LEVEL SET BASED MULTISPECTRAL SEGMENTATION WITH
CORNERS *
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Abstract. In this paper we propose an active contour model for segmentation based on the
Chan-Vese model. The new model can capture inherent sharp features, i.e., the sharp corners of
objects, which are often smoothed by the regularization term in segmentation. Motivated by the
snaked-based method in (Droske and Bertozzi SIAM J. on Image Sci. 2010) that emphasizes straight
edges and corners without regard to orientation, we develop a region-based method with a level set
representation. The model combines the Chan-Vese model with the level set version of a higher order
nonlinear term. We extend this model to multispectral images. Higher order method can be very
stiff, so we propose a splitting scheme to remove the stiffness and prove its stability and convergence.
Finally we show numerical results on gray, color and hyperspectral images. We can see the model is
robust to noise.

Key words. segmentation, corners, high order and nonlinear, level set representation, numerical
stability and convergence

AMS subject classifications. 35G20, 66M06, 656M12

1. Introduction. Segmentation is one of the most important task in image pro-
cessing. The main idea of image segmentation is to detect the objects in the given
image. Usually, this is done by evolving a curve towards the boundary of the object.
Generally speaking, the existing segmentation methods can be divided into two cat-
egories: curve based methods and region based methods. The curve based methods
include the ‘snake’ model by Kass et al [21] and geodesic active contour model by
Caselles et al [9]. The region based methods include Mumford-Shah [23] and related
Chan-Vese [12] methods. We briefly describe these methods.

Kass et al (1988) [21] originated the ‘snake’ or active contour model. In the snake
model, the curve evolution is obtained by minimizing a carefully designed functional
energy. Let Q be a bounded and open subset of R?, with 9 its boundary. Let f be
the given image, as a bounded function defined on © with real values. Usually Q is a
rectangular domain. Let C(q) : [0,1] — R? be a parametrized curve. Then the snake
method is minimizing the following functional energy:

1 1 1
E(C)=a / C'(g)|2dq + 8 / 1C"(q)Pdg — A / VF(C(@)Pde. (L1)

The first two terms, the membrane energy and the elasticity energy, control the
smoothness of the curve. They are called the internal energy. The third term is
the external term and depends on the image data. It is easy to see that the external
energy term is small when the gradient of f has a large magnitude, thus pushing the
curve towards edges. Such functions are usually called edge detectors. The active
contour model was further developed by [9, 6, 7, 22, 27] using different edge detec-
tors. For example, Caselles et al [9] introduced a geodesic active contour model by
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minimizing the functional energy

1
%«n:aA|OMW@+A/hVﬂa@m%q (1.2)

where g : RT — R* is a decreasing function such that lim, ., g(z) = 0. In the
geodesic active contour model, —|V f|? is replaced by g(f)?. In addition, considering
that the snake model does not allow topology change in the curve evolution, and
consequently can only detect one object in the image, Caselles et al employed a level
set representation building on the pioneering work of Osher and Sethian [24]. Let
@(t,-) be a level set function such that C(q) is the zero level set of ¢, i.e.,, C(q,t) =
{z € R? : ¢(t,x) = 0}, then the level set function would be evolved instead of the
curve. Caselles proposed the following equation for ¢

. Vo
IS |V¢\d1V(9(f)w) +cg(f)|IVo| = g(c+ K)[Vo| + V¢ - Vg,
where & is the curvature and c is a constant.
Mumford and Shah [23] addressed an active contour model by minimizing the
following energy

Fars(u, C) = plength(C) + A / lu— f2dz + / IVu2dz, (1.3)
o\C Q

where the boundary curve C is exactly the discontinuity set of u. Chan and Vese
[12] formulated a piecewise constant variant of this model, and the boundary curve C
was represented by a level set function ¢ satisfying ¢ > 0 inside C and ¢ < 0 outside
C. By defining the Heaviside function H(z) = 1,0 and the one-dimensional Dirac
measure § = %H (z), the functional energy became

Ecv(¢,c1,¢2) = u/ﬂé(¢)|v¢\+y/QH(¢)dxdy
+M/ﬁ—qfﬂ@®@+&/ﬁ—®fﬂ—H@MMy (1.4)
Q Q

The gradient descent equation for Chan and Vese active contour model is

_ JofH@dxdy [, £ H(©)dedy

Vo H(@dedy T o1 H(G))drdy

V¢ 2 2
¢t=5(¢)[uv'w—’/—>\1(f—cl) + X2 (f = e2)?]. (L.5)
with boundary condition %% = 0. This model was further extended in [11, 8.

Moreover, there are fast algorithms for solving the Chan-Vese model, including the
method by Chambolle [10] and the split Bregman method by Goldstein and Osher
[20].

All the segmentation models above minimize a functional energy including an
edge detecting term and a regularization term which is usually the length term of the
curve. As is known, the regularization terms can avoid local minima and ensure the
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smoothness of the boundary curve, especially when noise exists in the image. How-
ever, they often introduce undesired over-smoothing to the sharp features, especially
corners. If the complete information about the morphology and anisotropy in the
image is known, for example, the orientation of buildings in an aerial photograph,
then it is natural to minimize some anisotropic functional to obtain segmentation
with corners. This idea comes from the Wulff-shapes in material science. Numerical
methods have been developed for anisotropic flows in [1, 5, 14, 15, 16, 18, 19]. How-
ever, the detection of Wulff-shape is a difficult problem. Consequently we focus on
the automatic detection guided by the geometric features in the image.

