant region detector based on the computation of
sufficiently contrasted level lines, the maximally stable extremal regions (MSER), was intro-
duced in [29]. Although the domain is normalized with respect to all six parameters of the
affine transform, this normalization is not perfect, since level lines change when the amount
of blur changes. Thus, MSER are geometric affine invariant but not camera affine invariant.
In practice they are camera affine robust for moderate affine camera motions, but only if the
scale change is not big. The MSER method provides a complementary point of view since it
directly addresses the domain problem and computes geometric affine invariant domains that
are based on contrasted level sets (on which arbitrary affine invariant descriptors can later
be computed). We retain from it the observation that, discarding boundary effects, the level
sets of the image are the natural geometric affine invariant domains on which descriptors can
be computed. As pointed out above, MSER select the most contrasted level lines in a precise
sense that will be reviewed in section 2.5.

In the previous paragraphs we have discussed one of the key elements for the construction
of camera affine invariant descriptors around keypoints: the need to have a camera affine
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covariant domain; that is, the computed neighborhoods around corresponding keypoints of
two images related by an affinity should match under the affine map. The domain problem
is perhaps the most difficult one, and we have reviewed several proposals for solving it. Both
the computation of an intrinsic affine normalized neighborhood [31] and the generation of an
orbit [38] aim to solve the domain problem and the compensation of the partially missing
invariance of SIFT with respect to out-of-plane rotations. Our paper does not address this
problem but rather the computation of geometric affine invariant quantities assuming that
the domain problem has been solved. When combined with an orbit, these quantities also
give camera affine invariant descriptors. Then the following question arises:

Do we need geometric affine invariant quantities if we have normalized the domain or
simulated its affine distortions?

From the above discussion, due to camera blur, we need camera affine invariant quantities.
Our descriptors are only geometric affine invariant, although they can be converted to camera
affine invariant if we use an image orbit, as in ASIFT, or approximately camera affine invariant
if we use an intrinsic affine normalized neighborhood, as in [31]. In relation to ASIFT [38],
there is still room for improvement because the images generated constitute a sampling of
the affine orbit of the given images, and the performance of ASIFT depends on the number
of simulated images. In relation to SIFT+NN [31], there is no theoretical guarantee that
SIFT+NN provides a normalized camera affine invariant neighborhood, but it seems to work
in practice, at least as a good approximation. In any case, the comparison of our descriptors
with SIFT in both of the contexts SIFT+NN and ASIFT shows that the proposed quantities
permit us to improve the results. Let us also mention that the performance of any quantity
depends on its discriminative power. The proposed quantities are different from those of SIFT
(although they use the same organization) and exhibit more discriminative power, improving
on the performance of SIFT.

Our contribution. Thus, the purpose of this paper is to propose a set of geometric affine
invariant quantities to be used in the construction of feature descriptors. They will effectively
improve upon the robustness of SIFT to affine transformations. The basic quantities were
introduced in [3, 4] in the context of affine invariant image segmentation. In the context
of the present section we will sometimes omit the word geometric when talking about affine
invariants. In [3, 4] the authors proposed an affine covariant quantity associated to a given
finite length curve Γ, namely the quantity

∫ 1

0

∫ 1

0
|c′(s) ∧ c′(t)| ds dt,

where c : [0, 1] → R2 is a parameterization of Γ and c′(s) ∧ c′(t) := det(c′(s), c′(t)). By
integrating on the level lines of the image, this quantity can be translated to images u defined
on the plane as

(1.1)

∫
R2

∫
R2

|∇u(x) ∧∇u(y)| dxdy,

where ∇u(x) ∧ ∇u(y) := det(∇u(x),∇u(y)) is just the area determined by the two vectors
∇u(x) and ∇u(y). Note that, if T x = Ax+x0, where A is a 2× 2 matrix, x0 is a given point
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in R2, and uT (x) = u(T x), we have ∇uT (x) ∧ ∇uT (y) = det (A)∇u(T x) ∧ ∇u(T y) and, as
can be easily checked, the quantity (1.1) is affine covariant (that is, affine invariant modulo a
scale factor that is a power of the determinant of the affinity). It can be used as a basis for
constructing geometric affine invariant descriptors on keypoints.

If we had at our disposal an affine covariant neighborhood Vx(u) of a keypoint x (that is,
such that T Vx(uT ) = VT x(u)), we could define the affine invariant quantity associated to x:∫

Vx(u)
|∇u(x) ∧ ∇u(y)| dy.

The quantity ∇u(x) ∧ ∇u(y) is one of the basic covariant quantities that we will introduce
in section 3. This and other examples are based on a classical result on algebraic invariants
of the unimodular group [53]. Thus, we discuss in section 3 a generic method to construct
other geometric affine covariant quantities and obtain affine invariants using combinations of
them. Using these geometric affine invariant quantities, we implement in section 4 a set of
descriptors with an algorithmic structure similar to SIFT (see section 4.2). Since we will be
referring to them later on, let us call them AD descriptors. At this point, note that we can
compute them in any given neighborhood.

Although we use geometric affine invariant quantities even if there is no camera blur, the
geometric affine invariance is guaranteed only if we have an affine covariant domain. As we
said above, we do not address the domain problem in this paper. Either we can use the affine
normalized neighborhood of Mikolajczyk and Schmid [31], or we may use an orbit of affine
deformations as in [22, 41, 38] or simply take advantage of the level sets of the image as it is
proposed by MSER [29], although MSER do not guarantee camera affine invariance. Thus, we
compared the proposed AD descriptors both to SIFT+NN and to ASIFT. When comparing
to SIFT+NN, we used the same normalized neighborhood. Our experiments show that the
results obtained using AD improve the results obtained by SIFT+NN. When comparing to
ASIFT, we used the same orbit and the same square neighborhood. We did experiments
with three orbit sizes, and in all three cases we are able to obtain results that improve those
obtained by ASIFT (especially when we use a reduced orbit). In both experiments, we see
that the camera affine invariance is reinforced. Indeed, note that, by the arguments in [38],
geometric affine invariants computed using the Gaussian scale space become camera affine
invariant in the sense of [38] after simulating an orbit as in ASIFT.

Inspired by MSER (see section 2.5), we also explored a further variant based on the
observation that level sets are geometric affine covariant domains. Let us first describe it in
the context of SIFT. Assume that x is a keypoint of an image u andNx is a given neighborhood
of x (as in common SIFT). As a first step we quantize the image u in Nx. To avoid the effect
of illumination changes we equalize the image u in Nx (that is, we compute Hx(u), where
Hx(·) is the distribution function of u in Nx) and then define the (bi)level sets N u,j

x := {y ∈
Nx : jΔ ≤ Hx(u)(y) < (j+1)Δ}, where Δ is a quantization step and j = 0, 1, . . . , 256Δ − 1. In
the case of SIFT, the new descriptor can be described as a modification of the SIFT descriptor
that takes into account the level sets N u,j

x (in practice we use Δ = 64 and j = 0, 1, 2, 3). It is
formed by the concatenation of vectors vj , j = 0, 1, . . . , 256Δ − 1. While in the case of common
SIFT each pixel y ∈ Nx contributes to a coordinate of a vector v ∈ R128, now each pixel
y ∈ N u,j

x contributes to the corresponding coordinate of vj ∈ R128. When Δ = 256 and j = 0,
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we recover the standard SIFT. By weighting the histogram of orientations in SIFT with the
geometric affine invariant quantities generated by the method described in section 3, we have
a set of descriptors that reinforce affine invariance.

Thus, for each quantity we can use the similar algorithmic structure of SIFT in Nx to get
the descriptors that we called AD, or we may organize them as we described in the previous
paragraph, taking into account the level sets N u,j

x , j = 0, 1, . . . , 256Δ − 1. Let us refer to them
as the quantized level set version of AD, or simply as AD+QLS.

Although we use geometric affine invariant quantities, if we use a square neighborhood
Nx to compute the sets N u,j

x , we break the geometric affine covariance of the domain. But we
have experimentally observed that we gain distinctness with this proposal when compared to
common SIFT. We have also considered the descriptors in AD+QLS computed on the normal-
ized affine invariant neighborhood of [31] and we obtain better results than with SIFT+NN
and also better results than by using AD. The comparison of AD+QLS with ASIFT (using a
square neighborhood and the same orbit for both) does not show an improvement over using
AD. The reason for this may be that the information brought by the orbit is sufficient to
cancel the benefits gained by the QLS strategy. Indeed, the results obtained with AD and
AD+QLS are similar except in the case of a reduced orbit, where the QLS version improves
over AD. The experiments will be shown in section 5. Summarizing our comparisons, we
observe that the proposed descriptors are more robust to affine deformations than SIFT.

Let us finally explain the plan of the paper. In section 2 we review the main descriptors of
interest in the context of this paper, namely SIFT, Ferns, MSER, and their variants. In section
3 we recall a basic result of the theory of algebraic invariants of the unimodular group, and
we use it to generate some geometric affine invariant quantities. In section 4 we introduce the
descriptors that we use and briefly describe their implementation in consonance with SIFT. In
section 5 we show some experiments comparing our descriptors with SIFT using Harris affine
keypoints and its normalized neighborhood (SIFT+NN) [31], and with ASIFT [38]. Section
6 summarizes our conclusions.

