
THE GROWTH-FACTOR BOUND FOR THE

BUNCH-KAUFMAN FACTORIZATION IS TIGHT

ALEX DRUINSKY AND SIVAN TOLEDO

Abstract. We show that the growth factor bound in the Bunch-
Kaufman factorization method is essentially tight. The method
factors a symmetric matrix A into A = P

T
LDL

T
P where P is a

permutation matrix, L is lower triangular, and D is block diago-
nal with 1-by-1 and 2-by-2 diagonal blocks. The method uses one
of several partial pivoting rules that ensure bounded by possibly
exponential growth in the elements of the reduced matrix and the
factor D (growth in L is not bounded). We show that the expo-
nential bound is essentially tight, thereby solving a question that
has been open since 1977.

1. Introduction

In 1977 Bunch and Kaufman [3] discovered a beautiful method for
factoring symmetric indefinite matrices. The method is now widely
used for both dense and sparse matrices. The method is used in la-

pack to solve symmetric indefinite linear systems. Variants are used
in all the sparse symmetric indefinite factorization codes. Bunch and
Kaufman suggested several partial pivoting rules for their method.
They showed that the element growth factor in the trailing subma-
trix is bounded by (1 + α−1)n−1, where α ≈ 0.6404 or α ≈ 0.525 and
n is the dimension of A (the value of α varies between variants of the
pivoting rule). In practice, element growth is usually much milder; the
situation for LU with partial pivoting is similar. Mild element growth
ensures that the factorization is backward stable [5]; dramatic element
growth usually leads to instability. Bunch and Kaufman tried to find
examples that show that their growth bounds are tight in the worst-
case sense, but only found examples for small matrix dimensions. The
question of the tightness of these bounds was posed by Higham as an
important research question [6, p. 229, problem 11.10]. For LU with
partial pivoting, the tightness of the growth bound has been known for
decades [10].

Date: Revised March 2011.
1

In this paper, we show that the upper bound on growth given by
Bunch and Kaufman is essentially tight.
The Bunch-Kaufman algorithm computes the factorization PAP T =

LDLT of a symmetric (and possibly indefinite) matrix A. The matrix
L is unit lower-triangular, D is block-diagonal with diagonal blocks
of dimension 1 or 2, and P is a permutation matrix. In each step,
the algorithm selects the order of the pivot s (s = 1 or 2) and the
s rows and columns to be eliminated. The intersection of these rows
and columns induces the pivot block. The rules for selecting the pivot
form the heart of the algorithm and are described in the next sections.
The algorithm reorders the selected rows and columns to the first s
positions in the reduced matrix by means of a permutation matrix Π,
and performs an elimination step to transform the matrix

ΠAΠT =

s n−s
[]

E CT
s

C B n−s

into s new columns of L and D and the reduced matrix B−CE−1CT .
The process then repeats, transforming the reduced matrix into a
smaller reduced matrix until A is completely reduced.
Bunch and Kaufman described several pivoting strategies named Al-

gorithm A through Algorithm F. In general, all the pivoting rules guar-
antee a bound on the growth in the reduced matrix, but the (1+α−1)n−1

bound is exponential in the dimension n of A. Algorithms E and F only
apply to pentadiagonal matrices, and we do not analyze their growth
here. We also do not analyze the growth in Algorithm C, which is not
widely used (and appears harder to analyze).
The rest of the paper is organized as follows. Section 2 shows that

the bound for the pivoting rule called Algorithm D is exactly tight.
Section 3 shows that the growth bounds for Algorithms A and B are
almost tight (they are tight up to a small constant factor). The exam-
ples that we use to show the tightness of the bound are ill-conditioned,
but we also show well-conditioned examples that lead to exponential
growth. Section 4 proves that the worst-case growth bound can almost
be achieved in floating-point arithmetic (Sections 2 and 3 assume exact
arithmetic). Section 5 demonstrates experimentally that the bounds
are attained in lapack, a widely-used implementation of the Bunch-
Kaufman method. We conclude the paper in Section 6 with remarks
and open problems.