Droske and Bertozzi [17] proposed a new algorithm based on the snake method
and motivated by the low curvature image simplifier (LCIS), which is known for
preserving jump discontinuity in slope. By combining the geodesic snake construction
with nonlinear diffusion of edges, they are successful in segmenting objects with sharp
corners. However, the method still suffers from other common drawbacks of snake-
based methods. In particular one can not naturally perform topology changes and
moreover, a multi scale preprocess of the image is required to avoid local minima due
to cluster in the image. This prompt us to develop another segmentation model.

This paper is organized as follows. In the next section we first review the work
of Droske and Bertozzi [17] with some discussion about the properties of the high
order equations. Then we will formulate the corner preserving term in a level set
representation. By combining the new corner preserving term with the Chan-Vese
model, we obtain a new model that inherit the merits of Chan-Vese model as well as
one that retains the sharp corners. In addition, we extend this model to the color
and hyperspectral images. In section 3 we describe the numerical implementation
details of the high order nonlinear PDE. We also prove the convergence of the time
stepping scheme. In section 4 we validate our model by numerical test on gray, color
and hyperspectral images, and we end the paper by a brief conclusion section.

2. Chan-Vese with corner preserving term. The new method developed
in [17] is motivated the low — curvature image simplifier (LCIS), which is first
introduced by Tumblin and Turk [31] and later developed by Bertozzi and Greer [3].
The key point is that the fourth-order scalar PDE

up + div(g(Au)VAu) = 0. (2.1)

produces piecewise linear solutions and forms corners while smoothing out the noise.
Here g is typically a weight function, with g(0) = 1 and ¢(s) — oo as s — co. In [31],
the function g was choosen as g(s) = (1 + 7‘%)71 by analogy with the Perona-Malik
method in [25], where 7 is a positive parameter. The solution u is actually a smooth
function, thus the corner is understood in an infinitesimal sense. This equation is a
gradient flow of the non-quadratic energy functional Fg(u) = fQ G(Au)dz, where G is
the antiderivative of g. It also decreases the H' energy E(u) = [, |[Vu|?dz. Bertozzi
and Greer [3] proved the existence of global smooth solutions in 1 dimension case with
the same choice of g. The equation (2.1) can be combined with an L? fidelity term
obtaining a good denoiser of piecewise linear signals.

Droske and Bertozzi [17] introduces a straightforward geometric variant of equa-
tion (2.1) simply by replacing the differential operators by their corresponding intrin-
sically geometric counterparts and by choosing the coordinates x as the free variable.
They obtain the following PDE:

Tt — diVF(g(h>vFAF£U) =0. (22)
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where Vr, divp, Ar are the intrinsic surface gradient, surface divergence and surface
Laplace operator respectively. Let i be the outer normal vector of the surface I' and
h be the mean curvature. Note that Arz = hii, the equation (2.2) is quite similar
to the equation that describes the evolution of surface under surface diffusion with a
mobility function g(s) that depends on the scalar mean curvature h:

xy — divp(g(h)Vrh)it = 0. (2.3)

Like the regular surface diffusion, equation (2.3) can preserve the area enclosed
by I' and decrease the length of I'. The derivation for the area preservation and length
decreasing is similar to that of a regular domain.

i|A(t)|=/ vds = div(g(h)Vph)ds:—/ g(h)Vrh - Vrlds = 0. (2.4)
dt r(t) r(t) r(t)

d
—|T(t)| = / vhds = / div(g(h)Vrh)hds = —/ g(h)Vrh-Vrhds < 0. (2.5)
dt r () r () r()

Therefore, we can use (2.3) to replace the length regularization term in active
contour models, although [17] uses (2.2) for simpler numerical implementation.

The main purpose of this manuscript is to recast this equation in terms of a
level set formulation, and to illustrate its usefulness in segmenting complex images
with sharp corners. Following the level set representation of the geometric features in
Chopp et al [13] and Bertamio et al [2], we obtain the level set version, which is fourth
order and nonlinear. While the derivation of the equation is straightforward, the main
challenge in numerical implementation is to develop an efficient time stepping scheme.
For example, explicit schemes usually requires that dt ~ dx*, which is very stiff. In
section 3 we propose an efficient splitting scheme and prove its convergence.

Suppose the initial surface is given by the zero level set of a function ¢(-,0), or,
I'(0) = {x : ¢(z,0) = 0}, and the surface at time ¢ is the zeros level set of ¢(-,1).
The normal direction is given by 7 = % and the mean curvature h = div(7?) for
any point on the curve I'. Further we need to define the intrinsic surface gradient,
surface divergence and surface Laplacian operator via level set representation. In [2],
Bertalmio et al derived all these operators via level set representation and solved PDE
on surfaces. According to their work, the surface gradient is simply the projection of
the gradient operator onto the tangent plane:

Vi =Vo— (Vo -i)il.

The surface gradient operator divr is the dual operator of the surface gradient oper-
ator, and the surface Laplacian, or the Laplace-Beltrami operator is given by

Arqb = diVF (quﬁ) .

Now we only need to convert the corner preserving equation into a level set
formulation. We are more interested in equation (2.3) than (2.2), because of the
length decreasing property and simpler numerical implementation. With all the level
representation above, the level set version of equation (2.3) can be written as:

¢r = —[Voldivr(g(h)Vrh). (2.6)
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To demonstrate the curve evolution by equation (2.6), we repeat the following
numerical curve evolution test in Droske et al [17]. The initial curve is chosen in
polar coordinate as r = % + % sin(156), where r and 6 are just the classic polar

coordinate parameters: r = /a2 432, 6 = arctan £. The initial level set function
is u =7 — 3 — {5sin(150). The curve evolution is shown in Figure (2.1). Using
level set representation, the black curve is the zeros level set of the function ¢ and
the color in the figure stands for the value of the level set function. During the
evolution, the initial smooth curve develops corners quickly by accentuating the high

curvature parts. The corners keep existing until the curve converges to a circle by the

infinitesimal regularity.
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Fia. 2.1. The evolution of a curve. We can see that corners are formed in early stage.

