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MATHEMATICAL PROGRAMS WITH EQUILIBRIUM

CONSTRAINTS VIA VARIATIONAL ANALYSIS∗
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Abstract. Mathematical programs in which the constraint set is partially defined by the so-
lutions of an elliptic variational inequality, so-called “elliptic MPECs,” are formulated in reflexive
Banach spaces. With the goal of deriving explicit first-order optimality conditions amenable to the
development of numerical procedures, variational analytic concepts are both applied and further de-
veloped. The paper is split into two main parts. The first part concerns the derivation of conditions
in which the (lower-level) state constraints are assumed to be polyhedric sets. This part is then com-
pleted by two examples, the latter of which involves pointwise bilateral bounds on the gradient of the
state. The second part focuses on an important nonpolyhedric example, namely, when the lower-level
state constraints are presented by pointwise bounds on the Euclidean norm of the gradient of the
state. A formula for the second-order (Mosco) epiderivative of the indicator function for this convex
set is derived. This result is then used to demonstrate the (Hadamard) directional differentiability
of the solution mapping of the variational inequality, which then leads to the derivation of explicit
strong stationarity conditions for this problem.
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1. Introduction. The mathematical modeling of real-world phenomena often
leads to infinite dimensional, i.e., function space, problem formulations containing
variational inequalities. For example, certain problems in elasticity [27], elastoplas-
ticity [17, 26], and mathematical finance [1] all lead to models in which a variational
inequality arises. In addition, minimization problems involving certain classes of non-
smooth functionals result in variational inequalities via Fenchel–Legendre dualization
and associated Euler–Lagrange conditions [14]. Due to their practical relevance, many
research efforts have been devoted to the study of variational inequalities and their
numerical solution since their conception; see, e.g., [15, 16, 28] and the references
therein.

Frequently one is interested in controlling the solution of a variational inequality
in order to achieve a desired state or to minimize a target quantity. On an abstract
level this leads to minimization problems of the type

(1)
minimize J(u, y) over (u, y) ∈ U × Y

subject to (s.t.) y ∈ S(u),
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1562 M. HINTERMÜLLER AND T. SUROWIEC

where (u, y) denotes the associated control-state pair with respective control space
U and state space Y , J is a (usually Fréchet differentiable) objective function from
U × Y → R, and S : U → Y (or S : Y ∗ → Y ) represents the solution operator
of the underlying variational inequality. Problems of type (1) are sometimes called
mathematical programs with equilibrium constraints (MPECs), as the variational in-
equality often represents an equilibrium condition, e.g., first-order optimality condi-
tions of a convex optimization problem. Although the literature on finite dimensional
MPECs has reached a certain level of sophistication, as evidenced by the monographs
[32, 36, 38] and the many references therein, far less is known about MPECs in func-
tion spaces. With respect to the latter, we mention [6, 37] and the selected papers
[7, 8, 9, 21, 25, 34]. We would also like to mention that parameter identification
problems for variational inequalities lead to problems of type (1); see, e.g., [19, 20]
and the references therein.

From a mathematical optimization point of view, the difficulties associated with
(1) result from a lack of constraint regularity, which in turn prevents the application
of well-known results for mathematical programs in Banach space; see, e.g., [47].
Moreover, upon reducing (1) to a problem in u by considering y = y(u) = S(u),
following the so-called implicit programming approach, the problem typically becomes
a nonsmooth and nonconvex problem, which is then hard to tackle analytically as
well as numerically. In particular, the explicit representation of first-order optimality
conditions suitable for numerical realization remains an issue.

In a recent work motivated by similar results in finite dimensions as found in [44],
an attempt at systematizing stationarity conditions for function-space–based problems
of the type (1) was undertaken in [21]. Remarkably, versions of weak, C, and strong
stationarity were derived that paralleled the concepts in finite dimensions, and whereas
many approaches applied in the past relied on penalization techniques, the method of
[21] utilizes a relaxation approach yielding stronger stationarity conditions than those
resulting from penalty techniques. Penalization or relaxation techniques have the
advantage that they readily facilitate the application of the well-established theory
on mathematical programs in Banach space for the existence of Lagrange multipliers.
Moreover, these techniques may be turned into algorithmic frameworks by closely
following the derivation of first-order optimality systems for the MPEC. Using these
techniques, as was demonstrated in [21, 22], makes the problems amenable to the
application of fast solvers such as semismooth Newton and multigrid methods.

Despite the appeal of penalization and regularization methods, variational anal-
ysis (see, e.g., [5, 43, 35]) provides a different set of analytical tools able to directly
derive sharp, i.e., strong, stationarity conditions without needing to pass to the limit
with respect to certain parameters that arise in the relaxation/penalty approaches.
Oftentimes one need only verify that the data of the lower-level problem satisfy certain
constraint qualifications in order to derive first-order optimality conditions, thereby
providing a means for avoiding relaxation/penalization techniques and limit processes
in a problem-dependent fashion.

In this respect, the aim of this work is twofold: (i) We utilize and extend tools
from variational analysis in order to derive an abstract first-order optimality system
(in the sense of strong stationarity) for a rather broad class of control problems of
elliptic variational inequalities. (ii) We treat systems involving (pointwise) gradient
constraints of the type

M :=
{
y ∈ H1

0 (Ω) ||∇y| ≤ ψ almost everywhere (a.e.) on Ω
}
.
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OPTIMALITY CONDITIONS AND VARIATIONAL ANALYSIS 1563

Gradient constraints in function-space MPECs have yet to be treated in the litera-
ture, despite having been mentioned as an important (open) problem class in [34].
For control of obstacle-type problems (i.e., with pointwise unilateral constraints on
the state, rather than its gradient) it turns out that we recover the strong station-
arity conditions derived earlier by Mignot and Puel in [34], who applied a mix of
penalization techniques and so-called “conical derivatives.”

The rest of the paper is organized as follows. In section 2, we introduce notation
and basic concepts. The remaining sections subdivide our investigation into a poly-
hedric setting (sections 4–5) and an important nonpolyhedric example arising in the
theory of elastoplasticity utilizing gradient constraints (section 6). Section 4 is de-
voted to studying differentiability properties of the control-to-state mapping, i.e., the
solution operator of the underlying variational inequality. Our results extend those
obtained by Mignot in his fundamental paper [33] on the conical derivative of the
solution operator associated with the obstacle problem. In section 3, these results are
applied to derive strong stationarity conditions for the MPEC, and in section 5 two
case studies are performed yielding first the well-known stationarity result of Mignot
and Puel [34] (here in the sense of a validation of our technique) and then explicit
strong stationarity conditions in the presence of pointwise constraints on the gradi-
ent of the state. The extension to the nonpolyhedric case is more delicate as the
variational arguments in the polyhedric case do not immediately apply. Hence, in
section 6, we establish a new result for the second-order Mosco epiderivative of the
indicator function of the considered closed convex set. This result enables us to derive
strong stationarity in this challenging nonpolyhedric case.

2. Notation and basic concepts from variational analysis. Throughout
the text we make significant use of certain objects that are more or less standard in
the literature. New or lesser known concepts are introduced throughout the text so
that they may be better understood in context.

Assumptions and notation. Throughout the entirety of this paper, we will
consider only real Banach spaces, and we make the additional assumption that the
topologies of some Banach space X along with its topological dual X∗ are compatible.
If X is, in addition, reflexive, then the strong topologies on both spaces are considered;
otherwise we assume X∗ is equipped with the weak∗-topology, so that the dual of X∗

is isometric to X . For more on this subject, the reader is referred to any standard
reference on functional analysis, e.g., [46]. We denote the dual pairing between X
and X∗ by 〈·, ·〉X∗,X and denote strong convergence in any space, e.g., X , via the
symbol “→X” and weak convergence by “⇀X”. The embedding of a space X into
Y is denoted X ↪→ Y . If X is an inner product space, then the inner product will
be denoted by (·, ·)X and the norm defining the topology on X is denoted by || · ||X .
We denote the closure in the topology on X by cl{·}X . In all cases, we leave off the
subscript “X” if it is clear in context. Finally, if x, y ∈ R

l, then x · y represents their
scalar product, and for any subset A ⊆ R

l, we use “a.e. A” to represent “almost
everywhere on A.” We use the standard notation Bε(0) for the closed ε ball in some
space X and “o(t)” to be a function such that o(t)/t→ 0 as t→ 0+.

A few important function spaces. At some points in this paper, we provide
examples in which certain function spaces are present. We always assume that the
subset Ω ⊆ R

l is a bounded open subset with Lipschitz boundary ∂Ω and let l ≥
1. We denote the standard Lebesgue space of square integrable functions/vector
fields by L2(Ω)l, leaving off the “l” subscript if l = 1, and we denote the space of
all infinitely differentiable functions whose (compact) support is contained in Ω by
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1564 M. HINTERMÜLLER AND T. SUROWIEC

C∞
0 (Ω). We then define the Sobolev space H1

0 (Ω) as the completion of the space
C∞

0 (Ω) with respect to the norm ||x||H1
0 (Ω) := ||∇x||L2(Ω)l . The usage of this norm

for defining H1
0 (Ω) follows from the boundedness of Ω. Here, the gradient of x is

understood in a weak sense. Finally, we denote the pointwise ∞-norm and 2-norm of
the gradients of H1

0 -functions for any x ∈ Ω by |∇y(x)|∞ := max1≤i≤l | (∇y(x))i | and
|∇y(x)|2 := (

∑l
i=1 (∇y(x))2i )1/2, respectively. When it is clear in context, we leave

off the arguments “x”. For more on Sobolev spaces we refer the reader to [2].
Variational analytic concepts. Throughout this subsection we assume that X

is some arbitrary Banach space paired with its dual X∗ and let C ⊆ X be a nonempty
closed convex set. In addition, we define the indicator function of C by IC(x) := 0 if
y ∈ C and set IC(x) := ∞ otherwise.

