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Abstract. This work is concerned with different aspects of spectrahedra and

their projections, sets that are important in semidefinite optimization. We

prove results on the limitations of so called Lasserre and theta body relaxation

methods for semialgebraic sets and varieties. As a special case we obtain the

main result of [17] on non-exposed faces. We also solve the open problems

from that work. We further prove some helpful facts which can not be found

in the existing literature, for example that the closure of a projection of a

spectrahedron is again such a projection. We give a unified account of several

results on convex hulls of curves and images of polynomial maps. We finally

prove a Positivstellensatz for projections of spectrahedra, which exceeds the

known results that only work for basic closed semialgebraic sets.

1. Introduction

Semidefinite programming has turned out to be a very important and valuable

tool in polynomial optimization in recent times. It is concerned with finding optimal

values of linear functions on certain convex sets. These sets, called spectrahedra,

arise as linear sections of the cone of positive semidefinite matrices. Semidefinite

programming generalizes linear programming. The importance of semidefinite pro-

gramming comes from two facts. On one hand there exist efficient algorithms to

solve semidefinite programming problems, see for example Ben-Tal and Nemirovski

[1], Nesterov and Nemirovski [16], Nemirovski [15], Vandenberghe and Boyd [26]

and Wolkowicz, Saigal and Vandenberghe [27]. On the other hand, a great amount

of problems from various branches of mathematics can be approached using semidef-

inite programming. Examples come from combinatorial optimization, non-convex

optimization and control theory; see for example Parrilo and Sturmfels [19], Gou-

veia, Parrilo and Thomas [4] and all of the above mentioned literature.

This brings up the theoretical question of how to characterize sets on which semi-

definite programming can be performed, i.e. to characterize spectrahedra. Helton

and Vinnikov [8] have done groundbreaking work towards this question. They show

that spectrahedra are what they call rigidly convex, and this condition is sufficient

in dimension two. This result also solves the Lax conjecture, as explained in Lewis,

Parrilo and Ramana [13]. Whether each rigidly convex set of higher dimension is

a spectrahedron is still an open question. However, it was just recently shown by

Brändén [2] that the higher dimensional Lax conjecture fails.

Observe that semidefinite programming can also be performed on projections

of spectrahedra. One just has to optimize the objective function over a higher

dimensional set. Up to now there are only two known necessary conditions for a
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set to be the projection of a spectrahedron: being convex and being semi-algebraic.

Lasserre [12] has provided a method to prove for certain sets that they are the

projection of a spectrahedron. Helton and Nie [6, 7] have applied the method to

large classes of convex sets. They indeed conjecture that each convex semi-algebraic

set is the projection of a spectrahedron.

This work is concerned with the question of how to write sets as projections

of spectrahedra. Our contribution is the following. After introducing notation we

review in Section 3 some of the methods to construct projections of spectrahedra.

We give a unified account of some results spread across the literature, for example

on convex hulls of curves, and we prove some helpful facts for which we could

not find a reference. For example we show that the closure of the projection of a

spectrahedron is again such a projection.

In Section 4 we analyze the Lasserre method, and the related theta body method

from [4]. We prove results on the limitations of these approaches. As a special case

we obtain the main result from [17]. We also settle the open questions from that

work by providing a series of examples.

Finally we proof a Positivstellensatz for projections of spectrahedra in Section

5. This is interesting in particular because such sets are usually not basic closed

semialgebraic. So none from the large amount of known Positivstellensätze apply

to such sets.

2. Notation

We will use the following notation. For n ∈ N let X = (X1, . . . , Xn) be an n-

tuple of variables. Let R[X] denote the real polynomial ring in these variables. By

R[X]d we denote its finite dimensional subspace of polynomials of degree at most

d. Let p = (p1, . . . , pr) be an r-tuple of polynomials from R[X]. Then

S (p) := {x ∈ Rn | p1(x) ≥ 0, . . . , pr(x) ≥ 0} ⊆ Rn

is the basic closed semi-algebraic set defined by p. In the polynomial ring we have

a corresponding quadratic module, defined as

QM(p) :=
{
σ0 + σ1p1 + · · ·+ σrpr | σi ∈

∑
R[X]2

}
.

Here we use the notation
∑
V 2 for the set of all sums of squares of elements from

a given subset V of a commutative ring R.

All elements from QM(p) are nonnegative as functions on S (p). There are also

certain truncated parts of QM(p), defined as

QM(p)d :=
{
σ0 + σ1p1 + · · ·+ σrpr | σi ∈

∑
(R[X]d)

2
}
.

QM(p)d is contained in the finite dimensional space R[X]2d+ν , where ν is the max-

imum over the degrees of p1, . . . , pr. Note however that QM(p)d will be strictly

smaller than QM(p) ∩ R[X]2d+ν in general.

We denote by Mk×k(V ) the set of k×k-matrices with entries from a given subset

V of a commutative ring R.
∑
Mk×k(V )2 is then the set of sums of hermitian

squares, i.e. it contains the finite sums of elements of the form AtA with A ∈
Mk×k(V ). We denote by Symk(V ) the set of symmetric matrices from Mk×k(V ).

The usual inner product A ◦ B for k × k-matrices A = (aij)i,j and B = (bij)i,j is

defined as

A ◦B = Tr(AB) =
∑
i,j

aijbij ,
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where Tr denotes the trace. For a matrix A ∈ Symk(R), A � 0 means that A is

positive semidefinite, i.e. vtAv ≥ 0 holds for every v ∈ Rk. A � 0 means that A is

positive definite, i.e. vtAv > 0 holds for all v 6= 0.

A k-dimensional linear matrix polynomial is an affine linear polynomial

A (X) = A+X1B1 + · · ·XnBn,

with A,B1, . . . , Bn ∈ Symk(R). It is called strictly feasible if there is a point x ∈ Rn
with A (x) � 0. The set

S (A ) := {x ∈ Rn | A (x) � 0}

is called a spectrahedron. It is a convex and basic closed semi-algebraic set, and a

generalization of a polyhedron. This paper deals with projections of such spectra-

hedra, i.e. sets of the form

S = {x ∈ Rn | ∃y ∈ Rm A (x, y) � 0},

where A is a linear matrix polynomial in the variables X1, . . . , Xn, Y1, . . . , Ym. So

S is the image of the spectrahedron S̃ ⊆ Rn+m defined by A , under the canonical

projection Rn+m → Rn.