The idea of this manuscript comes from the process above. If the curve evolution
is combined with a fidelity term, we can expect the curve to stop at a stable state with
sharp corners. This prompts us to combine the Chan-Vese model with the equation
(2.6). With the fitting term in Chan-Vese model, we get the following equation.

¢ = —a|Ve|divr(g(h)Vrh)

- 5(0) [V - %—V—)\l(f—cl)2+)\2(f—62)2]. (2.7)

For multiband images, let N be the number of bands and f; be the gray value of

the ith band. Using the technique in [27, 11], we can similarly calculate the ¢1; and ¢;

of the ith band with f; and the level set function ¢, and then we obtain the level set

evolution equation for multi-band images by simply taking the algebraic average of

the gradient descent flow for each band. This can also be combined with segmentation

method with spectral angle by Ye [32], in which the authors used spectral angle for
hyperspectral images instead of the Chan-Vese fidelity term.

¢ = —a|Veldive(g(h)Vrh)

Vo 1 &
+5(¢)[H 'W—V—NZAu(fi—cu NZ)\Ql P — C2;) 2]. (2.8)
i=1

As we mentioned above, the corner preserving term can decrease the curve length
and impose regularization on the level set function. Therefore, we can drop the length
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term in Chan-Vese model and only use the corner preserving term. Solving high order
nonlinear is usually difficult, since the stability condition is more restrictive. We will
describe the numerical scheme in the next section.

3. Semi-Implicit Numerical Scheme. Equation (2.7) and (2.6) are fourth
order nonlinear equations. For the numerical implementation, if we apply an explicit
numerical scheme, the nonlinear high order equation usually requires a time step dt ~
dx*, which leads to very slow convergence. If we attempt a fully implicit numerical
scheme, then solving the nonlinear implicit equation at each time step is difficult. As
a result, semi-implicit schemes are preferred for this kind of equations. We consider
the numerical scheme introduced by Smereka, Salac and Lu [26, 29] for the curve
evolution by surface Laplacian of mean curvature. Although this method has been
discovered and implemented numerically in the literature in these papers, a rigorous
proof of convergence remains new. We extend the scheme in [26, 29] to general cases,
and prove convergence of the time stepping scheme.

For simplicity, we write the equation (2.7) as ¢ = S(¢). We add a bilaplacian
stabilization term to both sides of the PDE and obtain

¢t + BA* G = S(¢) + A%, (3.1)

with ( a positive constant. To distinguish the exact solution from the numerical
solution, we use upper case and bold characters for the numerical solution, lower case
for the exact solution. In other words, we write ®*, h®, Vr and Ar for the numerical
equation at the kth step, while ¢*, k¥, V and Ar for the exact solution at time k- dt.
Let eF = ¢ — ®* denote the discretization error. Taking the left side bilaplacian at
the new time level and the entire right side at the old time level, we obtain

@k—&-l _ q)k

y7 + dt - BAZPFTL = at(BA%DF + S(DF)), (3.2)

which is equivalent to
(@FF — ®F) = dt(1 + dt - BA?)1S(DF). (3.3)

For image processing problems, we usually take the domain = [0,1) x [0,1).
In the following part we outline the discretization of equation (2.7). The right hand
side is composed of two parts, the Chan-Vese energy term and the corner preserving
term. For the Chan-Vese energy term, we simply follow the numerical discretization
n [12]. We focus on the corner preserving term.

First, the outer normal direction 1 is

Vo o L)
i = (n”,nY) = = - v : 4
1= g ((@3@5)1/2’ <<I>z.+¢>5>1/2> o

Then the mean curvature can be represented as

A9 VOTVOVS
VO V|3
Dpp + D,y P2Dy, +20,9,D,, + D2D,,

(@2 + 32)1/2 (@2 + ©2)3/2

h = div(n)

(3.5)
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In the actual implementation, we usually use [V®|s = (2 + ®2 + §2)/2 instead

of |[V®| = (@2 + ®2)'/2 to avoid division by zero, where 4 is a small parameter.
Consequently the modified normal direction and mean curvature are
Vo ) )
ns = (nf,n¥) = = 2 Y . 3.6
tis = (03, 15) = 7, ((q»; B2+ 02)12 7 (9212 +52)1/2> (3.6)

AD ALGERVALAVL:

hs = div(ny) =

T vel, Vol
L Bt By, D20, +20,8,0,, + 02Dy, 57
T (B2 4 @2 4 §2)1/2 (02 + D2 + §2)3/2 ' '

For numerical analysis, we make the same modification for the original equations
(2.6) and (2.7), i.e., we use the modified |V¢|5 = (¢7 + ¢7 + 62)Y/2 instead of |V¢| =
(¢2 + ¢§)1/ 2 and consequently use modified 75 and hs instead of @ and h. As long
as the parameter § is small enough, the zero level set of the modified equation is
a good approximation to that of the original equation. In addition, the modified
equation can avoid the singularity at the local maxima and minima of the level set
function ¢. Therefore, from now on we always discuss the modified equations (2.6) and
(2.7). Since the main difficulty for numerical implementation is the surface Laplacian
term, which is fourth order and nonlinear, we focus on the equation (2.6) rather than
equation (2.7). The modified equation and corresponding numerical scheme goes as
follows.