The tangent cone to C at x ∈ C is defined by

TC(x) :=
{
d ∈ X

∣∣∃tk → 0+, ∃dk →X d : x+ tkdk ∈ C ∀k} .
In the event that C is only closed but not convex, we refer to this cone as the contingent
cone. As we will see in a moment, the tangent cone can be derived via calculating
the polar cone to another variational object. This, however, is not true when C is not
convex.

Given another arbitrary Banach space Y , we refer to any mapping F from X into
the set of subsets of Y as a multifunction or set-valued mapping. We use the notation
F : X ⇒ Y to denote that F is a multifunction. The graph of a multifunction is
defined by gphF := {(x, y) ∈ X × Y |y ∈ F (x)} . Clearly, gphF ⊂ X × Y .

Though multifunctions are very different from single-valued mappings, we can
still define (generalized) derivatives using contingent cones. Accordingly, we define
the contingent derivative of F at a point (x, y) ∈ gphF to be the mapping DF [(x, y)] :
X ⇒ Y whose graph equals TgphF (x, y), i.e.,

w ∈ DF [(x, y)](u) ⇔ (u,w) ∈ TgphF (x, y) ⇔
{ ∃tk → 0+, ∃uk →X u, ∃wk →Y w :
y + tkwk ∈ F (x+ tkuk).

Note that the third implication is precisely the definition of the Painlevé–Kuratowski
upper limit of the difference quotient t−1(gphF − (x, y)). For more on these and
related concepts, see, e.g., [5].

We can define an even stronger concept of generalized derivative, known as proto-
derivatives, in a similar way. We define the proto-derivative of F at a point (x, y) ∈
gphF to be the mapping PF [(x, y)] : X ⇒ Y whose graph satisfies the following
condition:

gphPF [(x, y)] = Lim supt→0+
gphF − (x, y)

t
= Lim inft→0+

gphF − (x, y)

t
,

where “Lim sup” and “Lim inf” are the Painlevé–Kuratowski upper and lower limits,
respectively. Therefore, if PF [(x, y)] exists, then PF [(x, y)] = DF [(x, y)], but not
necessarily vice versa. For more on this topic, see [31, 42].

By definition, (w, d) ∈ Lim inft→0+ t
−1(gphF − (x, y)) implies that for all se-

quences tk → 0+, wk →X w, dk →Y d, (wk, dk) ∈ t−1
k (gphF − (x, y)). Therefore, we

can argue that if F is single-valued, then

PF [(x, y)](w) = lim
t→0+

w′→Xw

t−1(F (x + tw′)− y).
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If PF [(x, y)](w) exists for all w ∈ X , then it coincides with the classical Hadamard di-
rectional derivative. We will generally denote the directional derivative by F ′(x)(w).
The Hadamard directional derivative has also appeared in the literature under the
names B-derivative by Robinson in [40] as well as semiderivative by Levy and Rock-
afellar in [31]. Many of the fundamental results on Hadamard directional derivatives
are compiled in [10].

Another important object in our study is the so-called normal cone. The normal
cone to a closed convex set C ⊆ X at some point x ∈ C is defined by

NC(x) := {x∗ ∈ X∗ |〈x∗, x′ − x〉X∗,X ≤ 0 ∀x′ ∈ C } .
In addition, NC(x) can also be (equivalently) defined by

NC(x) := {x∗ ∈ X∗ |〈x∗, d〉X∗,X ≤ 0 ∀d ∈ TC(x)} = [TC(x)]
− ,

i.e., as the negative polar/dual cone of the tangent cone. Given that X and X∗ are
paired spaces, it also holds that [NC(x)]

−
= [[TC(x)]

−
]− = TC(x), as TC itself is a

closed convex cone.
When C is merely closed and not convex, we can define another type of normal

cone known as the Fréchet normal cone

N̂C(x) :=

{
x∗ ∈ X∗

∣∣∣∣lim sup
x′→x

〈x∗, x′ − x〉
||x′ − x||X ≤ 0, x′ ∈ C

}
.

Note that the lim sup in the previous definition must hold for all sequences x′ →X x
such that x′ ∈ C. This often makes the Fréchet normal cone extremely difficult to
calculate explicitly. Nevertheless, Theorem 1.10 in [35] provides the following upper
approximation:

N̂C(y) ⊂ [TC(y)]
−
,

where equality holds if X is reflexive and one considers weak limits in the definition
of TC or X is finite dimensional.

Finally, we define the subdifferential of a convex lower-semicontinuous function
f : X → R̄ at x ∈ dom f by

∂f(x) := {x∗ ∈ X∗ |〈x∗, x′ − x〉 + f(x) ≤ f(x′) ∀x′ ∈ X } .
Note that for any nonempty closed convex set C ⊆ X , ∂IC(x) = NC(x).

3. Existence of a solution and a primal optimality condition. In this
short section, we provide a result in which the existence of a solution of a certain class
of MPECs is proven along with an important primal optimality condition. Though
the result is not entirely surprising, it motivates our interest in the generalized differ-
entiability concepts used in the following sections.

Theorem 3.1. Let Y and U be Hilbert spaces such that the embeddings Y ↪→ U ↪→
Y ∗ represent a Gelfand triple. Suppose that S : Y ∗ → Y is the Lipschitz continuous
solution mapping defined by

S(u) := {y ∈ Y |u ∈ Ay +NM (y)} , u ∈ Y ∗.

Here, A is a bounded linear elliptic operator between Y and Y ∗, i.e., A ∈ L(Y, Y ∗),
and there exists a ξ ∈ R+ \ {0} such that

〈Ay, y〉Y ∗,Y ≥ ξ||y||2Y ∀y ∈ Y,

and M is a nonempty closed convex subset of Y . If
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1566 M. HINTERMÜLLER AND T. SUROWIEC

1. J(·, y) is weakly lower-semicontinuous for all y ∈ Y ;
2. J(u, ·) is lower-semicontinuous for all u ∈ U ;
3. J is bounded from below;
4. J(·, y) is coercive for all y ∈ Y ;
5. the embedding U ↪→ Y ∗ is compact;

then there exists a solution (ū, ȳ) to the following MPEC:

(2)

{
min J(u, y)
s.t. u ∈ U , y ∈ S(u).

In addition, if J : U×Y → R is Fréchet differentiable and S is Hadamard directionally
differentiable from Y ∗ to Y , which in particular implies that S admits a first-order
expansion of the type

∀w ∈ Y ∗, S(ū+ tw) = S(ū) + tS′(ū)(w) + o(t), t ≥ 0,

then the following optimality condition holds:

(3) 〈∇uJ(ū, ȳ), w〉Y,Y ∗ + 〈∇yJ(ū, ȳ), d〉Y ∗,Y ≤ 0 ∀(w, d) ∈ TgphS(ū, ȳ),

where the contingent cone is defined using the Y ∗ × Y -topology.
Proof. Under the current assumptions, one can show using classical arguments

that S is Lipschitz continuous from Y ∗ → Y and that (2) possesses a solution. We
have chosen to place these proofs in the appendix as they are fairly standard. We
refer the reader to [10, Chapter 2.2.1] and [45] for results on the Hadamard directional
derivative. Note that S′(ū)(·) is Lipschitz continuous on Y ∗, and therefore on any
subset of Y ∗. Moreover, the Lipschitz continuity of S implies that S′(ū)(·) coincides
with the classical Gâteaux directional derivative.

Upon a direct generalization of the proofs of Theorem 2.1 and Corollary 2.1 in
[23] (this can be done by replacing H1

0 (Ω) with Y , L2(Ω) with U , and H−1(Ω) with
Y ∗), one immediately comes to the statement

(4) ∇uJ(ū, ȳ) ∈ Y,

where (ū, ȳ) is a locally optimal solution of (2).
Given that any (locally) optimal solution of (2) fulfills the inclusion

0 ∈ ∂̂(J(ū, ȳ) + I[U×Y ]∩gphS(ū, ȳ)),

where we take the convergences used to define the Fréchet subdifferential in the strong
topology on U × Y , we can apply Proposition 5.1 in [36], which states that

(−∇uJ(ū, ȳ),−∇yJ(ū, ȳ)) ∈ N̂[U×Y ]∩gphS(ū, ȳ).

Using now the inclusion

N̂[U×Y ]∩gphS(ū, ȳ) ⊂
[
T[U×Y ]∩gphS(ū, ȳ)

]−
from Theorem 1.10 in [35], we arrive at the condition

(∇uJ(ū, ȳ), w)U + 〈∇yJ(ū, ȳ), d〉Y ∗,Y ≤ 0 ∀(w, d) ∈ T[U×Y ]∩gphS(ū, ȳ).
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Ones concludes directly from the definition of the contingent cone that the previous
statement is equivalent to the following:

(∇uJ(ū, ȳ), w)U + 〈∇yJ(ū, ȳ), d〉Y ∗,Y ≤ 0 ∀(w, d) ∈ TgphS|U (ū, ȳ),

where we note that TgphS|U (ū, ȳ) is defined using the U × Y -topology. Given (4), we
can extend this inequality so that

〈∇uJ(ū, ȳ), w〉Y,Y ∗ + 〈∇yJ(ū, ȳ), d〉Y ∗,Y ≤ 0 ∀(w, d) ∈ cl {TgphS|U (ū, ȳ)}Y ∗×Y .

