
ar
X

iv
:0

90
7.

03
05

v1
 [

cs
.D

S]
 2

 J
ul

 2
00

9

Improved Approximation Guarantees for Weighted Matching

in the Semi-Streaming Model

Leah Epstein∗ Asaf Levin† Julián Mestre‡ Danny Segev§

Abstract

We study the maximum weight matching problem in the semi-streaming model, and improve
on the currently best one-pass algorithm due to Zelke (Proc. STACS ’08, pages 669–680) by
devising a deterministic approach whose performance guarantee is 4.91 + ε. In addition, we
study preemptive online algorithms, a sub-class of one-pass algorithms where we are only allowed
to maintain a feasible matching in memory at any point in time. All known results prior to
Zelke’s belong to this sub-class. We provide a lower bound of 4.967 on the competitive ratio of
any such deterministic algorithm, and hence show that future improvements will have to store
in memory a set of edges which is not necessarily a feasible matching.

1 Introduction

The computational task of detecting maximum weight matchings is one of the most fundamental
problems in discrete optimization, attracting plenty of attention from the operations research,
computer science, and mathematics communities. (For a wealth of references on matching problems
see [11].) In such settings, we are given an undirected graph G = (V,E) whose edges are associated
with non-negative weights specified by w : E → R+. A set of edges M ⊆ E is a matching if no
two of the edges share a common vertex, that is, the degree of any vertex in (V,M) is at most 1.
The weight w(M) of a matching M is defined as the combined weight of its edges, i.e.,

∑

e∈M w(e).
The objective is to compute a matching of maximum weight. We study this problem in two related
computational models: the semi-streaming model and the preemptive online model.

The semi-streaming model. Even though these settings appear to be rather simple as first
glance, it is worth noting that matching problems have an abundance of flavors, usually depending
on how the input is specified. In this paper, we investigate weighted matchings in the semi-

streaming model, was first suggested by Muthukrishnan [10]. Specifically, a graph stream is a
sequence ei1 , ei2 , . . . of distinct edges, where ei1 , ei2 , . . . is an arbitrary permutation of E. When an
algorithm is processing the stream, edges are revealed sequentially, one at a time. Letting n = |V |
and m = |E|, efficiency in this model is measured by the space S(n,m) a graph algorithm uses, the
time T (n,m) it requires to process each edge, and the number of passes P (n,m) it makes over the
input stream. The main restriction is that the space S(n,m) is limited to O(n · polylog(n)) bits

∗Department of Mathematics, University of Haifa, 31905 Haifa, Israel. Email: lea@math.haifa.ac.il.
†Chaya fellow. Faculty of Industrial Engineering and Management, The Technion, 32000 Haifa, Israel. Email:

levinas@ie.technion.ac.il.
‡Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany. Email: jmestre@mpi-inf.mpg.de. Research

supported by an Alexander von Humboldt Fellowship.
§Operations Research Center, Massachusetts Institute of Technology, Cambridge 02139, MA, USA. Email:

segevd@mit.edu.

1

http://arxiv.org/abs/0907.0305v1

of memory. We refer the reader to a number of recent papers [10, 3, 4, 2, 9] and to the references
therein for a detailed literature review.

Online graph problems. Unlike the semi-streaming model, in online problems the size of the
underlying graph is not known in advance. The online matching problem has previously been
modeled as follows. Edges are presented one by one to the algorithm, along with their weight.
Once an edge is presented, we must make an irrevocable decision, whether to accept it or not. An
edge may be accepted only if its addition to the set of previously accepted edges forms a feasible
matching. In other words, an algorithm must keep a matching at all times, and its final output
consists of all edges which were ever accepted. In this model, it is easy to verify that the competitive
ratio of any (deterministic or randomized) algorithm exceeds any function of the number of vertices,
meaning that no competitive algorithm exists. However, if all weights are equal, a greedy approach
which accepts an edge whenever possible, has a competitive ratio of 2, which is best possible for
deterministic algorithms [7].

Similarly to other online settings (such as call control problems [5]), a preemptive model can
be defined, allowing us to remove a previously accepted edge from the current matching at any
point in time; this event is called preemption. Nevertheless, an edge which was either rejected or
preempted cannot be inserted to the matching later on. We point out that other types of online
matching problems were studied as well [7, 6, 8, 1].