¢r = —|V¢|sdivr(g(hs)Vrhs), (3.8)

(I)k+1 _ q)k

p7 + BARMT = BA2PF — |V OF|sdivr (g(h%)Vrhf). (3.9)

To compute divr(g(hs)Vrhs), we may take the surface gradient of the mean
curvature hs, and then calculate the surface divergence of g(hs)Vrhs. However, we

prefer to calculate the surface Laplacian of G(h) as in [3], where G is the antiderivative

of g, or, G'(s) = g(s). In our numerical method, we choose g(s) = (1 + %)_1 and

G(s) = %arctan (%) where 7 is a positive parameter. According to the definition of
surface gradient VrG = VG — (VG - n3)ns, we have the following component form
(VG - n5) = nfG, +n!G,, where the subscripts on G denotes the partial derivatives
in x and y individually. Therefore we can write the surface gradient as

VrG = Gze® + Gye! — (njG, +niG,)(nfe” +nle?)
= Ae” + BéY, (3.10)

where e” and e¥ are unit vectors in the x and y direction respectively. By computing
the surface divergence in a similar way we can obtain the surface Laplacian of G(hs)

ArG = A, + By —n§(n§A, +njA,) —n¥(n§B, +njB,). (3.11)

Next we will analyze this semi-implicit scheme with some more details and rigor-
ous estimates for the numerical solution. We use similar technique as in Bertozzi et
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al [4] and Schoenlieb et al [28], focusing on discretization in time. Denote |D™u|? =
2jal=m |0%u|? and ||D™ul]? = 2jal=m |0%u||? for any integer m, where o = (v, a2),

la| = a1 +ag, 0% = %. Due to the high order and nonlinearity, we need several
restrictions on the smoothness of the level set function. The results are summarized

in the following theorem.

THEOREM 3.1. Let ¢ be the exact solution of (3.8) and ¢* = ¢(kdt) be the exact
solution at time kdt for a time step dt > 0 and k € N. Let ®* be the kth iterate of
(3.9). Assume that there exits a constant L such that |g(s)| < L, |¢'(s)| < L, and the
discrete solution exists up to time T, then we have the following statements:

(i) Under the assumption that ||| -1, | VA2, |Volleo and ||pe]|—1 are bounded,
the numerical scheme (3.9) is consistent with the modified continuous equa-
tion (3.8) and first order in time.

(ii) Let further ek = ¢* — ®* be the discretization error. If

10" le < K, V¥l < K,

for a constant K > 0 and all |a| < 3, kdt < T, then the error ek converges
to zero with first order in time.

REMARK: 1. Although the following convergence proof only requires dt smaller
than some constant which is independent of dx, the assumption that the derivatives of
¢ are bounded may impose additional restriction on the time step dt. In fact, for the
most commonly used level set function, the signed distance function, |V¢| is usually
unbounded. In addition, all the constants depend on the choice of §. However, we
have to take ¢ small to make sure that the solution of the modified equation is close to
the solution of the original equation. We may have to take dt small enough to obtain
desired accuracy.

REMARK: 2. Solving the equation in a narrow band of the zero level set may
reduce the singularity of the level set function. For example, the signed distance
function is singular in the whole domain, but it is smooth in a small neighborhood
of the zero level set, as long as the zero level curve is smooth. In addition, in the
numerical implementation, we impose an upper bound K for |V®|. As soon as |V®|
exceeds K, we reinitialize the level set function.

The proof of the theorem above is split into three propositions. We first introduce
the following lemmas, and then state the three propositions.

LEMMA 3.2. Let ¢ be a smooth function and surface T' = {(x,y) : ¢(x,y) = 0}
be the zero level set of ¢. Then for any function u,v € Lo(Q2), the modified surface
gradient operator Vr satisfies

|Vru? < |Vul?> < |Vul3.

Proof. If we use the original V¢, then it is the projection of V¢ on the tangent
plane, the inequality means the length of the projection is smaller than the original
vector, which is true automatically. But the modified operator is no longer projection.
However, the modified operator satisfies

VFU = Vu— (Vu . ﬁg)ﬁg,
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Therefore, we have
|VF’LL|2 = VFU . VFU
= (Vu — (Vu . ﬁg)ﬁ[s) . (Vu - (Vu . ﬁ5>ﬁ5)
= Vu-Vu—2(Vu-iis)* + (Vu - iis)*(fs - iis)
= [Vul* = (Vu - i5)*(2 — |iis]*)
< |Vul? < [Vulk
by the fact 0 < |i5|? < || = 1. In addition, we can verify this is also true for the

discretized solution. 0
LEMMA 3.3. We have the following inequalities

ID?ull3 < |Aulf3 < 2[D%ul3,
ID%ull3 < VA3 < 3] D*ul3,
ID%ull3 < [[Vull2 + | D%ull>-

Proof. Integrate by parts for |Au||3 and we obtain
|Auljz = /(uix + 2Ugptyy + uiy)dmdy = /(uix + 2u§y + uzy)dxdy.

The second part can be verified in a similar way. For the third part, we have

1
/u?mdmdy = —/uwummdxdy < 3 (/ u2drdy + /uimdxdy> .

Do the same to [ uiydxdy and [ uiydmdy, we can come to the conclusion. ]
LEMMA 3.4. For any u, there exist some constant C = C(Q)) such that

ID*ulli < ClIVulloo||Dull2.