For a convex set S ⊆ Rn let Aff(S) denote its affine hull, i.e. the smallest affine

subspace of Rn containing S. A face of S is a nonempty convex subset F ⊆ S

which is extremal in the following sense: whenever λx + (1 − λ)y ∈ F for some

x, y ∈ S, λ ∈ (0, 1), then x, y ∈ F . For an affine linear polynomial ` ∈ R[X]1 that is

nonnegative on S, the subset {x ∈ S | `(x) = 0} is a face or empty. A face if called

exposed if it is of such a form.

3. Some construction methods revisited

As indicated in the introduction, there is a large amount of works on the con-

struction of spectrahedra that project to a given set. In this section we review some

of them. We also provide proofs of some helpful facts that can not be found in the

existing literature.

3.1. Polars and Closures. We start by reviewing a result on polars by Ne-

mirovski, and we deduce some helpful corollaries. We for example observe that

the closure of the projection of a spectrahedron is again such a projection. The re-

sults on polars will also be very helpful in the subsequent section, when considering

Lasserre relaxations.

In [15], Section 4.1.1, Nemirovski proves the following result:

Proposition 3.1. Let A (X,Y ) = A+X1B1 + · · ·+XnBn + Y1C1 + · · ·+ YmCm
be a k-dimensional strictly feasible linear matrix polynomial. Let S := {x ∈ Rn |
∃y ∈ Rm A (x, y) � 0} be the projection of the spectrahedron defined by A , and let

S◦ := {` ∈ R[X]1 | ` ≥ 0 on S}

denote the convex cone of affine linear polynomials nonnegative on S. Then

S◦ = {l0 + l1X1 + · · ·+ lnXn | ∃U ∈ Symk(R) : U � 0, U ◦A ≤ l0,
U ◦Bi = li for i = 1, . . . , n,

U ◦ Cj = 0 for j = 1, . . . ,m}.

In particular, S◦ is again the projection of a spectrahedron.
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The result follows from the duality theory of conic programming, and is thus

essentially a separation argument. The set S◦ is called the polar of S in Nemirovksi’s

work.

In a first step we want to get rid of the technical assumption strictly feasible in

Proposition 3.1.

Lemma 3.2. Let S ⊆ Rn be the projection of a spectrahedron T̃ ⊆ Rn+l and assume

int(S) 6= ∅. Then S is the projection of a spectrahedron S̃ ⊆ Rn+m with int(S̃) 6= ∅
and m ≤ l.

Proof. Let T̃ ⊆ Rn+l = Rn × Rl be a spectrahedron that projects to S. Let e
(n)
i

denote the i-th standard basis vector of Rn. Without loss of generality we assume

0, e
(n)
1 , . . . , e

(n)
n ∈ S (which uses int(S) 6= ∅). So we have bi := (e

(n)
i , ui) ∈ T̃ for

some ui ∈ Rl (i = 1, . . . , n). We can also assume 0 ∈ T̃ , so if V denotes the affine

hull of T̃ , then V is a subspace of Rn×Rl. Note that T̃ has nonempty interior in V .

We extend b1, . . . , bn to a basis of V , by adding some c1, . . . , cm. Then we extend

these vectors to a basis of Rn ×Rl by adding vectors d1, . . . , dt (so m+ t = l). We

can thereby choose all ci, di ∈ {0}n × Rl.
Now let L : Rn×Rl → Rn×Rl be the linear automorphism sending bi to e

(n+l)
i ,

ci to e
(n+l)
n+i and di to e

(n+l)
n+m+i.

Note that for all x ∈ Rn and u ∈ Rl there is some ũ ∈ Rl with L(x, u) = (x, ũ).

We further have L(V ) = Rn × Rm × {0}t. Now

S =
{
x ∈ Rn | ∃u ∈ Rl (x, u) ∈ T̃

}
=
{
x ∈ Rn | ∃u ∈ Rl L(x, u) ∈ L(T̃ )

}
=
{
x ∈ Rn | ∃v ∈ Rm (x, v, 0) ∈ L(T̃ )

}
.

Since L(T̃ ) is clearly also a spectrahedron, and considering it as a spectrahedron S̃

in Rn × Rm, we have proven the result. �

Note that for a spectrahedron, having nonempty interior is equivalent to being

definable by a strictly feasible linear matrix polynomial, by Ramana and Goldman

[22], Corollary 5. So we get:

Proposition 3.3. Let S ⊆ Rn be the projection of a spectrahedron. Then S◦ =

{` ∈ R[X|1 | ` ≥ 0 on S} is again the projection of a spectrahedron.

Proof. First assume that S has nonempty interior in Rn. Then S is the projection of

a spectrahedron defined by as strictly feasible linear matrix polynomial, by Lemma

3.2 and Corollary 5 in [22]. So the result follows from Theorem 3.1 in this case.

If S has empty interior, assume without loss of generality that its affine hull is

Rt×{0}n−t. Then S has nonempty interior considered as a set in Rt. If S◦t denotes

the polar of S in R[X1, . . . , Xt], then

S◦ = {` ∈ R[X]1 | `(X1, . . . , Xt, 0, . . . , 0) ∈ S◦t },
which proves the result. �

Corollary 3.4. Let S ⊆ Rn be the projection of a spectrahedron. Then its closure

S is again the projection of a spectrahedron.

Proof. By Corollary 3.3, (S◦)◦ is the projection of a spectrahedron. But we have

S = {x ∈ Rn | X0 + x1X1 + · · ·+ xnXn ∈ (S◦)◦},
which proves the result. �
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We can also use Proposition 3.1 for an alternative characterization of projections

of spectrahedra:

Corollary 3.5. For a closed convex set S ⊆ Rn, the following are equivalent:

(i) S is the projection of a spectrahedron.

(ii) S is the inverse image under an affine linear map of the dual of a spectra-

hedral cone.

Proof. ”(ii)⇒(i)” follows from Proposition 3.3. For ”(i)⇒(ii)” first assume that S

has nonempty interior. Then it is the projection of a spectrahedron defined by a

strictly feasible k-dimensional linear matrix polynomial

A (X,Y ) = A+X1B1 + · · ·+XnBn + Y1C1 + · · ·+ YmCm.

Since S is closed we find by Proposition 3.1

S = {x ∈ Rn | U ◦A (x, 0) ≥ 0 for all U ∈ Symk(R) with

U � 0 and U ◦ Cj = 0 for all j}.
So if C denotes the spectrahedral cone of positive semidefinite matrices U fulfilling

the linear equations U ◦Cj = 0 for all j, then S is the inverse image of the dual of

C under the affine linear map x 7→ A (x, 0).