We now demonstrate (3). Note that the inclusion

cl {TgphS|U (ū, ȳ)}Y ∗×Y ⊆ TgphS(ū, ȳ),

with TgphS(ū, ȳ) defined in the Y ∗ × Y -topology, is trivial and follows directly from
the definition.

Let (w, d) ∈ TgphS(ū, ȳ), where the contingent cone is defined in the Y ∗ × Y -
topology. Then by definition, there exist sequences tk → 0+, wk → w in Y ∗, and
dk → d in Y such that

ȳ + tkdk = S(ū+ tkwk) ∀k.
As U is dense in Y ∗, there exists for each k a sequence

{
wkl

} ⊂ U such that wkl → wk
in Y ∗. In addition, we define {wk,ln } ⊂ U such that wk,ln → wkl in U (and, in particular,
in Y ∗). We now define sequences dkl and dk,ln such that

dkl := S′(ū)(wkl ) and d
k,l
n (τ) :=

S(ū+ τwk,ln )− ȳ

τ
∀τ > 0.

As S′(ū)(·) is (Lipschitz) continuous on Y ∗ and wk,ln → wkl in U , dk,ln → dkl in
Y . Since the previous argument holds for all τ > 0, there exist sequences τk → 0+,
wk,ln → wkl in U and dl,kn → dkl in Y such that

ȳ + τkd
l,k
n = S(ū+ τwk,ln ).

Therefore (wkl , d
k
l ) ∈ TgphS|U (ū, ȳ). Finally, we note that there exists L > 0 such that

||dkl −d||Y = ||S′(ū)(wkl )−S′(ū)(w)||Y ≤ L||wkl −w||Y ∗ ≤ L||wkl −wk||Y ∗+L||wk−w||Y ∗

Hence, (w, d) ∈ cl {TgphS|U (ū, ȳ)}Y ∗×Y , as was to be shown.
We note that in certain classical texts, e.g., Barbu’s monograph [6], S : U → Y is

the solution mapping of the generalized equation

Bu ∈ Ay +NM (y),

where B is a compact bounded linear operator from U into Y ∗. See, for example,
section 3.1 in [6]. By requiring the embedding of U into Y ∗ to be compact, we are
essentially making the same requirement, albeit less general than Barbu.

Remark 3.2 (strength of the assumptions). One example of an objective func-
tional that satisfies the needed requirements is

J(u, y) =
1

2
||y − yd||2L2(Ω) +

α

2
||u||2L2(Ω),

where α > 0 and yd ∈ L2(Ω) with Y = H1
0 (Ω), Y

∗ = H−1(Ω), and U = L2(Ω). It is
well known that H1

0 (Ω) ↪→ L2(Ω) ↪→ H−1(Ω) forms a Gelfand triple. Moreover, it is
also known that the embedding L2(Ω) ↪→ H−1(Ω) is compact.
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1568 M. HINTERMÜLLER AND T. SUROWIEC

4. Generalized differentiation of S: Polyhedric case. In this section, we
demonstrate the application of some known theoretical results and obtain a general
formula for the proto-/contingent derivative of the solution of the variational inequal-
ity in the case where the set of (lower-level) state constraints is polyhedric.

Throughout this section, we define S : Y ∗ → Y to be the solution mapping of the
variational inequality

u ∈ Ay +NM (y),

where A is a coercive bounded linear operator from Y into Y ∗, i.e., A ∈ L(Y, Y ∗),
and there exists a ξ ∈ R+ \ {0} such that

〈Ay, y〉Y ∗,Y ≥ ξ||y||2Y ∀y ∈ Y.

In addition, we define M to be a closed convex subset of the reflexive Banach space
Y and u ∈ Y ∗. It is well known (see, e.g., Chapter 3 in [28]) that S is in fact a
single-valued and locally Lipschitz function of u. We have included a concise proof of
this in the appendix.

In order to provide a formula for the proto-derivative of S, we need a way of char-
acterizing the proto-derivative of NM . We begin with the case of so-called polyhedric
sets M .

Definition 4.1 (polyhedric sets). A closed convex set C of a Banach space X
is called polyhedric if for all x ∈ C

TC(x) ∩ {v}⊥ = cl
{
RC(y) ∩ {v}⊥

}
X
,

where RC(y) represents the so-called radial cone and is defined by

RC(y) := {h ∈ X |∃τ∗ > 0 : ∀τ ∈ [0, τ∗], y + τh ∈ C }
and v ∈ NC(y).

Note that, in general, the tangent cone to M contains the radial cone, in fact,
it can also be defined as the closure of RM . We will later provide two (nontrivial)
examples containing polyhedric sets, but first we state the following important result
due to Levy [29].

Theorem 4.2 (see [29, Theorem 3.1]). Let M be a polyhedric subset of some
reflexive Banach space Y and v ∈ NM (y). Then for any (y, v) ∈ gphNM , the normal
cone mapping is proto-differentiable and the following are equivalent:

1. w ∈ PNM [(y, v)](d).
2. w ∈ NK(y,v)(d).

3. (d, w) ∈ K(y, v)× [K(y, v)]
−
: 〈w, d〉 = 0.

Here, K(y, v) := TM (y) ∩ {v}⊥, i.e., the critical cone.
We would also like to bring to the reader’s attention the fact that Theorem 4.2

can be easily derived by using equation (2.13) in Example 2.10 together with Theorem
3.9 in [13].

By appealing to a special calculus rule for proto-derivatives of certain classes of
multifunctions, we prove the next important corollary.

Corollary 4.3 (the proto-derivative of S). Let M be a polyhedric subset of
a reflexive Banach space Y and S be as above. If (u, y) ∈ gphS, then S is proto-
differentiable and the following are equivalent:

1. d ∈ PS[(u, y)](w).
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2. w ∈ Ad+NK(y,v)(d).

3. w −Ad ∈ [K(y, v)]
−
, d ∈ K(y, v), 〈w −Ad, d〉 = 0,

or equivalently

TgphS(u, y)

=
{
(w, d) ∈ Y ∗ × Y

∣∣∣w −Ad ∈ [K(y, v)]
−
, d ∈ K(y, v), 〈w −Ad, d〉 = 0

}
.

Here, v := u−Ay.
Proof. Define

S−1(y) := {u ∈ Y ∗ |u ∈ Ay +NM (y)} .
It can be easily derived from the definition of the proto-derivative (see, e.g., Proposi-
tion 2.3 in [31]) that

d ∈ PS[(u, y)](w) ⇔ w ∈ PS−1[(y, u)](d).

Then since A is Fréchet differentiable from Y to Y ∗, we can refer to Proposition 3.4
in [31], which states that

w ∈ PS−1[(y, u)](d) = Ad+ PNM [(y, u−Ay)](d).

The rest follows from Theorem 4.2.
Remark 4.4 (proto-derivatives vs. conical derivatives). In his seminal 1976 paper

[33], Mignot introduces a type of one-sided directional derivative for continuous map-
pings between Banach spaces called the conical derivative. Perhaps the most stunning
result concerning these derivatives is found in Theorem 3.3 of [33], where solutions
to a specific class of variational inequalities are shown to admit a conical derivative
for every perturbation parameter (similar to w in Corollary 4.3). In turn, the conical
derivative is the solution of a variational inequality of the type found in Corollary 4.3.
However, Mignot does so only for a restricted class of function spaces and choice ofM .
In this sense, Corollary 4.3 extends Mignot’s result to reflexive Banach spaces for all
state constraints M , provided the sets are polyhedric. Indeed, 2. in Corollary 4.3 can
be viewed as the necessary and sufficient optimality conditions to the optimization
problem

min
d∈Y

{
1

2
〈Ad, d〉 − 〈w, d〉 + IK(y,v)(d)

}
.

Since this objective function is strictly convex, coercive, and lower-semicontinuous,
the optimization problem always has a unique solution; see, e.g., Theorem 3.3.4 in
[4]; this holds regardless of the choice of w ∈ Y ∗. Moreover, it is easy to determine
the Lipschitz continuity of these solutions as functions of w using the coercivity of
the operator A. Hence, for any fixed (u, y) ∈ gphS, i.e., a solution y of the original
variational inequality for a given u, we see that at every point w ∈ Y ∗, this solution
admits a proto-derivative PS[(u, y)](w) = d, where d is the unique solution of the
variational inequality:

Find d ∈ K(y, v) : 〈Ad, d′ − d〉 ≥ 〈w, d′ − d〉 ∀d′ ∈ K(y, v).

In Corollary 6.10, we extend this result further, beyond the realm of polyhedricity, to
an important class of MPECs arising in the study of elastoplasticity.
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1570 M. HINTERMÜLLER AND T. SUROWIEC

Based on the discussions in Remark 4.4 and at the end of section 2, we have
demonstrated the following result. Note that this result is more or less due to Haraux
(cf. [18]); we have simply used a different technique.

Proposition 4.5 (Hadamard directional differentiability of S). Let M be a poly-
hedric subset of a reflexive Banach space Y and S be as above. If (u, y) ∈ gphS, then
S is Hadamard directionally differentiable at ū.