Proof. By Gagliardo-Nirenberg inequality as in [30], for any f we have
IDFIE < ClIFllocl D212

By taking f = ®, and f = ®, we obtain the inequality. 0

PROPOSITION 3.5. (Consistency) Under the same assumptions as in Theorem
3.1, the numerical scheme (3.9) is consistent with equation (2.6) with local truncation
error ||T%||_1 = O(dt).

Proof. The local truncation error is defined as

p o QT — gk 2/ k41 k k A A
TH = e BN = 67) = [V 5V (9(hs) Vi hs) (3.12)

Taking the Taylor series of ¢ at kdt and assuming that [|¢u||—1, [[VA®:|2, VO] oo
and ||¢¢]|—1 are bounded, we obtain that

175l -1 = O(dt).

thus the local truncation error is first order in time. |
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PROPOSITION 3.6. (Stability) Under the same assumptions as Theorem 3.1 and
assume ||[VO* | < K for all kdt < T, then the numerical solution ®% satisfies

[VOH |13 + dtK [ VA3 < ™27 (|| V|3 + dtK: || VAD|]3),

for some constant Ky, Ks.
Proof. We multiply (3.9) with A®**! and integrate over (2, then we obtain

(@FH1 ABETT) — (F ADFHT)
dt

+ ﬁ(<A2‘I)k+1,A¢’k> _ <A2‘I)k+l,A(I)k>)
= — (divr (¢9(h§)Vrhy),|VOF ;AR (3.13)
Integrate by parts for both sides, then we obtain

(VO VOk+l) — (VPF vPh+)

at + B(IVARFH 3 — (VAR VAD))

— — (g(b})Vrh}, V(| VOH;A04 1))
Applying Cauchy’s inequality we obtain

1
(@, @F) < S (@713 + ([ 27]13)-

Consequently we have

1

[*HH[3 — (@ %) < §(||<I>'““||§ —@*]3)-

Similarly we have

1

IAQMHHZ — (AQ™E, A®F) < 2 (JASH S — [|AQ™|3).

Therefore, we obtain the following inequality by lemma 3.2.

IVerE — IVeriz | A
2dt 2

= —(g(h})|V®*|;Vrhy, Vr(|[VE*[;AGM 1) /|V D" |5)
1 2 € 2
< 2;Hg(h’g)\V<I>’“|6Vrh’§||2 + 5HVr(IV@’“|(5A<I>’“+1)/\V<I>’“I(s||2

(IVASF3 — [|[VASF|3)

N

L
S IIVEH ST+ 2 [[Vr( 90k A1) /|90
L
< IV VRS + 2 [[V(VR s ARH ) /[ V5|5, (3.14)

Then we estimate Vh’g. Similar to the original level set representation of mean cur-
vature h, the modified hs has the following representation.

VoF ) B APF (VO TV20r vV ok
[VOk]s " [VOF[s [Vor 3

hf = v (

and
ADF (VORTV20r v ok

IVOF|;Vhy = |VOF|;V(

[Ver]s [VOr[;
_ vAGH APFV2OFVOE  2V20FVIPRV OF
N [VOr[3 VKT

VOV (VBN VEE | 3V VBV R ety ok
VO[3 VO[3 '




Level Set Based Multispectral Segmentation With Corners 11

In addition, we have

2@1@ Cbk
V(|[VOF|s AR /| VOF|s = VARFT! +Aq>k+1v|v(1>kv|2
s
By the face that |[V®*|s > ¢ for all k, we have

6|v2(bk:|2

|VhE||[VoF|; < [VARK| + 5

+ | D3k
and
V(TR ARE) /[0, < [VABH| 4 L[ ABH D20k
Consequently
L|||V®*|sVhE |2 < C1||DP®* |3 + C| D23 12,
and

[V(IVOF ;A7) /|[VH 5|2 < ([VARFH2 + Cy| AGHH V203

<
< Cs|| DP@M3 + Cul| D*@MHY[] + Cul| D201

Therefore, we have the following estimate with lemma 3.3 and 3.4:
L|||Ve*|sVhE||2 < C5[|D?@% |3 < 6| VADH |2, (3.15)
and
[V([VOF[sADMH1) /|[VEE 5|2 < Cr [ VASH 3 + Cs | VADF|2. (3.16)
By plugging into (3.14) we obtain

VM3 + (8 — Cre)dt| VAR |3 < (V|3 + (B4 Cs + Cse)dt|[ VADF 3. (3.17)

By choosing ¢ = % we obtain
C
[V + 2t VAR <[VH3 + (54 Co + S0 ) dt [V AR
7

<(1+ (1 42C6/8 + Cs/Cr)dt) (| VO[5 + gdtIIVA@kHz)

Taking Ky = /2 and K2 = (14 2Cs/8 + Cs/C7)dt, then we have the following
inequality by induction.
IVOH3 + Kyt VAGH |2 <(1+ Kodt) ([VO_1[3 + K1 dt| VA, )
(1 + Kodt)*([|V 0[5 + K1t VAD|?)
<M (|| V@3 + Kidt]|VAD ).
which gives the boundedness of the numerical solution. 0

In this proposition we make the assumption that |[V®*| ., < K. This assumption
is reasonable when we are using a level set method for curve evolution problems. We
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should keep the level function smooth to avoid any undesired singulary, thus we always
reinitialize the level set function once ||V®F¥||, reaches the given upper bound K. The
assumption ||[V®*||,, < K is used in the proof of convergence. The convergence of
the discrete solution to the continuous solution as dt — 0 is included in the following
proposition.

