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Abstract

In this paper, a parametric level set method for reconstruction of obsta-
cles in general inverse problems is considered. General evolution equations
for the reconstruction of unknown obstacles are derived in terms of the un-
derlying level set parameters. We show that using the appropriate form
of parameterizing the level set function results a significantly lower dimen-
sional problem, which bypasses many difficulties with traditional level set
methods, such as regularization, re-initialization and use of signed distance
function. Moreover, we show that from a computational point of view, low
order representation of the problem paves the path for easier use of New-
ton and quasi-Newton methods. Specifically for the purposes of this paper,
we parameterize the level set function in terms of adaptive compactly sup-
ported radial basis functions, which used in the proposed manner provides
flexibility in presenting a larger class of shapes with fewer terms. Also they
provide a “narrow-banding” advantage which can further reduce the number
of active unknowns at each step of the evolution. The performance of the
proposed approach is examined in three examples of inverse problems, i.e.,
electrical resistance tomography, X-ray computed tomography and diffuse
optical tomography.
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1 Introduction

Inverse problems arise in many applications of science and engineering including
e.g., geophysics [67, 85], medical imaging [3, 48, 80], nondestructive evaluation [47,
49] and hydrology [13, 71, 82]. In all cases the fundamental problem is usually
extracting the information concerning the internal structure of a medium based on
indirect observations collected at the periphery, where the data and the unknown
are linked via a physical model of the sensing modality. A fundamental challenge
associated with many inverse problems is ill-posedness (or ill-conditioning in the
discrete case), meaning that the solution to the problem is highly sensitive to noise
in the data or effects not captured by the physical model of the sensor. This
difficulty may arise due to the underlying physics of the sensing system which in
many cases (e.g., electrical impedance tomography [17], diffuse optical tomography
[3], inverse scattering [24], etc) causes the data to be inherently insensitive to
fine scale variations in the medium. This phenomenon makes such characteristics
difficult, if not impossible to recover stably [74]. Another important factor causing
the ill-posedness is limitations in the distribution of the sensors yielding sparse data
sets that again do not support the recovery of fine scale information uniformly in
the region of interest [52]. Many inverse problems of practical interest in fact suffer
from both of these problems. From a practical point of view, left untreated, ill-
posedness yields reconstructions contaminated by high frequency, large amplitude
artifacts.

Coping with the ill-posedness is usually addressed through the use of regulariza-
tion [27, 53]. Based on prior information about the unknowns, the regularization
schemes add constraints to the inverse problem to stabilize the reconstructions.
When the inverse problem is cast in a variational framework, these regularization
methods often take the form of additive terms within the associated cost function
and are interpreted as penalties associated with undesirable characteristics of the
reconstruction. They may appear in various forms such as imposing boundedness
on the values of the unknown quantity (e.g., Tikhonov or minimum norm regular-
izations [30, 74]) or penalizing the complexity by adding smoothness terms (e.g.,
the total variation regularization [1]). These regularization schemes are employed
in cases where one seeks to use the data to determine values for a collection of un-
knowns associated with a dense discretization of the medium (e.g, pixels, voxels,
coefficients in a finite element representation of the unknown [63]).

For many problems, the fundamental objective of the process is the identi-
fication and characterization of regions of interest in a medium (tumors in the
body [12], contaminant pools in the earth [34], cracks in a material sample [70], etc).



For such problems, an alternative to forming an image and then post-processing
to identify the region is to use the data to directly estimate the geometry of the
regions as well as the contrast of the unknown in these regions. Problems tack-
led in this way are known as the inverse obstacle or shape-based problems. For
earlier works in this area see [18, 40, 43] and particularly the more theoretical ef-
forts by Kirsch [39] and Kress et al. [41]. Such processes usually involve a rather
simple parametrization of the shape and perform the inversion based on using the
domain derivatives mapping the scattering obstacle to the observation. Relative
to pixel-type approaches, these geometric formulations tend to result in better
posed problems due to a more appropriate obstacle representation. Moreover, in
such problems the regularization can be either performed implicitly through the
parametrization or expressed in terms of geometric constraints on the shape [44].
However, this class of shape representation is not topologically flexible and the
number of components for the shape should be a priori known [64]. They also
create difficulties in encountering holes and high curvature regions such as the
corners. These difficulties have lead over the past decade or so to the develop-
ment of shape-based inverse methods employing level set-type representation of
the unknowns.

The concept of level sets was first introduced by Osher and Sethian in [57].
This method was initially designed for tracking the motion of a front whose speed
depends on the local curvature. The application of the level set approach to inverse
problems involving obstacles was discussed by Santosa in [64]. One of the most
attractive features of the level set method is its ability to track the motion through
topological changes. More specifically, an a priori assumption about the connect-
edness of the shapes of interest was no longer required. Following Santosa’s work,
Litman et al. in [46] explored the reconstruction of the cross-sectional contour of
a cylindrical target. Two key distinguishing points about this work were in the
way that the authors dealt with the deformation of the contour, and in their use
of the level set method to represent the contour. The shape deformation method
implemented in this work was enabled by a velocity term, and lead to a closed-form
derivative of the cost functional with respect to a perturbation of the geometry.
They defined shape optimization as finding a geometry that minimizes the error in
the data fit. Later Dorn et al. in [26] introduced a two-step shape reconstruction
method that was based on the adjoint field and level set methods. The first step
of this algorithm was used as an initialization step for the second step and was
mainly designed to deal with the non-linearities present in the model. The second
step of this algorithm used a combination of the level set and the adjoint field
methods. Although inspired by the works of [46,57,64], the level set method used



by Dorn et al. was not based on a Hamilton-Jacobi type equation, instead, an opti-
mization approach was employed, and an inversion routine was applied for solving
the optimization. The level set ideas in inverse problems were further developed
to tackle more advanced problems such as having shapes with textures or multiple
possible phases [15,25]. Moreover, regarding the evolution of the level set function
where usually gradient descent methods are the main minimization schemes ap-
plied, some authors such as Burger [10] and Soleimani [68] proposed using second
order convergent methods such as the Newton and quasi-Newton methods.

Although level set methods provide large degrees of flexibility in shape repre-
sentation, there are numerical concerns associated with these methods. Gradient
descent methods used in these problems usually require a long evolution process.
Although this problem may be overcome using second order methods, the per-
formance of these methods for large problems such as 3D shape reconstructions
remains limited and usually gradient descent type methods are the only option
for such problems. Moreover re-initialization of the level set function to keep it
well behaved and velocity field extensions to globally update the level set function
through the evolution are usually inevitable and add extra computational costs
and complexity to the problem [56]. More detailed reviews of level set methods in
inverse problems can be found in [11,24].

In all traditional level set methods already stated, the unknown level set func-
tion belongs to an infinite dimensional function space. From an implementation
perspective, this requires the discretization of the level set function onto a dense
collection of nodes. An alternative to this approach is to consider a finite dimen-
sional function space or a parametric form for the level set function such as the
space spanned by a set of basis functions. Initially, Kilmer et al. in [38] proposed
using a polynomial basis for this purpose in diffuse optical tomography applica-
tions. In this approach, the level set function is expressed in terms of a fixed order
polynomial and evolved through updating the polynomial coefficients at every it-
eration. Parametrization of the level set function later motivated some authors in
field of mechanics to use it in applications such as structural topology optimiza-
tion [61,78,79]. One of the main contributions in this regard is the work by Wang et
al. in [79]. Here the level set function is spanned by multiquadric radial basis func-
tions as a typical basis set in scattered data fitting and interpolation applications.
Authors showed that through this representation, the Hamilton-Jacobi partial dif-
ferential equation changes into a system of ordinary differential equations and the
updates for the expansion coefficients may be obtained by numerically solving an
interpolation problem at every iteration.

More recently, the idea of parametric representation of the level set function has



been considered for image processing applications [5, 29]. Gelas et al. in [29] used
a similar approach as the one by Wang et al. for image segmentation. As the basis
set they used compactly supported radial basis functions, which not only reduce the
dimensionality of the problem due to the parametric representation, but also reduce
the computation cost through the sparsity that this class of functions provide.
As advantages of the method they showed that appropriate constraints on the
underlying parameters can avoid implementation of the usual re-initialization. Also
the smoothness of the solution is guaranteed through the intrinsic smoothness of the
underlying basis functions, and in practice no further geometric constraints need
to be added to the cost function. As an alternative to this approach, Bernard et al.
in [5] parameterized the level set function in terms of B-splines. One of the main
advantages of their method was representing the the cost function minimization
directly in terms of the B-spline coefficients and avoiding the evolution through
the Hamilton-Jacobi equation.