Now assume without loss of generality that S ⊆ Rt × {0}n−t has nonempty

interior in Rt. Then there is some affine linear map L : Rt → Rs and a spectrahedral

cone C ⊆ Rs such that S = L−1(C ∨). Here, C ∨ denotes the dual cone of C in Rs.
Then for the spectrahedral cone C̃ := C × Rn−t and affine linear map

L̃ : Rn → Rs × Rn−t; (x, y) 7→ (L(x), y)

one as L̃−1(C̃ ∨) = S. �

3.2. Lasserre Relaxations. In this subsection we review the method of Lasserre

[12] to construct projections of spectrahedra, and use Proposition 3.3 to give an

alternative explanation of the method.

We first observe that if M ⊆ R[X]1 is the projection of a spectrahedron, then

L := {x ∈ Rn | `(x) ≥ 0 for all ` ∈M}
is also such a projection. This follows from Proposition 3.3, since L is M◦ inter-

sected with a subspace. Now for a finite set of polynomials p1, . . . , pr ∈ R[X] let

S = S (p) be the basic closed semi-algebraic set they define, QM(p) denote the

corresponding quadratic module in R[X] and QM(p)d its truncated part, as defined

in Section 2. It turns out that each QM(p)d is the projection of a spectrahedron.

One can for example use the following result, which is Theorem 1 from Ramana

and Goldman [21]:

Theorem 3.6. Let f : Rn → Rm be a quadratic polynomial map. Then the convex

hull of the image f(Rn) is the projection of a spectrahedron.

So note that each QM(p)d is the convex hull of the image of a quadratic map.

Indeed one just has to parametrize the coefficients occuring in the sums of squares

used in the representations of its elements. Thus the sets QM(p)d ∩ R[X]1 are

projections of spectrahedra and we finally obtain that each set

L (p)d := {x ∈ Rn | `(x) ≥ 0 for all ` ∈ QM(p)d ∩ R[X]1}
is the projection of a spectrahedron. The set L (p)d is called a degree d Lasserre

relaxation of S. Each L (p)d is closed convex and contains S. The sequence of the

L (p)d is descending.
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Note that our definition of a Lasserre relaxation differs slightly from the original

one given in Lasserre [12]. There, the dual of QM(p)d is projected to Rn, whereas we

intersect QM(p)d with R[X]1 and then pass to Rn. However, the different definitions

define the same relaxations up to closures, at least if S has a nonempty interior.

This can for example be checked with an argument as in the proof of Proposition

3.1 in Netzer, Plaumann and Schweighofer [17], using the closedness of QM(p)d.

The following Theorem is the key result on Lasserre relaxations. Part (i) is

mainly Theorem 2 from Lasserre [12], and now clear from our above considerations.

Part (ii) is proven as Proposition 3.1 (2) in Netzer, Plaumann and Schweighofer

[17].

Theorem 3.7. (i) If QM(p)d contains all affine linear polynomials nonnegative on

S, then L (p)d = conv(S). In particular, conv(S) is the projection of a spectrahe-

dron then.

(ii) If Ld(p) = conv(S) and S has nonempty interior, then QM(p)d contains all

affine linear polynomials nonnegative on S.

Another possibility for obtaining semidefinite descriptions for convex sets is a

different Lasserre-type relaxation hierarchy for convex hulls of algebraic sets, the

theta body hierarchy introduced in Gouveia, Parrilo and Thomas [4]. Given an ideal

I ⊆ R[X], we denote the set of all polynomials p such that p − σ ∈ I for some

sum of squares σ with deg(σ) ≤ 2d by Σ(d, I). Note that Σ(d, I) intersected with

a finite dimensional subspace of R[X] is the projection of a spectrahedron. This

follows since I ∩W is a subspace in W , for each subspace W of R[X].

Definition 3.8. Let I ⊆ R[X] be an ideal. The d-th theta body of I, denoted by

(I)d, is the intersection of all half-spaces H` := {x ∈ Rn | `(x) ≥ 0}, where ` ranges

over all linear polynomials in Σ(d, I).

The theta body hierarchy for the ideal I approximates the convex hull of its

real variety VR(I) = {x ∈ Rn | g(x) = 0 for all g ∈ I}. An analogous result to

Theorem 3.7 is true, with the condition of the ideal I being real radical replacing

the condition of S having nonempty interior.

Theorem 3.9. (i) If Σ(d, I) contains all affine linear polynomials nonnegative on

VR(I), then (I)d = conv(VR(I)). In particular, conv(VR(I)) is the projection of a

spectrahedron then.

(ii) If (I)d = conv(VR(I)) and I is real radical, then Σ(d, I) contains all affine

linear polynomials nonnegative on VR(I).

Again, part (i) is immediate from the definition, while part (ii) is proven in

Lemma 2.7 of [4]. In Section 4 we will study possible obstructions to these two meth-

ods. In particular we reprove the main result of Netzer, Plaumann and Schweighofer

[17] and settle the open problems from that work.

3.3. Images of Polynomial Maps. In this subsection we want to give a unified

account of several results on convex hulls of images under polynomial maps, includ-

ing results by Lasserre, Parrilo, Ramana and Goldman, Henrion and Scheiderer.

The results can all be deduced from the following principle:

Proposition 3.10. Let S ⊆ Rn be a set and V ⊆ R[X] a finite dimensional linear

subspace containing 1. Assume the subset P ⊆ V of all elements of V that are

nonnegative on S is the projection of a spectrahedron. Then for any map f =

(f1, . . . , fm) : Rn → Rm with fi ∈ V for all i,

conv(f(S)) ⊆ Rm
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is the projection of a spectrahedron.

Proof. For any affine linear polynomial ` ∈ R[Y1, . . . , Ym]1 the polynomial

`(f1, . . . , fm) belongs to V . Define M := {` ∈ R[Y1, . . . , Ym]1 | `(f1, . . . , fm) ∈ P}.
One immediately checks that M is the projection of a spectrahedron (since P is) and

contains only polynomials that are nonnegative on f(S). Conversely, if ` is affine

linear and nonnegative on f(S), then `(f1, . . . , fm) is in P . Thus M is precisely the

cone of affine linear polynomials nonnegative on f(S), and by the arguments from

the last section

conv(f(S)) = {x ∈ Rm | `(x) ≥ 0 for all ` ∈M}

is the projection of a spectrahedron. �

Example 3.11. Not very surprisingly, the Lasserre result can be recovered from

Proposition 3.10. Indeed if there is some d such that QM(p)d contains all affine

linear polynomials that are nonnegative on S, then apply Proposition 3.10 with

V = R[X]1 and f = id. P = V ∩ QM(p)d is the projection of a spectrahedron, as

explained in the previous section.