PROPOSITION 3.7. (Convergence) Under the same assumptions as in Theorem
3.1, the discretization error ek = ¢F — ®F with kdt < T for a fized T > 0 satisfies

[Vek||2 + Kydt|VAe*|2 < TeX2T . Car?

for some constants C, K1, K».
Proof. Subtracting (21) from (22) we obtain

ekl _ ok
Twﬁe“hm?ek = —|V¢"|sVr (g(hf)Vrh)+|VP*|sVr (g(hf)VrhE)+7".

We use the same technique as the proof of proposition 2. Multiplying both sides
with AeFt! and integrating by parts, we obtain

k+1(2 _ k k+1
||V€ ”2 d<tve 7ve > -‘rﬂ(”VAek—HH% o <VA€k+1,VA€k>)

=~ (g(h5)Vrhg, Vr(|V* ;A 1)) + (g(hf)Vrhf, Ve(|[VR*[5Ae51))
+ (VAP VAFT)
=(VA'rF VAF ) — (g(h§)Vrhf — g(hf)Vrh, Ve ([VOF|sAe )
_ <g(h§)vrh§, Vr(|Vok[sAek+!) — Vr‘(|V¢)k|5A6k+l)> .

For the difference terms above, we split them into five terms.

g(h§)Vrhg — g(h§)Vrhy
=(g(h§) — g(h§))Vrh§ + g(h§)(Vr — Vr)hg + g(h§)Vr(h§ — hj)
=) + (1) + (I11),

Vr(|Vo|sAe ) — Vp([VOF|sAehHT)
=(Vr = Vi) (|[Ve*|sAe*T) + Vi (|V"[sAe ! — [V |;Ae8 )
=(IV) + (V).

Now we estimate (I) — (V). First we estimate h§ — h¥.

BE — b —( Agk (Wk)Tv%kv(;sk) ( AT (VOH)TV2IpkV ek
SN Ve[ [Ver]; VO[3
_( A¢k B APF ) - ((ngk)TVQ(;ﬁqubk - (V(I)k)TVQfI)kV(Dk
Verls VR Vo3 [Vok?

With the fact |V¢ls > 4§, |[V®|s > ¢ and the assumption [|0%¢|e < K for |a| < 3,
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IV®||s < K, we obtain

| Agr AP |_’A¢’“—A<I>k A¢k(\v¢k|5—\v¢k|5)’
[Vokls  [VOF[s V@[5 [VF|s| V@[5

AGE — ABH|  [AGH|||VD]5 — VL]
STV V5| VaH]5
Ak |AgH|Ver]

S Ve VR, [V,
k k 2k
_ |Ak] | [Vek|| D3|

=5 02
and
Vo Vo]
‘(V¢k)Tv2¢kv¢k B (V@k)TVQ‘I)kV‘I)k ’(v¢k)Tv2¢kv¢k B (v¢k)Tv2¢kv¢k’
S Var[3 Vol V]
(Vok — VOr)TV2pk v (VO TV26F (Vgh — Vor) (VOM)T (V20F — 20k Vg
< Var[3 | Va3 a VaH]

[ (IV9*]s — [V [5)(IVP"[5 + V" [s| V|5 + \V¢k|§)|
[VF[3IVo* 3
| (vek)Tv2¢kv¢k | ’ (vq)k)Tv2¢kvek | (v@k)Tv2ekv¢k |
h [Vok[3 [VOk[3 VK[
[Ver|s)([VEF|3 + V" |s| VOF[s + [VOFF) |
[Vor 3V R[S
< O(|Ae®| + |VeF)). (3.18)

+[(Voh) T v2ghveh

(V)T vek| |

Therefore, we have the following inequalities.

A5 —h§| < CL(|Ae®| + [VeP)).

and
l9(hs) = g(hg)| = lg'(h*)(hs — hg)]
< LOY(|Aek| + |VeF|).
and
k| _ VoV (e*)" Vortv(er)" k
(Ve = Vr)hs| = |((7 - W) - (- W))Vw
_(VeEV(eh)T  VeRV(@h)T O
=g~ ey Y
< Cy|Ver|.

To estimate |V (h% — h¥)|, recall that we represent Vhs by
Vhs — VA  APFV20FVor  2V2pFV2eky ok
TTver; [Verg V3
VOV (V20r)V ok n (VO TV29rkVakv2ehy oF
[Ver[3 [VOF[3 '
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and we have the corresponding one for VhY. Then the estimate goes as follows.

V(b < ’vmﬂf _ VAg |+ |A<1>kv2<1>kvq>k IACAACA
oIk [Vek]s [VOr[3 [Vor[3
4 2|V2q>kv2q>kvq>k _ V2PFV2HEy ok | n |V<I>kV(V2<I>k)V‘I>k _ ngkV(Vngk)ngk
VO[3 [VO-[3 [V} |V k|3
VO3 Vo3 '

With similar analysis as above, we have
VADF V AgF
’ ‘V‘I)khs - \Vd)’%’ < C(‘VAekl + |Vek|)

and
‘Vd)’“V(V?fI)’f)V@’f VPV (VEeh) Ve
[VE[S Vo

| < C(ID%"| +|Ver)).

In addition, we use the fact that A®* = A¢pF — Aek and V2@F = V2¢F — V2eF
to estimate the other three difference terms. Here we use again the assumption that
the derivatives of ¢ is bounded.

ADFV2DF = (ApF — Aek)(V2pF — V2eF)
= APFV2pF — ApFV2er — AePV2pF + AeFV2er.
Therefore, we obtain the following estimate.