We now present our first main result providing dual optimality conditions for (2).
Theorem 4.6 (strong stationarity conditions I). Let (ū, ȳ) be a locally optimal

solution of (2); then there exist multipliers p∗ ∈ K(ȳ, v̄), r∗ ∈ [K(ȳ, v̄)]
−
, and v̄ ∈

NM (ȳ) such that

0 = ∇uJ(ū, ȳ) + p∗,(5)

0 = ∇yJ(ū, ȳ) + r∗ −A∗p∗,(6)

0 = Aȳ − ū+ v̄.(7)

Proof. The result follows from (3) upon the calculation of [TgphS(ū, ȳ)]
−
. By

definition of the polar cone we see that

[TgphS(u, y)]
−
= {(p∗, q∗) ∈ Y × Y ∗ |〈w, p∗〉+ 〈q∗, d〉 ≤ 0 ∀(w, d) ∈ TgphS(u, y)} .

Using Corollary 4.3, we can proceed in a manner similar to the proof of Lemma 3.1
in [39],

[TgphS(u, y)]
− = {(p∗, q∗) ∈ Y × Y ∗ |〈w, p∗〉+ 〈q∗, d〉 ≤ 0 ∀(w, d) ∈ TgphS(u, y)}
=

{
(p∗, q∗) ∈ Y × Y ∗ ∣∣〈Ad+ h, p∗〉+ 〈q∗, d〉 ≤ 0 ∀(d, h) ∈ gphNK(y,v)

}
=

{
(p∗, q∗) ∈ Y × Y ∗ ∣∣〈A∗p∗ + q∗, d〉+ 〈h, p∗〉 ≤ 0 ∀(d, h) ∈ gphNK(y,v)

}
.

Recall from Theorem 4.2 that

gphNK(y,v) =
{
(d, h) ∈ Y × Y ∗

∣∣∣d ∈ K(y, v), h ∈ [K(y, v)]− , 〈h, d〉 = 0
}
.

Then by ignoring the complementarity relation 〈h, d〉 = 0, we observe that

[TgphS(u, y)]
− ⊃

{
(p∗, q∗) ∈ Y × Y ∗

∣∣∣A∗p∗ + q∗ ∈ [K(y, v)]
−
, p∗ ∈ K(y, v)

}
.

Conversely, since K(y, v) × {0} and {0} × [K(y, v)]
−

are subsets of gphNK(y,v) we
obtain the reverse inclusion, i.e.,

[TgphS(u, y)]
− ⊂

{
(p∗, q∗) ∈ Y × Y ∗

∣∣∣A∗p∗ + q∗ ∈ [K(y, v)]
−
, p∗ ∈ K(y, v)

}
,

as was to be shown.
We would also like to note that a similar technique was used to derive optimality

conditions for the class of MPECs in which Y = H1
0 (Ω), U = Y ∗ = H−1(Ω), and

M :=
{
y ∈ H1

0 (Ω) |y ≥ 0 a.e.Ω
}
in [39] and when U = L2(Ω) in [23].

5. Two examples with polyhedric state constraints M . In this section,
we provide examples in which the conditions (5) and (6) from Theorem 4.6 are made
explicit. We begin with a classical example for illustration, following which we derive
new conditions for an important example from the study of elastoplasticity (cf. [26,
27]).
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5.1. Optimal control of the obstacle problem. In [33], Mignot demonstrates
the polyhedricity of constraint sets of the type{

y ∈ H1
0 (Ω) |ϕ ≤ y ≤ ψ a.e.Ω

}
,

where ψ, ϕ ∈ H1(Ω) are appropriately chosen. Furthermore, many other obstacle-
problem–type constraints sets, i.e., box-constraints, in Lp-spaces are shown to be
polyhedric in Chapter 6 of [10]. Using the optimality conditions derived in the previous
section, along with the well-known characterizations for both the associated critical
cone and its dual, we quickly rederive the well-known conditions of Mignot and Puel
[34]. As their conditions are considered to be the best possible for the optimal control
of the obstacle problem, we consider this brief derivation as a type of validation for
the optimality of our conditions.

In the following, we have that
• Y := H1

0 (Ω);
• U := L2(Ω);
• M :=

{
y ∈ H1

0 (Ω) | y ≥ 0 a.e.Ω
}
;

• J : L2(Ω)×H1
0 (Ω) → R, Fréchet differentiable;

• A(y) := {x ∈ Ω |y(x) = 0}.
For the definitions and assumptions on these spaces, we refer the reader to section 2.

By Theorem 4.6, if (ū, ȳ) is a locally optimal solution of the associated elliptic
MPEC, then there exist (p∗, r∗) ∈ H1

0 (Ω)×H−1(Ω) such that

0 = ∇uJ(ū, ȳ) + p∗,
0 = ∇yJ(ū, ȳ) + r∗ −A∗p∗,

where p∗ ∈ TM (ȳ) ∩ {ū − Aȳ}⊥ and r∗ ∈ [
TM (ȳ) ∩ {ū−Aȳ}⊥]−. Then by referring

to Lemma 3.2 in [39] (along with the discussion following Lemma 2.2), it holds that

p∗ ≥ 0 a.e.A(ȳ),

〈ū−Aȳ, p∗〉 = 0,

〈r∗, ϕ〉 = 0 ∀ϕ ∈ H1
0 (Ω) : ϕ = 0 a.e.A(ȳ),

〈r∗, ϕ〉 ≤ 0 ∀ϕ ∈M : 〈ū−Aȳ, ϕ〉 = 0.

By carefully comparing these conditions to Theorem 3.3 in [34], we see that our
conditions yield those of Mignot and Puel. Note that in [34], J(u, y) := 1

2 ||y −
zd||2L2(Ω) +

α
2 ||u||2L2(Ω), with α > 0. As expected in this setting, we see that the

regularity of the optimal control ū is better than L2(Ω), in fact, ū ∈ H1
0 (Ω). In the

recent paper [21], efforts were successfully made to calculate and/or obtain strong
stationary points of this type numerically.

5.2. Pointwise constraints on the gradient of the state using the ∞-
norm. Many important problems in the study of elastoplasticity require the pointwise
bounding of the gradient of the displacement, i.e., the stress on an isotropic body at
each point in the presence of a given force. The optimal control problem then results
in an elliptic MPEC in which the gradients of the state y are pointwise bounded
(almost everywhere). In the following example, we consider a setting in which the
gradients of the state are pointwise bounded using the ∞-norm on vectors in R

l. In
section 8, we consider the 2-norm instead, which does not allow a simple reformulation
to a bilateral setting.

In the following, we have that
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• Y := H1
0 (Ω);

• U := L2(Ω);
• M :=

{
y ∈ H1

0 (Ω) | |∇y|∞ ≤ ψ a.e.Ω
}
, ψ ∈ L∞(Ω), and ∃ψ ∈ R+ \ {0} :

ψ ≥ ψ > 0 a.e.Ω;

• J : L2(Ω)×H1
0 (Ω) → R, Fréchet differentiable.

We use ∇y to represent the full gradient and (∇y)i for its components. This simple
rule will be applied throughout this example for all vectors and their components. It
is easy to see that M can be equivalently defined by

M =
{
y ∈ H1

0 (Ω) | −ψ ≤ (∇y)i ≤ ψ a.e.Ω, 1 ≤ i ≤ l
}
.

In addition to these basic assumptions, we reduce the space of the gradient used
in the state constraints, i.e., more specifically,

• ∇ : H1
0 (Ω) → G(Ω), where G(Ω) := ∇(H1

0 (Ω)), i.e., the image space of the
gradient.

In shrinking the image space of the gradient, we obtain a surjective bounded linear
operator. This leads to the new formulation of the constraint set M :

(8) M =
{
y ∈ H1

0 (Ω) | ∇y ∈ Bψ
}
,

where

Bψ := {z ∈ G(Ω) |−ψ ≤ zi ≤ ψ a.e.Ω, 1 ≤ i ≤ l} .
The image space is not merely chosen for its convenience. Indeed, we have the well-
known Helmholtz decomposition (see, e.g., Proposition 1 (Chapter IX, section 1) in
[12]) that L2(Ω)l can be written as the orthogonal direct sum

L2(Ω)l = G(Ω)⊕H(div 0,Ω),

where

H(div 0,Ω) :=
{
z ∈ L2(Ω)l | div z = 0

}
.

This then allows us to use the L2(Ω)l-norm on G(Ω). Not only is G(Ω) closed with
respect to the L2(Ω)l-norm, but it is also a Hilbert space with inner product (·, ·)L2(Ω)l .
Using these facts, it is easy to see the Bψ is closed and convex in G(Ω). We now show,
using essentially the same argument as in the proof of Proposition 6.33 in [10], that
Bψ is polyhedric in G(Ω). In order to continue, we will need the following definitions.

Definition 5.1 (the active and inactive sets). For some y ∈ M , we define the
upper active set for the ith component of ∇y, A+

i (∇y) ⊆ Ω, such that

A+
i (∇y) := {x ∈ Ω | (∇y(x))i = ψ(x)} ,

and the lower active set for the ith component of ∇y, A−
i (∇y) ⊆ Ω, such that

A−
i (∇y) := {x ∈ Ω | (∇y(x))i = −ψ(x)} .

The ith inactive set, Ii(∇y), is therefore defined by

Ii(∇y) := Ω \ (A+
i (∇y) ∪ A−

i (∇y)
)
.