Example 3.12. We also get that the closure of conv(f(Rn)) is the projection of

a spectrahedron, for any quadratic map f : Rn → Rm (which is of course also not

a new result, in view of Theorem 3.6 and Theorem 3.4). Use the well-known fact

that every globally nonnegative quadratic polynomial is a sum of squares of affine

linear polynomials, and apply Proposition 3.10 with S = Rn and V = R[X]2. Again

recall that P =
∑

R[X]21 ⊆ V is the projection of a spectrahedron.

In the following result, case (i) for a full rational curve is proven in Henrion [9],

Theorem 1. In the version it is stated here it has also been the topic of a talk of

Parrilo at a workshop in Banff in 2006, but there seems to be no suitable reference.

Case (ii) relies on results of Scheiderer, as also explained in [23].

Corollary 3.13. Let S ⊆ Rn be either

(i) a semi-algebraic subset of a rational curve, or

(ii) a smooth curve of genus 1 with at least one non-real point at infinity.

Then for any rational map

f =

(
f1
g
, . . . ,

fm
g

)
: Rn → Rm

that is defined everywhere on S, we find that

conv(f(S))

is the projection of a spectrahedron.

Proof. First check that we can reduce to the case g = 1, i.e. the case that f is a

polynomial map. Indeed for a general rational map f we can take without loss of

generality a denominator g that is positive on S, and we can also prove the claim

for the following map instead:

F : S → Rm+1; x 7→
(
f1(x)

g(x)
, . . . ,

fm(x)

g(x)
, 1

)
.

Then define

G : S → Rm+1; x 7→ g(x) · F (x).

This map is polynomial and thus assume we already know that conv(G(S)) is

the projection of a spectrahedron. By [18], Proposition 2.1, the conic hull of the
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projection of a spectrahedron is again such a projection. So together with Corollary

3.4 we get that cc(G(S)) is the projection of a spectrahedron. But now one checks

cc(G(S)) ∩ (Rm × {1}) = conv(F (S)),

which finishes the reduction step.

Now we ensure the existence of some finitely generated quadratic module QM(p)

in R[X] that contains all polynomials nonnegative on S, with a degree bound on

the sums of squares depending only on the degree of the respective polynomial.

Then we can apply Proposition 3.10 with an arbitrary finite dimensional space V

and a suitable QM(p)d.

Now for (i) it is clearly enough to consider the case of a semialgebraic subset of a

straight line, which is covered by Kuhlmann, Marshall and Schwartz [11] Theorem

4.1 (see also the paper by Scheiderer [20]).

For (ii) it is enough to ensure the existence of such bounded degree representa-

tions in a quadratic module modulo the vanishing ideal (g1, . . . , gk) of the respective

curve. Indeed, if some polynomial p has a representation

p =
∑
i

σipi +
∑
j

hjgj

with sums of squares σi and arbitrary polynomials hj , and the degree of the σi is

bounded by 2d, then one can find a similar representation with polynomials h̃j of

a degree bounded by some number not depending on the specific choice of p. This

follows from the fact that an ideal intersected with a finite dimensional subspace

of R[X] is a finite dimensional subspace, and one can choose a finite basis. So if

p −
∑
i σipi belongs to that space, it is an R-linear combination of these finitely

many basis elements. This yields a representation with polynomials h̃i as desired.

Then the quadratic module QM(p,±g) has the property that we claimed in the

beginning, using the standard equality

hj =

(
hj + 1

2

)2

−
(
hj − 1

2

)2

for any polynomial hj .

Now for smooth genus one curves with a non-real point at infinity the pure

existence of sums of squares representations is Scheiderer [24], Theorem 4.10 (a),

whereas the degree bounds are explained in Scheiderer [23]. �

Note that this result applies in cases where the curvature results from Helton

and Nie [6] [7] and Lasserre’s direct approach from [12] do not apply:

Example 3.14. The basic closed semi-algebraic set S = {(x, y) ∈ R2 | 0 ≤ y ≤
1,−1 ≤ x, y2 − x3 ≥ 0} is bounded by segments of rational curves. So it is the

projection of a spectrahedron. The results from Helton and Nie do not apply since

Y 2−X3 is neither strictly quasi-concave on S, nor sos-concave. Also it is singular at

the origin. The standard Lasserre method does not apply since S has a nonexposed

face, see for example Theorem 4.2 below. One could also replace the part of the

set on the left hand side of the y-axis by a half disk. The resulting set is then even

not basic closed, and still the Theorem applies.

Example 3.15. Let S ⊆ R2 be defined by the inequality y2 ≤ 1 − x4. The

boundary is a smooth genus one curve with a non-real point at infinity. Thus S is

the projection of a spectrahedron. Applying the polynomial map (x, y) 7→ (x2, xy2)

sends this curve to the boundary of the convex set y2 ≤ x− 2x3 + x5 which has a
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singularity at the point (1, 0) as seen in Figure 1. Still Corollary 3.13 guarantees

that this set is the projection of a spectrahedron.

Figure 1. Convex Hull of the image of the curve 1 − x4 − y2 = 0 by

the map (x, y) 7→ (x2, xy2).

We state some more corollaries of Proposition 3.10. The following result is

Henrion [9], Theorem 1:

Corollary 3.16. Let either f : R3 → Rm be homogeneous of degree 4 or f : R2 →
Rm of degree 4 (but not necessarily homogeneous). Then the closure of the convex

hull of the image of f is the projection of a spectrahedron .

Proof. We can apply Proposition 3.10, using Hilbert’s result that every globally

nonnegative homogeneous degree 4 polynomial in three variables and every globally

nonnegative degree 4 polynomial in two variables is a sum of squares. �

We get another result that has to our knowledge not been observed before:

Corollary 3.17. Let f : R4 → Rm be homogeneous quadratic. Let C ⊆ R4 be any

polyhedral cone. Then conv(f(C)) is the projection of a spectrahedron.

Proof. Every polyhedral cone in R4 is a finite union of cones that can be transformed

by a linear automorphism to the first orthant in some Rk with k ≤ 4. This follows

from Caratheodory’s Theorem for cones. If C = C1 ∪ · · · ∪ Cm then

conv(f(C)) = conv(f(C1) ∪ · · · ∪ f(Cm)).