2

2. Growth in Algorithm D

We begin with Algorithm D, for which our example is the simplest.
In this case, our example shows that Bunch and Kaufman’s upper
bound on growth is tight. The pivoting rule is as follows.

(1) Find the position r and the magnitude λ of the largest off-
diagonal element in column 1.

(2) If |A11| ≥ αλ (where α is a constant between 0 and 1), then
select A11 as the pivot and return; otherwise, continue to Step 3.

(3) Find the magnitude σ of the largest element in column r (in-
cluding the diagonal element).

(4) If |A11|σ ≥ αλ2, then select A11 as the pivot and return; oth-
erwise, continue to Step 5.

(5) Use the 2-by-2 pivot

[

A11 A1r

Ar1 Arr

]

.

The constant α ≈ 0.525 guarantees that the worst-case growth of two
1-by-1 steps equals the worst-case growth of one 2-by-2 step.

Theorem 1. The worst-case growth factor in the Bunch-Kaufman fac-

torization (Algorithm D) is
(

1 + 1
α

)n−1
, where n is the dimension of the

matrix.

Proof. Consider the matrix

A =













d1 1
d2 1

. . .
...

dn−1 1
1 1 · · · 1 1













,

where

dk =
q

1− q
q−k

q = 1 +
1

α
.

We prove by induction that the algorithm performs only 1-by-1 elimi-
nation steps and that the reduced matrix A(k) after k steps is













dk+1 1
dk+2 1

. . .
...

dn−1 1
1 1 · · · 1 qk













.

3

For k = 0, the claim is true by the construction of A. Suppose that the
claim holds for k − 1 and consider the next elimination step. Column
r will be the last column with λ = 1 and σ = qk−1. The algorithm

now tests whether |A(k−1)
11 | is large enough (Step 2 above). If the test

succeeds, the algorithm uses A
(k−1)
11 as a pivot. If the test fails, the

algorithm tests whether
∣

∣

∣
A

(k−1)
11

∣

∣

∣
σ ≥ αλ2. We claim that this test, if

checked, always succeeds:
∣

∣

∣
A

(k−1)
11

∣

∣

∣
σ = |dk| qk−1

= − q

1− q
q−k · qk−1

= − 1

1− q
= α

= αλ2 .

We have established that either the test in Step 2 succeeds or the test

in Step 4 succeeds; either way, the algorithm uses A
(k−1)
11 as a pivot.

We now analyze the elimination step. The only matrix element that
is modified in the reduced matrix is the last diagonal element. It is
updated as follows:

qk−1 − 1

dk
= qk−1 − 1− q

q
qk

= qk−1 − (1− q)qk−1

= qk .

The theorem follows because the last diagonal element of the reduced

matrix after n− 1 steps is qn−1 =
(

1 + 1
α

)n−1
. �

In the factorization of the matrix that we used in the last example,
not only elements of the reduced matrix grow exponentially, but also
elements of L grow exponentially. The elements in the last row of L
are d−1

k .
The reader might object that the only element that grows in this

example is a diagonal element; our example for Algorithms A and B
shows that offdiagonal elements can also grow at the same rate.
Another concern might be that as n grows, our matrix becomes more

and more ill-conditioned. It is easy to see that this is indeed the case.
Columns 1 through n − 1 of A consist of a nonzero diagonal element
and a 1 in the last row. The diagonal element converges exponentially
to zero, so the columns become numerically dependent.

4

However, we can achieve exactly the same growth if we embed the
n/2-by-n/2 example matrix A in a well-conditioned matrix of twice the
dimension. Let ε > 0 be a small number, and consider the matrix

[

A (1− ε)I
(1− ε)I 0

]

.

