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VANDERMONDE FACTORIZATIONS OF A REGULAR HANKEL

MATRIX AND THEIR APPLICATION ON THE COMPUTATION OF

BÉZIER CURVES

LICIO H. BEZERRA∗

Abstract. In this paper, a new method to compute a Bézier curve of degree n = 2m − 1 is
introduced, here formulated as a Bernstein-Hankel form in Cm, that is, each coordinate of the curve
is of the form eTmBe

m(s)HBe
m(s)T em, where Be

m(s) is a m × m lower triangular Bernstein matrix
and H is a Hankel matrix. The method depends on Vandermonde factorizations of a regular Hankel
matrix, and so we begin with a proof, which utilizes Pascal matrices techniques, that given a regular
Hankel matrix H, there is a finite set of complex numbers γ such that xm−pm−1x

m−1− ...−p0 has
multiple roots, where (p0 ... pm−1) = (hm+1 ... hn γ)H−1. Therefore, a Vandermonde factorization
of H can be accomplished by taking a complex number at random, and the Bernstein-Hankel form
can be easily calculated, thus yielding points on the Bézier curve. We also see that even when H is
nearly singular, the method still works by shifting the skew-diagonal of H. By comparing this new
method with a Pascal matrix method and Casteljau’s, we see that the results suggest that this new
method is very effective with regard to accuracy and time of computation for various values of n.

Key words. Pascal matrix, Bernstein matrix, Bézier curve, Hankel form, Vandermonde factor-
ization
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1. Introduction. Let H be a Hankel matrix of order n, i.e., (∀i, j ∈ {1, ..., n})
Hij = hi+j−1. A very known theorem says that, if H is nonsingular, then a Van-
dermonde matrix V and a diagonal matrix D exist such that H = V DV T . There
is a proof of this fact in [9], which utilizes a class of matrices arisen in the theory
of root separation of algebraic polynomials, namely the class of Bezoutians. Here, in
section $ 2, from a procedure that is currently utilized in linear prediction to estimate
parameters in exponential modeling, it is showed that the spectrum of the companion
matrix C = C(xγ), where xγ is the solution of the linear prediction system Hx = yγ ,
with yγ = (hn+1 ... h2n−1 γ)

T , is simple for all but a finite set of γ. For the values
belonging to this finite set, there is a more general factorization: H = VcDV T

c , where
Vc is a confluent Vandermonde matrix and D is a block diagonal matrix, as it can be
seen in [4]. Our approach to the proof of the Vandermonde factorization of a nonsin-
gular Hankel matrix is very similar to the one found in [7], but the proofs are distinct.
For instance, we make here use of generalized Pascal matrices to quickly obtain some
general properties of Hankel matrices.

In section $3, we see that a Bézier curve of degree n − 1, where n = 2m − 1,
can be described as a Bernstein-Hankel form on Cm. Also, in this section a new
algorithm to compute Bézier curves is proposed, from a Vandermonde factorization
of the associated Hankel matrix. In section $ 4, results of numerical experiments are
presented, which strongly suggest that we can compute those curves in a very fast and
precise way. That is corroborated from the comparisons done with the Casteljau’s
method ([5]) with various values of n. On the other hand, however, several experi-
ments indicate that the computation of Vandermonde factorization of a Hankel matrix
is sensitive to its condition with respect to inversion. However, once its skew-diagonal
entries are shifted toward skew-diagonal dominance the precision of the computation
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2 L. H. Bezerra

improves, which is a simple and efficient way to deal with the instability of Vander-
monde factorization of ill-conditioned Hankel matrices, at least for the computation
of Bézier curves from this approach.

2. Vandermonde factorizations of a nonsingular Hankel matrix.

LetH =




h1 h2 ... hn

...
...

...
...

hn−1 hn ... h2n−2

hn hn+1 ... h2n−1


. SupposeH is nonsingular. Let xγ be the

solution of the linear prediction system Hx = yγ , where yγ = (hn+1 ... h2n−1 γ)
T . We

want to show that the set of γ ∈ C for which the companion matrix Cγ = compan(xγ)
is not diagonalizable is finite. Since Cγ is a nonderogatory matrix, it suffices to show
that S, the set of scalars γ such that the spectrum of Cγ is not simple, is finite. This
means that, out of this set, the characteristic polynomial of Cγ , pγ(x), doesn’t have
multiple roots. If a = (a0 ... an−1)

T and b = (b0 ... bn−1)
T are the respective solutions

of Hx = en = (0 ... 0 1)T and Hx = (hn+1 ... h2n−1 0)
T , then pγ(x) = r(x) − γs(x),

where r(x) = xn − bn−1x
n−1 − ...− b1x− b0 and s(x) = an−1x

n−1 + ...+ a1x+ a0. It
is not difficult to see that S is finite iff r(x) and s(x) don’t have any common root.