2. Review of several descriptors for object recognition. The purpose of this section is to
review SIFT and some other relevant descriptors which have been introduced in the literature
and are connected with our discussion here. Since we are searching for affine invariant de-
scriptors, it will be useful to recall the decomposition of an affine matrix in terms of geometric
parameters related to the observation of a plane in the scene by an affine camera [16].

2.1. Geometric description of an affine map. Image distortions arising from viewpoint
changes can be locally approximated by affine planar transforms, assuming that the objects
we are searching for can be locally approximated by planes. Thus we restrict ourselves to
studying the invariance of descriptors with respect to planar affine transformations.

Let us describe an affine transformation in terms of intrinsic parameters that have a
geometric significance. Assume that images u and v are defined in R2 and are related by an
affine map, so that

v(x) = u(T x),

where

x =

(
x
y

)
,
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and

T x := Ax+ x0 :=

[
a b
c d

](
x
y

)
+

(
e
f

)
.

Since we will compare two keypoints, we may assume that we have already corrected the
relative translation, and we may assume that x0 = 0. We also assume that the affine map is
orientation preserving, so that A has a positive determinant. Then A has a unique decompo-
sition

(2.1) A = HλR1(ψ)TtR2(φ) = λ

[
cosψ − sinψ
sinψ cosψ

] [
t 0
0 1

] [
cosφ − sinφ
sinφ cosφ

]
,

where λ > 0, R1(ψ), R2(φ) are rotations of angles ψ, φ ∈ [0, π], respectively, and Tt is a tilt,
namely a diagonal matrix whose eigenvalues are (t, 1), t ≥ 1. Figure 1 shows the interpretation
of this affine decomposition in terms of the relative position of the (affine) camera and the
object’s plane where φ and θ = arccos 1/t are the viewpoint angles, θ represents the angle
between the optical axis and the normal to the object’s plane, φ represents the relative rotation
between the optical axis and a fixed axis on the plane, and ψ parameterizes a rotation of the
camera plane. The angles θ and φ are called latitude and longitude, respectively. Finally, we
can change the focal length or the distance of the camera to the scene, and this is reflected in
the zoom parameter λ.

φ

θ

ψ

λ

u

Figure 1. Geometric interpretation of the decomposition formula (2.1). This figure illustrates the four
main parameters in the affine image deformation. The angle θ, the latitude, is the angle between the optical
axis and the normal to the image plane. The plane containing the normal and the optical axis makes an angle
φ with a fixed axis in the object’s plane. This angle is called the longitude. The camera can also rotate around
its optical axis (rotation parameter ψ). Finally, the camera can move forward or backward, or change its focal
length. This is the zoom parameter λ.

2.2. Affine camera model. Let u0 be an infinite resolution frontal view image of a flat
object. Following [38], we model digital images acquired by a camera by the relation

(2.2) u = S1GαT u0,

where T (x) = Ax + x0, A is a linear map with positive determinant, x0 ∈ R2, Gα is a
Gaussian convolution with standard deviation α > 0 modeling the optical blur and ensuring
that there is no aliasing by 1-sampling, and, finally, S1 is the sampling operator on a regular



660 SADEK, CONSTANTINOPOULOS, MEINHARDT, BALLESTER, CASELLES

grid with 1-spacing. Notice that, following the usual simplifying assumption, the camera blur
is modeled by a Gaussian kernel. Since we assume that images are well sampled, from now
on we do not consider the sampling operation.

For later use, we say that the image u is a frontal snapshot if we can write it as (2.2),
where T is a similarity, that is, the tilt parameter t = 1.

The presence of the camera blur obliges one to distinguish between geometric affine invari-
ant descriptors and camera affine invariant ones. If two images are related by an affine map,
as u(x) and uT (x) = u(T x), a geometric affine invariant descriptor would give the same de-
scriptors for u and uT . If we work with two digital images, say u = GαT1u0 and v = GβT2u0, a
camera affine invariant descriptor would give the same quantities for u and v (this will be made
precise below). Note that only rotations and translations commute with camera blur, while
the other three parameters do not commute. Thus, Euclidean invariant descriptors permit
one to normalize these parameters. Scale, longitude, and latitude cannot be normalized and
have to be simulated. SIFT, in addition to normalizing rotations and translations, simulates
the scale and, thus, is a similarity invariant descriptor. The proposal of ASIFT is to normalize
the remaining two parameters by simulating an orbit of transformations, proving that in this
way one gets a camera affine invariant descriptor. Let us review both methods.

2.3. Review of SIFT and some relatives.

Common SIFT and its invariance properties. Let us briefly summarize SIFT descriptors [28]
using the generic scheme mentioned in section 1. Its input is a pair of images. To fix ideas, let
us say that the first image u is a query image, while the second image v is a target image. If the
query image contains a certain object, the output of the method gives the corresponding object
in image v, in case it is present, and the corresponding affine map between the parts of the
images u and v containing the object. The limitations of SIFT concerning its affine invariance
are described in [28] and further analyzed in [38]. Since it is based on the comparison of
descriptors computed on keypoints, the translation invariance is guaranteed. The invariance
with respect to scale changes is obtained by simulating them. Since GδHλu0 = HλGλδu0 for
any δ, λ > 0, this can be achieved using the Gaussian scale space. Indeed, to compute the
“SIFT keypoints” of an image u, first one computes a Gaussian scale space pyramid of u (with
scales sampled exponentially) and then tries to capture the intrinsic scale of the keypoint by
finding the scale space local maxima of the Laplacian of the Gaussian. Selecting keypoints as
local maxima in the scale space makes it possible that a point x may appear several times, at
several different scales. Thus, the method is (modulo discretizations) invariant with respect
to scale. Finally, for each keypoint found, a more stable positioning with subpixel accuracy is
computed by fitting a three-dimensional quadratic function to the keypoint. This determines
the interpolated location of the maximum.

Now, given a keypoint x, its SIFT descriptor is based on the computation of histograms
of gradient orientations in a neighborhood of x. To compute the gradient directions, one first
computes the dominant orientation of the gradient in x (estimated from the gradients around
this point) and takes it as the new x-axis. The gradient orientations are then referred to
this axis. In this way, the method is invariant to rotations in the image plane. Then, the
SIFT descriptor is computed in a neighborhood of x, typically of size 16× 16 in the standard
SIFT implementation. This neighborhood is divided into 4× 4 blocks of size 4× 4. On each
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of them, a weighted histogram of directions quantized in 8 angular bins is computed. The
weights of this histogram depend both on the modulus of the gradient at the pixel and on the
distance to the central keypoint. At the end we have a descriptor which is a vector v with 128
coordinates. Each coordinate of v contains the weight contributions of all pixels of a given
block with a given angular orientation. Finally, in practice, to avoid quantization effects, each
orientation occurrence is distributed in several neighboring bins. We note that the use of scale
space provides some invariance to camera blur, and, since SIFT uses gradient directions, it
is robust to illumination changes. Furthermore, the descriptor is first normalized, then large
values are thresholded and finally normalized again, which makes SIFT robust to saturation
effects.

As proved in [39, Theorem 1], for two frontal snapshots of the same full resolution flat
image u0, SIFT descriptors are identical if both camera blurs coincide; otherwise, they become
similar as soon as the scale of the simulated Gaussian grows. In conclusion, as we have
mentioned, the translation, rotation, and scale parameters can be fixed, although one has to
pay attention to the sampling issues [38]. Now, taking (2.1) into account, there are still two
parameters to be fixed in order to get camera affine invariance, namely, the angle between
the normal to the object’s plane and the optical axis of the camera (the latitude), and the
relative rotation between the optical axis and a fixed axis on the object’s plane (the longitude);
see Figure 1. Let us mention the two main methods that have been proposed to address this
problem: either by computing an intrinsic neighborhood of the keypoint which aims to achieve
camera affine invariance [31], or by simulating the remaining affine deformations of the query
image, related to the longitude and latitude angles, as proposed in ASIFT [38] (see also [43]
for a first step toward this method). A full discussion of this problem and the relevance of
respecting Shannon sampling theorem when simulating the affine deformations can be found
in [38].

A related variation of SIFT proposed in [20], which somewhat improves its rotation in-
variance but does not tackle invariance under arbitrary affinities, consists of using circular
neighborhoods instead of square ones. In any case, this is a minor modification, since the
square neighborhoods of common SIFT are rotated toward a principal direction, and the
points inside the neighborhood are weighted using a circular distribution around the center
of the square.

ASIFT: Simulating the tilt and longitude parameters. Although the method in [31] produces
good results, better results are obtained by simulating all possible affine distortions of the
image and applying SIFT to each of them [38]. By our previous discussion (see [38]) it suffices
to simulate the affine deformations determined by the two parameters φ and t = | 1

cos θ |. Given
an image u, one first simulates the rotations with respect to the longitude parameter. An
important point for digital images, as discussed in [38], is that the tilt involves a subsampling
of factor t in the x-direction (after a rotation by φ), and therefore its simulation requires
the previous application of an anti-aliasing filter, namely the convolution by a Gaussian with
standard deviation c

√
t2 − 1 (for good anti-aliasing, c ∼ 0.6) [38]. Thus, a digital tilt in

the direction x (resp., y) is simulated by the map T x
t Gc

√
t2−1 (resp., T x

t Gc
√
t2−1). Since

T x
t Gc

√
t2−1Gc = GcT

x
t [38, Theorem 1], by simulating digital tilts we are able to commute

tilts with Gaussian blur, and this is the main ingredient in proving that ASIFT is camera
affine invariant [38, Theorem 2]. On the other hand, it is not geometric affine invariant. The
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conclusion from [38] is that, by simulating tilts, longitudes, and scales, one can convert a
descriptor that is invariant to similarity transforms into a camera affine invariant one.