Comparison between the models. Both semi-streaming algorithms and online algorithms
perform a single pass over the input. However, unlike semi-streaming algorithms, online algorithms
are allowed to concurrently utilize memory for two different purposes. The first purpose is obviously
to maintain the current solution, which must always be a feasible matching, implying that the
memory size of this nature is bounded by the maximal size of a matching. The second purpose is to
keep track of arbitrary information regarding the past, without any concrete bound on the size of
memory used. Therefore, in theory, online algorithms are allowed to use much larger memory than
is allowed in the semi-streaming model. Moreover, although this possibility is rarely used, online
algorithms may perform exponential time computations whenever a new piece of input is revealed.
On the other hand, a semi-streaming algorithm may re-insert an edge the current solution, even
if it has been temporarily removed, as long as this edge was kept in memory. This extra power is
not allowed for online (preemptive) algorithms, making them inferior in this sense in comparison
to their semi-streaming counterparts.

Previous work. Feigenbaum et al. [3] were the first to study matching problems under similar
assumptions. Their main results in this context were a semi-streaming algorithm that computes
a (3/2 − ε)-approximation in O(log(1/ε)/ε) passes for maximum cardinality matching in bipartite
graphs, as well as a one-pass 6-approximation for maximum weighted matching in arbitrary graphs.
Later on, McGregor [9] improved on these findings, to obtain performance guarantees of (1 + ε)
and (2+ ε) for the maximum cardinality and maximum weight versions, respectively, being able to
handle arbitrary graphs with only a constant number of passes (depending on 1/ε). In addition,
McGregor [9] tweaked the one-pass algorithm of Feigenbaum et al. into achieving a ratio of 5.828.
Finally, Zelke [12] has recently attained an improved approximation factor of 5.585, which stands
as the currently best one-pass algorithm. Note that the 6-approximation algorithm in [3] and
the 5.828-approximation algorithm in [9] are preemptive online algorithms. On the other hand,
the algorithm of Zelke [12] uses the notion of shadow-edges, which may be re-inserted into the
matching, and hence it is not an online algorithm.

2

Main result I. The first contribution of this paper is to improve on the above-mentioned results,
by devising a deterministic one-pass algorithm in the semi-streaming model, whose performance
guarantee is 4.91+ε. In a nutshell, our approach is based on partitioning the edge set into O(log n)
weight classes, and computing a separate maximal matching for each such class in online fashion,
using O(n · polylog(n)) memory bits overall. The crux lies in proving that the union of these
matchings contains a single matching whose weight compares favorably to the optimal one. The
specifics of this algorithm are presented in Section 2.

Main result II. Our second contribution is motivated by the relation between semi-streaming
algorithms and preemptive online algorithms, which must maintain a feasible matching at any point
in time. To our knowledge, there are currently no lower bounds on the competitive ratio that can
be achieved by incorporating preemption. Thus, we also provide a lower bound of 4.967 on the
performance guarantee of any such deterministic algorithm. As a result, we show that improved
one pass algorithms for this problem must store more than just a matching in memory. Further
details are provided in Section 3.

2 The Semi-Streaming Algorithm

This section is devoted to obtaining main result I, that is, an improved one-pass algorithm for
the weighted matching problem in the semi-streaming model. We begin by presenting a simple
deterministic algorithm with a performance guarantee of 8. We then show how to randomize
its parameters, still within the semi-streaming framework, and obtain an expected approximation
ratio of 4.9108. Finally, we de-randomize the algorithm by showing how to emulate the required
randomness using multiple copies (constant number) of the deterministic algorithm, while paying
an additional additive factor of at most ε, for any fixed ε > 0.

2.1 A simple deterministic approach

Preliminaries. We maintain the maximum weight of any edge wmax seen so far in the input
stream. Clearly, the maximum weight matching of the edges seen so far has weight in the interval
[wmax,

n
2wmax]. Note that if we disregard all edges with weight at most 2εwmax

n , the weight of the
maximum weight matching in the resulting instance decreases by an additive term of at most
εwmax ≤ εopt.

Our algorithm has a parameter γ > 1, and a value φ > 0. We define weight classes of edges in
the following way. For every i ∈ Z, we let the class Wi be the collection of edges whose weight is
in the interval [φγi, φγi+1). We note that by our initial assumption, the weight of each edge is in
the interval [2εwmax

n , wmax], and we say that a weight class Wi is under consideration if its weight
interval [φγi, φγi+1) intersects [2εwmax

n , wmax]. The number of classes which are under consideration
at any point in time is O(logγ(

n
ε)).

The algorithm. Our algorithm simply maintains the list of classes under consideration and
maintains a maximal (unweighted) matching for each such class. In other words, when the value
of wmax changes, we delete from the memory some of these matchings, corresponding to the classes
which stop being under consideration. Note that to maintain a maximal matching in a given
subgraph, we only need to check if the two endpoints of the new edge are not covered by existing
edges of the matching.

To conclude, for every new edge e ∈ E we proceed as follows. We first check if w(e) is greater
than the current value of wmax. If so, we update wmax and the list of weight classes under consid-

3

eration accordingly. Then, we find the weight class of w(e), and try to extend its corresponding
matching, i.e., e will be added to this matching if it remains a matching after doing so.