In this paper the general parametric level set approach for inverse problems is
considered. For an arbitrary parametrization of the level set function, the evolution
equation is derived in terms of the underlying parameters. Since one of the main
advantages of this approach is low order representation of the level set function,
in practice the number of unknown parameters in the problem is much less than
the number of pixels (voxels) in a traditional Hamilton-Jacobi type of level set
method, therefore we concentrate on faster converging optimization methods such
as the Newton or quasi-Newton type method. To represent the parametric level
set function, as in [29,79] we have proposed using radial basis functions. However
unlike the previous works employing radial basis functions in a level set frame-
work, in addition to the weighting coefficients, the representation is adaptive with
respect to the centers and the scaling of the underlying radial basis functions. This
technique basically prevents using a large number of basis terms in case that no
prior information about the shape is available. To fully benefit from this adaptiv-
ity, we further narrow our choice by considering compactly supported radial basis
functions. Apparently, this choice would result sparsity in the resulting matrices.
However, we will discuss a behavior of these functions which can be exploited to
further reduce the number of underlying basis terms and provide the potential
to reconstruct rather high curvature regions. The flexibility and performance of
proposed methods will be examined through illustrative examples.

The paper is structured as follows. In Section 2 we review shape-based inverse
problems in a general variational framework. Section 3 is concerned with obtaining
the first and second order sensitivities of the cost function with respect to the
functions defining the shape. Based on the details provided, a brief revision of the



relevant traditional level set methods is provided paving the path to use parametric
level set methods. In Section 4 the general parametric level set method will be
introduced and evolution equations corresponding to the underlying parameters
are derived. In Section 5 an adaptive parametric level set based on the radial basis
functions will be proposed and the approach will be narrowed down to compactly
supported class of functions, due to their interesting properties. Section 6 will
examine the method through some examples in the context of electrical resistance
tomography, X-ray tomography and diffuse optical tomography. Finally in Section
7 some concluding remarks and suggestions will be provided.

2 Problem Formulation

2.1 Forward Modelling

The approach to modelling and determination of shape we consider in this paper
is rather general with the capability of being applied to a range of inverse prob-
lems. In Section 6 we specifically consider three applications: electrical resistance
tomography, limited view X ray tomography, and diffuse optical tomography. The
details of the specific problems will be provided in the same section within the
context of the examples themselves. Up until that point, we have chosen to keep
the discussion general.

Consider Ω to be a compact domain in Rn, n ≥ 2, with Lipschitz boundary
∂Ω. Further assume for x ∈ Ω, a space dependent property p(x) ∈ Sp, where
Sp is a Hilbert space. A physical model M acts on a property of the medium
(e.g., electrical conductivity, mass density or optical absorption), p, to generate an
observation (or measurement) vector u,

u =M(p), (1)

where u itself belongs to some Hilbert space Su. In most applications u is a vector
in Ck, the space of k dimensional complex numbers where k represents the number
of measurements and accordingly a canonical inner product is used.

As a convention throughout this paper, to keep the generality of notation, the
inner products and norms corresponding to any Hilbert space H, are subindexed
with the notation of the space itself, e.g. ⟨., .⟩H.



2.2 Inverse Problem

The goal of an inverse problem is the recovery of information about the property p
based on the data u. Here we consider a variational approach where the estimate
of p is generated as the solution to an optimization problem. The functional
underlying the problem is usually comprised of two terms. The first term demands
that the estimate of p be consistent with the data in a mathematically precise
sense. As is well known however, many interesting inverse problems are quite ill-
posed. This means when the data consistency is our only concern, the resulting
estimate of p could be quite far from the truth, corrupted by artifacts such as high
frequency and large amplitude oscillations. Hence, an additional term (or terms)
are required in the formulation of the variation problem which capture our prior
knowledge concerning the expected behavior of the p in Ω. Such terms serve to
stabilize (or regularize) the inverse problem. Defining a residual operator as

R(p) =M(p) − u, (2)

the inverse problem is formulated in the following manner

min
p

F (p) = 1

2
∥R(p)∥2

Su +L(p), (3)

where L is the regularization functional. Appropriate choice of L is usually based
on properties of the problem. In the typical case where the unknown property p is
represented as a dense collection of pixels (or voxels) in Ω, the regularization penal-
ties are used to enforce smoothness and boundedness of p in Ω. These are usually
considered in the framework of Tikhonov and total variation regularizations [1,74].
An alternative approach that has been of great interest in recent years is based
on geometric parameterizations of the unknown. Here the regularization penalties
are either embedded in the nature of the unknown or expressed as geometric con-
straints on the unknown. No matter which approach is used, usually in defining
L different spaces and their corresponding norms may be used. For a more de-
tailed review of such methods an interested reader is referred to [24, 77]. Clearly
when the number of parameters involved in the problem is sufficiently small, an
underdetermined inverse problem can be made overdetermined, and in this sense
the problem becomes better posed. Since the parametrization idea we will put
forth in this paper is empirically found to be well-posed enough that no necessary
regularization terms need to be added to the cost function, L will be neglected in
our future discussions of F .



2.3 A Shape-Based Approach For the Unknown Parameter

For a large class of “shape-based” inverse problems [24, 42, 51, 64], it is natural to
view p(x) as being comprised of two classes, i.e., foreground and background. The
problem then amounts to determination of the boundary separating these classes as
well as characteristics of the property values in each class. In the simplest case, p(x)
is piecewise constant while in more sophisticated cases p(x) may be random and
characterized by different probabilistic models in the two regions. In this paper,
we assume that over each region p(x) is at least differentiable. The property
of interest in this case is usually formulated through the use of a characteristic
function. Given a closed domain D ⊆ Ω with corresponding boundary ∂D, the
characteristic function χD is defined as

χD(x) = { 1 x ∈D
0 x ∈ Ω ∖D. (4)

Accordingly, the unknown property p(x) can be defined over the entire domain Ω
as

p(x) = pi(x)χD(x) + po(x)(1 − χD(x)). (5)

Unlike p(x) which is clearly not differentiable along ∂D, pi(x) indicating the prop-
erty values inside D and po(x) denoting the values outside, are assumed to be
smooth functions, and as mentioned earlier, at least belonging to C1(Ω).

In a shape-based approach, finding ∂D is a major objective. As (5) and (4)
show, p(x) is implicitly related to D and to find ∂D, a more explicit way of relating
them should be considered. In this regard the idea of using a level set function
proves to be especially useful [64]. Here ∂D is represented as some level set of a
Lipschitz continuous function φ ∶ Ω → R. When the zero level set is considered,
φ(x) is related to D and ∂D via

⎧⎪⎪⎪⎨⎪⎪⎪⎩

φ(x) > 0 ∀x ∈D
φ(x) = 0 ∀x ∈ ∂D
φ(x) < 0 ∀x ∈ Ω ∖D.

(6)

Making the use of a Heaviside function, defined as H(.) = 1
2
(1 + sign(.)), the

function p(x) can be represented as

p(x) = pi(x)H(φ(x)) + po(x)(1 −H(φ(x))). (7)

This equation in fact maps the space of unknown regions D into the space of
unknown smooth functions φ.



3 Inversion as a Cost Function Minimization

In this section we develop the mathematical details of the minimization problem (3)
when a shape-based approach as (7) is considered. Most current methods use the
first and second order sensitivities of the cost function with respect to the unknown
parameter to perform the minimization [11]. Based on the general details provided,
we will briefly revisit the traditional level set approaches relevant to this paper in
Section 3.2, since understanding the details better justifies the use of parametric
level set methods.

3.1 Cost Function Variations Due to the Unknowns

We begin by assuming that the first and second order Fréchet derivatives of R(p)
exist and denote them as R′(p)[ . ] and R′′(p)[., .]. The first order Fréchet deriva-
tive of a function (if it exists) is a bounded and linear operator. The second order
Fréchet derivative is also bounded but bilinear, which means the operator acts on
two arguments and is linear with respect to each [4].