SIFT on affine neighborhoods. We have mentioned the invariance of SIFT with respect to
the parameters λ and ψ in (2.1). The lack of invariance with respect to the image deformations
induced by the angles θ and φ has to be compensated for. In [31], the authors proposed
computing an affine invariant interest point detector, called Harris affine, which detects a
keypoint and provides it with an affine region given by a 2 × 2 matrix M representing this
region. The Harris interest point detector is first applied at several scales [15], followed by an
iterative selection of the scale and the location (as an extremum over scale of the Laplacian
of the Gaussian) [31]. This provides a set of points that are robust to scale changes. Then, an
affine normalization of the point neighborhood is computed as a fixed point by alternating the
selection of the affine domain with a simulation of the corresponding blur. One can interpret
this as an approximate way of obtaining a camera affine invariant domain. The method and
the algorithm for finding such keypoints and their associated normalized neighborhoods are
discussed in depth in [31]. The output is a set of keypoints where for each of them we have its
position, an affine covariant neighborhood, and its dominant orientation which is obtained as
in SIFT but using the normalized neighborhood. The neighborhood is expressed by the shape
adaptation matrix which is a symmetric positive-definite 2× 2 matrix M whose eigenvectors
express the axis directions of the corresponding elliptical shape {x ∈ R2 : 〈Mx,x〉 ≤ 1}.
HavingM, one can normalize the image on the affine neighborhood of the keypoint by mapping
it to an image on the unit circle. With this, one compensates for the affine transform caused
by the camera change of position. Applying SIFT to the normalized image, one obtains in
principle a camera affine invariant descriptor. Although the authors of [31] do not rigorously
demonstrate this camera affine invariance, it seems to work in practice.

Other descriptors related to SIFT. Inspired by SIFT, many other related descriptors have
been proposed with the purpose of improving or speeding up SIFT. In particular, let us
mention SURF detector and descriptor (speeded-up robust features) [5], PCA (principal com-
ponent analysis) SIFT [18], and FAST (features from accelerated segment test) [44]. Also,
other descriptors specially tailored for operating on a dense set of keypoints have been pro-
posed, such as HOG (histograms of oriented gradients) [13], GLOH (gradient location and
orientation histograms) [32], LESH (local energy based shape histograms) [48], and, in some
sense, spin images [17]. Let us note that it is also possible, and useful, to compute SIFT
descriptors on dense keypoints [26].

2.4. Review of Ferns method. A different method which also addresses the problems
of illumination and affine invariant recognition was proposed in [22, 21, 41]. Given a query
and a target image, the camera affine invariance of the method is given, as in ASIFT, by the
construction of an orbit of affine and blur deformations of the target image. Then a set of
keypoints (using a cornerness measure) are computed on this orbit. Only those keypoints that
are stable under the deformations are used as effective keypoints. Each of them determines a
class which is characterized by the comparisons (encoded in a binary vector) of the gray levels
of a selected random set of pairs of points in its neighborhood. These comparisons determine
the posterior probability that a given point belongs to a class and may be used for classification
using a naive Bayes approach. Thus, assuming that the priors of each class are uniform, we are
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led to the computation of the likelihood of each class for each set of answers to the questions.
Let us mention the Ferns method [41], of which the randomized tree method is a variant with
a different organization. Since one cannot assume that each question is independent of the
others, the proposal in [41] is to assume that the set of questions is organized in subsets,
called Ferns, which are independent. Thus, a Fern is determined by a random selection of a
subset of pairs of pixels where the values of the gray levels are compared. Several Ferns are
used to characterize a keypoint. Each comparison produces a binary answer. This guarantees
the morphological invariance of the method, which amounts to its invariance with respect to
illumination changes [49]. The probability of each Fern, given the class, is learned offline from
the keypoints computed in the orbit. In order to compute it, a tree structure is used. The
product of the likelihoods of Ferns gives the likelihood of the set of answers that characterizes
each class. This method does not require the storage of the orbit of affine deformations since,
for each Fern, the probability computations can be organized as a tree that can be learned
offline. A full comparison of the Ferns method with SIFT is beyond the scope of the present
paper.

2.5. Review of MSER method. A completely different approach to affine invariance is
that of maximally stable extremal regions (MSER) [29]. The main idea behind MSER, as
opposed to SIFT, is to build up affine covariant domains on which arbitrary affine invariant
descriptors (or arbitrary descriptors, if one first performs an affine normalization [29]) will be
computed, thus giving a solution to the domain problem. Two key observations in [29] lead to
the choice of MSER as robust elements for establishing image correspondences under severe
viewpoint changes for automatic reconstruction of three-dimensional scenes. In the wide-
baseline stereo problem, local image deformations cannot be realistically approximated by
Euclidean motions, and a full affine model is required (as an approximation to the projective
transformation between the images). On the other hand, the elements should be robust
against illumination changes modeled here as monotonic transformation of image intensities.
Thus, MSER are defined as the most contrasted connected components of upper and lower
level sets of the image [29]. Let us point out that MSER are only geometric, and not camera,
affine invariant. If we take the camera blur into account, MSER achieves invariance only
with respect to translation and rotation. The other three parameters (zoom and camera axis
longitude and latitude) cannot be perfectly normalized since they do not commute with the
image blur and have to be simulated [38].

Let us review the definition of MSER. We recall it here using the language of the trees
of connected components of upper and lower level sets [49, 45, 11, 12] (an analogous notion
for the tree of shapes [37] can also be defined; see [37, 12]). Let Ω be the image domain,
usually a closed rectangle in R2. Let u : Ω → R be a given image (modeled as an upper
semicontinuous function). Let us first introduce some basic notation that will also be of use
later in section 3. Given λ ∈ R, we denote {u ≥ λ} := {x ∈ Ω : u(x) ≥ λ}, which is the upper
level set of u determined by the height λ. We denote by CC({u ≥ λ}) the family of connected
components of {u ≥ λ}. In order to define the MSER we fix a threshold value δ > 0. If u
takes values in a discrete set of integers, we may take δ = 1. This is the more relevant case in
applications since we deal with digital (sampled and quantized) images. For each connected
component of an upper level set of u, Xλ ∈ CC({u ≥ λ}), we consider Xλ−δ ∈ CC({u ≥ λ−δ}),
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Xλ+δ ∈ CC({u ≥ λ+ δ}) such that Xλ+δ ⊆ Xλ ⊆ Xλ−δ. We define the function

(2.3) F u
δ (λ) :=

Area(Xλ−δ)−Area(Xλ+δ)

Area(Xλ)
.

We say that Xλ is a maximally stable extremal (upper) region if Xλ achieves a local minimum
of Fδ(λ). The function Fδ is well defined on the maximal branches of the tree of connected
components of upper level sets of u, where no bifurcation takes place [12]. When Xλ contains
a bifurcation, the connected component Xλ+δ ∈ CC([u ≥ λ+ δ]) is not uniquely defined. We
have dismissed those elements.

In a similar way we can define a maximally stable extremal (lower) region this time using
the connected components of the lower level sets of u. We shall refer to both of these regions
as MSER.

As in section 2.3, we dismiss the problems caused by boundary effects, and we assume that
the image u is defined in R2. If T is an affine transformation and we define uT (x) = u(T x),
then the trees of u and uT have the same structure. Since the function F u

δ (λ) = F uT
δ (λ), we

have that the MSER of u and uT are related by T in a covariant way. Thus, they are invariant
under affine transformations. Its invariance under contrast changes comes from the fact that
we are using connected components of level sets.

As we mentioned previously, the affine invariance of MSER is only geometric, and camera
invariance does not hold. This means that MSER may fail under large scale changes or
large tilts, or when well-contrasted shapes are not present [38]. In these cases, the image
shape boundaries tend to mix. Following [38], camera affine invariance can be obtained after
simulating the scale, longitude, and latitude parameters.

Finally, let us say that a related descriptor based on level lines was proposed in [25, 10].
As MSER, it is geometric affine invariant and photometric invariant.

Descriptors for MSER. Following the general scheme mentioned in section 1, MSER are
geometric affine covariant domains on which many different descriptors can be computed, for
example, SIFT. The descriptors originally proposed in [29] are based on constructing one or
several distinguished regions (DR) around each MSER (e.g., an ellipse, the MSER itself, or
several enlarged/reduced copies of the MSER or its convex hull). Then, rotationally invariant
complex moments of the image inside the DR are computed after applying an affine transfor-
mation that normalizes the DR (e.g., so that the covariance matrix of the transformed DR
becomes diagonal) [29]. Alternatively, one can build the descriptor using standard geometric
affine invariant moments of the color values inside the DR [34, 29]. An analogous approach
using the shapes of the image [37, 12] can be found in [36].