Note that at each point the content of the memory is the value wmax and a collection of
O(logγ(

n
ε)) matchings, consisting of O(n logγ(

n
ε)) edges overall. Therefore, our algorithm indeed

falls in the semi-streaming model.
At the conclusion of the input sequence, we need to return a single matching rather than

a collection of matchings. To this end, we could compute a maximum weighted matching of the
edges in the current memory. However, for the specific purposes of our analysis, we use the following
faster algorithm. We sort the edges in memory in decreasing order of weight classes, such that the
edges in Wi appear before those in Wi−1, for every i. Using this sorted list of edges, we apply
a greedy algorithm for selecting a maximal matching, in which the current edge is added to this
matching if it remains a matching after doing so. Then, the post-processing time needed is linear in
the size of the memory used, that is, O(n logγ(

n
ε)). This concludes the presentation of the algorithm

and its implementation as a semi-streaming algorithm.

Analysis. For purposes of analysis, we round down the weight of each edge e such that w(e) ∈ Wi

to be φγi. This way, we obtain rounded edge weights. Now fix an optimal solution opt and denote
by opt its weight, and by opt

′ its rounded weight. The next claim immediately follows from the
definition of Wi.

Lemma 2.1. opt ≤ γopt′.

As an intermediate step, we analyze an improved algorithm which keeps all weight classes. That
is, for each i, we use Mi to denote the maximal matching of class Wi at the end of the input, and
denote by M the solution obtained by this algorithm, if we would have applied it. Similarly, we
denote by opti the set of edges in opt which belong to Wi. For every i, we define the set of vertices
Pi, associated with Wi, to be the set of endpoints of edges in Mi that are not associated with higher
weight classes:

Pi = {u, v | (u, v) ∈ Mi} \ (Pi+1 ∪ Pi+2 ∪ · · ·).
For a vertex p ∈ Pi, we define its associated weight to be φγi. For vertices which do not belong
to any Pi, we let their associated weight be zero. We next bound the total associated weight of all
the vertices.

Lemma 2.2. The total associated weight of all the vertices is at most 2γ
γ−1 · w(M).

Proof. Consider a vertex u ∈ Pi and let (u, v) be the edge in Mi adjacent to u. If (u, v) ∈ M then
we charge the weight associated with u to the edge (u, v). Thus, an edge e ∈ Mi is charged at most
twice from vertices associated with its own weight class. Otherwise, if (u, v) /∈ M then there must
be some other edge e ∈ M ∩ Mj , for some j > i, that prevented us from adding (u, v) to M , in
which case we charge the weight associated with u to e. Notice that u /∈ e, for otherwise, u would
not be associated with Wi. Thus, the edge e ∈ Mj must be of the form e = (v, x) and can only be
charged twice from vertices in weight class i, once through v and once through x.

To bound the ratio between w(M) and the total associated weight of the vertices, it suffices
to bound the ratio between the weight of an edge e ∈ M and the total associated weight of the
vertices which are charged to e. Assume that e ∈ Mj , then there are at most two vertices which
are charged to e and class i for all i ≤ j, and no vertex is associated to e and class i for i > j.
Hence, the total associated weight of these vertices is at most

2
∑

i≤j

φγi < 2φγj ·
∞
∑

i′=0

1

γi′
= 2φγj · 1

1− 1/γ
= φγj · 2γ

γ − 1
,

4

and the claim follows since w(e) ≥ φγj .

It remains to bound opt
′ with respect to the total associated weight.

Lemma 2.3. opt
′ is at most the total weight associated with all vertices.

Proof. It suffices to show that for every edge e = (x, y) ∈ opti the maximum of the associated
weights of x and y is at least the rounded weight of e. Suppose that this claim does not hold, then
x and y are not covered by Mi, as otherwise their associated weight would be at least φγi. Hence,
when the algorithm considered e, we would have added e to Mi, contradicting our assumption that
x and y are not covered by Mi.

Using the above sequence of lemmas, and recalling that we lose another ε in the approximation
ratio due to disregarding edges of weight at most 2εwmax

n , we obtain the following inequality:

opt ≤ γopt′ ≤
(

γ · 2γ

γ − 1
+ ε

)

· w(M). (2.1)

Therefore, we establish the following theorem.

Theorem 2.4. Our simple deterministic algorithm has an approximation ratio of (2γ2

γ−1 + ε). This

ratio can be optimized to 8 + ε by picking γ = 2.

The next example demonstrates that the analysis leading to Theorem 2.4 is tight.