Until the algorithm factors n/2 rows and columns, the row index r in
Step 1 of the algorithm is always in the first block, because 1− ε < 1;
rows from the (1 − ε)I block are never selected as pivots. Therefore,
the algorithm always produces a factorization of A, so the growth in

the last diagonal element in the first block is
(

1 + 1
α

)n/2−1
. The entire

n-by-n matrix is well-conditioned. This growth bound is only a square
root of the upper bound, but it is still dramatic. This example can be
adapted to odd dimensions.
Finally, it is interesting to ask whether the exponential growth can

occur in floating-point arithmetic. Section 4 shows that this is indeed
the case (the analysis that we show below is for Algorithm A, because
it is implemented in lapack and is the subject of our numerical ex-
periments).

3. Growth in Algorithms A and B

The pivoting rule in Algorithms A and B is a little different, in that it
allows the algorithm to eliminate column r without eliminating column
1.

(1) Find the position r and the magnitude λ of the largest off-
diagonal element in column 1.

(2) If |A11| ≥ αλ (0 < α < 1 is defined below), then select A11 as
the pivot and return; otherwise, continue to Step 3.

(3) Find the magnitude σ of the largest off-diagonal element in
column r.

(4) If |A11|σ ≥ αλ2, then select A11 as the pivot and return.
(5) If |Arr| ≥ ασ, then select Arr as the pivot and return.

(6) Use the 2-by-2 pivot

[

A11 A1r

Ar1 Arr

]

.

In these pivoting rules, the constant α = (1 +
√
17)/8 ≈ 0.6404 guar-

antees equal worst-case growth in two 1-by-1 or in one 2-by-2 step. Al-
gorithms A and B differ only in the ordering of independent arithmetic
operations, so they produce exactly the same results (Algorithm A is
right looking and Algorithm B is left looking). We now show that these
pivoting rules can cause almost as much growth as the upper bound
allows.

5

Theorem 2. The growth factor in the Bunch-Kaufman factorization

(Algorithms A and B) can be as much as
(

1 + 1
α

)n−2
, where n is the

dimension of the matrix.

Proof. We now use the matrix

A =

















d1 1 1
d2 1 1

. . .
...

...
dn−2 1 1

1 1 · · · 1 1 1
1 1 · · · 1 1 1

















,

where

dk =
q

1− q
q−k

q = 1 +
1

α
.

The rest of the proof is exactly the same as Theorem 1, except that
the entire trailing 2-by-2 block grows. After k steps, the trailing sub-
matrix is

















dk+1 1 1
dk+2 1 1

. . .
...

...
dn−2 1 1

1 1 · · · 1 qk qk

1 1 · · · 1 qk qk

















.

We omit the details. The matrix A is exactly singular, but the example
can be easily modified so that A is non singular. For example, we can
set Ann = 0 rather than Ann = 1. �

The role of the extra row is to ensure that σ grows exponentially
during the algorithm, which in turn ensures that the test in Step 4 of
the pivoting rule always succeeds. In Algorithm D, σ is the magnitude
of the largest element in column r, including the diagonal element,
which grows in our example. In Algorithms A and B, the definition
of σ excludes the diagonal, so we had to generate an exponentially
growing element outside the diagonal.
As in the previous section, this example matrix becomes very ill-

conditioned as n grows, because the diagonal elements shrink (this
happens even if we modify the trailing 2-by-2 block to ensure that the
last two rows are not identical). As in the previous section, we can

6

embed this matrix in a larger one to create a well-conditioned matrix
that leads to a dramatic growth.