Lemma 2.1. Let H be a n×n nonsingular Hankel matrix. If a = (a0...an−1)
T and

b = (b0...bn−1)
T are the respective solutions of Hx = en and Hx = (hn+1 ... h2n−1 0)

T ,
then a0 6= 0 or b0 6= 0.

Proof.
Suppose |H(1 : n− 1, 2 : n)| 6= 0. Therefore, from Cramer’s rule, a0 6= 0. Let

x1, ..., xn−1 be the unique scalars such that

x1




h2

...
hn


+ ...+ xn−1




hn

...
h2n−2


 =




hn+1

...
h2n−1


 .

Hence, x = (x0 x1 ... xn−1)
T = γa + b is the solution of Hx = (hn+1 ... h2n−1 γ)

T ,
with x0 = 0, iff γ = x1hn+1 + ... + xn−1h2n−1. For other complex numbers γ,
x0 = γa0 + b0 6= 0, that is, a0 6= 0 or b0 6= 0. Notice that a0 6= 0, and b0 = 0 iff
x1hn+1 + ...+ xn−1h2n−1 = 0.

Now, suppose H(1 : n− 1, 2 : n) = H(2 : n, 1 : n− 1) is singular. First, since H
is nonsingular, the dimension of span{H(2 : n, 1), ..., H(2 : n, n − 1), H(2 : n, n)} is
(n− 1), as well as the dimension of span{H(1 : n− 1, 1), ..., H(1 : n− 1, n− 1), H(1 :
n−1, n)}. Hence, H(2 : n, n) /∈ span{H(2 : n, 1), ..., H(2 : n, n−1)}, whose dimension
is n− 2. On the other side, H(2 : n, n) ∈ span{H(1 : n− 1, 1), ..., H(1 : n− 1, n)} =
span{H(1 : n − 1, 1), H(2 : n, 1), ..., H(2 : n, n− 1)}, and so, there exist x0, ..., xn−1,
where x0 is different from zero and unique, such that




hn+1

...
h2n−1


 = x0




h1

...
hn−1


+ x1




h2

...
hn


+ ...+ xn−1




hn

...
h2n−2


 .

Observe that, in this case, for all γ ∈ C, x0 = b0 6= 0, and a0 = 0.

From the above proof, there can be at most one complex number γ such that
pγ(0) = −b0 − γa0 = 0 We can also conclude from the lemma 2.1 that zero is not a
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common root of r(x) = xn − bn−1x
n−1 − ... − b1x − b0 and s(x) = an−1x

n−1 + ... +
a1x+ a0.

Now, define Hκ
γ =




h1 ... hn hn+1

...
. . .

...
...

hn ... h2n−1 γ
hn+1 ... γ κ


. Since H is nonsingular, Hκ

γ

is also nonsingular iff κ 6= κ0 = (hn+1 ... h2n−1 γ) H−1(hn+1 ... h2n−1 γ)T , which is
equal to (hn+1 ... h2n−1 γ)(b0 + γa0 ... bn−2 + γan−2 bn−1 + γan−1)

T .

Note that Hκ
γ




−b0 − γa0
...

−bn−1 − γan−1

1


 = (κ−κ0)




0
...
0
1


. Therefore, lemma 2.1 can

be rewritten as the following lemma:

Lemma 2.2. Let Hκ
γ =




h1 ... hn hn+1

...
. . .

...
...

hn ... h2n−1 γ
hn+1 ... γ κ


 be a Hankel matrix,

where H = Hκ
γ (1 : n, 1 : n) is nonsingular. Suppose that Hκ

γ is also nonsingular, that

is, κ 6= (hn+1 ... h2n−1 γ) H−1(hn+1 ... h2n−1 γ)T . Let p be the solution of Hκ
γ x =

en+1. Then, except for one possible complex number γ, p0 6= 0.

Now, let α be any complex number and qγ(x) = pγ(x+α) = r(x+α)−γs(x+α).
In an analogous way to the proof for α = 0, it will be shown that r(α) and s(α) cannot
be both null because there can be only one complex number γ such that qγ(0) = 0.
To prove this, we introduce some notations and definitions in the following.

Definition 2.3. Let α ∈ C. Pn[α] be the n × n is the lower triangular matrix
defined for each i, j ∈ {1, 2, . . . , n} by

(Pn[α])ij =

{
αi−j

(
i−1

j−1

)
, for i > j;

0 , otherwise.

Pn[α] is said a generalized lower triangular Pascal matrix. If α = 1, Pn[1] = Pn is
called the n× n lower triangular Pascal matrix.