For an arbitrary variation δp ∈ Sp and the real scalar ε, using the generalized
Taylor expansion we have

R(p + εδp) = R(p) + εR′(p)[δp] + ε
2

2
R′′(p)[δp, δp] +O(ε3). (8)

Rewriting F (p) as

F (p) = 1

2
⟨R(p),R(p)⟩Su , (9)

and recalling the fact that ⟨u1, u2⟩Su = ⟨u2, u1⟩Su for u1, u2 ∈ Su and overline denoting
complex conjugate, the variations of the cost function with respect to the variations
of p can be derived as

F (p + εδp) = F (p) + εF ′(p)[δp] + ε
2

2
F ′′(p)[δp, δp] +O(ε3), (10)

where for p1, p2 ∈ Sp

F ′(p)[p1] = Re⟨R′(p)[p1],R(p)⟩Su (11)

and

F ′′(p)[p1, p2] = Re⟨R′(p)[p1],R′(p)[p2]⟩Su +Re⟨R′′(p)[p1, p2],R(p)⟩Su . (12)



The notation Re indicates the real part of the corresponding quantity. Denoting
R′(p)∗[ . ] as the adjoint operator between Su and Sp as

⟨û,R′(p)[p̂]⟩Su = ⟨R′(p)∗[û], p̂⟩Sp , ∀û ∈ Su,∀p̂ ∈ Sp, (13)

(11) can be written as

F ′(p)[p1] = Re⟨R′(p)∗[R(p)], p1⟩Sp . (14)

Equations (11), (14) and (12) are in fact the first and second order Fréchet deriva-
tives of F with respect to p. In a more general context (and indeed one which we
shall use in Section 4), p itself can be the map over some variable v from another
Hilbert space Sv into Sp, i.e., p(v) ∶ Sv → Sp. Assuming the existence of the first
and second order Fréchet derivatives of p with respect to v, denoted as p′(v)[ . ]
and p′′(v)[., .], the first and second order Fréchet derivatives of F with respect to
v can be obtained using the chain rule as

F ′(v)[v1] = F ′(p)[p′(v)[v1]] (15)

and

F ′′(v)[v1, v2] = F ′′(p)[p′(v)[v1], p′(v)[v2]] +F ′(p)[p′′(v)[v1, v2]], (16)

where v1, v2 ∈ Sv. Equations (15) and (16) themselves can be easily expressed in
terms of R(p) and its derivatives using (11) and (12). These equations will be
used later as the key equations in finding the sensitivities in our parametric level
set representation of p.

3.2 Pixel Based Minimizations (Revisiting Traditional Level
Set Methods)

In the specific context of the shape-based inverse problems of interest here, the first
and second order sensitivities of the cost function F with respect to the functions
defining p(x) in (7) i.e., φ(x), pi(x) and po(x), can be used to form a minimization
process. Based on the order of the sensitivities available, first order optimization
methods such as gradient descent or second order methods such as Newton or
quasi-Newton techniques can be implemented.

For simplicity in reviewing the current methods, we assume that pi and po
are known a priori and only the shape (i.e., the zero level set of φ) is unknown



(see [25,28,76] for details on the recovery of both the shape as well as the contrast
function). In an evolution approach it is desired to initialize a minimization process
with some level set function φ0 and evolve the function to find a φ which minimizes
F . To take into account the concept of evolution, an artificial time is defined where
the level set function at every time frame t ≥ 0 is rewritten as φ(x; t) and the zero
level set of φ(x; t) is denoted as ∂Dt. A straightforward differentiation of φ(x; t) = 0
with respect to t yields to the Hamilton-Jacobi type equation

∂φ

∂t
+ V (x; t) ⋅ ∇φ = 0 (17)

for the points on ∂Dt where V (x; t) = dx/dt. To move the interface in the normal
direction, V (x; t) should be chosen as v(x; t)n⃗(x; t) where v is a scalar speed func-
tion and n⃗ = ∇φ/∣∇φ∣ is the unit outward vector on ∂Dt. Incorporating this into
the minimization of F , the speed function for the points on ∂Dt, denoted as ṽ,
can be chosen to be in the steepest descent direction of F which is [24]

ṽ = −Re{(po − pi)R′(p)∗ [R(p)]}. (18)

As (18) is only valid for x ∈ ∂D, a velocity extension should be performed to ex-
tend ṽ to v defined over the entire domain Ω and therefore capable of globally
evolve the level set function [56]. Beside this classical level set approach, other
ways of representing the speed functions and performing the minimization process
are proposed [10,50,58]. For example, Hadj Miled and Miller [50] proposed a nor-
malized version of the classic speed function in the context of electrical resistance
tomography.

Some authors have also proposed using Newton type methods to update ṽ at
every iteration (e.g., see [10, 64, 69]). Analogous to (2) and (9), in these problems
the residual operator and the cost function are usually written directly as R(D)
and F (D), functions of the shape itself. Assuming the existence of the first and
second order shape derivatives [55], denoted as F ′(D)[ . ] and F ′′(D)[., .], at every
time step the Newton update ṽ is obtained by solving [11]

F ′′(D)[w, ṽ] +F ′(D)[w] = 0 ∀w ∈ SD. (19)

Here SD is an appropriate Hilbert space such as L2(∂D), which may depend on
the current shape [9, 10]. Considering the general forms of the derivatives as (11)
and (12), in a Gauss-Newton method the second derivatives of R are disregarded
and (19) becomes

Re⟨R′(D)[ṽ],R′(D)[w]⟩Su +Re⟨R′(D)[w],R(D)⟩Su = 0 ∀w ∈ SD. (20)



Furthermore, to avoid ill conditioning, in a Levenberg-Marquardt approach (20) is
regularized as

Re⟨R′(D)[ṽ],R′(D)[w]⟩Su +Re⟨R′(D)[w],R(D)⟩Su + λ⟨ṽ, w⟩SD = 0 ∀w ∈ SD.
(21)

in which for λ > 0, the equation is shown to be well-posed [10]. Similar to the
previous approach, once ṽ is obtained, a velocity extension is performed to result a
globally defined v which can be used to update φ. However, although using second
order methods can reduce the number of iterations in finding a minima, compared
to gradient descent methods, they do not necessarily reduce the computation load.

From an implementation perspective there are some concerns using the afore-
mentioned methods. The gradient descent method usually requires many iterations
to converge and performances become poor for low sensitivity problems [50]. Al-
though using Newton and quasi-Newton methods to update the level set function
increases the convergence rate, they are usually computationally challenging and
for large problems and relatively finer grids, a large system of equations must
be solved at every iteration. Also for both types of methods, there are usually
added complications of the level set function re-initialization and speed function
extension. The approach that we will put forth in the next section is capable of
addressing these problems. It is low order and numerically speaking, the number
of unknowns involved in the problem are usually much less than the number of
grid points and hence allows us to easily use second order methods. Moreover, our
proposed method does not require re-initialization of the level set function, speed
function extension or even length-type regularization as a common regularization in
many shape-based methods (e.g., see [24,33,50]) and our level set function remains
well behaved through the corresponding evolution process.

4 A Parametric Level Set Approach

As discussed earlier, in most current shape-based methods φ(x) is represented by
function values on a dense discretization of x-space as part of a discretization of
the underlying evolution equation or Newton-type algorithm. Consider now the
level set function to be still a function of x but also a function of a parameter
vector µ = (µ1, µ2,⋯, µm) ∈ Rm. In this case we define the continuous Lipschitz
function φ ∶ Ω × Rm → R, as a parametric level set (PaLS) representation of D if



for a c ∈ R ⎧⎪⎪⎪⎨⎪⎪⎪⎩

φ(x,µ) > c ∀x ∈D
φ(x,µ) = c ∀x ∈ ∂D
φ(x,µ) < c ∀x ∈ Ω ∖D.

(22)

In the PaLS approach we assume that the general form of φ(x,µ) is known and the
specification of µ can explicitly define the level set function over the entire domain
Ω. In other words the evolution of φ required to solve the underlying inverse
problems is performed via the evolution of µ. An example of a PaLS function is
a basis expansion with known basis functions and unknown weights and as will be
shown later in this paper we considerably expand on this notion. We call µ the
PaLS parameters.