Note that we can analogously define the active and inactive sets for any element
of Bψ.
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Proposition 5.2 (the tangent and normal cones to Bψ). Let the set Bψ be
defined as above and z ∈ Bψ. Then

TBψ(z) =
{
h ∈ G(Ω)

∣∣hi ≤ 0 a.e.A+
i (z), hi ≥ 0 a.e.A−

i (z), 1 ≤ i ≤ l
}
.

Moreover, the properties of G(Ω) allow the elements of the normal cone NBψ(z) to be
identified with elements of G(Ω) so that

NBψ(z)

=
{
λ ∈ G(Ω)

∣∣ λi ≥ 0 a.e.A+
i (z), λi ≤ 0 a.e.A−

i (z), λi = 0 a.e. Ii(z), 1 ≤ i ≤ l
}
.

Therefore, the critical cone to Bψ at z for some λ ∈ NBψ(z) is characterized as

K(z,λ) = TBψ(z) ∩ {λ}⊥ =

⎧⎪⎪⎨
⎪⎪⎩h ∈ G(Ω)

∣∣∣∣∣∣∣∣
hi ≤ 0 a.e.A+

i (z) : λi = 0,
hi = 0 a.e.A+

i (z) : λi > 0,
hi ≥ 0 a.e.A−

i (z) : λi = 0,
hi = 0 a.e.A−

i (z) : λi < 0, 1 ≤ i ≤ l

⎫⎪⎪⎬
⎪⎪⎭ ,

where

{λ}⊥ :=
{
h ∈ G(Ω)

∣∣(λ,h)L2(Ω)l = 0
}
.

Here, conditions of the type “ a.e.A+
i (z) : λi = 0” are to be understood: “almost

everywhere on the set
{
x ∈ A+

i (z) |λi(x) = 0
}
.”

Proof. Let h ∈ TBψ(z). Then by definition, there exist sequences tk → 0+ and
hk → h in G(Ω) such that

z+ tkhk ∈ Bψ ∀k.
Then for any i such that 1 ≤ i ≤ l, it holds that

−ψ ≤ zi + tkh
i
k ≤ ψ a.e.Ω ∀k.

Thus,

0 ≤ hik ≤ ψ − zi
tk

a.e.A−
i (z) ∀k

and

−ψ − zi
tk

≤ hik ≤ 0 a.e.A+
i (z) ∀k.

Here, we use hik to represent the ith component of the hk. Hence,

(9) TBψ(z) ⊆
{
h ∈ G(Ω)

∣∣hi ≤ 0 a.e.A+
i (z), hi ≥ 0 a.e.A−

i (z), 1 ≤ i ≤ l
}
.

Now let h ∈ G(Ω) satisfy the right-hand side of (9) and define the following class of
vector fields indexed by τ > 0:

rτ :=
ΠBψ (z+ τh) − z

τ
.

Here, ΠBψ represents the metric projection onto Bψ. Since z + τrτ = ΠBψ (z + τh),
rτ ∈ RBψ (z) for all τ > 0.
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Consider now that for almost every x ∈ Ω, rτ (x) → h(x). Indeed, pointwise,
we can always find τ > 0 small enough such that z(x) + τh(x) ∈ Bψ(x), where
Bψ(x) :=

{
q ∈ R

l |−ψ(x) ≤ qi ≤ ψ(x)
}
. Moreover, since G(Ω) is a Hilbert space and

Bψ(x) is closed and convex for almost every x ∈ Ω, the metric projection is single-
valued and Lipschitz continuous with modulus 1 (nonexpansive). Therefore, it holds
that |rτ (x)| ≤ |h(x)| for almost every x ∈ Ω. Then given G(Ω) is a closed subspace of
L2(Ω)l, we can apply Lebesgue’s dominating convergence theorem, which yields rτ →
h in G(Ω). As the set of all rτ is contained in RBψ(z) and cl {RBψ(z)}G(Ω) = TBψ(z),
(9) holds as an equality.

We now move on to the derivation of the normal cone. By definition

NBψ(z) =
[
TBψ(z)

]−
=

{
λ ∈ G(Ω)∗

∣∣〈λ,h〉G(Ω)∗,G(Ω) ≤ 0 ∀h ∈ TBψ(z)
}
.

By virtue of the Riesz representation theorem, there exists a unique λ̃ ∈ G(Ω) for
each λ ∈ G(Ω)∗ such that

〈λ,h〉G(Ω)∗,G(Ω) =
(
λ̃,h

)
L2(Ω)l

.

Hence, we identify all λ ∈ NBψ(z) with their G(Ω)-counterparts, so that

〈λ,h〉G(Ω)∗,G(Ω) ≤ 0 ∀h ∈ TBψ(z) ⇔
(
λ̃,h

)
L2(Ω)l

≤ 0, ∀h ∈ TBψ(z).

Defining A+(z) := A+
1 (z)× · · · ×A+

l (z), A−(z) := A−
1 (z)× · · · ×A−

l (z), and I(z) :=
I1(z) × · · · × Il(z), the polarity inequality becomes

(
λ̃,h

)
L2(Ω)l

=

∫
A+(z)

λ̃ · hdx+

∫
A−(z)

λ̃ · hdx+

∫
I(z)

λ̃ · hdx ≤ 0 ∀h ∈ TBψ(z).

Referring to the above, we see that if h ∈ G(Ω) such that hi = 0 a.e. on A+
i (z)∪A−

i (z)

and free on Ii(z) for all i = 1, . . . , l, then h ∈ TBψ(z). Therefore, λ̃ must equal zero
a.e. on I(z). Then since the components of h are a.e. nonpositive on A+(z) and
a.e. nonnegative on A−(z) for all h ∈ TBψ(z), λ̃ must always have the opposite signs

(a.e.) on these sets. By identifying the λ̃ with the λ, the asserted formula for the
normal cone holds.

Given the formulae for the tangent and normal cones, the characterization for the
critical cone follows trivially.

Corollary 5.3 (polyhedricity of Bψ). The set Bψ as defined above is polyhedric
in G(Ω); i.e., for any λ ∈ NBψ (z), it holds that

TBψ(z) ∩ {λ}⊥ = cl
{
RBψ (z) ∩ {λ}⊥

}
G(Ω)

.

Proof. The argument follows analogously to the derivation of the tangent cone
and mirrors the proof of Proposition 6.33 in [10].

This leads to our next result.
Proposition 5.4 (the tangent and normal cones to M). Let y ∈ M , where M

is defined as in (8). Then

TM (y) =
{
d ∈ H1

0 (Ω)
∣∣∇d ∈ TBψ(∇y)

}
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and

NM (y) =
{−divλ ∈ H−1(Ω)

∣∣λ ∈ G(Ω) : λ ∈ NBψ (∇y)
}
.

Here, the associated critical cone to M at y ∈M for some v ∈ NM (y) is characterized
by

K(y, v)=TM (y)∩{v}⊥=

⎧⎪⎪⎨
⎪⎪⎩d ∈ H1

0 (Ω)

∣∣∣∣∣∣∣∣
∇di ≤ 0 a.e.A+

i (∇y) : λi = 0,
∇di = 0 a.e.A+

i (∇y) : λi > 0,
∇di ≥ 0 a.e.A−

i (∇y) : λi = 0,
∇di = 0 a.e.A−

i (∇y) : λi < 0, 1 ≤ i ≤ l

⎫⎪⎪⎬
⎪⎪⎭ .

Here, λ ∈ NBψ(∇y) such that v = −divλ.
Proof. Due to the assumption on the range space of ∇, the classical generalized

Slater condition, i.e.,

0 ∈ int
{∇(H1

0 (Ω)) −Bψ
}
,

automatically holds (understood in the strong topology on G(Ω)). Indeed, since
∇(H1

0 (Ω)) = G(Ω) and Bψ ⊂ G(Ω), there always exists an ε > 0 such that Bε(0) ⊂
∇(H1

0 (Ω))−Bψ . Thus, the assertions hold for TM (y) and NM (y) (cf., e.g., [5, Chapter
4.2]). Note that the adjoint of ∇ is −div, understood in a weak sense.

Due to Proposition 5.2, for each v ∈ NM (y), there exists a λ ∈ NBψ(∇y) such
that v = −divλ. Therefore, taking any arbitrary d ∈ K(y, v) requires

〈−divλ, d〉H−1,H1
0
= (λ,∇d)L2(Ω)l = 0.

Continuing the previous relation further yields

(λ,∇d)L2(Ω)l =

∫
A+(∇y)

λ · ∇ddx+

∫
A−(∇y)

λ · ∇ddx +

∫
I(∇y)

λ · ∇ddx

=

∫
A+(∇y)

λ · ∇ddx+

∫
A−(∇y)

λ · ∇ddx = 0.

The rest follows from the fact that∇di and λi always have opposite signs. The reverse
inclusion is trivial.

Given the explicit formula for the critical cone associated with M provided by
the previous proposition, we now demonstrate that M is in fact polyhedric.

Proposition 5.5 (polyhedricity of M). Given M as above, y ∈ M , and v ∈
NM (y), it holds that

K(y, v) = TM (y) ∩ {v}⊥ = cl
{
RM (y) ∩ {v}⊥

}
H1

0 (Ω)
,

i.e., M is polyhedric.
Proof. Since ∇ is onto and Bψ is polyhedric (Proposition 5.2), Proposition 3.54

in [10] implies

cl
{
d ∈ K(y, v)

∣∣∇d ∈ RBψ(∇y)
}
H1

0 (Ω)
= K(y, v).