So by the convex hull result from Helton and Nie [7] (see also [18]) and Theorem

3.4 it is enough to prove the Theorem for the first orthant C in R4.

Every quadratic form in 4 variables that is nonnegative on the first orthant

belongs to the quadratic module generated by the pairwise products of the variables

XiXj . This is just a slight reformulation of the main result from Diananda [3].

But then a degree bound condition on the sums of squares is fulfilled for any such

representation, since no degree cancellation can occur when adding polynomials that

are nonnegative on the first orthant. So in fact each such nonnegative quadratic

form is a positive combination of the XiXj plus a sums of squares of linear forms.

Now apply Proposition 3.10 with p = {XiXj | 1 ≤ i, j ≤ n} and V the space

spanned by the quadratic forms and 1. �

4. Obstructions to the relaxation methods

In this section we examine the assumption from Lasserre’s Theorem, as stated

in Theorem 3.7 above. That means, we want to know whether there exists some d

such that the truncated quadratic module QM(p)d contains all nonnegative linear

polynomials. Note here that this condition is absolutely not necessary for conv(S)
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to be the projection of a spectrahedron. This is for example shown by Example

3.7 in [17] (that we will discuss in more detail below). But in view of Theorem 3.7,

the condition is necessary and sufficient for the Lasserre approach to work. This

brings up the question when this so called bounded degree representation property

for affine polynomials is fulfilled.

A necessary condition is given by the following result:

Proposition 4.1. Let p1, ..., pr ∈ R[X], S = S (p) and L be a line in Rn such that

S ∩L has non-empty interior relative to L. Let a ∈ S be a point that belongs to the

relative boundary of conv(S) ∩ L in L. Assume that for all pi with pi(a) = 0 the

vector 5pi(a) is orthogonal to L. Then, for all d, the Lasserre relaxation L (p)d

strictly contains conv(S).

Proof. By applying a linear transformation we may assume L to be the X1-axis, a to

be the origin and conv(S)∩L to be on the positive half axis. Let p′1, . . . , p
′
r ∈ R[X1]

be the polynomials obtained from p1, . . . , pr by setting the last n − 1 variables to

zero. We have L (p′)d ⊆ L (p)d ∩ R for any d. This inclusion follows from the fact

that each polynomial f ∈ QM(p)d ends up in QM(p′)d when setting the last n− 1

variables to zero.

Let S′ = S (p′), so S′ = S ∩ R. If conv(S′) is some closed interval [0, c] then let

p′r+1 = c −X1, otherwise (i.e. if conv(S′) = [0,∞)) let p′r+1 = 1 (just to keep the

notation uniform). Then S (p′) = S (p′, p′r+1). Note that L (p′, p′r+1)d ⊆ L (p′)d,

and since S′ has an interior point L (p′, p′r+1)d = conv(S′) holds if and only if

every nonnegative affine linear polynomial from R[X1] belongs to QM(p′, p′r+1)d,

by Theorem 3.7. Consider the polynomial X1, that is nonnegative on S′, and

suppose there exists a representation

X1 = σ +
∑
i∈I

σip
′
i +
∑
j∈J

σjp
′
j ,

where i ∈ I if pi(0) > 0 and i ∈ J otherwise. For i ∈ I, p′i has a positive constant

term, so σi cannot have a constant term, and its homogeneous part of minimal

degree must be at least quadratic. The same is true for σ. So none of the elements

σ and σip
′
i where i ∈ I contains the monomial X1. But by hypothesis, 5pj(0)

is orthogonal to the x1-axis for j ∈ J , which implies that the terms of p′j have

all degree at least 2. This is a contradiction. So L (p′, p′r+1)d is not conv(S′).

Since p′r+1 ∈ QM(p′, p′r+1)d this implies the existence of some negative b with

b ∈ L (p′, p′r+1)d ⊆ L (p′)d ⊆ L∩L (p)d. But since b 6∈ conv(S) by hypothesis, this

implies L (p)d 6= conv(S). �

This gives an alternative and more elementary proof to Theorem 3.5 in [17]:

Theorem 4.2. Let p1, ..., pr ∈ R[X] be such that S = S (p) is convex and has non-

empty interior. If S has a non-exposed face, then for all d, the Lasserre relaxation

L (p)d strictly contains S.

Proof. Let F ⊆ S be a non-exposed face. Then there exists some face F1 of S, such

that F ( F1 and for all supporting hyperplanes H containing F , F1 ⊆ H. Let a

be a point in the relative interior of F and L a line passing through a and some

point in the relative interior of F1. By convexity and closedness of S we have that

a belongs to the relative boundary of conv(S) ∩ L, and we just have to verify the

gradient condition at a.

Suppose pj(a) = 0, and consider v := 5pj(a). For any x ∈ Rn the product

v · (x − a) equals the derivative of pj at a in direction of (x − a), so by convexity
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of S we get v · (x − a) ≥ 0 whenever x ∈ S. Hence the linear polynomial ` :=

v1(X1 − a1) + · · ·+ vn(Xn − an) is nonnegative on S. Since ` vanishes at a, which

lies in the relative interior of F , it vanishes on the whole of F and thus also on F1.

Then, since it vanishes in two points of L, it must vanish on the entire line, which

implies that v is orthogonal to L, and Proposition 4.1 gives us the result. �

The lemma also shows us the following result:

Theorem 4.3. Let p1, . . . , pr ∈ R[X] and let S := S (p) ⊆ Rn have non-empty

interior. Let a be point in the boundary of conv(S) that is also in S, and suppose

that all active constrains at a are singular. Then for all d, the Lasserre relaxation

L (p)d strictly contains conv(S).

Proof. Just consider a line L passing through a and through the interior of S and

apply Proposition 4.1. �

Example 4.4. Consider the semi-algebraic set S = {(x, y) ∈ R2 : p(x, y) :=

−x4+x3−y2 ≥ 0}. The convex hull of S is intersected by the x-axis in the segment

[0, 1], which has non-empty interior. Furthermore p has a singularity at the origin,

hence we are in the conditions of Theorem 4.3 and the Lasserre hierarchy does not

converge in finitely many steps, although it does approximate the set conv(S) as

shown in Figure 2.

Figure 2. From the smallest to the largest: the sets S, conv(S), L (p)2
and L (p)1.