Some results about these matrices (see [6], [1]) are listed in the following lemma:

Lemma 2.4. Let Pn[α] a generalized lower triangular Pascal matrix. Then,
(a) Pn[0] = In;
(b) Pn[α]Pn[β] = Pn[α+ β];
(c) (Pn[α])

−1 = Pn[−α];
(d) Let α 6= 0 and let Gn(α) be the n × n diagonal matrix such that, for all

k ∈ {1, ..., n}, (Gn(α))kk = αk−1. Then Pn[α] = Gn(α)PnGn(α)
−1 =

Gn(α)PnGn(α
−1). In particular, P−1

n = Gn(−1)PnGn(−1).

Definition 2.5. For s ∈ [0, 1], the n× n Bernstein matrix Be
n(s) is the matrix
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defined for each i, j ∈ {1, 2, . . . , n} as follows:

[Be
n(s)]ij =

{ (
i−1

j−1

)
sj−1(1− s)i−j , for i ≥ j;

0 , otherwise.

A very important fact about Bernstein matrices, which will be used here later, is the
following proposition, whose proof can be found in [1]:

Proposition 2.6. Let s ∈ [0, 1] and let Be(s) be a n×n Bernstein matrix Then,
Be

n(s) = PnGn(s)P
−1
n , where Pn is the n × n lower triangular Pascal matrix and

Gn(s) = diag([1, s, ..., sn−1]).

In the following, we present some relations between Pascal and Hankel matrices.

Lemma 2.7. Let H be a n × n Hankel matrix and let Pn be the n × n lower
triangular Pascal matrix. Then PnHPT

n is still a Hankel matrix.
Proof. The lemma obviously holds when n = 1. Suppose it holds for all Hankel

matricesH of order n ≥ 1. Now, letH be a (n+1)×(n+1) Hankel matrix and consider
Pn+1HPT

n+1. Since Pn+1HPT
n+1 is symmetric and Pn+1HPT

n+1 = [PnHPT
n v; vT κ],

for some v ∈ Cn, by induction it suffices to show that, for all k ∈ {1, ..., n − 1},
(Pn+1HPT

n+1)n+1,k = (Pn+1HPT
n+1)n,k+1. Now,

(Pn+1HPT
n+1)n+1,k = eTn+1Pn+1

k−1∑

j=0

(
k − 1

j

)
Hej+1 =

=

n∑

i=0

k−1∑

j=0

(
n

i

)(
k − 1

j

)
eTi+1Hej+1 =

n+k−1∑

s=2

hs−1

s∑

i=0

(
n

i

)(
k − 1

s− i

)
,

which is equal, from Vandermonde convolution ([8]), to

n+k−1∑

s=2

hs−1

s∑

i=0

(
n− 1

i

)(
k

s− i

)
=

n−1∑

i=0

k∑

j=0

(
n− 1

i

)(
k

j

)
eTi+1Hej+1 =

= eTnPn+1

k∑

j=0

(
k

j

)
Hej+1 = (Pn+1HPT

n+1)n,k+1.

Corollary 2.8. Let H be a n × n Hankel matrix and α be a complex number.
Then, Pn[α]HPn[α]

T is still a Hankel matrix.
Proof. For α = 0, the result follows from lemma 2.7. Let α 6= 0. Since from lemma

2.4 Pn[α] = Gn(α)PnGn(α
−1), where Gn(α) = diag (1, α, ..., αn−1), it suffices to show

that G(α)HG(α) is a Hankel matrix. But this is obviously true, for (G(α)HG(α))ij =

hi+j−1α
i+j−2.

Next we give a proof that r(x) and s(x) don’t have any common root by using a
generalized Pascal matrix technique.

Proposition 2.9. Let H be a n × n nonsingular Hankel matrix. Let a =
(a0 a1 ... an−1)

T and b = (b0 b1 ... bn−1)
T be the solutions of Ha = en and Hb =
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(hn+1 ... h2n−1 0)
T , respectively. Then r(x) = xn − bn−1x

n−1 − ... − b1x − b0 and
s(x) = an−1x

n−1 + ...+ a1x+ a0 don’t have any common root.

Proof. Let γ ∈ C and let pγ = (−b0 − γa0 ... − bn−1 − γan−1 1)
T
. Let qγ =

(q0 ... qn−1 1)
T be the vector of coefficients of the polynomial r(x + α) − γs(x + α).

We note that qγ = Pn+1[α]
T pγ = Pn+1[α]

T (Hκ
γ )

−1en+1, for κ = 1 + κ0. Thus,

Hκ
γPn+1[α]

−T qγ = en+1, and so,

Ĥκ
γ qγ = Pn+1[α]

−1Hκ
γPn+1[α]

−T qγ = Pn+1[−α]Hκ
γPn+1[−α]T qγ = en+1.