3. Generation of geometric affine invariant descriptors. Our purpose in this section is
the generation of geometric affine invariant quantities. The quantities we propose here will
be used in section 4 to generate new descriptors which are geometric affine invariant. When
used with an affine normalized neighborhood as in [31], the descriptors become approximately
camera affine invariant, although no formal proof of this exists. Camera affine invariance, up
to an arbitrary level of precision, can be obtained by simulating scales, longitude, and latitude
parameters (which are the three parameters that do not commute with radial camera blurs)
as in ASIFT [38]. Although this camera affine invariance can be obtained if we start from any
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Euclidean invariant descriptor, such as SIFT, the experiments displayed in section 5 comparing
our descriptors with SIFT+NN and with ASIFT using their normalization strategies show that
the proposed descriptors are more robust to affine perturbations.

We have distinguished above between geometric and camera affine invariance. To simplify
our expressions, in the rest of the paper, when we say affine invariant or covariant we mean
geometric affine invariant or covariant, respectively. When we refer to camera affine invariance
(resp., covariance) we will say it explicitly.

Let us denote byGL(2,R)+ the set of all 2×2 matrices with positive determinant. To avoid
boundary effects we assume in this section that images are defined on R2. If A ∈ GL(2,R)+

and u : R2 → R is a given image, we denote uA(x) = u(Ax), x ∈ R2.

Let L be a class of images (e.g., continuous, smooth, etc.). We say that L is GL(2,R)+

invariant if uA ∈ L for any u ∈ L and any A ∈ GL(2,R)+. Notice that we are identifying the
word image with a function from R2 or a domain of R2 to R (gray level image), ignoring for
the moment the presence of the blur kernel.

Definition 3.1 (affine invariant and covariant descriptors). Let L be a GL(2,R)+ invariant
class of images and let F be a class of allowed subsets of R2. Let H(u,R) be a quantity which
can be computed for any image u ∈ L and any subset R ∈ F . Let k ∈ R. We say that the
quantity H is affine k-covariant if H(uA, A

−1(R)) = (det(A))kH(u,R) for any image u, any
subset R ∈ F , and any A ∈ GL(2,R)+. When k = 0, we say that H is affine invariant.

In other words, affine k-covariant quantities are quantities that are invariant to affine
transformations of the image, up to a scale factor that is a power of the affine matrix deter-
minant.

There are many ways to build new covariant quantities from old ones. Functions of
covariants (of possibly different degree) can be made covariant, provided that the functions
have a suitable degree of homogeneity. Arbitrary homogeneous functions of covariants are
very general. They include, for instance, taking limits, integrals, maxima, and minima of sets
of covariants.

All of these constructions produce new invariant quantities defined over the same class F .
A more interesting way to produce new invariants is by extending the class F on which an
invariant is defined. The following lemma extends any invariant defined on upper level sets
to an invariant defined on level curves.

Let Fu denote the family of connected components of all upper level sets of the image u.

Lemma 3.2. Let L be a GL(2,R)+ invariant class of continuous images. Let k ∈ R and
let H be an affine k-covariant quantity defined on pairs (u,X), where u ∈ L and X ∈ Fu.

For each λ ∈ R we define F (u, ∂Xλ) := limδ→0+
H(u,Xλ−δ)−H(u,Xλ)

δ , assuming that the limit
exists, where Xλ ∈ CC({u ≥ λ}), Xλ−δ ∈ CC({u ≥ λ− δ}), and Xλ ⊆ Xλ−δ. Then F (u, ∂Xλ)
is an affine k-covariant quantity defined on the boundaries of upper level sets.

We have written the previous lemma in an informal way. We observe that if Xλ ∈ CC({u ≥
λ}) and δ is small enough, then there is only one connected component Xλ−δ ∈ CC({u ≥
λ− δ}) containing Xλ. Then the lemma follows essentially by observing that Fδ(u, ∂Xλ) :=
H(u,Xλ−δ)−H(u,Xλ)

δ , δ > 0, is affine k-covariant and passing to the limit as δ → 0+.

The introduction of Lemma 3.2 was motivated by the next example.

Example 1. Let us compute the affine invariant quantity on level lines associated to the
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area function defined on the upper level sets of an image u. Assume first that u is smooth and
the integrals converge. As usual, ∇u(x) denotes the gradient of u at the point x and |∇u(x)|
its modulus. Then for each μ ∈ R, if Xμ is a connected component of {u ≥ μ} and we denote
by u|Xμ the restriction of u to Xμ, by the coarea formula (see [2]), we have

H(Xμ) := Area(Xμ) =

∫ ∞

μ

∫
∂{u|Xμ≥η}

1

|∇u(x)| dH
1(x) dη,

where dH1 denotes the one-dimensional Hausdorff measure, i.e., the arc length on ∂{u|Xμ ≥ η}
in the above integral. Hence

F (u, λ, δ) :=
1

δ

∫ λ+δ

λ−δ

∫
∂{u|Xμ≥η}

1

|∇u(x)| dH
1(x) dη ≈ 2

∫
∂Xλ

1

|∇u(x)| dH
1(x).

If gu(x) = 1
|∇u(x)| , and, for any set of finite perimeter E, we define the weighted perimeter

Pgu(E) :=
∫
∂∗E gu(x)dH1(x), where ∂∗E denotes the essential boundary of E [2], then we

have

F (u, λ, δ) → 2Pgu(Xλ) as δ → 0+.

This is the affine invariant quantity on level lines associated to the area of the level sets of u.

Remark 1. Using the previous example, we may redefine maximally stable upper regions
of the image u as the local minimizers in the tree of upper connected components of

G(λ) :=
Pgu(Xλ)

|Xλ|
= lim

δ→0+
F u
δ (λ),

where F u
δ (λ) is defined in (2.3), λ ∈ R. Note that the above quotient is a perimeter/area ratio;

hence we may interpret MSER as local Cheeger sets (with respect to the weighted perimeter
Pgu) of the image domain, when we restrict the family of sets to the connected components
of upper (or lower) level sets of the image. Similarly, we may redefine maximally stable lower
regions of the image u (or the maximally stable shapes; see [30, 12]). The same analysis has
been given in [19], where other interesting affine invariant measures for shape selection are
also derived.

Our purpose in this section is to describe some other basic rules to generate affine invariants
and covariants. In the language of Definition 3.1, these new invariants are defined over the
same class of subsets by combining vector-valued invariants using simple algebraic rules.

Our discussion will be restricted to R2. Vectors of R2 will be designed by boldface roman
letters x and y, sometimes with subindices. Covectors of R2, that is, elements of the dual
space, will be denoted by greek letters ξ, ξ̂, etc. By 〈ξ,x〉 we denote the standard dual pairing
between the vector x and the covector ξ. In what follows, we fix the standard canonical basis
e1 = (1, 0), e2 = (0, 1) of R2 and its dual basis ξ1, ξ2 (so that ξi(ej) = δij , i, j = 1, 2, where
δij = 1 if i = j, and 0 if i �= j), and the action of a covector ξ of coordinates (ξx, ξy) on a
vector x = (x, y) will be denoted by 〈ξ,x〉 = ξxx+ ξyy, which is the standard scalar product.
Clearly, given two vectors x,y ∈ R2, the determinant of the matrix whose columns are x
and y is affine 1-covariant. This is the basic covariant made of vectors, and the others can
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be deduced from it. Let us denote by x ∧ y this determinant. Notice that vectors transform
cogradiently, i.e., as x → Ax, while covectors transform contragradiently, i.e., as ξ → A−tξ,
by the group GL(2,R)+ [53]. Note that when using coordinates, we can identify covectors as
elements of R2, although we have to keep in mind their transformation rules.

Let SL(2,R) be the unimodular group in R2, that is, the set of 2 × 2 matrices of deter-
minant 1. Then we specify to the case N = 2 the following result proved in [53, Theorem
2.6.A].

Theorem 3.3 (see [53, Theorem 2.6.A]). Let x,y ∈ R2 be vectors and ξ, ξ̂ be two covectors.
Then x ∧ y, 〈ξ,x〉, and ξ ∧ ξ̂ are the basic invariants for the unimodular group. Thus any
other algebraic invariant is a polynomial in those basic elements.

Observe that x ∧ y generates an affine 1-covariant for the group GL(2,R+), 〈ξ,x〉 is an
affine invariant, and ξ ∧ ξ̂ generates an affine −1-covariant.

Definition 3.4. Let L be a GL(2,R)+ invariant class of images. Let k ∈ R. Let H(u,x1, . . . ,
xp) be a quantity which can be computed for any image u ∈ L and any points x1, . . . ,xp ∈
R2. We say that the quantity H is an affine k-covariant density if H(uA,x1, . . . ,xp) =
(det(A))kH(u,Ax1, . . . , Axp) for any image u ∈ L, any points x1, . . . ,xp, and any A ∈
GL(2,R)+. If k = 0, we say that H is an affine invariant density.

Inspired by Theorem 3.3, we give some examples of affine k-covariant densities. We always
assume that the image u : R2 → R is smooth enough so that we can compute its gradient.
This is so, for instance, if u = Gt ∗ u0, where u0 : R2 → R is a given image in L∞(R2) (the
space of measurable and essentially bounded functions) and Gt is the Gaussian of variance
t > 0.

Examples.
1. The most basic invariant density is H00(u,x) = u(x), x ∈ R2.
2. Since ∇uA(x) = At∇u(Ax), we have

〈y,∇uA(x)〉 = 〈ỹ,∇u(x̃)〉,

where x̃ = Ax and ỹ = Ay, and 〈·, ·〉 denotes the standard scalar product. ThusH01(u,x,y) =
〈y,∇u(x)〉, x,y ∈ R2, is an affine invariant density.