To setup the problem using the PaLS approach, consider momentarily that
pi(x) and po(x) are known a priori (later we will appropriately take away this
restriction). Based on (22) p is written as

p(x,µ) = pi(x)H(φ(x,µ) − c) + po(x)(1 −H(φ(x,µ) − c)). (23)

Under this model, we now view F in (9) as a function of µ, i.e. F (µ) ∶ Rm →
R. Therefore unlike the classic level set approach, the unknown is no longer the
function φ, but a vector belonging to Rm, where m is usually much smaller than
the number of unknowns associated with a discretization of x-space. With this
model and assuming (1) φ is sufficiently smooth with respect to the elements of
µ and (2) the discontinuous Heaviside function is replaced by a C2 approximation
(e.g., [84]) denoted as Hrg, we now proceed to formulate a second order approach
for the minimization of F (µ). To begin, rewriting (23) with Hrg and taking a
derivative with respect to φ yields

∂p

∂φ
= (pi − po)δrg(φ − c), (24)

where δrg(.) is accordingly the regularized version of the Dirac delta function (see
examples in [73,84]). Using the chain rule gives

∂p

∂µj
= ∂p
∂φ

∂φ

∂µj
= (pi − po)δrg(φ − c)

∂φ

∂µj
. (25)



Now using (25) with (15) and (14), the gradient vector for F is

∂F

∂µj
= F ′(p)[ ∂p

∂µj
]

= Re⟨R(p),R′(p)[ ∂p
∂µj

]⟩Su (26)

= Re⟨R′(p)∗[R(p)], (pi − po)δrg(φ − c)
∂φ

∂µj
⟩Sp . (27)

We denote by Jµ(F ) the gradient of F with respect to the parameter vector µ.
With this notation a gradient descent equation can be formed to evolve the PaLS
function as

µ(t+1) = µ(t) − λ(t)Jµ(F )∣
µ=µ(t) t ≥ 0, (28)

where λ(t) > 0 is the iteration step [6]) and (28) is assumed to be initialized with
some µ(0). Although gradient decent is relatively simple to implement, it is known
to be slow to converge and can suffer from difficulties associated with scaling of
the parameters [21]. Moreover, the use of gradient decent fails to take advantage
of one of the primary benefits of the PaLS idea; namely the ability to specify a
level set function using a small (relative to a discretization of x-space) number of
parameters. Under this model, it becomes feasible and indeed useful to consider
higher order optimization methods such as Newton or quasi-Newton methods which
are faster in convergence and robust with respect to sensitivity scalings of different
parameters [21]. These methods usually use the information in the Hessian, which
we now derive. To calculate the elements of the Hessian matrix for F using (25)
we have

∂2p

∂µj∂µk
= (pi − po)(δrg(φ − c)

∂2φ

∂µj∂µk
+ δ′rg(φ − c)

∂φ

∂µj

∂φ

∂µk
), (29)

where δ′rg(.) is the derivative of the regularized Dirac delta function. Based on (16)
and (12) we have

∂2F

∂µj∂µk
= F ′′(p)[ ∂p

∂µj
,
∂p

∂µk
] +F ′(p)[ ∂2p

∂µj∂µk
]

= Re⟨R′(p)[ ∂p
∂µj

],R′(p)[ ∂p
∂µk

]⟩Su +Re⟨R′′(p)[ ∂p
∂µj

,
∂p

∂µk
],R(p)⟩Su

+Re⟨R′(p)∗[R(p)], ∂2p

∂µj∂µk
⟩Sp . (30)



This equation is in fact the exact expression for the elements of the Hessian matrix
for F . However as mentioned earlier, in methods such as the Gauss-Newton or
Levenberg-Marquardt, to reduce the computation cost the Hessian is approximated
in that the terms containing second order derivatives are disregarded. Following
that approach here, (30) becomes

∂2F

∂µj∂µk
≃ Re⟨R′(p)[ ∂p

∂µj
],R′(p)[ ∂p

∂µk
]⟩Su (31)

= Re⟨R′(p)[(pi − po)δrg(φ − c)
∂φ

∂µj
],R′(p)[(pi − po)δrg(φ − c)

∂φ

∂µk
]⟩Su .

(32)

We denote as H̃µ(F ) the approximate Hessian matrix, the elements of which are
obtained through (31). Having this in hand, a stable and faster converging PaLS
function evolution can be proposed by solving the following Levenberg-Marquardt
equation for µ(t+1)

[H̃µ(F )∣
µ=µ(t) + λ

(t)I](µ(t+1) −µ(t)) = −Jµ(F )∣
µ=µ(t) t ≥ 0. (33)

Here λ(t) is a small positive number chosen at every iteration and I is the identity
matrix. In fact referring to (31) we can see that the approximate Hessian matrix
H̃µ(F ) is a Gramian matrix and hence positive semidefinite. Therefore adding
the small regularization term λ(t)I would make the matrix at the left side always
positive definite and hence the system of equations resulting the updates for µ
always has a unique solution. The left hand side matrix being strictly positive
definite guarantees ∆µ(t) = µ(t+1) − µ(t) to be in the descent direction since we
have

[∆µ(t)]T[Jµ(F )] = −[∆µ(t)]T[H̃µ(F ) + λ(t)I][∆µ(t)] < 0 (34)

where the superscript T denotes the matrix transpose. More technical details about
the implementation of the Levenberg-Marquardt algorithm such as the techniques
of choosing λ(t) at each iteration based on trust region algorithms are available
in [6, 21].

We now turn our attention to the determination of pi(x) and po(x). For sim-
plicity here we assume that p(x) is piecewise constant as is often the case in work
of this type [72]. This, in addition to the shape parameters, we need to deter-
mine two constants defining the contrasts over the regions. We do note that the
approach can easily be extended to consider other low order “texture models” as
is done in e.g. [37]. As our primary interest in this paper is a new method for



representing shape, we defer this work to the future. Under our piecewise constant
contrast model, we denote the contrasts as pi(x) = pi and po(x) = po, were pi and
po are unknown constant values. Following analogous equations as (26) and (30),
these parameters can also be appended to the unknown PaLS parameters. The
sensitivity of F with respect to these parameters can also be derived based on the
fact that

∂p

∂pi
= 1 − ∂p

∂po
=Hrg(φ − c). (35)

and the second order derivatives of p with respect to pi and po are zero.
For the PaLS approach represented in this section, the intention is to keep the

formulations general and emphasize the fact that this representation can formally
reduce the dimensionality of the shaped based inversion. Clearly the expression
∂φ/∂µj depends on how the PaLS functions are related to their parameters. In the
next section a specific PaLS representation is presented the efficiency of which will
be later examined through some examples.

5 PaLS Function Representation

5.1 Adaptive Radial Basis Functions

As pointed out earlier, appropriate choice of a PaLS function can significantly re-
duce the dimensionality of an inverse problem. In this paper we are interested in a
low order model for the level set function which will provide flexibility in terms of
its ability to represent shapes of varying degree of complexity as measured specifi-
cally by the curvature of the boundary. This representation may allow for “coarse
scale” elements capable of representing boundaries of low curvature with few ele-
ments. Furthermore, it is desired to have finer grain elements capable of capturing
higher curvature portions of the boundary such as sharp turns or corners. Such
adaptability is desirable for a general PaLS representation since the characteristics
must be present for well-posed inverse problems such as full view X-ray CT or
even image segmentation where high fidelity reconstructions are possible. On the
other hand, as we demonstrate in Section 6, for severely ill-posed problems, the
availability of models with this parsimonious, but flexible structure may allow for
the recovery of geometric detail that otherwise would be not be obtainable form
e.g., a traditional level set or pixel based approach. Writing a PaLS function as
a weighted summation of some basis functions may be a reasonable choice here,
where different terms in the summation may handle some desired properties about



the shape. Here we focus specifically on the class of radial basis functions (RBF).
We are motivated to concentrate on RBFs as they have shown to be very flexi-
ble in representing functions of various detail levels. This flexibility makes them
appropriate choice for topology optimization [79], solving partial differential equa-
tions [36] and multivariate interpolation of scattered data [32,81]. Some examples
of commonly used RBFs are Gaussian, multiquadric, polyharmonic splines and
thin plate splines. More details about these functions and their properties are
available in [8].

Based on the statements made, consider the PaLS function

φ(x,α) =
m0

∑
j=1
αjψ(∥x −χj∥) (36)

where ψ ∶ R+ → R is a sufficiently smooth radial basis function, α ∈ Rm0 is the
PaLS parameter vector and ∥.∥ denotes the Euclidean norm. The points χj are
called the RBF centers. In an interpolation context, usually the centers are decided
in advance and distributed more densely in regions with more data fluctuations.
However, in a PaLS approach there may be limited information about the shape
geometry and therefore more flexibility is required. Thus here we consider a more
general PaLS function of the form

φ(x, [α,β,χ]) =
m0

∑
j=1
αjψ(∥βj(x −χj)∥†), (37)

for which the vector of centers χ = [χ1,χ2,⋯,χm0
] and the dilation factors β =

[β1, β2,⋯, βm0] are added to the set of PaLS parameters. Also in order to make
the PaLS function globally differentiable with respect to the elements of β and χ,
similar to [1] a smooth approximation of the Euclidean norm is used as

∥x∥† ∶=
√

∥x∥2 + υ2 ∀x ∈ Rn, (38)

where υ ≠ 0 is a small real number. The use of (37) rather than (36) makes
the PaLS function capable of following more details through scaling the RBFs or
floating centers moving to regions where more details are required. To incorporate
this into the optimization methods described, the sensitivities of φ with respect to
the PaLS parameters are

∂φ

∂αj
= ψ(∥βj(x −χj)∥†) (39)



and
∂φ

∂βj
= αjβj

∥(x −χj)∥2

∥βj(x −χj)∥†ψ
′(∥βj(x −χj)∥†). (40)

Also considering χ
(k)
j and x(k) to be the kth components of χj and x as points in

Rn, for k = 1,2,⋯, n we have

∂φ

∂χ
(k)
j

= αjβ2
j

χ
(k)
j − x(k)

∥βj(x −χj)∥†ψ
′(∥βj(x −χj)∥†). (41)

Clearly the sensitivities obtained are general and valid for any RBF in C1(R+). In
the next section, we consider a specific class of RBFs that we have found to be
particularly well suited to the PaLS problem.