Given

TM (y) ∩ {v}⊥ ⊇ cl
{
RM (y) ∩ {v}⊥

}
H1

0 (Ω)
,

D
ow

nl
oa

de
d 

07
/1

5/
13

 to
 1

41
.2

0.
53

.3
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1576 M. HINTERMÜLLER AND T. SUROWIEC

it suffices to show that{
d ∈ K(y, v)

∣∣∇d ∈ RBψ (∇y)
} ⊂ RM (y) ∩ {v}⊥ .

By definition ∇d ∈ RBψ(∇y) implies the existence of a τ > 0 such that ∇y + τ∇d ∈
Bψ. Hence, d ∈ RM (y). Then since d ∈ K(y, v) implies 〈v, d〉H−1,H1

0
= 0, it holds

that d ∈ RM (y) ∩ {v}⊥.
Given the previous results, we need one last component in order to provide the

explicit stationarity conditions for the elliptic MPEC.
Proposition 5.6 (the polar cone [K(y, v)]−). Given M as above, y ∈ M , and

v ∈ NM (y), it holds that

[K(y, v)]
−

=

⎧⎨
⎩−divμ ∈ H−1(Ω)

∣∣∣∣∣∣μ ∈ G(Ω) :
μi ≥ 0 a.e.A+

i (∇y) : λi = 0
μi ≤ 0 a.e.A−

i (∇y) : λi = 0,
μi = 0 a.e. Ii(∇y)

1 ≤ i ≤ l

⎫⎬
⎭ .

Proof. By definition,

[K(y, v)]
−
=
{
d∗ ∈ H−1(Ω)

∣∣∣〈d∗, d〉H−1,H1
0
≤ 0 ∀d ∈ K(y, v)

}
.

Let μ satisfy the requirements for the right-hand side of the asserted result. Then by
Proposition 5.4, for any d ∈ K(y, v), we have

〈−divμ, d〉H−1,H1
0
= (μ,∇d)L2 ≤ 0.

Therefore, the inclusion “⊇” holds. For the reverse direction, define

L :=

⎧⎨
⎩μ ∈ G(Ω)

∣∣∣∣∣∣
μi ≥ 0 a.e.A+

i (∇y) : λi = 0,
μi ≤ 0 a.e.A−

i (∇y) : λi = 0,
μi = 0 a.e.Ii(∇y)

1 ≤ i ≤ l

⎫⎬
⎭ .

It is easy to show that L is a closed convex cone in G(Ω). The image −div (L) is
clearly convex; we refer the reader to Lemma 6.14 to see that −div (L) is closed as
well. Assume now that there exists some d∗ ∈ [K(y, v)]

−
such that d∗ /∈ −div (L).

Then there must exist some δ ∈ H1
0 (Ω) strongly separating d∗ from −div (L); see,

e.g., TVS II.38, Prop. 4 of [11], i.e.,

〈d∗, δ〉H−1,H1
0
> 0, 〈−divμ, δ〉H−1,H1

0
≤ 0, ∀μ ∈ L.

Then δ cannot be in K(y, v). However, for an arbitrary μ ∈ L, it holds that

0 ≥ 〈−divμ, δ〉H−1,H1
0
= (μ,∇δ)L2(Ω)l .

Since the previous relation must hold for all μ ∈ L, we deduce that δ ∈ K(y, v), a
contradiction. The assertion follows.

Now that we have all the necessary characterizations, we can provide explicit
strong stationarity conditions for the elliptic MPEC via Theorem 4.6.

Proposition 5.7 (explicit strong stationarity conditions). Under the given data
assumptions of this subsection, let (ū, ȳ) be a (locally) optimal solution to the corre-
sponding MPEC. Then there exist multipliers p ∈ H1

0 (Ω), λ ∈ G(Ω), and μ ∈ G(Ω)
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such that

0 = ∇uJ(ū, ȳ) + p,(10)

0 = ∇yJ(ū, ȳ)− divμ−A∗p,(11)

0 = Aȳ − ū− divλ,(12)

(13)

where for all i = 1, . . . , l⎧⎪⎪⎨
⎪⎪⎩

∇pi ≤ 0 a.e.A+
i (∇y) : λi = 0

∇pi = 0 a.e.A+
i (∇y) : λi > 0

∇pi ≥ 0 a.e.A−
i (∇y) : λi = 0

∇pi = 0 a.e.A−
i (∇y) : λi < 0

∣∣∣∣∣∣∣∣
μi ≥ 0 a.e.A+

i (∇y) : λi = 0
μi ≤ 0 a.e.A−

i (∇y) : λi = 0
μi = 0 a.e. Ii(∇y)

∣∣∣∣∣∣∣∣
λi ≥ 0 a.e.A+

i (∇y)
λi ≤ 0 a.e.A−

i (∇y)
λi = 0 a.e. Ii(∇y)

⎫⎪⎪⎬
⎪⎪⎭

and

A+
i (∇y) = {x ∈ Ω |(∇y(x))i = ψ(x)} ,

A−
i (∇y) = {x ∈ Ω |(∇y(x))i = −ψ(x)} ,
Ii(∇y) = Ω \ A+

i (∇y) ∪ A−
i (∇y).

Proof. The result follows from Theorem 4.6 via Propositions 5.4, 5.5, and 5.6.
As in the simple obstacle case, we see that if the tracking functional

J(u, y) =
1

2
||y − yd||2L2 +

α

2
||u||2L2(Ω)

is chosen with α > 0, then the optimal control ū ∈ H1
0 (Ω).

6. Optimality conditions in the absence of polyhedricity: Gradient con-
straints using the 2-norm. In the nonpolyhedric setting, the ability to directly
obtain an explicit formula for the generalized derivative of the normal cone is much
more difficult. For this reason, we restrict ourselves to a class of nonpolyhedric convex
sets described by nonsmooth convex functions, namely, we consider

M :=
{
y ∈ H1

0 (Ω) | |∇y|2 ≤ ψ a.e.Ω
}
,

where, as before, ∇ : H1
0 (Ω) → G(Ω) with G(Ω) := ∇(H1

0 (Ω)) ⊂ L2(Ω)l, a closed
(Hilbert) subspace of L2(Ω)l. Once again, we have the following data assumptions
with M as above:

• Y := H1
0 (Ω);

• U := L2(Ω);
• J : L2(Ω)×H1

0 (Ω) → R, Fréchet differentiable;
• ψ ∈ L∞(Ω) has a lower bound, ψ ∈ R+ \ {0}, i.e., ψ ≥ ψ > 0.

• ∇ : H1
0 (Ω) → G(Ω), where G(Ω) := ∇(H1

0 (Ω)), i.e., the image space of the
gradient.

As it significantly simplifies the computations, we reformulate M as

(14) M =
{
y ∈ H1

0 (Ω) |∇y ∈ Kψ

}
,

where

Kψ :=
{
z ∈ G(Ω)

∣∣|z|22 ≤ ψ2 a.e.Ω
}
.
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1578 M. HINTERMÜLLER AND T. SUROWIEC

Since∇, as defined here, is a surjective bounded linear operator, we need only calculate
TKψ and NKψ in order to derive formulae for TM and NM .

By using a calculus rule related to a certain type of second-order directional
derivative of lower-semicontinuous functions, we are able to derive new formulae for
the contingent derivatives of the normal cone and solution mappings. In order to
state our result, we first need to introduce a few important concepts gathered from
the literature.

Definition 6.1 (Mosco epiconvergence). Let {ϕt} be a family of functions from
a Banach space X into the extended reals R̄ parameterized by t > 0 and ϕ : X → R̄.
Then the family ϕt is said to Mosco epiconverge to ϕ as t → 0+ if for all sequences
tn → 0+ and every x ∈ X, the following two conditions hold:

∀xn ⇀ x, ϕ(x) ≤ lim inf
n

ϕtn(xn),(15)

∃xn → x, ϕ(x) ≥ lim sup
n

ϕtn(xn).(16)

For more on this and related types of variational convergence, we refer the reader
to [3]. In the next definition, we will use second-order differential quotients associated
with some proper convex lower-semicontinuous function f : X → R̄, where X is again
some arbitrary Banach space. We assume f is finite at x ∈ X , x∗ ∈ X∗, and h ∈ X
arbitrary. The so-called second-order difference quotient associated with f is then
defined by

(Δ2
tf)x,x∗(h) :=

f(x+ th)− f(x)− t〈x∗, x〉
1
2 t

2
.

Definition 6.2 (second-order Mosco epiderivatives). Let f : X → R̄ be a
proper convex lower-semicontinuous function, let X be a Banach space, and let x∗ ∈
X∗. If the family of associated second-order difference quotients (Δ2

t f)x,x∗ Mosco
epiconverges to some function ϕ as t → 0+ with ϕ(0) �= −∞, then f is said to be
twice Mosco epidifferentiable at x relative to x∗. Here, ϕ represents the second-order
Mosco epiderivative of f at x relative to x∗, which we denote by f

′′
x,x∗.

Second-order Mosco epiderivatives were introduced by Rockafellar for extended
real-valued functionals from R

n in [41], and there is a compendium of results for finite
dimensional objects in [43]. Some important references for the infinite dimensional
setting include, but are by no means limited to, [13, 24, 29].

We can now state the following important calculus rule, which forms the basis for
our interest in second-order Mosco epiderivatives.