3. Observe that

∇uA(x) ∧ ∇uA(y) = detA∇u(Ax) ∧ ∇u(Ay).

Thus, we see that H10(u,x,y) = ∇u(x) ∧∇u(y) is an affine 1-covariant density.
4. Let

J :=

[
0 −1
1 0

]
.

The matrix J corresponds to a rotation by an angle of π
2 . Observe that J2 = −I, JJ t = I,

and

(3.1) JAtJ−1 = Cof At = detA ·A−1 and AJAt = detAJ.

Notice that we have
D2uA(x) = AtD2u(Ax)A.
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Then the quantity H20(u,x,y, z) := 〈D2u(x)(J∇u(y)), J∇u(z)〉 is an affine 2-covariant den-
sity, x,y, z ∈ R2. Indeed

〈D2uA(x)(J∇uA(y)), J∇uA(z)〉 = 〈AtD2u(Ax)A(JAt∇u(Ay)), J∇u(Az)〉
= 〈D2u(Ax)(AJAt∇u(Ay)), AJAt∇u(Az)〉
= (detA)2〈D2u(Ax)(J∇u(Ay)), J∇u(Az)〉.

Notice that 〈D2u(x)(J∇u(x)), J∇u(x)〉 = |∇u(x)|3curv(u)(x), where curv(u)(x) denotes the
curvature of the level line of u passing by the point x.

5. Combining the above quantities, one can get other affine invariant quantities. For
instance, the quantity

Q(u)(x,y) :=
∇u(x) ∧ ∇u(y)

|〈D2u(x)(J∇u(x)), J∇u(x)〉|1/2

is affine invariant.
Lemma 3.5. Let k ∈ R. Assume that H(u,x1, . . . ,xp) is an affine k-covariant density

defined for u in a GL(2,R)+ invariant class of images L. If we integrate H with respect to j
of its coordinates, we obtain an affine (k − j)-covariant density.

Proof. (i) Suppose that we integrate its first j coordinates. Then∫
R2

. . .

∫
R2

H(uA,x1, . . . ,xp) dx1 . . .xj = (detA)k
∫
R2

. . .

∫
R2

H(u,Ax1, . . . , Axp) dx1 . . .xj

= (detA)k−j

∫
R2

. . .

∫
R2

H(u,y1, . . . ,yp) dy1 . . .yj .

Using the above examples combined with Lemmas 3.2 and 3.5, we get examples of affine
covariant and invariant quantities.

Proposition 3.6. Let u : R2 → R be an image which we assume smooth enough and let n(x)
denote the unit normal to the level line of u passing by the point x. Let Xλ ∈ CC({u ≥ λ}),
λ ∈ R. Assume, if necessary, that λ is not a critical value, that is, ∇u(y) �= 0 for any
y ∈ ∂Xλ. Let k ∈ R.

(i) For any x ∈ R2, the integrals
∫
Xλ

|∇u(x) ∧∇u(y)|k dy and

∫
∂Xλ

|∇u(x) ∧ ∇u(y)|k/|∇u(y)| dH1(y)

are affine (k − 1)-covariant quantities.
(ii) The integrals

∫
Xλ

|〈y,∇u(y)〉|k dy and
∫
∂Xλ

|〈y,∇u(y)〉|k/|∇u(y)| dH1(y) are affine
−1-covariant.

(iii) The quantities ∫
Xλ

|〈D2u(y)(J∇u(y)), J∇u(y)〉|k dy,
∫
∂Xλ

|〈D2u(y)(J∇u(y)), J∇u(y)〉|k/|∇u(y)| dH1(y)

are affine (2k − 1)-covariant quantities.
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Remark 2. Many other covariant quantities can be defined. For instance, for any x, e ∈
R2, the integral

H(u,x, e) :=

∫ ∞

0
|∇u(x) ∧ ∇u(x+ se)|k ds

is an affine k-covariant quantity. For any x,y ∈ R2, the integral∫ ∞

0
|∇u(x) ∧ ∇u(y + sJ∇u(y))|k ds

is an affine (k − 1)-covariant quantity. Also the quantities∫
Xλ

|detD2u(y)|k dy and

∫
∂Xλ

|detD2u(y)|k/|∇u(y)| dH1(y)

are affine (2k − 1)-covariant quantities.
The covariant quantities defined in (i) are related to the affine covariant quantities defined

in [3, 4]. The covariant (ii) coincides with the invariant for curved edges defined in [51, 52] (see
also [33]). The covariant quantities defined in (iii) on the level lines of u contain the particular
case

∫
∂Xλ

|κ(x)|1/3 dH1(x) which is the affine arc length parameter that played a fundamental
role in the development of affine invariant scale space [1, 46, 47, 40]. This quantity has also
been used in [9].

By combining the quantities given above we can get other ones. For instance, the quantities

|∇u(x) ∧∇u(y)|m∫
Xλ

|〈D2u(y)(J∇u(y)), J∇u(y)〉|k dy

and

|∇u(x) ∧∇u(y)|m∫
∂Xλ

|〈D2u(y)(J∇u(y)), J∇u(y)〉|k/|∇u(y)| dH1(y)

are m− 2k + 1 affine covariant, m,k ∈ R. Other examples could be generated.
We describe the behavior of a function H(u) with respect to affine illumination changes.

We say that H(u) scales as sα if H(su + a) = sαH(u) for any s > 0, a ∈ R. We say that
H(u) is illumination invariant with respect to affine changes if H(u) scales as s0.

The quantity Q(u) is affine invariant and scales as s1/2. We may combine the quanti-
ties described in the examples above and in Proposition 3.6 in order to get affine invariant
quantities which scale as s0. To do this, let us consider an expression of the form
(3.2)

|∇u(x) ∧ ∇u(y)|m(∫
∂Xλ

|〈D2u(y)(J∇u(y)), J∇u(y)〉|k/|∇u(y)| dH1(y)
)q

(∫
∂Xλ

|〈y,∇u(y)〉|γ
|∇u(y)| dH1(y)

)p

,

where m,k, γ, p, q ∈ R. If
m− (2k − 1)q − p = 0,

then the above quantity is affine invariant. If

2m− (3k − 1)q + (γ − 1)p = 0,
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then the quantity scales as s0. There are infinitely many solutions of these equations. As
examples we can take m = 1

2 , k = 1
3 , q = 5

2 , γ = 1
4 , p = 4

3 . Another example is given by
m = 1

2 , k = 1
2 , q = 2, γ = 1, p = 1

2 . We notice that there are no nonnull solutions with p = 0.

4. Selection of descriptors and their implementation. Using the principles described in
section 3, we select in this section a set of affine invariant quantities, we use them to construct
descriptors, and we describe the main details of their implementation. We also describe its
corresponding quantized level set (QLS) version. Let us first recall the keypoints for which
we will compute our descriptors.

4.1. Keypoints detection. Since our purpose is to compare our descriptors with SIFT on
normalized neighborhoods [31] and with ASIFT, which uses an orbit of images [38], we have
to work with two types of keypoints. In the first case we use the Harris affine keypoints [31]
as used in [32, 33]. In the second, we use SIFT keypoints [28] as in ASIFT. For a short review
of these keypoints, we refer the reader to section 2.3.

In order to compute the Harris affine keypoints and their SIFT descriptor, we use the on-
line binary software provided by Mikolajczyk (available at http://www.robots.ox.ac.uk/∼vgg/
research/affine/detectors.html#binaries). We used the updated version of the code from 12-
6-2007, under the name Detectors & Descriptors.

In order to compute ASIFT’s orbit of images and their SIFT descriptor we use the pub-
lished ASIFT C++ code [54] (available at http://dx.doi.org/10.5201/ipol.2011.my-asift).

4.2. Descriptors. Let u be an image defined in the domain Ω, a closed rectangle in R2.
Let x ∈ Ω and let N0 be a neighborhood of zero. Assume that Nx = x+N0 ⊂ Ω. As above,
Xλ denotes a connected component of {u ≥ λ}. In what follows x represents a keypoint and
y represents a point in Nx ∩ ∂Xλ, i.e., it lies on the level lines intersecting the neighborhood
of x. As usual, H1 denotes the one-dimensional Hausdorff measure. We assume that ∂Xλ is
rectifiable [2].

Using the results of section 3, we consider the following four quantities in our experiments:

• r1 = |∇u(x)∧∇u(y)|
|〈D2u(x)(J∇u(x)),J∇u(x)〉|

1
2
,

• r2 = |∇u(x)∧∇u(y)|
|〈D2u(y)(J∇u(y)),J∇u(y)〉|

1
2
,

• r3 = |∇u(x)∧∇u(y)|
1
2

(
∫
∂Xλ

|〈D2u(ȳ)(J∇u(ȳ)),J∇u(ȳ)〉|
1
2 /|∇u(ȳ)| dH1(ȳ))2

(
∫
∂Xλ

|ȳ · ∇u(ȳ)
|∇u(ȳ)| | dH

1(ȳ))
1
2 ,

• r4 = |∇u(x)∧∇u(y)|
1
2

(
∫
∂Xλ

|〈D2u(ȳ)(J∇u(ȳ)),J∇u(ȳ)〉|
1
3 /|∇u(ȳ)| dH1(ȳ))

5
2
(
∫
∂Xλ

|ȳ · ∇u(ȳ)
|∇u(ȳ)| |

1
4 dH1(ȳ))

4
3 .