5.2 The Choice of Compactly Supported Radial Basis Func-
tions

Usually the RBFs used in various applications involving function representations
are C∞ functions with global support [8]. However a different class of RBFs which
have recently been under consideration are the compactly supported radial basis
functions (CSRBFs) [81]. These functions become exactly zero after a certain
radius while still retaining various orders of smoothness. From a numerical point
of view, compact support of the RBFs yields sparsity in the resulting matrices
arising in the implementation of these methods and hence reduces the computation
cost. This was recently the motivation to use these functions in simplifying level
set methods [29]. Another interesting property of these functions is their local
sensitivities to the underlying parameters [81]. In other words, when a function is
expressed as a weighted sum of CSRBFs, changing a term would not have a global
effect on the function and only locally deforms it.

Beside aforementioned advantages of the CSRBFs, our interest in this class of
RBFs arises from their potential in reconstructing the shapes with a very small
number of terms in a PaLS representation as (37). Furthermore, as will be ex-
plained, this representation can involve shapes with corners and rather high cur-
vature regions. For ψ ≥ 0 being a smooth CSRBF, lets denote every basis term in
(37) as

ψj(x) = ψ(∥βj(x −χj)∥†) (42)



and call ψj a bump. Due to the compact support of these functions, for every two
bumps ψj and ψk we can write

supp(ψj + ψk) = supp(ψj) ∪ supp(ψk). (43)

For a real valued function ϑ defined over Rn we define

Ic(ϑ) ∶= {x ∶ ϑ(x) ≥ c}. (44)

Clearly for c > 0, Ic(ϑ) represents the interior of the c-level set of ϑ. Based on (43)
and the smoothness of the bumps, we obviously have that as c → 0+, Ic(ψj + ψk)
would tend to Ic(ψj)⋃Ic(ψk). More generally for αj > 0, Ic(∑m0

j=1αjψj) tends to

⋃m0
j=1 Ic(ψj) as (c/αj) → 0+. In other words, using relatively large CSRBF weights

(as compared to c) can imply reconstruction of the shape through the union of a
collection of floating balls of various radii. Moreover Ic(ψj − αkψk) would tend to
Ic(ψj)∖Ic(ψk) as c→ 0+ and αk → +∞. In a more general fashion, Ic(αjψj−αkψk)
tends to Ic(ψj)∖Ic(ψk) as (c/αj) → 0+ and (αk/αj) → +∞. Therefore in this
context, bumps with larger negative coefficients can yield holes or inflect the shape
by excluding some portions of it. We would consider the two aforementioned
properties of the CSRBFs as a “pseudo-logical” behavior of these functions. This
property can result in rather high curvature geometries with a limited number of
bumps. Besides high curvature regions, low curvature segments (e.g., an almost
straight line in R2 or a planar segment in R3) can be formed by interaction of two
identical bumps but with opposite signs at their footprint intersections. Figure
1.a sheds more light on aforementioned facts, and shows the interaction of two
bumps, which for instance can represent a crescent with two rather sharp corners
(α = −50), or a contour with a low curvature segment (α = −1). As a second
example, a representation of a square using only 5 bumps is depicted in Figures
1.b and 1.c.

The most commonly used CSRBFs are those called Wendland’s functions [81].
The smoothness and the compact support provided by Wendland’s functions are
of interest and hence we shall use them as the basis for our PaLS approach. Wend-
land’s functions follow the general form of

ψn,l(r) = { Pn,l(r) 0 ≤ r ≤ 1
0 r > 1

(45)

when representing an RBF in Rn, with Pn,l being a univariate polynomial of degree
⌊n/2⌋ + 3l + 1. In terms of smoothness, this class of RBFs belong to C2l. A
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Figure 1: (a) Left: A close to zero (c = 0.01) level set of the function ψ1 + αψ2 for
various values of α. The CSRBF used is the Wendland’s function ψ1,1 (cf. Table 1),
the dilation factors are β1 = β2 = 1 and the centers are taken as χ1 = (−1

4 ,−1
4) and

χ2 = (2
5 ,

2
5). (b) Center: A PaLS function involved in representation of a square at

a close to zero level set. Only 5 bumps are involved. (c) Right: The representation
of the square

Table 1: Compactly supported RBFs of minimal degree where ` = ⌊n/2⌋ + l + 1 and
(1 − r)+ = max{0,1 − r}

Function Smoothness

ψn,1(r) = (1 − r)`+1
+ ((` + 1)r + 1) C2

ψn,2(r) = (1 − r)`+2
+ ((`2 + 4` + 3)r2 + (3` + 6)r + 3) C4

ψn,3(r) = (1 − r)`+3
+ ((`3 + 9`2 + 23` + 15)r3+ C6

(6`2 + 36` + 45)r2 + (15` + 45)r + 15)

derivation of these functions is provided in [81], from which we have listed the first
few functions in Table 1.

In the next section we discuss the regularized heaviside function and explain
how choosing an appropriate version of this function in (23), can pave the path for
exploiting the pseudo-logical behavior of the bumps.

5.3 Numerical Approximation of the Heaviside Function

In a shape-based representation such as (23), solving the inverse problem numer-
ically and making the evolution of the level set function possible requires using a
smooth version of the heaviside function. A possible C∞ regularization of H(.)
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Figure 2: (a) Left: Two regularized versions of the heaviside function. (b) Right:
Corresponding regularized delta functions

denoted as H1,ε is the one used in [16], as

H1,ε(x) =
1

2
(1 + 2

π
arctan(πx

ε
)). (46)

This function is commonly used in shape-based applications and specifically in the
recent parametric representations of the level set function in image segmentation
[5,29]. Chan et al. in [14] have studied the characteristics of the resulting level set
functions using H1,ε as the evolution proceeds. In the context of the current shape-
based problem for which pi(x) = pi and po(x) = po, and considering the zero level
set, (7) reveals that in an evolution process φ is likely to evolve towards a state that
H(φ(x)) = 1 for x ∈D and H(φ(x)) = 0 for x ∈ Ω∖D. Referring to Figure 2.a, one
observes that when H1,ε is used as the regularized heaviside function, in order to
have H1,ε(φ) ≃ 1 in D, the level set function should take rather large positive values
(as compared to ε) in this region. Analogously in Ω∖D, φ is pushed to take rather
large negative values. These constraints are implicitly imposed on the resulting
level set function and specifically using CSRBFs in a PaLS approach as (37), the
bumps are expected to distribute throughout Ω to form a level set function which
takes rather large positive (or negative) values inside (or outside) D.



An alternative choice of the regularized Heaviside function is the C2 function,

H2,ε(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 x > ε
0 x < −ε

1
2 + x

2ε + 1
2π sin(πxε ) ∣x∣ ≤ ε,

(47)

as proposed in [84]. It can be shown that if the nonzero level set c and ε are
appropriately set, using H2,ε enables us to exploit the pseudo-logical behavior de-
scribed previously. More specifically, for c > 0, and φ being a weighted sum of some
bumps, and therefore compactly supported itself, we clearly want the points for
which φ ≤ 0 to belong to Ω ∖D, i.e., to correspond to the intensity po. Using (23),
this requires having H(φ − c) = 0 for φ ≤ 0. Referring to Figure 2.a, this condition
is satisfied when H2,ε is chosen as the regularized heaviside function and −c ≤ −ε
(or in general case ∣c∣ ≥ ε as the required criteria). Practically, this use of H2,ε takes
away the implicit constraint imposed on the level set function using H1,ε, i.e., the
bumps do not have to spread throughout Ω and may only concentrate inside and
about the shape D to perform a higher resolution shaping. Figure 3 shows a typical
shape representation resulted using H1,ε and H2,ε highlighting the pseudo-logical
property.