Ĥκ
γ is also nonsingular and, from corollary 2.8, is a Hankel matrix. Since Hκ

γ =

H0
0 +γ (en+1e

T
n +ene

T
n+1)+κ en+1e

T
n+1, we see that Ĥ

κ
γ = Ĥ0

0 +γ (en+1e
T
n +ene

T
n+1)+

(κ− 2nα) en+1e
T
n+1. That is,

Ĥκ
γ =




ĥ1 ... ĥn ĥn+1

...
. . .

...
...

ĥn ... ĥ2n−1 γ̂

ĥn+1 ... γ̂ κ̂


 ,

where Ĥκ
γ (1 : n, 1 : n) = Ĥ = Pn[−α]HPn[−α]T is nonsingular and γ̂ = γ+(Ĥ0

0 )n+1,n.
Thus, from lemma 2.2, except for one possible complex number γ, (qγ)0 6= 0.

Note that (qγ)0 = 0 only when s(α) 6= 0, that is, when
∣∣∣Ĥκ

γ (1 : n− 1, 2 : n)
∣∣∣ =∣∣∣Ĥ(1 : n− 1, 2 : n)

∣∣∣ 6= 0. In this case, γ = r(α)/s(α).

Proposition 2.10. Let γ ∈ C. Let pγ(x) = xn − bn−1x
n−1 − ... − b0 −

γ(an−1x
n−1+...+a0) = r(x)−γs(x) the characteristic polynomial of Cγ = H1(γ)H

−1,
where H1(γ) is the Hankel matrix defined by H1(γ)ek = Hek+1 for k = 1, ..., n − 1
and H1(γ)en = (hn+1 ... h2n−1 γ)

T , that is, Cγ = [eT2 ; ...; e
T
n ; (hn+1 ... h2n−1 γ)H

−1].
Then the set of scalars γ such that Cγ is not diagonalizable is finite.

Proof. Cγ is a companion matrix, and hence, a nonderogatory matrix. Thus, it
suffices to show that the set of scalars γ such that the spectrum of Cγ is not simple
is finite.

Let α ∈ C be an eigenvalue of Cγ , that is, a root of pγ(x). Therefore, r(α) =
γs(α). Then, from proposition 2.9, s(α) 6= 0. So, there are two cases:

(i) r(α) = 0, and this occurs iff γ = 0. In this case, C0 is not diagonalizable iff
r′(α) = 0.

(ii) r(α) 6= 0, which means that γ = r(α)/s(α). Therefore, p′γ(α) = 0 iff
r′(α) = s′(α) = 0, or s′(α) 6= 0 and r′(α) = γs′(α).
Therefore, since s 6= 0 and r/s is not a constant, α is contained in the set of the
roots of r′s− rs′, which has at most 2(n− 1) elements. Hence, we can conclude that
{γ ∈ C |Cγ is not diagonalizable} is finite and has at most 2(n− 1) elements.

We can now state the following theorem:

Theorem 2.11. Let H be a n × n nonsingular Hankel matrix. Let r(x) =
xn − bn−1x

n−1 − ... − b0 and s(x) = an−1x
n−1 + ...+ a0, where a = (a0 a1 ... an−1)

T

and b = (b0 b1 ... bn−1)
T are such that Ha = en and Hb = (hn+1 ... h2n−1 0)

T . Let
S = {α ∈ C | (rs′ − r′s)(α) = 0 and s(α) 6= 0 } and T = {r(α)/s(α) |α ∈ S}.
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Then, for all γ ∈ C − T , H = VγDγV
T
γ , where Vγ = vander(α1, ..., αn), Dγ =

diag (V −1
γ He1), {α1, ..., αn } = λ(Cγ), and Cγ is the companion matrix whose last

row is (b0 + γa0 ... bn−1 + γan−1).

Proof. From proposition 2.10, for all γ ∈ C − T , λ(Cγ) is simple. Suppose
{α1, ..., αn } = λ(Cγ). Let v = (hn+1 ... h2n−1 γ)

T and H1 = [H(2 : n, :); v]. Then,

Cγ = H1H
−1 = Vγ diag([α1, ..., αn])V

−1
γ ,

where Vγei =
(
1αi ... α

n−1

i

)T
, for all i ∈ {1, ..., n}. So,

V −1
γ H1 = diag([α1, ..., αn])V

−1
γ H.

Let d = (d1 ... dn)
T = V −1

γ He1. Hence, for all i ∈ {1, ..., n},

V −1
γ Hei = diag([α1, ..., αn])

i−1d =
(
d1α

i−1
1 ... dnα

i−1
n

)T
= DγV

T
γ ei.