The same general idea we used for the Lasserre relaxations can also be applied

to the theta body construction. To do that, however, we need some auxiliary

definitions. Let I be any ideal, and p a point in VR(I). The tangent space Tp(I)

is the affine space through p that is orthogonal to the space spanned by the gradients

of all polynomials in I(VR(I)), the vanishing ideal of VR(I). We say that a point

p ∈ VR(I) on the boundary of conv(VR(I)) is convex-non-singular if Tp(I) is

tangent to conv(VR(I)) i.e., if it does not intersect its relative interior; otherwise

we say that p is convex-singular.

Theorem 4.5. Let I be any ideal such that VR(I) has a convex-singular point, then

for all d d(I) strictly contains conv(VR(I)).

Proof. Let J be the vanishing ideal of VR(I). Since I is contained in J , d(J) ⊆ (I)d,

so it is enough to show that d(J) 6= conv(VR(I)). Suppose we have equality. Since

J is real radical, Theorem 3.9 tell us that any linear polynomial that is nonnegative

in VR(I) must be in Σ(d, J). Let p be the convex-singular point of VR(I). Since p

is in the boundary of conv(VR(I)) there exists a linear polynomial ` that is zero in

p and positive on the relative interior of conv(VR(I)). Therefore ` = σ + g where

σ is a sum of squares and g ∈ J . Let q be a point in Tp(I) that is in the relative

interior of conv(VR(I)). We have

(q − p) · ∇`(p) = (q − p) · ∇σ(p) + (q − p) · ∇g(p).
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But since σ is a sum of squares vanishing at p, it must have a double zero there

so its gradient also vanishes there, and since q belongs to Tp(I) then for all g ∈ J ,

(q − p) is orthogonal to their gradients at p, so we have that the derivative of ` in

the direction of (q − p) is zero. Since ` is linear, this implies that it vanishes at q,

which is a contradiction. �

Remark 4.6. Note that if J = I(VR(I)) is generated by a single polynomial (so

VR(I) is a hypersurface), then any singular point p from VR(I) that belongs to the

boundary of conv(VR(I)) is convex-singular. This is clear since the tangent space

at p is the whole of Rn in that case.

Example 4.7. (i) An example for the above remark is the (compact) Zitrus surface

defined by x2 + z2 + (y2 − 1)3 = 0 in R3. It has a singularity at (0, 1, 0), which

belongs to the boundary of the convex hull, and thus each theta body relaxation

strictly contains the convex hull of the surface. The boundary equations for the

convex hull of this surface have been examined in detail by Sturmfels and Ranestad

in [25], Section 4.2.

(ii) Consider the variety VR(I) in R3 defined by the ideal

I = 〈x2 + y2 + z2 − 4, (x− 1)2 + y2 − 1〉.
It has a singularity at the point p = (2, 0, 0), which belongs to the boundary of the

convex hull of VR(I). This singularity is however not convex-singular, as one easily

checks. And indeed already the first theta body relaxation equals conv(VR(I)).

To see this first note that I can also be defined by p1 = (x − 1)2 + y2 − 1 and

p2 = 2x+ z2 − 4. Write I1 = 〈p1〉 and I2 = 〈p2〉. Then note

conv(VR(I)) = conv(VR(I1)) ∩ conv(VR(I2)).

Since d(I) ⊆ d(I1)∩ d(I2) holds obviously, it is enough to show that the theta body

relaxations for I1 and I2 are exact in the first step. But this follows for example

from Lemma 5.5. in [4], since p1 and p2 are convex quadrics. The example shows

that the notion of a convex-singular point is crucial in Theorem 4.5.

We go back to Theorem 4.2. It says that a convex basic closed set S can only

equal some relaxation L (p)d if all of its faces are exposed. In [17] the question is

raised whether this can be generalized:

Question 4.8. [17, Remark 3.8]

(i) Is Theorem 4.2 still true with S replaced by conv(S), if S is non-convex?

(ii) More generally, are all faces of L (p)d exposed for all d and p?

One can also ask if Theorem 4.2 can be generalized to the theta body relaxations:

Question 4.9. Let I ⊆ R[X] be an ideal such that (I)d = conv(VR(I)). Are all

faces of (I)d exposed faces in this case?

The answer to all these questions is negative, as we will show.

Proposition 4.10. Let p1 = Y, p2 = 1− Y, p3 = Y −X3, p4 = 1 +X define the set

S = S (p) ⊆ R2. Then L (p)1 is the convex hull of S ∪ {(1/3, 0)}.

Proof. Let C = conv(S ∪ {(1/3, 0)}). Then C is cut out by the infinitely many

affine linear inequalities

{Y ≥ 0, 1− Y ≥ 0, 1 +X ≥ 0, Y − 3a2X + 2a3 ≥ 0 | a ∈ [1/2, 1]},
since the polynomial `a := Y − 3a2X + 2a3 defines the half-plane containing S and

tangent to the curve Y = X3 at the point (a, a3). To prove L (p)1 ⊆ C it is thus
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enough to show that the polynomials `a belong to QM(p)1 for all a ≥ 1/2. To see

this, note that

`a = (
√

2a− 1(X − a))2 + (Y −X3) + (X − a)2(X + 1).

To prove the inclusion C ⊆ L (p)1, using the fact that L (p)1 is convex and

contains S, it is enough to show that (1/3, 0) ∈ L (p)1. Since translations commute

with taking Lasserre relaxations, we will instead consider the set of polynomials

p′1 = Y, p′2 = 1− Y, p′3 = X + 4/3, p′4 = Y −X3 −X2 −X/3− 1/27 obtained from

the pi by replacing X by X + 1/3, and prove that (0, 0) ∈ L (p′)1. Suppose that is

not the case. Then there must exist ε, µ > 0 such that ` = Y − µX − ε belongs to

QM(p′)1. This means

` = σ0 + σ1Y + σ2(1− Y ) + σ3(X + 4/3) + c(Y −X3 −X2 −X/3− 1/27),

where c is simply a nonnegative constant, since deg(p′4) = 3. Note that σ0 has at

most degree 2, as do σ1, σ2 and σ3.

Let σ3 = a1X
2 + a2X + a3 + a4Y

2 + a5XY + a6Y . In order to cancel the X3

term of the entire expression, we must have a1 = c. The coefficient for X2 will

then be a− c+ 4/3c+ a2, where a is a nonnegative number which is the sum of the

coefficients of X2 in σ0 and σ2. This implies a2 ≤ −c/3, which by using the fact

that σ3 is a sum of squares, implies a3 ≥ c/36 (just consider a Hankel matrix for

this sum of squares and analyze the submatrix indexed by 1 and x).