Besides exploiting the pseudo-logical behavior, using H2,ε can provide another
advantage which reduces the dimensionality of the problem at every iteration, i.e.,
at every step of the evolution process, the cost function will be sensitive to a specific
group of PaLS parameters. To further describe this behavior, consider the term
δrg(φ−c) ∂φ

∂µj
appearing in both the Jacobian and the approximate Hessian of F in

(27) and (32). Also for an evolution iteration, assume the superscript (t) indicating
the value of every quantity at that iteration. If for a PaLS parameter such as µj0

δrg(φ(t) − c)
∂φ(t)

∂µj0
∣
µj0
=µ(t)j0

= 0 ∀x ∈ Ω, (48)

then using either one of the minimization schemes as (28) or (33) yields

µ
(t+1)
j0

= µ(t)j0 . (49)

The reason for this result is clear for the gradient descent scheme (28), based
on the fact that using (48) in (27) causes the jth

0
element of gradient vector to

vanish and hence µ
(t)
j0

remaining unchanged at the corresponding iteration. For

the Levenberg-Marquardt scheme (33), using (48) in (32) causes all the elements



Figure 3: (a) Left: A typical PaLS function resulted using H1,ε with 65 bumps and
considering the zero level set. (b) Right: A typical PaLS function resulted using
H2,ε with 30 bumps and considering the c level set

in the jth
0

row of the approximate Hessian matrix to vanish, which results the
corresponding equation

λ(µ(t+1)
j0

− µ(t)j0 ) = 0, (50)

again equivalent to (49). Therefore, for either one of the minimization schemes, if
(48) holds, the PaLS parameter µj0 will stay unchanged in that iteration. We here
describe a common case that (48) holds during the evolution process:

By using H2,ε as the regularized level set function, the corresponding regularized
delta function δ2,ε will be compactly supported (as shown in Figure 2.b), hence
δ2,ε(φ − c) is only nonzero for c − ε < φ < c + ε. On the other hand, based on the
PaLS approach presented in this paper using CSRBFs, for µj being any of the

PaLS parameters αj, βj or χ
(k)
j corresponding to the bump ψj, we have

supp( ∂φ
∂µj

) ⊆ supp(ψj). (51)



This fact is easily observable in (39), (40) and (41), where the related derivatives
can only have nonzero values in supp(ψj). Therefore, if at some iteration and for
a bump ψj0 ,

supp (δ2,ε(φ − c)) ∩ supp(ψj0) = ∅, (52)

then in that iteration we have

δ2,ε(φ − c)
∂φ

∂µj0
= 0 (53)

and therefore the PaLS parameters corresponding to ψj0 will stay unchanged in
that iteration. Figure 4 illustrates this phenomenon, showing a PaLS function
composed of 6 bumps at some iterations. For 5 of the bumps used, the corre-
sponding support does intersect the region supp(δ2,ε(φ − c)), and therefore their
corresponding parameters have the potential to change at this state of the PaLS
function. However, a bump denoted as ψj0 , does not intersect supp (δ2,ε(φ−c)), and
the underlying PaLS parameters do not need to be considered in that iteration.
This approach is similar to the narrow-banding approach in traditional level-set
methods [2, 59, 66], where the values of the level set function are only updated on
a narrow band around the zero level set and hence reducing the computation load.
In our approach, however, this band is the points for which c− ε < φ < c+ ε and the
bumps which do not intersect with this band do not evolve at the corresponding
iteration and hence their corresponding parameters are not updated.

In the next section, through a number of examples drawn from a wide range
of applications, we will show the superior performance of the proposed method
specifically exploiting the pseudo-logical behavior of the CSRBFs.

6 Examples

In this section, we examine our proposed method for three different inverse prob-
lems, namely electrical resistance tomography, X-ray computed tomography and
diffuse optical tomography. The examples are simulated for 2D imaging and the
results are provided in each section. Throughout all the examples, Ω denotes the
region to be imaged and D denotes the shape domain as stated in the previous
sections.
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Figure 4: (a) Left: A typical PaLS function composed of 6 bumps, and the c ± ε
level sets. (b) Right: The bumps with active evolving parameters
and the frozen bump

6.1 Electrical Resistance Tomography

As the first example we consider electrical resistance tomography (ERT) catego-
rized as a severely ill-posed problem [22, 31]. The objective of this problem is the
reconstruction of the electrical conductivity within a region of interest based on the
potential or current measurements performed at the periphery of that region. Such
reconstructions may be applicable in various areas such as medical imaging [17],
geophysics [23] and environmental monitoring [19].

For many geophysical applications the underlying physical model describing
the DC potential u(x) inside Ω in terms of the conductivity σ(x) and the current
source distribution s(x) is

∇ ⋅ (σ(x)∇u(x)) = s(x) in Ω, (54)

σ
∂u

∂ν
= 0 on ∂Ωn ⊂ ∂Ω,

u = 0 on ∂Ωd = ∂Ω ∖ ∂Ωn,

where ν denotes the outward unit normal on ∂Ω and ∂Ωn and ∂Ωd correspond
to Neumann and Dirichlet boundaries. In many of the applications (e.g., see



[45, 54, 65, 75]) the Dirichlet boundary condition is imposed as an approximation
to the potential in regions far from the actual imaging region, and is used here for
simplicity. For arbitrary distributions of the conductivity, (54) is usually solved nu-
merically by means of finite element or finite difference methods [69,83]. However,
as the main focus of the paper, we concentrate on piecewise constant conductivity
distribution as σ(x) = σi for x ∈D and σ(x) = σo for x ∈ Ω ∖D.

For the inverse problem, the sensitivities of the measurements to perturbations
of the conductivity (in our approach the perturbations of the PaLS parameters)
are required. For s(x) = δ(x−xs), i.e., a point source current at xs ∈ Ω, we denote
by us(x) the resulting potential over the domain Ω and consider the measured
potential at xd ∈ Ω as

uds = ∫
Ω
us(x)δ(x − xd)dx. (55)

The variation of uds resulting from a perturbation δσ in the conductivity (i.e., the
Fréchet derivative of the measurements with respect to the conductivity) can be
then expressed as [62,68]

duds
dσ

[δσ] = ∫
Ω
δσ ∇us ⋅ ∇ud dx, (56)

where ud is the adjoint field that results from placing the current point source
at xd. To express the inverse problem in a PaLS framework, we consider M(.) as
the nonlinear forward model mapping the conductivity distribution into a vector of
voltage measurements u obtained by performing M experiments, having a different
point source position at each experiment and making N` potential measurements
for ` = 1,2,⋯,M . Having the residual operator R(σ) = M(σ) − u and using (56),
the Fréchet derivative denoted as R′(σ)[.] can be considered as a vector consisting
of M sub-vectors R′

`(σ)[.], structured as

R′
`(σ)[δσ] =

⎛
⎜
⎝

∫Ω δσ ∇u` ⋅ ∇u`1 dx
⋮

∫Ω δσ ∇u` ⋅ ∇u`N`
dx

⎞
⎟
⎠
. (57)

Here u` denotes the potential in the `th experiment and u`i denotes the adjoint

field corresponding to the `th experiment resulted from placing the current point
source at the ith measurement point. Having R′(σ)[.] in hand, one can obtain the
PaLS evolution through using (26) and (32) in (33).

For the purpose of this example, we model the electric potential within the
box Ω = [−3,3] × [−3,0] all dimensions in units of meters in x − y plane. Here
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Figure 5: (a) Left: The 2D modelling region for ERT. The darker interior region
is the imaging region surrounded by the sources and detectors. The dashed lines
correspond to dipole nodes used in every experiment (b) Right: The gray region
shows the shape to be reconstructed in the ERT problem. The dots with “+” and
“-” signs correspond to the centers of positive and negative weighted bumps in the
initial state of the problem. The black contour is the resulting c-level set of the
initial PaLS function.

∂Ωn corresponds to the top surface (y = 0) and ∂Ωd corresponds to the sides and
bottom boundaries as shown in Figure 5.a. The region to be imaged is the square
Ω′ = [−0.5,0.5]×[−1,0], where 30 points are allocated to the sensors placed equally
spaced on the top and the sides of this region (shown as small circles in the figure).
A total of M = 40 experiments are performed and in every experiment two of the
sensors are used as a current dipole (superposition of two point sources with oppo-
site signs) and the remaining 28 sensors measure the potential at the corresponding
positions. The dipole sources are chosen in a cross-medium configuration, where
the electrodes corresponding to every experiment are connected with a dashed line
as again shown in Figure 5.a. With this configuration we try to enforce electric
current flow across the medium anomalies and obtain data sets more sensitive
to shape characteristics. For the simulation, we use the finite difference method
where Ω is discretized to 125 grid points in the x direction and 100 points in the
y direction. The gridding is performed in a way that we have a uniform 75 × 75



grid within Ω′ (excluding the boundaries containing the sensors) and the exterior
grids linearly get coarser as they get further from Ω′ in the x and y direction. The
forward modelling is performed over the whole collection of grids in Ω, while the
inversion only involves the pixels within Ω′ (known as active cells [60]).