Example 2.5. Let k be some large enough integer and ε > 0 be sufficiently small. Consider the
instance depicted in Figure 1, where M = Mk consists of a single edge (x, y) with weight γk. For
every 0 ≤ i < k, the matching Mi consists of exactly two edges (αi, x) and (y, βi) each of weight γi,
and opti consists of two edges (αi, ai) and (βi, bi) each of weight γi+1−ε. In addition, there are two
edges (ak, x) and (bk, y) whose weight is γ

k+1 − ε. It is easy to see that each Mi is indeed maximal
in its own weight class. Given these matchings, our greedy selection rule will output a single edge
(x, y) with total weight γk (notice that computing a maximum weight matching in M0 ∪ · · · ∪Mk

does not help when γ ≥ 2). Moreover, the value of the optimal solution matches our upper bound
up to an additive O(ε) term.

x
γk

y

a0

γ1
−ε

α0

γ0 γ0

β0

γ1
−ε

b0

ak−1

γk
−ε

αk−1

γk−1 γk−1

βk−1

γk
−ε

bk−1

γk+1
−ε

ak

γk+1
−ε

bk

Figure 1: A tight example for our deterministic algorithm.

5

2.2 Improved approximation ratio through randomization

In what follows, we analyze a randomized variant of the deterministic algorithm which was presented
in the previous subsection. In general, this variant sets the value of φ to be φ = γδ where δ is a
random variable. This method is commonly referred to as randomized geometric grouping.

Formally, let δ be a continuous random variable which is uniformly distributed on the interval
[0, 1). We define the weight class Wi(δ) = [γi+δ , γi+1+δ), and run the algorithm as in the previous
subsection. Note that this algorithm uses only the partition of the edges into classes and not the
precise values of their weights. In addition, we denote by M(δ) the resulting matching obtained by
the algorithm, and by TW (δ) the total associated weight of the vertices, where for a vertex p ∈ Pi

we define its associated weight to be γi+δ (i.e., the minimal value in the interval Wi(δ)). We also
denote by opt

′(δ) the value of opt′ for this particular δ.
For any fixed value of δ, inequality (2.1) immediately implies opt

′(δ) ≤ (2γ
γ−1 + ε) · w(M(δ)).

Note that opt′(δ) and w(M(δ)) are random variables, such that for each realization of δ the above
inequality holds. Hence, this inequality holds also for their expected values. That is, we have
established the following lemma where Eδ[·] represents expectation with respect to the random
variable δ.

Lemma 2.6. Eδ[opt
′(δ)] ≤ (2γ

γ−1 + ε) · Eδ[w(M(δ))].

We next lower bound opt in terms of Eδ[opt
′(δ)].

Lemma 2.7.
γ lnγ
γ−1 · Eδ[opt

′(δ)] ≥ opt.

Proof. We will show the corresponding inequality for each edge e ∈ opt. We denote by w′
δ(e) the

rounded weight of e for a specific value of δ. Then, it suffices to show that γ ln γ
γ−1 ·Eδ[w

′
δ(e)] ≥ w(e).

Let p be an integer, and let 0 ≤ α < 1 be the value that satisfies w(e) = γp+α. Then, for δ ≤ α,
w′
δ(e) = γp+δ, and for δ > α, w′

δ(e) = γp−1+δ, thus the expected rounded weight of e over the
choices of δ is

Eδ[w
′
δ(e)] =

∫ α

0
γp+δdδ+

∫ 1

α
γp−1+δdδ =

1

ln γ
·
(

γp(γα − 1) + γp−1(γ − γα)
)

= w(e) ·
(

1− 1

γ

)

1

ln γ
,

and the claim follows.

Combining the above two lemmas we obtain that the expected weight of the resulting solution

is at least ((γ−1)2

2γ2 ln γ
+ ε) · opt. This approximation ratio is optimized for γ ≈ 3.513, where it is

roughly (4.9108 + ε). Hence, we have established the following theorem.

Theorem 2.8. The randomized algorithm has an approximation ratio of roughly 4.9108 + ε.

2.3 Derandomization

Prior to presenting our de-randomization, we slightly modify the randomized algorithm of the
previous subsection. In this variation, instead of picking δ uniformly at random from the interval
[0, 1) we pick δ′ uniformly at random from the discrete set {0, 1q , 2q , . . . ,

q−1
q }. We apply the same

method as in the previous section where we replace δ by δ′. Then, using Lemma 2.6, we obtain
Eδ′ [opt

′(δ′)] ≤ (2γ
γ−1 + ε) · Eδ′ [w(M(δ′))]. To extend Lemma 2.7 to this new setting, we note

that δ′ can be obtained by first picking δ and then rounding it down to the largest number in
{0, 1q , 2q , . . . ,

q−1
q } which is at most δ. In this way, we couple the distributions of δ and δ′. Now

6

consider the rounded weight of an edge e in opt in the two distinct values of δ and δ′. The
ratio between the two rounded weight is at most γ1/q. Therefore, we establish that γ ln γ

γ−1 · γ1/q ·
Eδ[opt

′(δ)] ≥ opt. Therefore, the resulting approximation ratio of the new variation is 2γ2+1/q lnγ
(γ−1)2 +

ε. By settinf q to be large enough (picking q = ⌈ 1
logγ(ε/5)

⌉ is enough), the resulting approximation

ratio is bounded by 2γ2 ln γ
(γ−1)2

+ 2ε.