AGLAVA LAV LA LA VER LA VoL |
Vo3 |V k|3

(ADFV2DF — ApFV2F)VOF AFV2pF (VOF — Vok)

< Vo T e
A¢kv2¢kv¢k A¢kv2¢kv¢k
7

< C(|D%**)? + |D2ek| 4 |Vek)).
Similarly we have

V20FV2prEy Ol V2PFEV20FY ok

| <CO(ID%"? +|D%e"| + [Ver|).

VerR VR
and
(VOI)TV2REVOEV2GE VOl (Voh)TV26E Ve v2gh vk
| [VOF S Vor T3 | < C(ID*e" "+ | D%k |+ |Veh)).

Thus we obtain the following estimate
[V(hs —h3)| < C3(|D%eF| + [D?e"| + |D*e"|* + [ VeP|).
Consequently the estimation for (I), (I1), (I11) are
(D) < 1g(h§) — gMHIIVAG] < Ca(lAe®| + [Ver]),
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[(I1)| = [g(h§)(Vr — V)| < LC1|(Vr — Vr)h§| < C5|Ve"],

(I11)] = |g(h3)Vr(h§ — h§)| < LIV(h§ — hf)|
< Co(|D%e"| + | D?e*| + |D?e* > + |Veh)).
Estimating (IV') and (V) is slightly different. We have
VAekJrl v2¢kv¢k
V(VoF|sAef ) = ———— + AP 2

Therefore
|(IV)] = |(Vr — Vi) (|[VéF|sAef )|
_ ’(Vdv’“v(cb’“)T _ Voky(ek)T
- [Vgk[2 VOr2
Cr|Ver|[V(IVeF[sAet )|
Cs|VeF|(|D?eF 1| + | D2k 1)),
= |Vr(|Ve [sAck ! — [VOF|;AeM )]
IV(|VeF|sAef T — |[VEF| s Akt
VA [[VgF |5 — [VF || + |Aer Y|V (| VgF]s — [VF|5)]
Co(|D3eFH1||Wek| + | D2k 1| D26 | + | DM |Vek)).

)V (Vo |saett)]

VASV/AN

=
|

NN IN

In addition, we use V2®*F = V2¢* — V2e¥ again and obtain the following estimate

Vr(|[VeF[sAe )| < [V(IVEF[sAet )]
V20FV k|
var |, [vact| + jack Y 2 Ve
| |5| e |+| € | |V(I)k‘§
010(|D3€k+1‘ 4 |D2€k+l| + ‘D26k+1”D26k|)
010(|D3€k+1‘+|D2€k+1|+‘D2ek+1|2—|—|D26k| )

N

<
<

Thus we obtain the following estimate
|9(h§)Vrhy — g(h§)Vrh§| < Cii(|D*e*| + |D%e*| + |D?e*[* + |[VeP|)
IVr(|VoF [sAHY) = Ve[V [sAM )| < Cra(|DPe M ||Ver| + [D?e™ || D%e"| + | D2 [ Ver|)
< Cia(|D%eHH + | D) (ID%e"| + | Veh|).

Consequently applying lemma 3.3 and 3.4, and the fact |Ve*| < |[VoF| 4 |[V@F| <
2K, we obtain

— (g(h§)Vrhj — g(hg)Vrhj, Vi ([VE*[sA" )
(lg(h§)Vrhj — g(h§)Vrhj|, [V (|[VOF|sAek 1))
013<|D36k+1| 4 |D2€k+1‘ + |D2ek+1|2 4 |D2€k‘2, |D3€k‘ + |D26k| + ‘D2€k| + |V€k|>
Cise(|D%" |3 + | D23 + |D2e* |} + | D?eF[})

+ Cig/e(|De¥|3 + | D?e"[5 + [DPe*[f + [Ver[3)
Crae(| DPe* |5 + VM5 4 [|D%e" |13 + Ve [3) + Cra/e(|DPe¥[5 + | Ver[3)
Crae(| D*e* |5 + [VeFT[3) 4 (Crae + Cra/e)(|D*e"[5 + | VeF|3).

NN N

N
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and similarly
|(g(h§)Vrhs, Vr([Ve*[sAe* ) — Vi (Ve [sAe )]
SCise(||DP 3 + [VeM ) + Cis fe(IDPeF (3 + Ve [3).
Now we come to the following estimate

[VeF 3 — (Vek, Vertt)
dt

1
<Cioe(|[ Ve HIZ + [VAHE) + (Croe + Cro /) (IVEF |5 + [VACH]E) + — 7112,

+ B([VA T3 — (VAT VAER))

where ¢ is a arbitrary constant. Applying Cauchy’s inequality to the left hand side
we obtain

(1 — Cedt)||[Ver |2 4 (8 — Cige)dt]|| VA2
< (14 Cip/edt)|Ver |3 + (B + Crge + Cio/e)dt| VA |3+ 1/e]|7%]|2 .

We take ¢ = % Then we can take K7 = 1+ 3 and Ky = 8+ Ci6e + Ci6/e, as
long as dt is small enough, we have

[VeF 1|2 + Kydt| VAR |2 < (14 Kadt)(||VeF||2 + Kidt|VAeR||2) + Cﬁ

Adtl|T")12.
10

By induction we obtain the following estimate.
|Ver|12 + Kydt|| VAR |2 < Tef2T . Car®.