4. Growth in Floating-Point Arithmetic

We now show that the worst-case bound for growth in Algorithm A
can be attained in floating point (Theorems 1 and 2 assumed exact
arithmetic, for simplicity). More specifically, we show that the growth
factor can be as large as (1 + 1/α)n−2(1 − O(u)) where u is the unit
roundoff for the arithmetic.
We assume that the arithmetic satisfies the following conditions:

fl (x op y) = (x op y) (1 + δ1)(FPOP1)

fl (x op y) (1 + δ2) = x op y(FPOP2)

fl
(√

x
)

=
√
x (1 + δ3)(FPSQRT)

fl(1 · x) = fl(x · 1) = x(FPUNITY)

(11n− 22)u < 1 ,(FPSMALLU)

where op = +, −, ·, ÷ and |δi| ≤ u for i = 1, 2, 3. We also assume
that the constants 1 + 4u, 1, 8, and 17 have exact floating-point rep-
resentations and that fl(−x) = − fl(x). Double-precision IEEE-754
floating-point arithmetic (with round to 0 or round to nearest) satisfies
these conditions up to a huge n. Our main result also holds for most
weaker arithmetics that only satisfy FPOP1 and FPSQRT. In such
cases, the constant hidden in the O(u) term might be a little larger.
Also, the proof becomes more cumbersome, so we omit the details.
For conciseness, we extend the fl(·) notation to expressions: fl(x +

y − z) is defined to be fl(fl(x+ y)− z), for example.
We rely on the following lemmas from [6], which use the notation

γn = nu/(1− nu).

Lemma 3. [6, Lemma 3.1] If |δi| ≤ u for i = 1, 2, . . . , n and nu < 1
then

(1 + δ1) (1 + δ2) · · · (1 + δm)

(1 + δm+1) (1 + δm+2) · · · (1 + δn)
= 1 + θ,

where |θ| ≤ γn.

Lemma 4. [6, part of Lemma 3.3] If |θm| ≤ γm and |θn| ≤ γn then
(1 + θm)(1 + θn) = (1 + θm+n) where |θm+n| ≤ γm+n.

We now prove the lower bound on the worst-case growth in floating-
point arithmetic.

7

Theorem 5. When the Bunch-Kaufman Algorithm A is carried out in
floating-point arithmetic satisfying the conditions above, its worst-case
growth factor is at least (1 + 1/α)n−2(1− γ11n−22).

Proof. The matrix that demonstrates the lower bound has the same
structure as that in the proof of Theorem 2,

A =

















d1 1 1
d2 1 1

. . .
...

...
dn−2 1 1

1 1 · · · 1 1 1
1 1 · · · 1 1 1

















,

but with diagonal elements that are slightly larger than those that
appeared in the proof of Theorem 2, to ensure that rounding errors
never cause the algorithm to perform a 2-by-2 pivoting step.
We begin by analyzing the effects of rounding errors on the constant

α = (1 +
√
17)/8 . We denote the computed value by α̂ = fl((1 +√

17)/8). We have

1 +
1

α̂
= 1 +

1
(

1 +
√
17 (1 + η1)

)

(1 + η2) /8 (1 + η3)
|ηi| ≤ u

i = 1, 2, 3

≥ 1 +
1

(

1 +
√
17 (1 + u)

)

(1 + u) /8 (1 + u)

≥ 1 +
1

α

1

(1 + u)3

≥
(

1 +
1

α

)

1

(1 + u)3
.

We now define the diagonal values of A using recursive formulas that
also involve the values in the trailing 2-by-2 block of the reduced matrix
(from here on, the trailing block). The formulas also use the constant
φ = 1+4u. We note that φ satisfies (1+u)3 ≤ φ ≤ (1+u)4. The lower
bound on φ will ensure that rounding errors cannot force the algorithm
to perform a 2-by-2 pivoting step. The upper bound will ensure large
element growth.

8

σ0 = 1

dk = fl

(

− α

σk−1
φ

)

σk = fl

(

σk−1 −
1

dk

)

(for k = 1, 2, . . . , n− 2) .

We first show by induction that every pivoting step is a 1-by-1 step
and that the reduced matrix has the form

















dk+1 1 1
dk+2 1 1

. . .
...

...
dn−2 1 1

1 1 · · · 1 σk σk

1 1 · · · 1 σk σk

















.