The shape to be reconstructed is shown as the gray region in Figure 5.b. This
shape is a threshholded version of a real scenario and is of particular interest here
because it has a concavity facing the bottom where there are no measurements
performed. The values for the anomaly conductivities are σi = 0.05 Sm−1 and
σo = 0.01 Sm−1 and the conductivity value used for Ω ∖Ω′ is the same as the true
value of σo in all our inversions. In the inversions we consider the data u to be
the measured potentials generated by the true anomaly with 1% additive Gaussian
noise. For the shape representation we use H2,ε with ε = 0.1 and we consider the
c = 0.15 level set.

For the PaLS representation (36) we have m0 = 40 terms and the Wendland’s
function ψ1,1 is used as the corresponding bump. For the initial PaLS parameters,
we consider a random initial distribution of the centers χj, within the square
[−0.4,0.4] × [−0.8,0]. The weighting coefficients are initialized as αj = ±0.2 where
the centers of alternatively positive and negative weighted bumps are shown with
“ + ” and “ − ” signs in Figure 5.b. The positive initial values of αj are taken
slightly bigger than c to have some initial c-level sets. The purpose behind having
alternative bump signs is to have the narrow-band supp(δ2,ε(φ − c)) cover various
regions of Ω′ and increase the chance of initially involving more bumps in the
shaping as explained in previous section and Figure 4. The dilation factors are
taken uniformly to be βj = 4, as an initialization to make the support radii of
the bumps small enough for capturing details and more or less large enough to
carpet the region Ω′. Our intention for this initialization of the PaLS parameters
is to provide a rather simple, reproducible and general initialization. The stopping
criteria in the reconstructions is when the norm of the residual operator reaches
the noise norm (known in the regularization literature as the discrepancy principle
[77]).

Figure 6.a shows the shape reconstruction using the PaLS approach, and as-
suming the values σi and σo are a priori known. Figure 6.b shows the result of the
same problem using a typical Gauss-Newton approach with the level set function
defined as a signed distance function over the pixels and a smoothing regulariza-
tion added as explained in [69]. This algorithm only considers shape reconstruction
(i.e., σi and σo are considered known) and it is initialized with the same contour
as the initial c-level set contour of the PaLS approach. As the results in Figure
6.a and 6.b show, the PaLS approach performs well in reconstructing major shape



−

+

−

+

−

+

+−

+

−+

−

+

−

+
−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−+

−

+

−

+

x

y

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

x

y

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

−

+

−

+

−

+

+−

+

−+

−

+

−

+
−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−+

−

+

−

+

x

y

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Figure 6: (a) Left: The result of reconstructing the shape using PaLS approach
after 26 iterations, the centers χj and their corresponding weight signs are shown.
(b) Center: Result of using the traditional level set method after 39 iterations (c)
Right: The result of reconstructing both the shape and the binary conductivity
values after 32 iterations

characteristics, while the traditional level set approach fails to provide a good re-
construction in low sensitivity regions close to the bottom and does not capture
the concavity. Figure 6.c shows the result of reconstructing both the shape and the
anomaly values using the PaLS approach, where this time the PaLS evolution takes
slightly more iterations (32 iterations verses 26), but the resulting reconstruction
still well represents the shape. The initial values used for the conductivity val-
ues are σ

(0)
i = 0.01 Sm−1 and σ

(0)
o = 0.005 Sm−1 and the final resulting values are

σ
(32)
i = 0.056 Sm−1 and σ

(32)
o = 0.010 Sm−1, which show a good match with the

real values. To illustrate the behavior of the PaLS function, in Figure 7 we have
shown the initial and final PaLS functions for the shape only reconstruction. Also
to compare the convergence behaviors of the PaLS approach and the traditional
level set approach, in Figure 8 we show the residual error through the evolution
steps for both methods. Using the PaLS approach the stopping criteria is met
after 26 iterations while traditional level set method reaches a local minima after
39 iterations (the updates after 39 iterations become so small that it stops evolving
further).



Figure 7: (a) Left: The initial PaLS function (b) Right: The final PaLS function
for the shape-only reconstruction of Figure 6.a

6.2 X-ray Computed Tomography

As the second example and a mildly ill-posed problem, we consider X-ray Com-
puted Tomography (CT) [20]. In this imaging technique, X-ray photons are trans-
mitted through the object of interest and the intensity of transmitted ray is mea-
sured at the boundaries to reconstruct the object’s attenuation coefficient. The
contrast between the attenuation characteristics of different materials can provide
structural information about the object being imaged. X-ray CT is among the
most well known methods for imaging the body tissue in medical applications [35].

For an X-ray beam transmitting along a line Lk in the tissue, the photon
intensity Xk measured at the detector side of the line can be written as

Xk = ∫ Ik(E) exp ( − ∫
Lk

α(x,E) dx) dE (58)

where α(x,E) denotes the attenuation coefficient, in general as a function of the
position x and the energy of the incident ray E , and Ik(E) denotes the incident
ray energy spectrum. In case of a monoenergetic beam as Ik(E) = I0,kδ(E − E0), a
measured quantity related to the photon intensity may be defined as

uk ∶= − log( Xk
I0,k

) = ∫
Lk

α(x)dx. (59)
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Figure 8: Residual error reduction through the iterative process for the shape only
reconstruction, using PaLS approach and the traditional level set method

Equation (59) simply relates the measurements to the Radon transform of the
attenuation coefficient α(x) in a monoenergetic scenario. The quantities uk are
actually what is considered as the data in CT imaging.

The Fréchet derivative of the CT measurements with respect to the attenuation
coefficient is expressed as

duk
dα

[δα] = ∫
Lk

δα dx. (60)

Considering u to be the set of CT data collected along different paths Lk, for
k = 1,2,⋯N , andM(α) as the forward model mapping the attenuation to the CT
data set, based on (60) the sensitivity of the residual operator R(α) = M(α) − u
with respect to a perturbation in α can be written as

R′(α)[δα] =
⎛
⎜
⎝

∫L1
δα dx

⋮
∫LN

δα dx

⎞
⎟
⎠
, (61)

which we need for the PALS evolution process.
We consider 2D imaging over a square of 2 m × 2 m, i.e., Ω = [−1,1] × [−1,1]

in the x − y plane, as shown in Figure 9.a. The region outside Ω is assumed to
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Figure 9: (a) Left: The 2D X-ray CT imaging setup (b) Right: The gray region
shows the attenuation shape to be reconstructed. The dots with “+” and “-” signs
correspond to the centers of positive and negative weighted bumps in the initial
state of the problem. The black contour is the resulting c-level set of the initial
PaLS function

have zero attenuation. The X-ray beams are emitted as parallel beams and the
measurements are performed through an equally spaced linear array of 34 sensors,
the vertical axis of which makes an angle θ with the x axis. For a full view X-ray CT
we have θ0 ≤ θ ≤ θ0+π, while in a limited view scenario, and hence a more ill-posed
problem, θ varies in a smaller angular domain. The shape to be reconstructed is
shown in Figure 9.b, which is brought here from [72] as a rather complex shape to
examine the flexibility of the PaLS approach. The region Ω is discretized into 64×64
uniform grid. The binary attenuation values are αi = 2.5 cm−1 and αo = 1 cm−1.
For the purpose of imaging, the forward model measurements are performed at
every 1 degree angle. For the PaLS representation, we use m0 = 50 bumps with the
centers χj, distributed randomly as shown in Figure 9.b. For this example we use
slightly more bumps due to the better posed nature of the problem (at least in the
full view case) and the more complex shape. Again to roughly carpet the domain
Ω with the bumps we uniformly take the dilation factors to be βj = 2.5. The other
PaLS settings used are similar to those of the ERT example in the previous section.
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Figure 10: (a) Left: The result of reconstructing both the shape and the anomaly
values in a 5% noise case using the PaLS approach, convergence achieved after
20 iterations (b) Right: Result of using the same data set with traditional level
set method to recover shape only, assuming attenuation coefficients are known,
convergence achieved after 14 iterations

Figure 10.a shows the result of reconstructing both the shape and the atten-
uation values for a full view experiment where 0 < θ < π. The synthetic data are
obtained from the true attenuation map and by adding 5% Gaussian noise to the
measurements. The initial values used for the attenuations are α