We can see that | VeF||y converges with first order in time. O

When using a level set method for curve evolution problems, the existence of
corners break the smoothness of the level set function. However, as in the previous
discussion, this corner preserving model generalizes the LCIS equation and the corners
are in the infinitesimal sense. In Bertozzi and Greer [3] it has been proved in one
dimension that the solutions of LCIS equations are smooth and never develop corners
in finite time. We believe that it is also true for our model, as long as the curve
has no self-intersections, although this has not been proven. In addition, the level
set function is smooth in a small neighborhood of the curve if the curve is smooth.
However, in numerical implementation, the width of the narrow band to keep the
level set function smooth may be very small, consequently dt has to be chosen small
enough. When applying the semi-implicit scheme, the numerical experiments shows
that we can take dt ~ dx2. This is still a great improvement comparing with dt ~ da*
for explicit schemes. Note that the operator (1 + dt - BA2?)~1 is positive definite, it
works as a smoothing operator. Empirically we choose the parameter 5 = 1/2 as in
[26, 29].

In addition, our goal is to evolve the curve, which only involves a small neighbor-
hood of the zero level set, so we can only compute corner preserving term of equation
(2.7) in a narrow band around the zero level set of ¢ and set it to be zero in other
places. This can save computational time. We may reinitialize ¢ to be the signed
distance function, but not necessarily. According to our analysis, we impose an upper
bound K for |[V®k|. If [V®*| exceeds K, reinitialization is required.

In two dimension images the operator (1+dt-3A2)~! can be computed using Fast
Fourier Transform (FFT) very easily and efficiently. The convergence is still somewhat
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slow when comparing with Chan-Vese model due to the time step restriction. The
Chan-Vese model only requires dt ~ dz while our method requires dt ~ dz?. In fact
we can take advantage of fast methods for Chan-Vese by first solving Chan-Vese to
steady state and using this as the initial guess for our method. Since we start with
a initial guess that is close to the final result, the reinitialization process during the
level set evolution is optional.

The full algorithm is:

’ Step 0.  Solve Chan-Vese model and obtain the steady state ¢. ‘
Step 1. Initialize the level set function ¢ to the signed distance function.
Step 2. Compute ¢; and cq for equation (2.7) and the Chan-Vese energy

term.

Step 3. Compute the corner preserving term in a narrow band around
the zero level set of ¢ and set it to be 0 in other places. Usually
we choose the narrow band as points within 3 or 4 grid size to
the zero level set.

Step 4. Update ¢ with equation (2.7).
Step 5. Reinitialize the level set function ¢ to be the signed distance
function if |[V®*| exceeds K. Repeat step 2 until convergence.

4. Numerical Results. In this section we show some numerical results for im-
age segmentation with the equation (2.7). Although we employ semi-implicit schemes,
the time step is still small for accuracy. Usually we take the order dt ~ dz?. For faster
convergence, we do not directly solve equation (2.7) with a random initialization, but
we start from the steady state of Chan-Vese method and then solve equation (2.7).
The time step for equation (2.7) is chosen as dt = .1dz?, while time step for pre-
processing with Chan-Vese method is dt = .1dx. As for the computational time, the
regular Chan-Vese method takes 2 seconds and our methods takes 21 seconds for the
building image of size 128 x 110 using C++. For the hyperspectral image of size
100 x 80 below, the Chan-Vese method takes 4 seconds and our methods takes 35
seconds.

Figure (4.1) shows the segmentation of a simple shape. (I) is the originally image.
(IT) shows the segmentation with equation (2.7) and (III) shows the segmentation
without corner preserving term. Since the noise is strong in this image, the length
regularization term has to be chosen large to avoid the local minima and small noisy
pieces. We can see the corners are much better kept with the corner preserving term.

i, e L L ot
o T o Rl =" " H . 1 = pf = ! 2] M"."

(I) Initial image (IT) Segmentation without corner (IIT) Segmentation
with corner

FiG. 4.1. Comparison of Segmentation that with and without corner term on a simple shape.

Figure (4.2) shows the segmentation of a building from Google map. This is a
3-band color image. To avoid detecting the pieces on the roof, we have to use strong
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regularization. The segmentation with equation (2.7) is better than the segmentation
without corner preserving term. And we also see that the two pieces enclosed by the
building are also captured by the level set based segmentation method.

I) Segmentation without corner (IT) Segmentation with corner

Fic. 4.2. Comparison of Segmentation that with and without corner term on a building.

Figure (4.3) shows the segmentation of a Walmart building from hyperspectral
image with 163 bands. We can see that the approach also works for hyperspectral
image. The dirt near the building can not be separated due to the limitation of the
Chan-Vese method, which always separates the ‘bright’ part from the ‘dark’ part.
Compared with the parking lot, the dirt is obviously bright.

I) Segmentation without corner (II) Segmentation with corner

F1c. 4.3. Comparison of Segmentation that with and without corner term on a building.

5. Conclusion. In this paper we propose a modification of the Chan-Vese model.
Motivated by the low curvature image simplifier, we add a corner preserving term
to the Chan-Vese model following a method developed in Droske and Bertozzi [17]
for image snakes. With the new model we can capture the sharp corners in the
image while we can still manage the complex topology. To solve the high order
nonlinear equation, we employ the numerical technique of adding a bilaplacian term
and using semi-implicit schemes, which improves the time step from dt ~ dz* to
dt ~ dz?. We also prove the stability and convergence of the semi-implicit time
stepping scheme. We validate our model by numerical tests on color and hyperspectral
images. The numerical results also show that this new model is robust to noise. One
issue is that due to the nonlinearity and high order, we have to use smaller time steps
when comparing with the original Chan-Vese model. Future work could involve faster
numerical schemes to speed up this method, or the application of this model to surface
representation and reconstruction as in [17].
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