Theorem 6.3 (Do [13, Theorem 3.9]). Let f : X → R̄ be a proper convex lower-
semicontinuous function, let X be a reflexive Banach space, and let f(x) be finite.
Then the following statements are equivalent:

• f is twice Mosco epidifferentiable at x ∈ X relative to x∗ ∈ X∗.
• The subdifferential ∂f is proto-differentiable at (x, x∗) ∈ gph∂f .

In addition, it holds that

(17) ∂

(
1

2
f

′′
x,x∗

)
(h) = P∂f [(x, x∗)](h), h ∈ X.

Upon referring to the results in Chapter 13 of [43] as well as Theorem 7 in [30],
one notes the presence of a second-order term in nonpolyhedral settings. As may be
expected by the reader, the derivation of such results requires an explicit structure
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of the feasible set. Additionally, one also needs a constraint qualification in order to
guarantee that the normals v ∈ NM (y) have a specific structure.

Before presenting our main result concerning the second-order epiderivative of
the indicator function associated with M , we explicitly calculate the necessary cones
for our setting.

Definition 6.4. For y ∈M , where M is defined as in (14), we define the active
set by

A(y) :=
{
x ∈ Ω

∣∣|∇y(x)|22 ≤ ψ2(x)
}
.

Accordingly, we define the inactive set by

I(y) := Ω \ A(y).

Proposition 6.5 (the tangent and normal cones to Kψ). Let Kψ be defined as
above and assume z ∈ Kψ. Then

TKψ(z) = {h ∈ G(Ω) |z · h ≤ 0 a.e.A(z)}

and

NKψ(z) =
{
2λz ∈ G(Ω)

∣∣λ ∈ L2(Ω) : λ ≥ 0 a.e.A(z), λ = 0 a.e. I(z)} .
Proof. Let h ∈ TKψ(z). Then there exist sequences tk → 0+ and hk → h in G(Ω)

such that |z + tkhk|22 ≤ ψ2 a.e. Ω. By rearranging terms and passing to the limit,
we observe that z · h ≤ 0 a.e. A(z). Thus, the inclusion “⊆” holds. For the reverse
direction, we again use an argument based on Lebesgue’s dominating convergence
theorem. Indeed, by defining the family of G(Ω)-vector fields

pτ :=
ΠKψ (z+ τh)− z

τ
,

it holds that for all τ > 0, pτ ∈ RKψ (z). Moreover, for almost every x, pτ (x) → h(x)
as τ → 0 and since G(Ω) is a Hilbert space and Kψ is closed and convex, the metric
projection is nonexpansive, i.e., |pτ (x)| ≤ |h(x)|. As G(Ω) is a closed subspace of
L2(Ω)l in the L2(Ω)l-norm, it holds that pτ → h in G(Ω). Therefore, the reverse
inclusion holds.

We now characterize the normal cone. By definition,

NKψ(z) =
{
μ∗ ∈ G(Ω)∗

∣∣〈μ∗,h〉G∗,G ≤ 0 ∀h ∈ TKψ(z)
}
.

Nevertheless, sinceG(Ω) is a Hilbert space with L2(Ω)l inner product, we can associate
with every μ∗ ∈ NKψ(z) its G(Ω)-counterpart μ. Therefore, we view the normal cone
as follows:

NKψ(z) =
{
μ ∈ G(Ω)

∣∣(μ,h)L2(Ω)l ≤ 0 ∀h ∈ TKψ(z)
}
.

Let z ∈ Kψ. By definition, z ∈ G(Ω). In addition, let λ ∈ L2(Ω) such that
λ ≥ 0 a.e.A(z) and λ = 0 a.e.I(z). Since z ∈ Kψ, it holds by definition that
|z|22 ≤ ψ2 a.e.Ω. Therefore, given ψ ∈ L∞(Ω), it follows that z ∈ L∞(Ω)l, in which
case we have λz ∈ L2(Ω)l. Moreover, we note that since ψ has a strictly positive
lower bound, |z| > 0 a.e.A(z).
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1580 M. HINTERMÜLLER AND T. SUROWIEC

Without loss of generality, suppose λz �= 0 ∈ L2(Ω)l. This implies in particular
that the Lebesgue measure of the strongly active set A(z)+ is strictly positive. Indeed,
by assuming otherwise, we see that λ = 0 a.e.Ω; thus λz = 0 a.e.Ω (componentwise).
Clearly, |λz|22 = 0 a.e.Ω as well. Thus, λz = 0 ∈ L2(Ω)l.

Define the set

N0(z) :=
{
2λz ∈ G(Ω)

∣∣λ ∈ L2(Ω) : λ ≥ 0 a.e.A(z), λ = 0 a.e. I(z)} .
By the previous argument and convexity of Kψ in G(Ω), it holds that NKψ(z) ⊇
N0(z). To see that N0(z) is convex in G(Ω), let α ∈ (0, 1) and v1,v2 ∈ N0(z). Then
since

αv1(x) + (1− α)v2(x) = 2(αλ1 + (1− α)λ2)z

and the set {
λ ∈ L2(Ω) |λ ≥ 0 a.e.A(z), λ = 0 a.e. I(z)}

is convex, it holds that αv1 + (1 − α)v2 ∈ N0(z).
Next, we demonstrate that N0(z) is closed in G(Ω). Let vn ∈ N0(z) such that

vn → v in L2(Ω)l. By definition, there exist λn ∈ L2(Ω), where λn ≥ 0 a.e. on A(z)
and λn = 0 a.e. on I(z) such that vn = 2λnz.

Given vn → v in L2(Ω)l, there exists a positive constant C such that ||vn||2L2(Ω)l ≤
C. Hence,

C ≥ ||vn||2L2(Ω)l = 4

∫
Ω

λ2n|z|2dx = 4

∫
A(z)

λ2nψ
2dx ≥ 4ψ2

∫
A(z)

λ2ndx = 4ψ2||λn||2L2(Ω).

Therefore, there exists λ̂ ∈ L2(Ω) and a subsequence {nk}∞k=1 ⊂ {n}∞n=1 such that

λnk ⇀ λ̂ in L2(Ω). Moreover, since the set

U =
{
λ ∈ L2(Ω) |λ ≥ 0 a.e.A(z), λ = 0 a.e.I(z)}

is closed and convex in L2(Ω), and thus, weakly closed in L2(Ω), λ̂ ∈ U as well.
Continuing, we use the fact that G(Ω) is a Hilbert space with the L2(Ω)l inner

product to rewrite v. Indeed, by letting α, β ∈ R \ {0}, we can write v = 2αλ̂z+βw,

where w ∈ {λ̂z}⊥. Consider then that

||vn − v||2L2(Ω)l = ||vn||2L2(Ω) − 2(vn,v)L2(Ω)l + ||v||2L2(Ω)l

= ||2λnz||2L2(Ω) − 2(2λnz, αλ̂z+ βw)L2(Ω)l + ||αλ̂z+ βw||2L2(Ω)l

= ||2λnz− αλ̂z||2L2(Ω)l − 2β(2λnz,w)L2(Ω)l + ||βw||2L2(Ω)l .

Then since λnk ⇀ λ̂ in L2(Ω) and w is orthogonal to 2λ̂z,

−2β(2λnkz,w)L2(Ω)l = −2β

∫
A(z)

2λnkz ·wdx→ −2β

∫
A(z)

2λ̂z ·wdx = 0.

However, this implies that ||2λnkz − αλ̂z||2L2(Ω)l + ||βw||2L2(Ω)l → 0, which can only

hold when ||βw||2L2(Ω)l = 0 and ||λnkz− αλ̂z||2L2(Ω)l → 0. Finally, we note that

||2λnkz− αλ̂z||2L2(Ω)l =

∫
A(z)

∣∣∣(2λnk − αλ̂)z
∣∣∣2
2
dx ≥ ψ2

∫
A(z)

∣∣∣(2λnk − αλ̂)
∣∣∣2
2
dx.
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Hence, 2λn → αλ̂ in L2(Ω), and v has the form 2λ̃z, where λ̃ ∈ U such that

λ̃ = αλ̂. Therefore, N0(z) is closed.
Finally, suppose there exists v∗ ∈ NKψ(z) such that v∗ /∈ N0(z). Then there

exists a u∗ ∈ G(Ω)∗ strongly separating v∗ from N0(z) (see, e.g., TVS II.38, Prop. 4
of [11]). That is,

〈u∗,v∗〉G∗,G > 0, 〈u∗,v〉G∗,G ≤ 0 ∀v ∈ N0(z).

Using again the fact that G(Ω) is a Hilbert space, we immediately identify u∗ with
its counterpart u ∈ G(Ω) so that the previous relations become

∃u ∈ G(Ω) : (u,v∗)L2(Ω)l > 0, (u,v)L2(Ω)l ≤ 0 ∀v ∈ N0(z).

The first inequality, being strict, implies that u /∈ TKψ(z). However,

(u,v)L2(Ω)l ≤ 0 ∀v ∈ N0(z) ⇔
∫
A(z)

2λz · udx ≤ 0 ∀λ ∈ U.

But then z · u ≤ 0 a.e. A(z), a contradiction. Therefore, NKψ(z) \N0(z) = ∅, as was
to be shown.