De-randomizing the new variation in the semi-streaming model is straightforward. We simply
run in parallel all q possible outcomes of the algorithm, one for each possible value of δ′, and pick
the best solution among the q solutions we obtained. Since q is a constant (for fixed values of ε), the
resulting algorithm is still a semi-streaming algorithm whose performance guarantee is 4.9108+2ε.
By scaling ε prior to applying the algorithm, we establish the following result.

Theorem 2.9. For any fixed ε > 0, there is a deterministic one-pass semi-streaming (4.9108 + ε)-
approximation algorithm for the weighted matching problem. This algorithm processes each input

edge in constant time and required O(n) time at the end of the input to compute the final output.

3 Online Preemptive Matching

In this section, we established the following theorem.

Theorem 3.1. The competitive ratio of any deterministic preemptive online algorithm is at least

R ≈ 4.967, where R is the unique real solution of the equation x3 = 4(x2 + x+ 1).

Recall that the algorithms of [3] and [9] can be viewed as online preemptive algorithms; their
competitive ratios are 6 and 5.828, respectively.

Definitions of some constants. Let C = R− ε for some ε > 0 and assume that a deterministic
online algorithm achieves a competitive ratio of at most C′ = C − ε. We construct an input graph
iteratively, and show that after a finite number of steps, the competitive ratio is violated.

In the construction of the input, all edge weights come from two weight sequences. The main
weight sequence is w1, w2, . . ., and an additional weight function is w′

2, w
′
3, These sequences are

defined as follows:

• w1 = 1, and wk+1 =
1

2C+1((C2 + 1)wk − C
∑k−1

i=1 wi) for k ≥ 1.

• w′
k+1 =

1
C
((C + 1)wk+1 − wk).

The first sequence is defined for k + 1 only as long as wk−1 ≥ wk−2. As soon as wk < wk−1, the
sequence stops with wk+1, and the length of the sequence wi is n = k+1. We later show that such
a value k must exist. Let Si =

∑i
j=1wj (and S0 = 0).

Properties of the sequences. By definition, since w′
i+1 = wi+1 +

1
C
(wi+1 − wi), if wk < wk−1,

then wk+1 < wk holds as well. Note that wi ≤ w′
i for all i < n − 1, by definition, since wi ≥ wi−1,

but w′
n−1 < wn−1. In addition, we have the following:

w′
i+1 + wi+1 + Si−1 = Cwi.

7

This equality holds for i = 1, 2, . . . , n− 2 since

w′
i+1 + wi+1 + Si−1 =

C + 1

C wi+1 −
wi

C + wi+1 + Si−1

=
2C + 1

C · 1

2C + 1
· ((C2 + 1)wi − CSi−1) + Si−1 −

wi

C
= Cwi,

where the first equality holds by definition of w′
i+1, the second equality holds by definition of wi+1,

and the third one by simple algebra. In addition,

Si−2 + wi + wi+1 + w′
i+1 = Cw′

i.

The last equality holds for i = 2, 3, . . . , n− 2 since

Si−2 + wi + wi+1 + w′
i+1 = Si−2 + wi +

2C + 1

C wi+1 −
wi

C
= Si−2 +

C − 1

C wi +
2C + 1

C · 1

2C + 1
((C2 + 1)wi − CSi−1))

= (C + 1)wi + Si−2 − Si−1

= (C + 1)wi − wi−1

= Cw′
i,

where the first equality holds by definition of w′
i+1, the second by definition of wi+1, the third by

simple algebra, the fourth by definition of Si−1 and Si−2, and the last one by definition of w′
i.

Input construction, step 1. To better understand our construction, we advice the reader to
consult Figure 2. The input is created in n steps. In the initial step, two edges (a1, x1) and (b1, x1),
each of weight w1, are introduced. Assume that after both edges have arrived, the online algorithm
holds the edge (a1, x1). All future edges either have endpoints which are new vertices, or in the set
{a1, x1} (i.e., they do not contain b1 as an endpoint). An optimal solution keeps (b1, x1).