Remark 3. Let us mention that in all the above quantities, the numerator contains the
expression H10(u,x,y) = ∇u(x) ∧ ∇u(y). Thus, the sinus of the angle formed by the two
vectors ∇u(x) and ∇u(y) appears in all of them. Since this angle is an essential ingredient of
SIFT, in some sense we are adding a further justification to it.

The first and second derivatives used by these quantities are computed using centered
differences. The level lines of the image are computed using the tree of shapes [37, 12]. In all
the quantities we compute, we set a minimum value ρ = 10−3 for any denominator quantity
q. That is, if q < ρ, then we set the quantity ri = 0.

http://www.robots.ox.ac.uk/~vgg/research/affine/detectors.html#binaries
http://www.robots.ox.ac.uk/~vgg/research/affine/detectors.html#binaries
http://dx.doi.org/10.5201/ipol.2011.my-asift
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Now, to build up a descriptor with the above quantities we use the same structure as SIFT.
Given a keypoint x, we consider a neighborhood Nx of x (of size 16×16 in common SIFT and
of size 41× 41 in SIFT+NN), and we divide it into 4× 4 blocks. For each block we compute a
weighted histogram of directions quantized in 8 angular bins (measuring angles with respect
to the dominant orientation at x). In SIFT, the weights are given by the magnitude of the
gradient. This time the weights are given by the descriptors ri, i = 1, 2, 3, 4. Each coordinate
of v ∈ R128 contains the weight contributions of all pixels of a given block with a given angular
orientation. Finally, in practice, to avoid quantization effects, each orientation occurrence is
distributed in several neighboring bins. As we shall verify, using the same arrangement of the
descriptor as in SIFT, these quantities permit us to improve the results obtained with SIFT.

As in the introduction, we refer to these descriptors as AD.

Let us mention that the computation times for our descriptors are essentially the same
as for SIFT. Indeed, the only difference is that now for each keypoint x we need to compute
quantities like ∇u(x)∧∇u(y), where y ∈ Nx. This amounts to a constant additional number
of operations per keypoint, which does not increase the complexity with respect to SIFT. To
give an example, let us mention the running times corresponding to the computation of our
descriptors on the Harris affine keypoints of Figure 3(e). All experiments have been run on
a computer with a CPU speed of 2.66 GHz. In our implementation, which is not optimized,
SIFT takes 49 seconds, r1 and r2 take 50 seconds, and r3 and r4 take 83 seconds. Please note
that the time difference between r1, r2, and SIFT is negligible. The extra time consumed by
r3 and r4 is due to the computation of the level lines of the image (this could be optimized
by precomputing and storing them).

4.3. The QLS version of the descriptors. Let us introduce a further variant based on
the observation that level sets are affine covariant domains in the sense that, if u is a given
image and A ∈ GL(2,R)+, then {uA ≥ λ} = A−1{u ≥ λ}. Assume that x is a keypoint of an
image u and Nx is a given neighborhood (be it square or the affine normalized one). We want
to organize the descriptor taking into account the level set structure of u in Nx. For that
we quantize the image u in Nx. To avoid the effect of illumination changes we first equalize
the image u in Nx, call it Hx(u), and then define the (bi)level sets N u,j

x := {y ∈ Nx : jΔ ≤
Hx(u)(y) < (j + 1)Δ}, where Δ is a quantization step and j = 0, 1, . . . , 256Δ − 1. In practice
we take Δ = 64, and we have four level sets corresponding to j = 0, 1, 2, 3. The descriptor
associated to each ri (i = 1, 2, 3, 4) is formed by the concatenation of four vectors vj ∈ R128.

Each coordinate of vj receives the weights of the pixels y ∈ N u,j
x . If Δ = 256, then we have

only a vector v ∈ R128 with the standard organization of SIFT.

As in the introduction, we refer to these descriptors as AD+QLS.

5. Experimental results. Our purpose in this section is to compare our descriptors ri
with SIFT on affine normalized neighborhoods [31] and with ASIFT [38]. This is the object
of sections 5.5 and 5.6, respectively. We also include in section 5.4 an example of comparison
with SIFT on standard neighborhoods. The comparisons will be done using the standard and
the QLS versions both for SIFT and for ri.

Let us consider two images Il and Ir defined in the domain Ω. Assume that both contain
the image of a planar scene so that there is a homography H such that Ir(x) = Il(Hx) for
x ∈ Ω̂ ⊆ Ω. Since H can be locally approximated by an affine map, we may assume that H
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is an affine transformation. Let us denote by Pl and Pr the set of keypoints (see section 4.1)
of Il and Ir, respectively. Notice that Pl and Pr may have different numbers of keypoints, so
that there will be keypoints in Il without a corresponding one in Ir and conversely.

Finally, to each keypoint we associate a descriptor which is a vector of 128 coordinates,
or of 512 in the case of the QLS versions. The descriptors we consider are SIFT and the
descriptors ri, i = 1, 2, 3, 4, in their AD or AD+QLS versions as defined above. Then for each
keypoint pl ∈ Pl we look for a matching point pr ∈ Pr using a certain matching strategy.
Several of them have been used for performance evaluation [32, 33].

To compare our descriptors with SIFT+NN we follow the experimental protocol proposed
in [32, 33]. For that, we first describe the matching strategies (section 5.1), the notion of
corresponding regions (section 5.2), and the precision/recall curves (section 5.3). The com-
parison with ASIFT will be done in terms of the significance measure proposed in [38] (see
section 5.6).

5.1. Matching strategies. The definition of a match depends on the matching strategy.
Assume that to any region A of any of the images Il and Ir we may associate a descriptor
DA, that is, a vector in RN for some fixed N ∈ N. We look into three different matching
strategies as proposed in [32]:

1. Threshold based matching (TH): Two regions A of Il and B of Ir are matched if the
distance between their descriptors is below a certain threshold. In this strategy, a
descriptor can have several matches and several of them can be considered as correct
(in the sense that the descriptors are really similar).

2. Nearest neighbor based matching (NN): Two regions A of Il and B of Ir are matched
if the descriptor DB is the nearest neighbor to the descriptor DA and if the distance
d(DA,DB) < threshold. Please note here that a descriptor can have only one match.

3. Nearest neighbor distance ratio matching (RNN): This strategy, introduced in [28], is
similar to NN except that the thresholding is applied to the distance ratio between
the first and the second nearest neighbor. With the same example and notation used
in NN, let DC be the second nearest neighbor to DA; then region A is matched to B
if ||DA−DB||

||DA−DC || < threshold, where || · || is the Euclidean norm. Note that in this case a
descriptor can have only one match.

Note that the NN and RNN matchings are not symmetric concepts with respect to Il and
Ir. They are computed taking Il as a reference image.

5.2. Definition of corresponding regions. In this subsection and subsection 5.3, we are
in the context of the comparison of our descriptors with SIFT+NN. Thus we work with
Harris affine keypoints with their associated elliptic neighborhood [31]. We also use the terms
elliptical region or, simply, region. Assume that we have two keypoints pl ∈ Pl and pr ∈ Pr

whose elliptical neighborhoods Sμl
and Sμr are defined by the shape adaptation matrices μl

and μr, respectively. Let SHTμlH be the image by H of the elliptical region Sμl
. The two

regions Sμl
and Sμr are said to correspond [32, 33] if the overlap error is sufficiently small,

that is, if

(5.1) 1−
|Sμr ∩ SHTμlH|
|Sμr ∪ SHTμlH|

< ε.
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Given the homography and the matrices defining the regions, the error is computed numeri-
cally by counting the number of pixels in the union and in the intersection of the regions (see
[32, 33] for details). In our experiment we choose ε = 0.5 as suggested in [32, 33].

5.3. Definition of precision and recall. Assume that we take Il as reference image and
the matches are computed accordingly. The evaluation criterion used is based on the number
of correct matches (true positives (TP)) and the number of false matches (false positives
(FP)) obtained for an image pair. Given a matching strategy, we have a correct match
of two keypoints when their descriptors satisfy the matching criterion and their elliptical
regions correspond according to the overlap criterion (5.1). The other matchings are the false
matchings. Both correct and false matchings can be computed since we know the ground
truth given by the matrix H. Following [32, 33] we take the overlap error threshold ε = 0.5.
As argued in those references, there are very few regions that should be matched, have an
overlap error greater than 0.5, and pass the matching criterion.

The number of correspondences is counted as the number of possible correct matchings and
depends on the matching strategy. Let us explain this. For any region A of Il, let N(A) be the
number of regions of Ir that correspond to A according to the overlap criterion (5.1). Then, if
we use the TH matching strategy, we compute the number of correspondences as

∑
AN(A),

while if we use the NN or the RNN matching strategy, we compute it as
∑

Amin(N(A), 1).
In all cases the sum is extended to all regions of Il.

According to the three matching strategies discussed in section 5.1, to match a region A
of Il to a region B of Ir, a certain distance relation between their descriptors DA and DB

has to be below a given threshold t. So, given the two images Il and Ir and the threshold
t, we compare every descriptor Dl of keypoints in Il to every descriptor Dr of keypoints in
Ir, and we count the number of TP as well as the number of FP. We repeat this process for
different values of t and, in this way, we can study the behavior of the descriptor for different
thresholds. Performance of different descriptors is measured using recall versus 1-precision
graphs where recall and 1-precision are defined as follows:

• recall = #correct-matches
#correspondences, where # is read as “the number of.”