(0)
i = 1.5 cm−1 and

α
(0)
o = 0.5 cm−1 and the discrepancy principle stopping criteria is met after 20 iter-

ations resulting the corresponding shape and the final values of α
(20)
i = 2.494 cm−1

and α
(20)
o = 0.997 cm−1, which are very well matched with the real quantities. We

should mention here that when the attenuation values are assumed to be known,
the number of iterations for shape reconstruction is only 12. The same data set is
used to reconstruct the shape only, using the traditional level set method used in
the ERT example and initialized with the same contour as the c-level set contour
shown in Figure 9.b. The result of this reconstruction is shown in Figure 10.b.
Due to the better posed nature of this problem, the pixel based level set method
also provides a successful reconstruction for the geometry only. Note, however that
the PaLS approach is solving a more challenging problem (i.e., reconstructing the
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Figure 11: (a) Left: The result of PaLS shape reconstruction in a 1% noise case
to show the flexibility of following shape details due to the pseudo-logical prop-
erty, convergence achieved after 42 iterations (b) Right: The corresponding PaLS
function

attenuation values as well as the shape), thanks to the pseudo-logical behavior of
the bumps, the resulting shape follows the same detail levels as a pixel based level
set function. This shaping capability of the PaLS is more highlighted when we use
a less noisy data (1% Gaussian noise). The result is shown in Figure 11 where the
convergence is achieved after 42 iterations, and the resulting contours follows the
true shape in high level of details. Finally as a more challenging and very ill-posed
problem, we now consider a limited view scenario where the angular domain is lim-
ited to π/4 < θ < 3π/4, and fewer rays cross the anomalies. Two percent additive
Gaussian noise is added to the synthetic data obtained from the true attenuation
map. With the same problem setting as the full view case, Figure 12.a shows the
result of reconstructing the shape using the PaLS approach. However, as shown
in Figure 12.b, the traditional level set method applied to this problem given the
attenuation values, fails to provide a complete reconstruction and stops further
shape enhancement after reaching a local minima.
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Figure 12: (a) Left: The PaLS shape reconstruction in a limited view X-ray CT,
convergence achieved after 49 iterations (b) Right: The performance of the tra-
ditional level set method for the same data set, reaching a local minima after 32
iterations

6.3 Diffuse Optical Tomography

As the third application we consider diffuse optical tomography (DOT). In this
imaging method data are obtained by transmitting near-infrared light into a highly
absorbing and scattering medium and then recording the transmitted light. As the
inverse problem of interest the photon flux is measured on the surface to recover
the optical properties of the medium such as absorption and/or reduced scattering
functions. A well known application of this method is breast tissue imaging, where
the differences in the absorption and scattering may indicate the presence of a
tumor or other anomaly [7]. For given absorption and scattering functions a number
of mathematical models have been proposed in the literature to determine the
synthetic data (photon flux) [3]. We focus on the frequency-domain diffusion model
in which the data is a non-linear function of the absorption and scattering functions.

Consider Ω, a square with a limited number of sources on the top and a limited
number of detectors on either the top or bottom or both. We use the diffusion
model in [3] modified for the 2D case where the photon flux u(x;ω) is related to



input s(x;ω) through

−∇ ⋅ β(x)∇u(x;ω) + α(x)u(x;ω) + iω
v
u(x;ω) = s(x;ω), (62)

with the Robin boundary conditions

u(x;ω) + 2β(x)∂u(x;ω)
∂ν

= 0, x ∈ ∂Ω. (63)

Here, β(x) denotes the diffusion, which is related to the reduced scattering func-
tion µ′s(x), by β(x) = 1/(3µ′s(x)), α(x) denotes absorption and ∂/∂ν denotes the

normal derivative. We also have i =
√
−1, ω as the frequency modulation of light

and v being the speed of light in the medium. Knowing the source and the func-
tions α(x) and β(x), we can compute the corresponding u(x;ω) everywhere, in
particular, at the detectors.

As the inverse problem, we consider a case that the reduced scattering function
is known and we want to reconstruct the absorption α(x) from the data. Again
for this problem we consider a point source s(x;ω) = δ(x − xs) for xs ∈ ∂Ω, which
results in a photo flux us(x;ω) in Ω. For a measurement at xd ∈ Ω as

uds = ∫
Ω
us(x;ω)δ(x − xd)dx, (64)

the variations with respect to the variations in the absorption can be written as [3]

duds
dα

[δα] = ∫
Ω
δα us(x;ω) ud(x;ω)dx, (65)

with ud being the adjoint field caused by having the point source at xd. Identical to
the notation used for the ERT problem, consider R(α) =M(α)−u as the residual
operator where the data vector u contains the measurements of N` detectors from
M experiments. Based on (65) the `th block of R′(α)[.] corresponding to the `th

experiment is

R′
`(α)[δα] =

⎛
⎜
⎝

∫Ω δα u` u
`
1 dx

⋮
∫Ω δα u` u

`
N`

dx

⎞
⎟
⎠
, (66)

with u` denoting the photon flux in the `th experiment and u`i being the adjoint
field. For the purpose of this example we consider a very ill-posed problem where
Ω corresponds to a 5cm × 5cm imaging region, and there are only 8 point sources
on the top and 8 detectors at the bottom. In every experiment only one of the
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Figure 13: The 2D DOT imaging setup with the sources and detectors setting.
The gray region shows the absorption shape, while 2% Gaussian noise is added to
the absorption as a heterogeneity. The dots with “+” and “-” signs correspond
to the centers of positive and negative weighted bumps in the initial state of the
problem. The black contour is the resulting c-level set of the initial PaLS function

sources is on and the measurements are performed at the bottom detectors. We
have µ′s(x) = 6 cm−1 throughout Ω. The measurements are performed at DC mode,
25 MHz and 50 MHz. The absorption binary distribution is shown in Figure 13
with values αi = 0.015 cm−1 and αo = 0.005 cm−1. To make the problem more
challenging we made the absorption distribution slightly heterogeneous by adding
2% white Gaussian noise to it. For the PaLS setting, due to the very ill-posed
nature of the problem we use relatively fewer bumps, i.e., m0 = 20. Similar to
the previous two examples the centers χj corresponding to positive and negative
weighted bumps are taken randomly inside Ω as shown in Figure 13. Again to
have reasonable initial support radius for the bumps the dilation factors are set
to be βj = 80. Other PaLS settings are similar to the previous examples. The
forward model is solved using finite difference method by discretizing Ω to 50 × 50
grid points. Figure 14.a shows the result of our shape-only reconstruction after 152
iterations, when the true absorption map is used to generate the data and 0.1%
Gaussian noise is added to it. In case of not having any noise in the data (but still
considering the heterogeneity in the absorption), the results after 200 iterations are
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Figure 14: (a) Left: The PaLS shape-only reconstruction, stopping criteria
achieved after 152 iterations in case 0.1% data noise and 2% heterogeneity (b)
Right: The results of shape reconstruction in case of only heterogeneity in the
absorption. The evolution is manually stopped after 200 iterations, showing the
results

shown in figure 14.b. Although the current problem settings make it very ill-posed
and extremely hard for shape reconstruction, the PaLS approach shows reasonable
reconstructions, providing important details. For this very ill-posed problem, using
the traditional level set method we failed to generate useful reconstructions.

7 Concluding Remarks

In this paper we proposed a parametric level set approach to shape based inverse
problems. The basic formulation of the problem is kept general, emphasizing the
fact that numerically, an appropriate parametrization of the level set function is
capable of reducing the problem dimensionality and intrinsically regularizes the
problem. Through such modelling the level set function is more likely to remain
well behaved, and therefore there is no need to re-initialize as in traditional level
set methods. Moreover, based on the fact that the number of underlying param-
eters in a parametric approach is usually much less than the number of pixels
(voxels) resulting from the discretization of the level set function, we make a use of



a Newton type method to solve the underlying optimization problem. We specif-
ically considered using compactly supported radial basis functions, which used as
proposed provides two main advantages besides being parametric; first, the pseudo-
logical property allows for recovery of wide range of shapes; and second, implicit
narrow-banding for the evolution.

Although in this paper, we only considered compactly supported radial basis
functions as the bump functions with circular support, a combination of sufficiently
smooth bumps with various types of supports may be considered in applications
where there is more prior information about the shape and its general geometric
structure. An efficient classification of such functions for various types of shapes
and problems (i.e., forming a basis dictionary) would be a future direction of re-
search. Although in the examples presented in this work the number of RBFs where
coarsely chosen, we are currently developing some ideas to adoptively determine
the number of basis elements using a sparse signal processing approach. Clearly
this matter is beyond the scope of this paper and is planned to be presented as
a future work. Moreover, for sake of simplicity in this paper we only considered
2D problems, whereas the efficiency of a parametric approach is more pronounced
for 3D shape reconstructions where the contrast between the number of voxels
and the number of PaLS parameters in a parametric approach is more significant.
Efficiently modelling 3D scenarios via both parametric shape representation and
appropriate texture and heterogeneity models is an important future direction and
a continuation of the current work.
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