3. Bézier curve as a Hankel form. Efficient methods to compute Bézier
curves of degree n − 1 ([3]) are fundamentals tools in Computed-Aided Geometric
Design area. The Casteljau’s algorithm is a widespread method for this computation.
However, for each s ∈ (0, 1) it demands O(n2) multiplications. For n not very large,
there are more efficient methods, like the ones introduced in [10], where the compu-
tation of points on these curves is carried out by generalized Ball curves, or the ones
presented in [2], which use fast Pascal matrix-multiplication. Here we show that we
can describe a Bézier curve as a Hankel form and, hence, we see that we can eas-
ily compute points of the curve from a Vandermonde factorization of the associated
Hankel matrix.

Let Q0 = (x0, y0), Q1 = (x1, y1), ..., Qn−1 = (xn−1, yn−1) be n points in R2.
Bézier has his name on the curve B defined from these n points as follows:

B(s) =

(
b1(s)
b2(s)

)
=

n−1∑

i=0

(
n− 1

i

)
si(1− s)n−1−iQi, s ∈ [0, 1].

Let x = (x0 ... xn−1)
T and x = (y0 ... yn−1)

T . Then, for each s ∈ [0, 1],

b1(s) = eTnB
e
n(s)x and b2(s) = eTnB

e
n(s)y,

where Be
n(s) is a n× n Bernstein matrix. Thus, from lemma 2.4, for each s ∈ [0, 1],

b1(s) = eTnPnGn(s)P
−1
n x and b2(s) = eTnPnGn(s)P

−1
n y. (3.1)

In the following, we discuss different approaches that make use of (3.1) to compute a
Bézier curve.

We can notice that, if B(s) = BQ0Q1...Qn−1
(s) denotes the Bézier curve deter-

mined by the points Q0, Q1, ..., Qn−1, then

B(s) = (1− s)BQ0Q1...Qn−2
(s) + sBQ1Q2...Qn−1

(s).
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Without loss of generality, from now on we will suppose that n, the number of control
points of a Bézier curve, is odd: n = 2m−1, m > 1. In this case, it is easy to conclude
by induction that, for all k = 0, ...,m− 1,

B(s) =

k∑

j=0

(
k

j

)
(1 − s)k−jsjBQjQj+1...Qj+n−k−1

(s).

Particularly, for k = m− 1 we have

B(s) =

m−1∑

j=0

(
m− 1

j

)
(1− s)m−1−jsjBQjQj+1...Qj+m−1

(s),

and so,

b1(s) =
m−1∑

j=0

(
m− 1

j

)
(1− s)m−1−jsjeTmPmG(t)P−1

m xj...j+m−1,

b2(s) =

m−1∑

j=0

(
m− 1

j

)
(1 − s)m−1−jsjeTmPmG(t)P−1

m yj...j+m−1,

where xj...j+m−1 and yj...j+m−1 denote the column vectors (xj . . . xj+m−1)
T and

(yj . . . yj+m−1)
T , respectively, for j = 0, ...,m− 1. However,

m−1∑

j=0

(
m− 1

j

)
(1− s)m−1−jsjeTmPmG(t)P−1

m xj...j+m−1 =

= eTmPmG(t)P−1
m




m−1∑

j=0

(
m− 1

j

)
(1− s)m−1−jsjxj...j+m−1


 ,

and
∑m−1

j=0

(
m−1

j

)
(1− s)m−1−jsjxj...j+m−1 is a column vector whose ith coordinate is

eTmPmG(t)P−1
m xi−1...m+i−2. Thus, we can state the following lemma, from which we

can conclude that each coordinate of a Bézier curve is a Hankel form:

Lemma 3.1. Let n = 2m−1, where m is an integer greater than 1 and let B(s) =

(b1(s) b2(s))
T

be a Bézier curve of degree n − 1 defined from n points Q0 = (x0, y0),
Q1 = (x1, y1), ..., Qn−1 = (xn−1, yn−1) in R2. Then

b1(s) = eTmBe
m(s)Hx(B

e
m(s))T em and b2(s) = eTmBe

m(s)Hy(B
e
m(s))T em,

where Hx = hankel(Cx, Rx) and Hy = hankel(Cy, Ry) are m × m Hankel matrices
whose first columns are Cx = (x0...xm−1)

T and Cy = (y0...ym−1)
T respectively, and

whose last rows are Rx = (xm−1, ..., xn−1) and Ry = (ym−1, ..., yn−1 respectively.