• 1-precision = #false-matches
#correct-matches+#false-matches = FP

TP+FP . Note that the denominator
does not take into consideration the overlap error. In other words, if the matching
algorithm returned k matchings, then TP +FP = k (i.e., TP +FP is independent of
the number of correspondences).

Both values depend on t. Please note that recall and 1-precision are independent terms: recall
is computed with respect to the number of correspondences, and 1-precision is computed with
respect to the total number of matches returned by the matching algorithm. Now, given recall
and 1-precision measures along with the number of correspondences, we have

TP = #correspondences× recall,

FP =
#correspondences× recall × (1-precision)

precision
.

Remark 4. Note that the recall is increasing with t, as is the number of matchings.
But this is not the case for 1-precision. Thus the 1-precision/recall curve is not necessarily
increasing, although it is often so.
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(a) (b) (c)

Figure 2. The result of a matching between Figures 3(d) and 3(e) using SIFT keypoints. The descriptors
are therefore computed on a square neighborhood. The matching has been done using the RNN matching strategy
with a threshold equal to 0.8. (a) shows the result of the SIFT descriptor with 45 correct matchings and 33 false
ones. (b) shows the result of the r1 quantity used in a descriptor structure analogous to SIFT with 56 correct
matchings and 22 false ones. (c) shows the results of the r1 quantity used in the descriptor structure based on the
level sets as described in section 4.3, with 68 correct matchings and 9 false ones. Images courtesy of K. Miko-
lajczyk. These images are freely available from http://www.robots.ox.ac.uk/∼vgg/research/affine/index.html.

A perfect descriptor would give a recall equal to 1 for any precision. A horizontal curve in
the graph indicates that the recall value is attained with high precision. It also indicates that
the detected structures are very similar to each other and the descriptor cannot distinguish
between them even when decreasing the precision.

5.4. An example of comparison with SIFT on standard neighborhoods. Although our
main comparisons will be done with SIFT+NN [31, 33] and with ASIFT [38], which are SIFT’s
best performing versions, for the sake of illustration let us show an image to compare SIFT
with the descriptors in AD and AD+QLS. In both cases, we use a square neighborhood. We
have chosen the descriptor based on r1, although we could have chosen any of the ri. In
Figure 2 we show the result of a matching between Figures 3(d) and 3(e) (taken from [32]; see
section 5.5). It can be seen that although the quantity r1 already contributes to improving
the matching result, when combined with the quantization on the level sets we get an even
more robust descriptor (having fewer false matchings). In this specific example the number
of correct matchings increased from 45 for SIFT to 68 for AD+QLS, whereas the number of
false matchings dropped from 33 (SIFT) to 9 (AD+QLS). This behavior is common to all
images of the dataset below. Quantitative comparisons will be done in subsequent sections.

5.5. Comparing to SIFT with normalized neighborhoods. In this section we compare our
descriptors with SIFT on affine normalized neighborhoods around the Harris affine keypoints
[31, 33].

Image dataset. The images we use in Figures 2 and 3 are taken from [33]. They can be
downloaded from http://www.robots.ox.ac.uk/∼vgg/research/affine/index.html. The images
in Figure 9 are also in the public domain and can be downloaded from the IPOL website,

http://www.robots.ox.ac.uk/~vgg/research/affine/index.html
http://www.robots.ox.ac.uk/~vgg/research/affine/index.html
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Table 1
The number of Harris affine (HA) keypoints found for every image used in the experiments.

Image # of HA keypoints

3(a) 5027

3(b) 4120

3(c) 3930

3(d) 2325

3(e) 2675

3(f) 2504

3(g) 2822

3(h) 1748

3(i) 1481

3(j) 1730

3(k) 1334

3(l) 1039

Table 2
The #correspondences between every image pair used in the experiments and for all matching strategies.

Note that, according to its definition in section 5.3, the #correspondences is the same for the matching strategies
NN and RNN and is much higher for TH.

Image pair
#correspondences
TH NN RNN

3(a)→3(b) 46414 2821 2821

3(a)→3(c) 23631 1633 1633

3(d)→3(e) 13016 990 990

3(d)→3(f) 5520 493 493

3(g)→3(h) 10189 739 739

3(g)→3(i) 3840 288 288

3(j)→3(k) 12012 1161 1161

3(j)→3(l) 9686 929 929

http://www.ipol.im/pub/algo/my affine sift/. Without loss of generality, and to reduce the
running time of the experiments (mostly due to the generation of Figures 4 to 8 using the
MATLAB code provided in the above website, whose execution time depends on the number
of keypoints), we downscale the images by a factor of 2.

We chose four sets of images, three of them containing a reference image and two simulated
affine distortions. The fourth set contains the reference image and two simulated illumination
changes. The first set contains different views of a textured scene; again we compare the
frontal view, Figure 3(a), with a 50◦ and a 70◦ tilt viewpoint change, shown in Figures 3(b)
and 3(c). The second set contains different views of a structured scene; we compare the frontal
view, Figure 3(d), with a 50◦ and a 70◦ tilt viewpoint change, shown in Figures 3(e) and 3(f),
respectively. The third set contains simulations of rotations and zooms; we compare Figure
3(g) with Figure 3(h) and then with Figure 3(i). Finally, the fourth set contains a reference
image and two simulations of illumination changes; we compare Figure 3(j) with Figure 3(k)
and then with Figure 3(l). More information about the set of images and their acquisition
can be found in [33].

The number of Harris affine keypoints of each image is shown in Table 1. The number
of correspondences between each image pair compared is shown in Table 2. We have used an

http://www.ipol.im/pub/algo/my_affine_sift/
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3. The images used to compare AD and AD+QLS to SIFT+NN . A textured scene where
(a) is a front view, (b) an approximately 50◦ change in viewpoint, and (c) an approximately 70◦ change
in viewpoint. A structured scene where (d) is a front view, (e) an approximately 50◦ change in viewpoint,
and (f) an approximately 70◦ change in viewpoint. (g)–(i) increasing rotation and zoom factors. (j)–(l) in-
creasing illumination change. Images courtesy of K. Mikolajczyk. These images are freely available from
http://www.robots.ox.ac.uk/∼vgg/research/affine/index.html.

overlap error parameter ε = 0.5 and the three matching strategies {RNN, NN, TH}. Note
that, according to its definition in section 5.3, the number of correspondences is the same for
the matching strategies NN and RNN and is much higher for TH.

Experiments. First we compare our descriptors AD with SIFT+NN using in both cases
the affine normalized neighborhood. We display the 1-precision/recall curves for the four
images in Figure 3 for all matching strategies.

In a second experiment we compare AD, AD+QLS, and SIFT+NN (using again the
normalized neighborhood). The purpose is to compare the performance added by the QLS

http://www.robots.ox.ac.uk/~vgg/research/affine/index.html


ON AFFINE INVARIANT DESCRIPTORS RELATED TO SIFT 677

strategy. Since all quantities ri behave similarly under the different matching strategies, we
just show the results obtained with r1 and RNN.

In any case, for each pair of images and for each matching strategy we compute the
number of correspondences, the number of TP, and the total number of returned matches
(TP+FP), varying the threshold t. We used the same code used in [32], which can be found
at http://www.robots.ox.ac.uk/∼vgg/research/affine/desc evaluation.html#code.

Let us show the figures corresponding to the comparison of AD with SIFT+NN. Figure 4
shows the 1-precision/recall curves corresponding to the matching of images Figure 3(a) with
Figure 3(b) (left column) and of Figure 3(a) with Figure 3(c) (right column). In each column
we show the results corresponding to the three different matching strategies {TH, NN, RNN}.
Figure 5 shows the results corresponding to the matching of Figure 3(d) with Figure 3(e) and
of Figure 3(d) with Figure 3(f). Figure 6 shows the results corresponding to the matching
of Figures 3(g) and 3(h), and Figures 3(g) and 3(i). Figure 7 shows the result of matching
Figures 3(j) and 3(k), and Figures 3(j) and 3(l).

In general, our descriptors perform better than SIFT; in particular, in Figure 5(c) there
is an improvement by a factor of 2. Notice that Figure 5(d) (which corresponds to a large
change of viewpoint) shows that when SIFT could retrieve only 5% of TP at a low precision,
we retrieved up to 15% of TP. Let us note that, in most cases, the ranking of the descriptors
does not change between one matching strategy and another.

In order to illustrate how the curves displayed in the above figures are generated, we
show Table 3. To generate these curves, we need the number of TP and TP+FP for each
experiment. Table 3 contains these numbers for one of the experiments of Figure 5, namely
the matching of Figure 3(d) to Figure 3(e) using the RNN matching strategy.

In order to show the relative performance of AD and AD+QLS, we show in Figure 8
the 1-precision/recall curves corresponding to all images in Figure 3 for AD, AD+QLS, and
SIFT+NN. Again, our descriptors are based on r1 and the RNN matching strategy. As it can
be seen, in some cases, especially when there are big affine changes, the AD+QLS version
provides improvements over AD.