Input construction, properties. Every future step can be of two distinct types, which will be
described later on. Among the edges introduced below, vertices called bj denote endpoints which
occur each on a single edge.

After step i, the following invariants are maintained. The algorithm keeps a single edge denoted
by ei. If i = 1, then ei = (ai, xi). If i > 1, then this edge can be one of two edges, (ai, xi) or
(ci, yi). If ei = (ai, xi), then its weight is wi, and an optimal solution has one edge of each weight
w1, w2, . . . , wi−1, wi. No future edges will have common endpoints with these i edges, except,
possibly, with the endpoint xi of the edge of weight wi (the edge of this weight which this optimal
solution keeps is always (xi, bi)). Otherwise, ei = (ci, yi), and its weight is w′

i, in which case an
optimal solution can have edges of weights w1, w2, . . . , wi, except for one weight wj for some j < i.
This index j is used in the definition of the next step, and the properties of the current step. In
addition to these i− 1 edges, the optimal solution also has the edge (ci, yi). Future edges will have
endpoints which are new vertices, or in the set {ci, yi}. In the last case, the vertex yi is equal to
the vertex xj. The invariants clearly hold after the first step. We next define all other steps and
show that the invariants hold for each option.

8

i = 1

b1

x1 a1

i = 2

b1

x1

a1

x2

b2

a2

i = 3

b1

x1

a1

x2

y3

b2

a2

x3

b3

a3 c3

i = 4

b1

x1

a1

x2

y3

y4

b2

a2

x3

b3

a3

c3

x4

b4

a4 c4

i = 5

b1

x1

a1

x2

y3

y4

b2

a2

x2

b3

a3

c3

x4

b4

a4

c4

x5

b5

a5

Figure 2: An example of five steps of the lower bound construction. The curved edges denote
the edge kept by the online algorithm at each time. In the first two steps, the edges (xi, ai) are
chosen by the algorithm. In the third step (x3, a3) is not chosen by the algorithm, so (y3, c3) arrives
next. In the fourth (x4, a4) is not chosen by the algorithm, so (y4, c4) arrives next. In the fifth step
(x5, a5) is chosen by the algorithm, so no further edges arrive in this step.

Input construction, step n. If i + 1 = n, the last step consists of an edge of weight wn. Let
xn = an−1, if en−1 = (an−1, xn−1) and otherwise xn = cn−1. The new edge is (xn, bn), where bn is
a new vertex. This edge has a common endpoint with the edge that the algorithm has. In fact,
the algorithm has an edge of weight at least wn−1 > wn, and thus we assume that it does not
preempt it. If the algorithm has an edge of weight wn−1, the edge (xn, bn) does not have xi as an
endpoint, so adding the new edge to the optimal solution does not require the removal of any edges,
and the profit of the optimal solution is Sn. If the algorithm has an edge of weight w′

n−1, the new
edge is (cn−1, bn). We replace the edge (cn−1, yn−1) of the optimal solution by the new edge. In
addition, the edge (yn−1, bj) = (xj, bj) (where j is the index such that the optimal solution before
the modification of the current step does not have an edge of weight wj) is added to the optimal
solution, since the endpoint yn−1 became free, and the endpoint bj only has degree 1. The profit of
the optimal solution is Sn again. Recall that w′

n−1 ≤ wn−1, and hence the algorithm earns (in both
cases) at most wn−1. Note also that the optimal solution has value of Sn and if wn < 0 then we can
drop the edge of this weight from the optimal solution and get a solution of value Sn−1. Therefore,
we will use Sn−1 as a lower bound on the value of the optimal solution in this case. Thus we will
show later that Sn−1

wn−1
≥ C > C′.

Input construction, step i + 1, for i + 1 < n. We next show how to construct the edges of
step i + 1, for the case i + 1 < n. We introduce two new edges of weight wi+1. Let xi+1 = ai,
if ei = (ai, xi) and otherwise xi+1 = ci. The new edges are (xi+1, bi+1), and (xi+1, ai+1), where
ai+1 and bi+1 are new vertices. Both these edges have a common endpoint with the edge that the
algorithm has, and the algorithm can either preempt the edge it has, in which case we assume
(without loss of generality) that it now has (xi+1, ai+1), or else it keeps the previous edge. If the
algorithm keeps the previous edge, let yi+1 = xi, if ei = (ai, xi) and otherwise yi+1 = yi. In this

9

case a third edge, (yi+1, ci+1), which has a weight of w′
i+1, is introduced. The vertex ci+1 is new.

There are four cases to consider. In the first case, if the algorithm replaces the edge (ai, xi)
with the edge (xi+1, ai+1) = (ai, ai+1), then an optimal solution can add the edge (xi+1, bi+1) to its
edges, since the endpoint bi+1 is new, and the endpoint ai was introduced in the previous step, in
which the optimal solution obtained the edge (xi, bi).