Corollary 3.2. Let n = 2m−1, where m is an integer greater than 1. Let B be a
Bézier curve of degree n−1 defined from n control points, and let x = (x0...xn−1)

T and
y = (y0...yn−1)

T be their respective vector of coordinates. Let Hx = hankel(Cx, Rx)
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and Hy = hankel(Cy, Ry), where Cx = (x0...xm−1)
T , Rx = (xm−1, ..., xn−1), Cy =

(y0...ym−1)
T and Ry = (ym−1, ..., yn−1). If Hx and Hy are nonsingular, then there

exist complex numbers d1, ..., dn, t1, ..., tn, d̂1, ..., d̂n and t̂1, ..., t̂n such that

b1(s) =
m∑

i=1

di(1 − s+ s.ti)
n−1 and b2(s) =

m∑

i=1

d̂i(1− s+ s.t̂i)
n−1. (3.2)

Proof. If Hx is nonsingular, from theorem 2.11, there is a Vandermonde matrix
V = vander([t1, ..., tn]) and a diagonal matrix D = diag([d1, ..., dn]) such that Hx =
V DV T . So,

b1(s) = eTmBe
m(s)Hx(B

e
m(s))T em = eTmBe

m(s)V DV T (Be
m(s))T em =

=

m∑

i=1

di(1− s+ s.ti)
2m−2 =

m∑

i=1

di(1− s+ s.ti)
n−1,

for eTmBe
m(s)V ei =

∑m−1

j=0
(1− s)m−1−j .sj .tji = (1− s+ s.ti)

m−1 for all i ∈ {1, ...,m}.
In an analogous way, we conclude that

b2(s) =
m∑

i=1

d̂i(1− s+ s.t̂i)
n−1,

for some d̂1, ..., d̂n and t̂1, ..., t̂n.
The following proposition is about another representation of a Bézier curve of

degree n− 1.

Proposition 3.3. Let n = 2m − 1, where m is an integer greater than 1 and
let B(s) = (b1(s) b2(s))

T
be a Bézier curve of degree n − 1 defined from n points

Q0 = (x0, y0), Q1 = (x1, y1), ..., Qn−1 = (xn−1, yn−1) of R
2. Then

b1(s) =
n−1∑

k=0

ak

(
n− 1

k

)
sk and b2(s) =

n−1∑

k=0

bk

(
n− 1

k

)
sk, where




a0 ... an−1

...
. . .

...
am−1 ... an−1


 = P−1

m HxP
−T
m and




b0 ... bn−1

...
. . .

...
bm−1 ... bn−1


 = P−1

m HyP
−T
m .

Proof. Let A = P−1
m HxP

−T
m and B = P−1

m HyP
−T
m . From lemma 3.1, it follows

that

b1(s) = eTmPmG(s)AG(s)PT
mem and b2(s) = eTmPmG(s)BG(s)PT

mem.

Now, eTmPmG(s) =
((

m−1

0

) (
m−1

1

)
s ...

(
m−1

m−1

)
sm−1

)
. Therefore,

b1(s) =

n−1∑

k=0

ak




k∑

j=0

(
m− 1

j

)(
m− 1

k − j

)
 sk,
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b2(s) =

n−1∑

k=0

bk




k∑

j=0

(
m− 1

j

)(
m− 1

k − j

)
 sk,

and the conclusion now follows from Vandermonde convolution

k∑

j=0

(
m− 1

j

)(
m− 1

k − j

)
=

(
2(m− 1)

k

)
=

(
n− 1

k

)
.

We have just proved a property of the Pascal matrix-vector multiplication, which
is remarked in the following corollary:

Corollary 3.4. Let n = 2m− 1, where m ≥ 1, let x = (x0...xn−1)
T be a vector

of Cn and let Hx the Hankel matrix defined by (Hx)ij = xi+j−2. Then, a = Pnx,

where a = (a0...an−1)
T is such that

(
PmHxP

T
m

)
ij
= ai+j−2.

Proof. Let y = Gn(−1)x. Let a = Pnx = Gn(−1)P−1
n Gn(−1)x. Then,

eTnPnGn(s)P
−1
n y = eTnPnGn(s)Gn(−1)a =

n−1∑

k=0

(−1)kak

(
n− 1

k

)
sk.

On the other hand, from proposition 3.3, (−1)i+j−2ai+j−2 =
(
P−1
m HyP

−T
m

)
ij
. There-

fore, ai+j−2 =
(
PmHxP

T
m

)
ij
.

4. Numerical experiments. We are going to compare Bézier curves of degree
(n − 1) computed from the classical Casteljau’s algorithm as well as from two other
descriptions of the curve: as a Hankel form and by using the spectral decomposition
Be

n(s) = PnGn(s)P
−1
n . We first observe that an uniform scaling of the control points of

a Bézier curve yields an uniform scaling of the curve and if those points are translated
by a vector v = (p, q), then the Bézier curve is also translated by v. Hence, without
loss of generality, we are going to assume that the coordinates of the control points
are all real positive and also less than or equal to 1. So, we are going to use the
MATLAB function rand to generate n test control points: A = rand(n, 2).