Now checking the constant coefficient, we will have it to be b − c/27 + 4a3/3,

where b is the nonnegative constant term of σ0 + σ2. Since this must be −ε, we

have −c/27 + 4a3/3 < 0 which since a3 ≥ c/36 is impossible. Hence ` /∈ QM(p′)1,

and (0, 0) is in L (p)1 as intended. �

Figure 3. Comparison between S and L (p)1, where p1 = Y, p2 =

1− Y, p3 = 1 +X, p4 = Y −X3. Full region on the left, close up on the

right.

Corollary 4.11. For p1 = Y, p2 = 1 − Y, p3 = 1 + X, p4 = Y −X3, L (p)1 has a

non-exposed face at (1/2, 1/8) .

Proof. Immediate, from Figure 3. �

This shows that general Lasserre relaxations might have non-exposed faces, giv-

ing a negative answer to Question 4.8 (ii). In fact, this can happen even for very

“well-behaved” semialgebraic sets. If in Proposition 4.10 we change the defining

polynomials p to p′ by replacing Y with Y − 1/10, we get a semialgebraic set that

has only exposed faces (it can even be shown that S (p′) = L (p′)2). However, our

proof still works in this case, showing that L (p′)1 = L (p)1 ∩ {(x, y) | y > 1/10}
has a non-exposed face.
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In the next proposition we show that when S (p) is not convex, even if one of its

Lasserre relaxations is tight (meaning L (p)d = conv(S) for some d), L (p)d might

still have non-exposed faces.

Proposition 4.12. For p := −X4 − Y 4 − 2X2Y 2 + 4X2 ∈ R[X,Y ] we find

L (p)2 = conv(S (p)).

Proof. The set S = S (p) is the union of two disks of radius 1 with centers (−1, 0)

and (1, 0). By symmetry, it is enough to show that any linear polynomial tangent

to the left circle and non-negative on both disks belongs to QM(p)2. The points on

the left circle that are on the boundary of conv(S) are of the form zϑ := (cos(ϑ)−
1, sin(ϑ)), for some ϑ ∈ [π/2, 3π/2], and an affine linear polynomial `ϑ defining the

tangent to zϑ such that `ϑ ≥ 0 on S is given by `ϑ = 1−cos(ϑ)−cos(ϑ)X−sin(ϑ)Y .

Since cos(ϑ) ≤ 0 it is enough to check that the equality

(4.13)

(8− 8 cos(ϑ))`ϑ = p+ (X2 + Y 2 − 2 + 2 cos(ϑ))2+

+
(

2
√

1− cos(ϑ)(Y − sin(ϑ))
)2

+

+
(

2
√
− cos(ϑ)(X − cos(ϑ) + 1)

)2
holds, thus proving the result. �

Figure 4. Comparison between S and L (p)2 = conv(S), where

p = −X4 − Y 4 − 2X2Y 2 + 4X2.

Corollary 4.14. For p = −X4 − Y 4 − 2X2Y 2 + 4X2, L (p)2 = conv(S (p)) has a

non-exposed face.

Proof. Just note that the four points (±1,±1) are all non-exposed faces of L (p)2 =

conv(S (p)) as it can be seen in Figure 4. �

Note that the proof of Proposition 4.12 not only completes the answer to Ques-

tion 4.8 (i), but also answers Question 4.9. Our representation (4.13) shows that if

we consider the ideal I = 〈p〉, then (I)2 = conv(VR(I)) has non-exposed faces.

5. A Positivstellensatz for projections of spectrahedra

In this section we describe a quadratic module that is assigned to the projection

of a spectrahedron. This quadratic module will in general not be finitely generated,

but still its elements can be described almost constructively. The module will turn

out to be archimedean whenever the set is bounded, and it will thus provide us with

a Positivstellensatz for projections of spectrahedra. This is in particular interesting

since such projections are usually not basic closed semialgebraic. So none from the

large amount of present Positivstellensätze applies to this setup.
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Another interesting feature of this quadratic module is that it establishes a coun-

terpart to Lasserre’s theorem above. Recall that the existence of a finitely gener-

ated quadratic module containing all nonnegative linear polynomials with a degree

bound on the sums of squares is only sufficient, but not necessary for a set to be the

projection of a spectrahedon. The module that we will construct, however, contains

all nonnegative linear polynomials in a certain truncated part. So if we broaden

the class of quadratic modules from finitely generated ones to a certain bigger class,

then the bounded degree representation property from Lasserre’s theorem becomes

equivalent to representability of a set as the projection of a spectrahedron.

So let A (X,Y ) = A+X1B1+· · ·+XnBn+Y1C1+· · ·+YmCm be a strictly feasible

k-dimensional linear matrix polynomial. Let S̃ ⊆ Rn+m be the spectrahedron

defined by A , and S = pr(S̃) ⊆ Rn its projection. We will write A ′(X) for

A (X, 0).

Recall that any linear polynomial ` ∈ R[X]1 that is nonnegative on S is of the

form

` = U ◦A ′(X) + r,

with some r ≥ 0 and a positive semidefinite k× k-matrix U that fulfills U ◦Bi = 0

for all i = 1, . . . ,m. This is precisely the statement of Proposition 3.1. By Cholesky

decomposition of U this is the same as saying

` =
∑
j

vtjA
′(X)vj + r

for finitely many vectors vj ∈ Rk fulfilling
∑
j v

t
jBivj = 0 for all i = 1, . . . ,m.

If we now want to construct a quadratic module containing all the nonnegative

linear polynomials on S, we can use polynomial vectors qj instead of real vectors

vj only. Formally, define

QM(A ) :=

∑
j

qtjA
′(X)qj + σ | qj ∈ R[X]k,

∑
j

qtjBiqj = 0 for i = 1, . . .m,

σ ∈
∑

R[X]2
}
.

Clearly QM(A ) is a quadratic module. The following main result now follows easily.

In the case of a bounded set S it provides the announced Positivstellensatz.

Theorem 5.1. QM(A ) contains only polynomials that are nonnegative on S, and

the set of points in Rn where all elements from QM(A ) are nonnegative is precisely

S. If S is bounded then QM(A ) is archimedean, and thus contains all polynomials

p with p > 0 on S.