This is trivially true before the first step. Assume that the claim holds
in steps 1, 2, . . . , k.
The algorithm now tests whether |dk+1| ≥ fl(α̂λ) (Step 2 in the

pivoting rule), where λ is the largest-magnitude element in column
k + 1, which is 1. If the test succeeds, the pivoting step is 1-by-1.
If not, the algorithm tests the condition fl(|dk+1|σk) ≥ fl(α̂λ2) = α̂
(Step 4 in the pivoting rule),

fl(|dk+1|σk) = |dk+1|σk
1

(1 + δ1)
≥ α̂ . |δ1| ≤ u

Substituting the expression for dk+1 we obtain

α̂

σk
φ

1

(1 + δ2) (1 + δ3)
σk

1

(1 + δ1)
≥ α̂ , |δi| ≤ u

i = 1, 2, 3

which is equivalent to

α̂φ ≥ α̂

3
∏

i=1

(1 + δi) ,

which is satisfied because φ ≥ (1 + u)3. Therefore, step k + 1 must be
a 1-by-1 step. This implies that the reduced matrix has the structure
we claimed, because σk was defined to be the result of the appropriate
rank-1 modification.

9

We now show that σk grows as quickly as the theorem claims. For
k = 1, 2, . . . , n− 2 we have

σk =

(

σk−1 −
1

dk
(1 + ε1)

)

(1 + ε2) |εi| ≤ u

i = 1, 2, 3, 4

=

(

σk−1 +
σk−1

α̂

1

φ
(1 + ε1) (1 + ε3) (1 + ε4)

)

(1 + ε2)

= σk−1

(

1 +
1

α̂φ
(1 + ε1) (1 + ε3) (1 + ε4)

)

(1 + ε2)

≥ σk−1

(

1 +
1

α̂

(1− u)3

(1 + u)4

)

(1− u)

≥ σk−1

(

1 +
1

α̂

)

(1− u)4

(1 + u)4
.

We have already shown that

1 +
1

α̂
≥
(

1 +
1

α

)

1

(1 + u)3
.

Therefore,

σk ≥ σk−1

(

1 +
1

α

)

1

(1 + u)3
(1− u)4

(1 + u)4
,

which according to Lemma 3 gives

σk ≥ σk−1

(

1 +
1

α

)

(1− γ11) ,

so by Lemma 4,

σn−2 ≥
(

1 +
1

α

)n−2

(1− γ11n−22) .

This completes the proof. �

Lapack’s symmetric indefinite factorization routine xSYTRF uses a
slight variant of Algorithm A, in which the test |A11|σ ≥ αλ2 is replaced
by |A11| ≥ αλ(λ/σ); also, in case of a 1-by-1 pivot, the reduced matrix
is updated according to the formula

A
(k+1)
ij = A

(k)
i+1,j+1 − (1/A

(k)
11)A

(k)
i+1,1A

(k)
1,j+1

where A
(k)
11 is explicitly inverted. The proof of Theorem 5 can be

adjusted for this variant; the bound actually becomes sharper, (1 +
1/α)n−2(1− γ7n−14). The details are omitted.

10

0 20 40 60 80 100 120 140
10

−20

10
−10

10
0

10
10

10
20

10
30

n

Growth factor

Forward error

Backward error

Figure 5.1. Actual growth in the factorization of ma-
trices constructed as shown in Section 4. The factoriza-
tion was computed using lapack. The graph also shows
the relative backward and forward error produced by us-
ing these factorizations to solve linear systems of equa-
tions.

5. Numerical Experiments

Lapack’s [1] symmetric indefinite solver xSYSV uses Algorithm A
to factor the matrix1. We ran the solver on a well-conditioned version of
the matrix described in Section 4 and verified that the growth is indeed
exponential. We also measured the forward and backward errors and
verified that they grow exponentially as well. The solution vector was
the vector of all 1s and the right-hand side was obtained by explicitly
multiplying this vector by A. Figure 5.1 shows the results.
The results demonstrate that the exponential growth indeed occurs

even in floating-point arithmetic, and even in lapack’s production
code.