If the algorithm replaces the edge (ci, yi) with the edge (xi+1, ai+1) = (ci, ai+1), an optimal
solution can remove the edge (ci, yi) from its solution and add the two edges (xi+1, bi+1) = (ci, bi+1)
and (yi, bj) = (xj , bj) (where j is the index such that the optimal solution before the modification
of the current step does not have an edge of weight wj). This is possible since the endpoints bi+1

and bj do not have other edges, and the endpoints ci and yi become free.
In the last two cases, the invariants hold. For the remaining two cases note that if w′

i ≤ 0
or wi < 0 and the algorithm has a single edge of weight w′

i or wi, respectively, then the optimal
solution is strictly positive and the value of the algorithm is non-positive, and hence the resulting
approximation ratio in this case is unbounded. Hence, we can assume without loss of generality
that if the algorithm has a single edge at the end of step i, then its weight is strictly positive.

If the algorithm does not replace the edge (ai, xi) with the edge (xi+1, ai+1) = (ai, ai+1), we
show that it must replace it with the edge (yi+1, ci+1) = (xi, ci+1). Assume that this is not the case.
Then the profit of the algorithm is wi and the optimal solution can omit its edge (xi, bi) and add the
edges (xi, ci+1) and (ai, bi+1) (since all these endpoints are introduced in steps i and i+1, except for
xi, which becomes free). Thus the profit of the optimal algorithm is Si−1+wi+1+w′

i+1 = C·wi, while
the profit of the online algorithm is wi. Thus, the algorithm must switch to the edge (xi+1, ai+1),
and the structure of the optimal solution is according to the invariants.

If the algorithm does not replace the edge (ci, yi) with the edge (xi+1, ai+1) = (ci, ai+1), we
show that it must replace it with the edge (yi+1, ci+1) = (yi, ci+1). Assume that this is not the
case. Then the profit of the algorithm is w′

i and the optimal solution can omit its edge (ci, yi) and
add the edges (ci, ai+1) and (yi, ci+1) (since ci and yi become free, and the other two endpoints
are introduced in step i + 1). Thus the profit of the optimal algorithm is Si − wj + wi+1 + w′

i+1,
where j ≤ i− 1 and i ≥ 2, since wj ≤ wj+1 ≤ · · · ≤ wi−1 as i− 1 ≤ n− 2, we get that the optimal
profit is at least Si−2 + wi + wi+1 + w′

i+1 = Cw′
i, while the profit of the online algorithm is w′

i.
Thus, the algorithm must switch to the edge (xi+1, ai+1), and the structure of the optimal solution
is according to the invariants.

Bounding the competitive ratio. We next define a recursive formula for Si. By the definition
of the sequence wi, we have

S0 = 0
S1 = 1

Sk+1 =
C2+2C+2
2C+1 Sk − C2+C+1

2C+1 Sk−1, for k ≥ 1

(3.1)

We first use this recurrence to show that if wn−1 < wn−2 then Sn−1

wn−1
≥ C. To see this note that by

assumption Sn−1 − Sn−2 < Sn−2 − Sn−3, hence using the recurrence formula we conclude that

Sn−1 − 2Sn−2 +
2C + 1

−C2 − C − 1
Sn−1 +

C2 + 2C + 2

C2 + C + 1
Sn−2 < 0,

that is,
Sn−1 · (C2 + C + 1− 2C − 1) + Sn−2 · (C2 + 2C + 2− 2C2 − 2C − 2) < 0,

which is equivalent to (C2 − C)Sn−1 − C2Sn−2 < 0, so C(Sn−1 − Sn−2) < Sn−1, and we conclude
that Cwn−1 < Sn−1, as we argued. Therefore, it remains to show that there is a value of n such

10

that wn−2 > wn−1. To establish this claim, it suffices to show that there is a value of j for which
wj < 0 (since w1 > 0). To prove this last claim, we will show that there is a value of k such that
Sk < 0. Finally, to show the existence of such k, we will solve the linear homogeneous recurrence
formula, and use the explicit form of Sk to show that there is a value of k such that Sk < 0.

To solve the recurrence formula (3.1), we guess solutions of the form Sk = xk for all k, and get
the following quadratic equation for x:

(2C + 1)x2 − (C2 + 2C + 2)x+ (C2 + C + 1) = 0.