5.6. Comparing to ASIFT. In this experiment we compare our descriptors AD with SIFT
in the context of ASIFT [38] (available at http://dx.doi.org/10.5201/ipol.2011.my-asift). Thus
we match Il with Ir using the orbit of images generated by ASIFT for both of them. To test
the robustness of SIFT and our descriptors, we compare them on different orbit sizes. We start
with the suggested orbit size (ASIFT default) made out of 7 tilts and generating 61 images.
Then we reduce the orbit to 5 tilts (27 simulations) and 3 tilts (10 simulations). Throughout
these experiments we use the r1 quantity. The other quantities behave similarly. Both SIFT
and our descriptors are computed on the same set of SIFT keypoints (see section 2.3). For
both we use the RNN matching strategy. Thus, for both of them the conditions are equal,
except that SIFT is used for ASIFT and we use AD based on r1.

The tests are performed on five image pairs, shown in Figure 9 and listed in Table 4. We
compare the number of matches obtained with each method and also the significance of those
matches. The significance measure is computed as the logarithm of the NFA (number of false
alarms), a quantity obtained during the computation of the affine map relating both images.
The affine map is computed using an a contrario optimized version of RANSAC, as in [35].
We use the same implementation as in ASIFT.

http://www.robots.ox.ac.uk/~vgg/research/affine/desc_evaluation.html#code
http://dx.doi.org/10.5201/ipol.2011.my-asift
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Figure 4. Comparison between SIFT+NN and our descriptors AD computed on an affine normalized
neighborhood.“1-precision versus recall” graphs showing the results of matching Figure 3(a) with 3(b) and Figure
3(a) with 3(c), in the first and second columns, respectively. The left column shows the matching of Figure 3(a)
with 3(b): (a) using the TH matching strategy, (c) using the NN matching strategy, and (e) using the RNN
matching strategy. The right column shows the matching of Figure 3(a) with 3(c): (b) using the TH matching
strategy, (d) using the NN matching strategy, and (f) using the RNN matching strategy.
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Figure 5. Comparison between SIFT+NN and our descriptors AD computed on an affine normalized
neighborhood.“1-precision versus recall” graphs showing the results of matching Figure 3(d) with 3(e) and Figure
3(d) with 3(f), in the first and second columns, respectively. The left column shows the matching of Figure 3(d)
with 3(e): (a) using the TH matching strategy, (c) using the NN matching strategy, and (e) using the RNN
matching strategy. The right column shows the matching of Figure 3(d) with 3(f): (b) using the TH matching
strategy, (d) using the NN matching strategy, and (f) using the RNN matching strategy.
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Figure 6. Comparison between SIFT+NN and our descriptors AD computed on an affine normalized
neighborhood.“1-precision versus recall” graphs showing the results of matching Figure 3(g) with 3(h) and Figure
3(g) with 3(i), in the first and second columns, respectively. The left column shows the matching of Figure 3(g)
with 3(h): (a) using the TH matching strategy, (c) using the NN matching strategy, and (e) using the RNN
matching strategy. The right column shows the matching of Figure 3(g) with 3(i): (b) using the TH matching
strategy, (d) using the NN matching strategy, and (f) using the RNN matching strategy.
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Figure 7. Comparison between SIFT+NN and our descriptors AD computed on an affine normalized
neighborhood.“1-precision versus recall” graphs showing the results of matching Figure 3(j) with 3(k) and Figure
3(j) with 3(l), in the first and second columns, respectively. The left column shows the matching of Figure 3(j)
with 3(k): (a) using the TH matching strategy, (c) using the NN matching strategy, and (e) using the RNN
matching strategy. The right column shows the matching of Figure 3(j) with 3(l): (b) using the TH matching
strategy, (d) using the NN matching strategy, and (f) using the RNN matching strategy.
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Table 3
Results of an experiment where the input images are Figures 3(d) and 3(e), comparing our 4 AD descriptors

to SIFT, using in both cases an affine normalized neighborhood.

Sample experiment
Input: Figures 3(d) and 3(e)

Chosen matching strategy: Nearest neighbor distance ratio matching (RNN)
Other chosen values: overlap error = 0.5 (yielding #correspondences = 990)

Threshold t = 0.3704 0.4167 0.4762 0.5556 0.6667 0.8333 0.8696 0.9091 0.9524 1.0000

SIFT
TP 0 0 0 1 6 67 87 118 163 249

TP + FP 0 0 1 3 10 119 194 332 655 2325

r1
TP 1 2 2 5 15 102 140 189 271 460

TP + FP 1 2 2 5 15 109 162 248 474 2325

r2
TP 1 2 2 3 12 93 130 180 274 464

TP + FP 1 2 2 3 12 106 152 237 461 2325

r3
TP 0 2 2 5 19 98 134 183 276 464

TP + FP 0 2 2 5 19 109 155 236 480 2325

r4
TP 0 2 2 5 20 96 129 183 270 465

TP + FP 0 2 2 5 20 108 152 243 465 2325

In Table 4 we show the results of the comparison between ASIFT and the descriptor AD
based on r1 computed on a square neighborhood. We show the results corresponding to three
orbit sizes. We can see the improvement due to the use of the new descriptor both in the
number of matchings and in their significance measure. This improvement is clearly visible
for a reduced orbit; when using r1 we get a matching in four of five images, but only in two
of them when using SIFT.

The performance of AD+QLS versus ASIFT is similar to the performance of AD versus
ASIFT, and therefore we omitted the table. Let us mention only that when using AD+QLS
we get a matching for the five image pairs in the case of a reduced orbit with 10 simulated
images. On the other hand, the reason for the similar behavior of AD versus AD+QLS in the
context of this comparison may be that the information brought by the orbit is sufficient to
cancel the benefits gained by the QLS strategy. This is in contrast to the behavior of QLS in
the context of SIFT+NN.

6. Conclusions. Using a classical result on algebraic invariants of the unimodular group,
we have generated in this paper some geometric affine invariant quantities that we used to
construct distinctive descriptors which are robust with respect to affine transforms caused by
the camera change of position, although full camera affine invariance cannot be guaranteed
due to the domain problem (that is, the difficulty of finding an affine covariant domain) and
the camera blur. To alleviate the domain problem, based on the observation that the level
sets of an image are geometric affine covariant, we have also considered a quantized level set
version of the descriptors. We have embedded these quantities into the algorithmic structure
of SIFT. We have compared them with both SIFT with an affine normalized neighborhood
(SIFT+NN), and with ASIFT, which addresses both the domain and camera blur problems
by cleverly sampling the orbit of affine transformations of the images. When comparing with
SIFT+NN, we have used the same affine normalized neighborhood; when comparing with
ASIFT we have used the same orbit of images. In this way we inherit the same camera affine
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Figure 8. Comparison between SIFT+NN and the descriptors AD and AD+QLS based on r1.“1-precision
versus recall” graphs showing the results of matching using the RNN matching strategy. (a) and (b) show the
result of matching Figure 3(a) with 3(b) and 3(c), respectively. (c) and (d) show the result of matching Figure
3(d) with 3(e) and 3(f), respectively. (e) and (f) show the result of matching Figure 3(g) with 3(h) and 3(i),
respectively. (g) and (h) show the result of matching Figure 3(j) with 3(k) and 3(l), respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 9. Image pairs used as an input in the experiments comparing our descriptors to SIFT in the
context of ASIFT. (a) frontal view of a magazine; (b) a transition tilt of 4 with a 90◦rotation applied to the
magazine; (c) a transition tilt of 4 with a 50◦rotation applied to the magazine; (d) an image of a painting
with no optical zoom; (e) image of the same painting with 10× optical zoom; (f) an 80◦ viewpoint change to
the painting image with 10× optical zoom; and finally, (g) and (h) illustrate a case of two images taken from
different viewpoints of a very big three-dimensional object. These images are freely available from the IPOL
website, http://www.ipol.im/pub/algo/my affine sift/.

http://www.ipol.im/pub/algo/my_affine_sift/


ON AFFINE INVARIANT DESCRIPTORS RELATED TO SIFT 685

Table 4
Table comparing the result of matching an image pair using SIFT computed on an orbit of images and the

AD based on the r1 descriptor on the same orbit. The results obtained using AD+QLS are similar to those
obtained using AD, except that now we obtain a matching for the 5 image pairs in the case of a reduced orbit
with 10 simulated images.

Image pair Descriptor
Number of tilts

7 (61 simulations) 5 (27 simulations) 3 (10 simulations)
Matches log(NFA) Matches log(NFA) Matches log(NFA)

9(a)→9(b)
SIFT 234 -322.685 140 -181.15 14 -4.33
r1 309 -418.38 182 -247.03 24 -16.7

9(a)→9(c)
SIFT 98 -125.84 68 -87.72 no match 0
r1 145 -192.489 101 -129.25 12 -2.45

9(g)→9(h)
SIFT 173 -185.27 113 -120.57 65 -79.05
r1 318 -373.025 349 -417.36 181 -226.47

9(d)→9(f)
SIFT 53 -54.14 29 -26.2 no match 0
r1 67 -71.95 63 -57.1 no match 0

9(e)→9(f)
SIFT 62 -65.23 42 -48.08 no match 0
r1 97 -96.31 76 -69.49 14 -3.34

invariance of these methods. In both cases, our comparison shows that the proposed descrip-
tors behave more robustly than SIFT with respect to affine deformations induced by camera
change of position. In particular, we are still able to match images given a small orbit of affine
transformations, while SIFT is not.
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