1As of version 3.3.0 (the current version), Lapack’s symmetric indefinite factor-
ization uses Algorithm A; it does not use rook pivoting.

11

6. Remarks and Open Problems

The pivoting rule of Algorithms A and B is used in lapack. It is
important in that it is almost always used in practice to factor dense
symmetric indefinite matrices. Algorithm D and variants of it are used
in banded factorizations [7, 8] and in sparse factorizations, because it
perturbs the row/column preordering less than Algorithms A and B.
Some sparse codes use weaker variants of Algorithm D in an attempt
to pivot less, possibly at the expense of even more growth [9]. Other
sparse codes search for pivots within diagonal blocks (called fronts in
the sparse-matrix literature); this is a good strategy given the data
structures that are used, but it cannot be classified as either full or
partial pivoting (see, e.g. [4]).
In 1998, Ashcraft, Grimes, and Lewis [2] noticed that Bunch-Kaufman

solvers sometimes produce inaccurate results because L is not bounded
(even when the trailing submatrix is). They proposed more sophis-
ticated and more expensive pivoting rules that guarantee that L is
bounded. Our analysis does not cover these pivoting rules. Showing
examples of high growth for these methods, as well as several others
referenced in [2], remains an important question [6].
Algorithm C in Bunch and Kaufman’s paper starts each pivoting

step by finding the largest diagonal element and permuting it to the
(1, 1) position. Then it continues as Algorithm A. This strategy breaks
our examples. We do not know whether the growth bound can be
attained in this variant. If not, it might be a safer choice in practice.
It would also be interesting to know whether the Bunch-Kaufman

bounds are tight or almost tight on well-conditioned matrices; we
have showed that the Bunch-Kaufman method can produce exponen-
tial growth on well-conditioned matrices, but not growth that attains
the upper bound.

Acknowledgements. We thank the two anonymous referees and Nick
Higham, the editor, for helpful comments and suggestions. We also
thank Linda Kaufman for encouraging us to work on this problem. This
research was supported in part by an IBM Faculty Partnership Award
and by grant 1045/09 from the Israel Science Foundation (founded by
the Israel Academy of Sciences and Humanities).

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.
LAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA, third edition, 1999.

12

[2] Cleve Ashcraft, Roger G. Grimes, and John G. Lewis. Accurate symmetric
indefinite linear equation solvers. SIAM Journal on Matrix Analysis and Ap-

plications, 20(2):513–561, 1998.
[3] James R. Bunch and Linda Kaufman. Some stable methods for calculating

inertia and solving symmetric linear systems. Mathematics of Computation,
31(137):163–179, 1977.

[4] I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse sym-
metric linear equations. ACM Trans. Math. Softw., 9(3):302–325, 1983.

[5] Nicholas J. Higham. Stability of the diagonal pivoting method with partial
pivoting. SIAM Journal on Matrix Analysis and Applications, 18:52–65, 1997.

[6] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Soci-
ety for Industrial and Applied Mathematics, Philadelphia, PA, USA, second
edition, 2002.

[7] Mark T. Jones and Merrell L. Patrick. Bunch–Kaufman factorization for real
symmetric indefinite banded matrices. SIAM Journal on Matrix Analysis and

Applications, 14:553–559, April 1993.
[8] Linda Kaufman. The retraction algorithm for factoring banded symmetric ma-

trices. Numerical Linear Algebra with Applications, 14:237–254, April 2007.
[9] Joseph W. H. Liu. A partial pivoting strategy for sparse symmetric matrix

decomposition. ACM Trans. Math. Softw., 13(2):173–182, 1987.
[10] J. H. Wilkinson. Error analysis of direct methods of matrix inversion. J. ACM,

8(3):281–330, 1961.

13