We solve this quadratic equation and get its solutions

x1,2 =
(C2 + 2C + 2)±

√

(C2 + 2C + 2)2 − 4(2C + 1)(C2 + C + 1)

2(2C + 1)

=
(C2 + 2C + 2)±

√
C4 + 4C2 + 4 + 4C3 + 8C + 4C2 − 8C3 − 4C2 − 8C2 − 4C − 8C − 4

2(2C + 1)

=
(C2 + 2C + 2)±

√

C(C3 − 4C2 − 4C − 4)

2(2C + 1)
.

Note that using C < R, and recalling that R is the unique real solution of the equation x3 =
4(x2 + x+ 1), we conclude that C(C3 − 4C2 − 4C − 4) < 0 and hence the two solutions are complex
numbers whose imaginary parts are not zero. Since we got two distinct solutions of x, it is known
that the recurrence formula (3.1) is solved by a formula of the form Si = αxi1 + βxi2 where α and
β are constants. We find the value of α and β using the conditions S0 = 0 and S1 = 1. So we
get the following set of two equations: α + β = 0 (corresponding to S0 = 0), and αx1 + βx2 = 1
(corresponding to S1 = 1). From the first equation we conclude that β = −α, and using this we
obtain α = 1

x1−x2
= 2C+1√

C(C3−4C2−4C−4)
. Hence, the closed form solution of Sj for values of C < R is

as follows.

Sj =
2C + 1

√

C(C3 − 4C2 − 4C − 4)

(

(C2 + 2C + 2) +
√

C(C3 − 4C2 − 4C − 4)

2(2C + 1)

)j

− 2C + 1
√

C(C3 − 4C2 − 4C − 4)

(

(C2 + 2C + 2)−
√

C(C3 − 4C2 − 4C − 4)

2(2C + 1)

)j

. (3.2)

We use the notation i =
√
−1, and let α = A·i. As noted above C(C3−4C2−4C−4) < 0, and hence A

is a real number. We also define r and θ such that
(C2+2C+2)+

√
C(C3−4C2−4C−4)

2(2C+1) = r(cos(θ)+i sin(θ)),

and also
(C2+2C+2)−

√
C(C3−4C2−4C−4)

2(2C+1) = r(cos(θ)− i sin(θ)), then we get the following formula for Sj .

Sj = A · i ·
(

rj(cos(θ) + i sin(θ))j − rj(cos(θ)− i sin(θ))j
)

= A · i ·
(

rj(cos(jθ) + i sin(jθ))− rj(cos(jθ)− i sin(jθ))
)

= A · i · rj · 2i sin(jθ)
= −2Arj sin(jθ) .

Note that rj > 0 for all j, and hence to show that the sequence {Sj} changes its sign as we required,
it suffices to show that the sequence {sin(jθ)} changes its sign, but this last claim holds because
0 < θ < π (as the solutions x1 and x2 are not real numbers). Hence, the claim follows.

11

References

[1] N. Bansal, N. Buchbinder, A. Gupta, and J. Naor. An O(log2 k)-competitive algorithm for met-
ric bipartite matching. In Proceedings of the 15th Annual European Symposium on Algorithms,
pages 522–533, 2007.

[2] M. Elkin and J. Zhang. Efficient algorithms for constructing (1 + ǫ, β)-spanners in the dis-
tributed and streaming models. Distributed Computing, 18(5):375–385, 2006.

[3] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On graph problems in a
semi-streaming model. Theoretical Computer Science, 348(2-3):207–216, 2005.

[4] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. Graph distances in the
data-stream model. SIAM Journal on Computing, 38(5):1709–1727, 2008.

[5] J. A. Garay, I. S. Gopal, S. Kutten, Y. Mansour, and M. Yung. Efficient on-line call control
algorithms. Journal of Algorithms, 23(1):180–194, 1997.

[6] B. Kalyanasundaram and K. Pruhs. Online weighted matching. Journal of Algorithms,
14(3):478–488, 1993.

[7] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipartite
matching. In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, pages
352–358, 1990.

[8] S. Khuller, S. G. Mitchell, and V. V. Vazirani. On-line algorithms for weighted bipartite
matching and stable marriages. Theoretical Computer Science, 127(2):255–267, 1994.

[9] A. McGregor. Finding graph matchings in data streams. In Proceedings of the 8th International

Workshop on Approximation Algorithms for Combinatorial Optimization Problems, pages 170–
181, 2005.

[10] S. Muthukrishnan. Data Streams: Algorithms and Applications. Foundations and Trends in
Theoretical Computer Science. Now Publishers Inc, 2005.

[11] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003.

[12] M. Zelke. Weighted matching in the semi-streaming model. In Proceedings of the 25th Annual

Symposium on Theoretical Aspects of Computer Science, pages 669–680, 2008.

12

	Introduction
	The Semi-Streaming Algorithm
	A simple deterministic approach
	Improved approximation ratio through randomization
	Derandomization

	Online Preemptive Matching