The Casteljau’s algorithm is a very accurate algorithm to evaluate Bézier curves,
for it is based on a numerically stable Bernstein matrix-vector multiplication:

Algorithm 1 Casteljau’s algorithm

n = length(x);
x = x(:);
ss = 1− s;
for k = 2 : n do

for t = n : −1 : k do

x(t) = ss*x(t-1) + s*x(t);
end for

end for

b(s) = x(n)
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This multiplication can be seen as a sequence of bi-diagonal matrix-vector multi-
plications, which becomes well explicit from the following lemma [2]:

Lemma 4.1. Let Be
n(t) be a n× n Bernstein matrix. Then

Be
n(s) = Ee

n−1(s)...E
e
1(s) where, for 1 ≤ k ≤ n− 1,

Ee
k(s) = e1e

T
1 + ...+ eke

T
k + ek+1[(1− s)ek + sek+1]

T + ...+ en[(1− s)en−1 + sen]
T .

Another way of calculating a Bézier curve is from its description as a Hankel
form, which allows us to utilize a Vandermonde factorization of the associated Hankel
matrix, and its algorithm is as follows: We are supposing here that Hx and Hy

Algorithm 2 Bézier curve as a Hankel form

• given n = 2m− 1 distinct points of R2, let Hx and Hy be two m×m Hankel
matrices formed from their coordinates;

• choose a number γ at random and define the vectors xγ = (hx
m+1 ... h

x
n γ)

T

and yγ = (hy
m+1 ... h

y
n γ)

T ;
• solve the systems Hxzγ = xγ and Hywγ = yγ and consider the companion
matrices Czγ and Cwγ

;
• find the spectra of Czγ and Cwγ

;
• define dx = (V x

γ )−1Hxe1 and dy = (V y
γ )

−1Hye1, where V x
γ and V y

γ are Van-
dermonde matrices formed from the spectrum of Czγ and from the spectrum
Cwγ

, respectively;
• for each s ∈ [0, 1], the Bézier curve B(s) is then defined from the equation
(3.2).

are both nonsingular and that γ is not one of those numbers which yield in non-
diagonalizable companion matrices.

The third way of computing a Bézier curve will be carried out by a Pascal matrix
method, which computes a Bézier curve B(s) of degree n − 1 via the decomposition
Be

n(s) = PnGn(−s)PnGn(−1):

Algorithm 3 Pascal matrix algorithm

• given n, take t ≥ 1 such that Pn(t) is similar to a lower triangular Toeplitz
matrix T = T (t) with maximum minTij/maxT ij;

• multiply z = PnGn(−1)x = Pnx− and w = PnGn(−1)y = Pny− via fast
Toeplitz matrix-vector multiplication;

• from a Horner-like scheme, evaluate the polynomials eTnPnGn(−s)z and
eTnPnGn(−s)w.

We have used a fast Pascal matrix-vector multiplication done from the similar
Toeplitz matrix T (t) (see [11]), where t has been found by a procedure described
in [2], plus the B(s) evaluation given by a Horner-like scheme that evaluates the
polynomial concomitantly with the binomial coefficients. Since the B(s)-evaluation
becomes unstable when s approaches to 1, we have introduced a simple procedure to
improve the evaluation, that is to divide the process of evaluation in two independent
steps:

(a) evaluate eTnPnGn(−s)z and eTnPnGn(−s)w for 0 ≤ s ≤ 1/2;
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(b) evaluate eTnPnGn(−s)zr and eTnPnGn(−s)wr for 1/2 > s ≥ 0, which is equiv-
alent to evaluate eTnPnGn(−s)z and eTnPnGn(−s)w for 1/2 < s ≤ 1.

Table 4.1

Mean run time of computation of 129 points of a Bézier curve of degree N-1 by three different
methods: Casteljau’s (C), Hankel form (H) and direct Pascal matrix method (P). The results of the
second and third methods are compared to the ones obtained by Casteljau’s via norm of the difference
of the computed points by the respective method and by Casteljau’s.