Proof. The first statements follows immediately from the fact that each element

from QM(A ) is in particular of the form∑
j

qtjA (X,Y )qj + σ,

and from the definition of S. The second statement is then clear from the fact

that all nonnegative linear polynomials are contained in QM(A ). In the case of

a bounded set S we have N ± Xi ∈ QM(A ) for all i and some sufficiently large

number N . As for example explained in Marshall [14], Corollary 5.2.4, QM(A ) is

archimedean. Then Jacobi’s Representation Theorem [10, Theorem 4] implies the

statement about strictly positive polynomials. �
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Note that in case of a spectrahedron, Helton, Klep, and McCullough [5] have

also proven QM(A ) to be archimedean, using results about completely positive

maps. They use this to obtain a Positivstellensatz for matrix polynomials, see their

Theorem 1.3.

Note also that in our result we can not expect QM(A ) to be a finitely generated

quadratic module in general. This would imply that S is basic closed semi-algebraic,

i.e. defined by finitely many simultaneous polynomial inequalities. This is clearly

not true for all projections of spectrahedra.

Example 5.2. Consider the example from Proposition 4.12, the convex hull of

two disks in the plane. In contrast to the above example, we denote by S the full

convex hull. Note that S is an example of a closed semi-algebraic set that is not

basic closed. Since S is the union of disks shifted along the x-axis, one immediately

checks that it has the following representation:

S = {(x, y) ∈ R2 | ∃z ∈ [−1, 1] (x− z)2 + y2 ≤ 1}.

The defining condition of S can now be stated as positive semidefiniteness of the

following linear matrix polynomial:


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

+X


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

+Y


1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

+Z


0 −1 0 0

−1 0 0 0

0 0 1 0

0 0 0 −1


So by Theorem 5.1, every polynomial that is strictly positive on S is a sum of

squares plus a polynomial of the following form:∑
j

q
(j)2

1 + q
(j)2

2 + q
(j)2

3 + q
(j)2

4 +X(q
(j)2

3 − q(j)
2

4 ) + Y (q
(j)2

1 − q(j)
2

2 ),

where q
(j)
i ∈ R[X,Y ] with

∑
j 2q

(j)
1 q

(j)
2 − q

(j)2

3 + q
(j)2

4 = 0.

We now turn to the announced counterpart of Lasserre’s Theorem. First consider

the following truncated part of QM(A ):

QM(A )d :=

∑
j

qtjA
′(X)qj + σ | qj ∈ (R[X]d)

k,
∑
j

qtjBiqj = 0 for i = 1, . . .m,

σ ∈
∑

R[X]2d

}
.

Lemma 5.3. Each QM(A )d lives in a finite dimensional subspace of R[X] and is

the projection of a spectrahedron.

Proof. It is clear that QM(A )d lives in a finite dimensional subspace. Now for

finitely many k-tuples q1, . . . , qr of polynomials consider the k×k-matrix polynomial

M = q1q
t
1 + · · ·+ qrq

t
r.

The condition
∑
j q

t
jBiqj = 0 translates to Bi ◦M = 0, and∑

j

qtjA
′(X)qj = A ′(X) ◦M.

If the degree of all components of the qi is bounded by d, then the degree of each

entry of M is bounded by 2d, and thus M can be written as a sum

M = p1p
t
1 + · · ·+ pNp

t
N ,
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with some N depending on d and k, but not on r. This follows from Caratheodory’s

Theorem. Now consider the quadratic mapping

Ψ: ((R[X]d)
k)N → Mk(R[X]2d)

(p1, . . . , pN ) 7→
∑
j

pjp
t
j .

Its image is a convex cone, and the projection of a spectrahedron by Theorem 3.6.

So intersecting with the linear subspace defined by M ◦Bi = 0 for i = 1 . . . ,m and

applying the linear map M 7→ A ′(X) ◦M still gives the projection of a spectra-

hedron. After taking the convex hull with
∑

R[X]2d we obtain QM(A )d, still the

projection of a spectrahedron. �

Theorem 5.4. Let S ⊆ Rn be a set such that conv(S) has nonempty interior.

Then the following are equivalent:

(i) conv(S) is the projection of a spectrahedron.

(ii) There is a quadratic module Q ⊆ R[X] with the properties

• Q contains only polynomials nonnegative on S

• Q = ∪d∈NQd, where Qd ⊆ Qd+1 and each Qd lives in a finite dimen-

sional subspace of R[X] and is the projection of a spectrahedron.

• There is some d∗ such that Qd∗ contains every affine linear polynomial

that is nonnegative on S.

Proof. For ”(ii)⇒(i)” consider the set Qd∗ ∩R[X]1 in R[X]1. It is the projection of

a spectrahedron, and so

conv(S) = {x ∈ Rn | `(x) ≥ 0 for all ` ∈ Qd∗ ∩ R[X]1},
is also the projection of a spectrahedron, as explained above.

For ”(i)⇒(ii)” let S̃ ⊆ Rn+m be a spectrahedron with nonempty interior that

projects to conv(S). Let A (X,Y ) be a strictly feasible linear matrix polynomial

defining S̃. Then consider the quadratic module Q := QM(A ) defined above, and

its finite dimensional parts Qd := QM(A )d. They fulfill the conditions from (ii),

with d∗ = 0. �
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[2] P. Brändén. Obstructions to determinantal representability. Preprint.

[3] P. H. Diananda. On non-negative forms in real variables some or all of which are non-negative.
Proc. Cambridge Philos. Soc., 58, 17–25, 1962.

[4] J. Gouveia, P. A. Parrilo, and R. R. Thomas. Theta bodies for polynomial ideals. SIAM
Journal on Optimization, 20 (4), 2097–2118, 2010.

[5] J. W. Helton, I. Klep, and S. McCullough. The matricial relaxation of a linear matrix in-

equality. Preprint.
[6] J. W. Helton and J. Nie. Semidefinite representation of convex sets. To appear in Math.

Program.

[7] ———. Sufficient and necessary conditions for semidefinite representability of convex sets.
Preprint.

[8] J. W. Helton and V. Vinnikov. Linear matrix inequality representation of sets. Comm. Pure

Appl. Math., 60 (5), 654–674, 2007.
[9] D. Henrion. Semidefinite representation of convex hulls of rational varieties. LAAS-CNRS

Research Report No. 09001, January 2009.

[10] T. Jacobi. A representation theorem for certain partially ordered commutative rings. Math.
Z., 237 (2), 259–273, 2001.

[11] S. Kuhlmann, M. Marshall, and N. Schwartz. Positivity, sums of squares and the multi-

dimensional moment problem. II. Adv. Geom., 5 (4), 583–606, 2005.
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