N Time (Casteljau) Time (Hankel) Time (Pascal) ||BC − BH || ||BC − BP ||
15 0.005s 0.007s 0.004s 1.3399e-13 2.6782e-12
23 0.009s 0.009s 0.004s 1.0540e-11 2.2427e-09
31 0.015s 0.011s 0.005s 2.3082e-09 1.4962e-06
39 0.022s 0.016s 0.006s 9.7593e-11 5.6283e-04
47 0.030s 0.019s 0.006s 6.6642e-05 0.1035
55 0.040s 0.023s 0.007s 4.9873e-08 457.2366
63 0.053s 0.027s 0.007s 1.8852e-05 2.2703e+04
71 0.066s 0.029s 0.008s 6.0574e-07 1.7485e+07
79 0.082s 0.036s 0.009s 1.0117e-06 5.6499e+09

4.1. Conditioning a Hankel matrix. It is not rare n = 2m−1 numbers taken
in the interval [0,1] at random result in an ill-conditioned m ×m Hankel matrix H .
A simple way of handling this is to shift its skew diagonal in order to turn it into a
skew-diagonal dominant matrix, H̃ = H + σC, where C is the reciprocal matrix. Let
BH and BH̃ be the Bézier curves corresponding to H and H̃ , respectively. Then, for
each s ∈ [0, 1], we compute BH(s) by subtracting σ times eTmBe

m(s)Cm(Be
m(s))T em

from BH̃ . Moreover, this quadratic form has a simple formulation as can be seen in
the next lemma.

Lemma 4.2. Let Cm = hankel(em, eT1 ), which is called the reciprocal matrix.
Then, if w = e2πi/m,

eTmBe
m(s)Cm(Be

m(s))T em =
1

m

m∑

j=1

wj−1(1− s+ s.wj−1)n−1.

Proof. It is easy to see that Cm = V DV T , where V = vander(1, w, ..., wm−1) and
D = diag(1/m,w/m, ..., wm−1/m). From the proof of Corollary 3.2,

eTmBe
m(s)V DV T (Be

m(s))T em =
1

m

m∑

j=1

wj−1(1− s+ s.wj−1)n−1.

In table 4.2, we can see that this simple technique of preconditioning have im-
proved the computation of Bézier curves when their control points yield ill-conditioned
Hankel matrices (cond(H) is the maximum condition number of the two Hankel ma-
trices formed by the coordinates of the control points). For each Hankel matrix H ,
σ was taken as the sum of the absolute values of its entries. Since our Vandermonde
factorization of a Hankel matrix depends on a value chosen at random, the error
between the curve computed by Casteljau’s and the one computed from that factor-
ization varied enormously when the Hankel matrices associated with the coordinates
were ill-conditioned. In table 4.2, for each n, we can see the maximum error among
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several experiments done. However, sometimes it happened to have a big error fol-
lowed by a tiny one. Notice that all our experiments have been run in a 32-bits AMD
Athlon XP 1700+ (1467 MHz).

Table 4.2

Mean run time of computation of 129 points of a Bézier curve of degree N-1 by three different
methods: Casteljau’s (C), Hankel form (H) and preconditioning Hankel form (PH). The results of
the second and third methods are compared to the ones obtained by Casteljau’s via norm of the
difference of the computed points by the respective method and by Casteljau’s.

N cond(H) Time (C) Time (H) Time (PH) ||BC −BH ||2 ||BC − BPH ||2
31 1.5379e+03 0.015s 0.012s 0.019s 3.3983e+11 2.9510e-11
39 760.4605 0.022s 0.016s 0.024s 2.6541e+09 1.1134e-10
47 2.9956e+03 0.030s 0.019s 0.031s 1.3731e+13 1.0189e-10
55 577.1450 0.041s 0.023s 0.036s 4.3750e+03 1.7107e-08
63 4.2415e+03 0.053s 0.027s 0.042s 9.8000e+70 2.5894e-08
71 907.6247 0.066s 0.029s 0.049s 3.7813e+06 3.2318e-07
79 1.1167e+03 0.081s 0.033s 0.057s 4.1314e+04 2.1604e-05
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[3] P. Bézier, Numerical Control: Mathematics and Applications, John Wiley & Sons, London,
1972.

[4] D. L. Boley, F. T. Luk and D. Vandervoorde, A General Vandermonde Factorization
of a Hankel Matrix, in ILAS Symp. on Fast Algorithms for Control, Signals and Image
Processing, 1997, Winnipeg.

[5] W. Boehm and A. Müller, On de Casteljau’s algorithm, Comput. Aided Geom. D., 16 (1999),
pp. 587–605.

[6] G. S. Call and D. J. Velleman, Pascal’s Matrices, Amer. Math. Monthly, 100 (1993), pp.
372–376.

[7] M. Fiedler, Special Matrices and Their Applications in Numerical Mathematics, Second ed.,
Dover, Mineola, NY, 2008.

[8] R. L. Grahan, D. E. Knuth and O. Patashnik, Concrete Mathematics - a Foundation for
Computer Science, Second ed., Addison-Wesley, Reading, MA, 1994.

[9] G. Heinig and K. Rost, Algebraic methods for Toeplitz - like matrices and operators,
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