Using the surjectivity of ∇ : H1
0 (Ω) → G(Ω), we immediately obtain our next

result.
Proposition 6.6 (the tangent and normal cones to M). Let y ∈ M , where M

is defined as in (14). Then

TM (y) =
{
d ∈ H1

0 (Ω)
∣∣∇y · ∇d ∈ TKψ(∇y)

}
and

NM (y)

=
{−2div (λ∇y) ∈ H−1(Ω)

∣∣λ ∈ L2(Ω) : λ ≥ 0 a.e.A(∇y), λ = 0 a.e. I(∇y)} .
In addition, the critical cone to M at y for any normal v ∈ NM (y) becomes

K(y, v) = TM (y) ∩ {v}⊥
=

{
d ∈ H1

0 (Ω)
∣∣∇y · ∇d ≤ 0 a.e.A0(∇y),∇y · ∇d = 0 a.e.A+(∇y)} ,

where

A0(∇y) := {x ∈ A(∇y) |λ(x) = 0} , A+(∇y) := {x ∈ A(∇y) |λ(x) > 0} ,
i.e., the weakly (biactive) and the strongly active sets, respectively.

Proof. The same argument as used in the proof of Proposition 5.4 applies to the
derivation of the normal and tangent cones. For the critical cone, let d ∈ TM (y)∩{v}⊥.
Then

∇y · ∇d ≤ 0 a.e.A(∇y) ∧ 〈v, d〉H−1,H1
0
= 0.

Using the characterization of the normals v, it holds for all d in the critical cone that

〈v, d〉H−1,H1
0
= 〈−2divλ∇y, d〉H−1,H1

0
= (2λ∇y,∇d)L2(Ω)l

= 2

∫
A(∇y)

λ∇y · ∇ddx = 2

∫
A+(∇y)

λ∇y · ∇ddx = 0.
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1582 M. HINTERMÜLLER AND T. SUROWIEC

Hence, the inclusion “⊆” holds, whereas the reverse direction is trivial and follows
via a direct verification. Note that y ∈M implies that ∇y ∈ L∞(Ω)l (cf. the proof of
Proposition 6.5). Therefore, the function λ∇y · ∇d is integrable.

Given Proposition 6.6, we see that any normal v ∈ NM (y) has the structure
−2div (λ∇y), where λ is a type of Lagrange multiplier. We are now ready for our
main result.

Theorem 6.7 (the second-order Mosco epiderivative of IM). Let y ∈ M , where
M is defined as above. For v ∈ ∂IM (y) = NM (y), if there exists λ ∈ L∞(Ω) with
λ ≥ 0 a.e. on A(y) and λ = 0 a.e. on I(y) such that v = −2div (λ∇y) ∈ H−1(Ω),
then the indicator function IM : Y → R̄ is twice Mosco epidifferentiable at y relative
to v and the second-order Mosco epiderivative is characterized as follows:

(18) (I
′′
M )y,v(d) =

{
Q(d;λ), d ∈ TM (y) ∩ {v}⊥ ,

∞ otherwise.

Here, Q(·;λ) : H1
0 (Ω) → R is the convex continuous functional defined by

Q(d;λ) = 2

∫
A(y)

λ|∇d|22dx = 2〈−div (λ∇d), d〉.

In other words,

(I
′′
M )y,v(d) = Q(d;λ) + IK(y,v)(d),

where

K(y, v) := TM (y) ∩ {v}⊥ .
Proof. The fact that v has such a form follows directly from Proposition 6.6.

Moreover, it is easy to see that the indicator function of a nonempty closed convex
set is proper, convex, and lower-semicontinuous, and for any y ∈ M , IM (y) = 0, i.e.,
IM is finite.

Begin by letting tn → 0+ be an arbitrary sequence of scalars converging to zero
from above and let dn ⇀Y d for an arbitrary d ∈ Y . By the definition of the indicator
function, the lower limit

(19) lim inf
n

IM (y + tndn)− IM (y)− tn〈v, dn〉
t2n/2

will be equal to infinity unless there exists a subsequence of dn or some large N0 ∈ N

such that y + tndn ∈ M for all n ≥ N0. Therefore, suppose such a sequence exists.
Given any v′ ∈ NM (y), the closure and convexity of M imply that 〈v′, y′ − y〉 ≤ 0
for all y′ ∈ M , in which case it follows from the assumption that 〈v′, dn〉 ≤ 0. Since
dn ⇀Y d, we observe that 〈v′, d〉 ≤ 0 for all v′ ∈ NM (y). Then from the convexity of
M , we deduce that d ∈ TM (y). In addition, we see that the second-order difference
quotients are all nonnegative and in fact reduce to

−2〈v, dn〉
tn

≥ 0.

Hence, if 〈v, dn〉 does not converge to zero, tn → 0+ implies that the lower limit tends
to infinity, which leads to the following inequality:

(20) lim inf
n

IM (y + tndn)− IM (y)− tn〈v, dn〉
t2n/2

≥
{

0, d ∈ TM (y) ∩ {v}⊥ ,
∞ otherwise.
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Since tn was arbitrarily chosen, (20) holds for all sequences tn → 0+ and dn ⇀ d.
Though the right-hand side of (20) may seem like a good candidate for the second-
order Mosco epiderivative, we can use our knowledge of v along with the given struc-
ture to obtain a better lower estimate. In what follows we continue with the assump-
tion that tn → 0+ and dn ⇀Y d with y + tndn ∈M and d ∈ K(ȳ, v̄).

By letting v = −2div (λ∇y) as in Proposition 6.6, the second-order difference
quotients can be equivalently written as follows:

IM (y + tndn)− IM (y)− tn〈−2div (λ∇y), dn〉
1
2 t

2
n

,

which under the assumptions of the theorem reduces to the right-hand side of the
following relation:

IM (y + tndn)− IM (y)− tn〈−2div (λ∇y), dn〉
1
2 t

2
n

=
−2〈−2div (λ∇y), dn〉

tn
(21)

=
−2(2λ∇y,∇dn)L2

tn
.

For g := | · |22, we let

Δtng(y)(dn) =
g(y + tndn)− g(y)

tn
,

denote the first-order difference quotient of g. Then by adding “zero” to the reduced
quotient in (21), we further transform the second difference quotients to

−2(λ,Δtng(y)(dn))L2

tn
+

(λ,Δtng(y)(dn))L2 − (2λ∇y,∇dn)L2

1
2 tn

.

Consider now that the second summand can be written

2

tn

∫
A(y)

λ(Δtng(y)(dn)− 2∇y · ∇dn)dx

=
2

tn

∫
A(y)

λ

( |∇y|22 + 2tn∇y · ∇dn + t2n|∇dn|22 − |∇y|22
tn

− 2∇y · ∇dn
)
dx

= 2

∫
A(y)

λ|∇dn|22dx = Q(dn;λ).

SinceQ(·;λ) is convex and continuous from Y to R, it is also weakly lower-semicontinuous.
Therefore, for any dn ⇀Y d, lim infnQ(dn;λ) ≥ Q(d;λ). Conversely, we have from
the assumed feasibility that |∇y + tn∇dn|22 ≤ ψ2 a.e. on Ω. Thus,

g(y + tndn)− g(y) = 2tn∇y · ∇dn + t2n|∇dn|22 ≤ 0

a.e. on the active set A(y). It follows then that

−2〈λ,Δtng(y)(dn)〉
tn

=
−2

tn

∫
A(y)

λΔtng(y)(dn)dx ≥ 0.
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1584 M. HINTERMÜLLER AND T. SUROWIEC

Using these new observations we have (starting from (19)) that

lim inf
n

IM (y + tndn)− IM (y)− tn〈v, dn〉
t2n/2

(22)

≥ lim inf
n

Q(dn;λ) + lim inf
n

−2〈λ,Δtng(y)(dn)〉
tn

≥
{
Q(d;λ), d ∈ K(ȳ, v̄),
+∞ otherwise.

Recalling Definition 6.2, we see that in order to complete the proof, we need to
show for all tn → 0+ that there exists a strongly converging sequence dn →Y d such
that

lim sup
n

IM (y + tndn)− IM (y)− tn〈v, dn〉
t2n/2

≤
{
Q(d;λ), d ∈ K(ȳ, v̄),
+∞ otherwise.

In what follows, let tn → 0+ be arbitrary. Clearly, if d /∈ TM (y) ∩ {v}⊥, then
the inequality will always hold. Therefore, we need only construct sequences for
d ∈ TM (y) ∩ {v}⊥.

Since both TM (y) and {v}⊥ are strongly closed in Y , their intersection is as well.

Therefore, for all d ∈ TM (y)∩{v}⊥ there exists a strongly convergent sequence δn → d
with δn ∈ TM (y)∩{v}⊥ for all n such that 〈v, δn〉 = 0 and, by the definition of TM (y),
sequences τnk → 0+ and δnk → δn such that y + τnk δ

n
k ∈M for all k and each n. From

the convexity of M , we infer that for any t ∈ [0, τnk ] we have

(23) y + tδnk =

(
1− t

τnk

)
y +

t

τnk
(y + τnk δ

n
k ) ∈M ∀k, ∀n.

Moreover, we deduce that 〈v, δnk 〉 → 0 as k → ∞ and similar to before, we see that
〈v, δnk 〉 ≤ 0. Hence, for some ε > 0, there exists Kn ∈ N for each n such that

1. |2〈v, δnk 〉| ≤ t1+εnmin for all k ≥ Kn, where nmin := argminn {t1, . . . , tn}.
2. ||δn − δnk || ≤ tn for all k ≥ Kn.
3. τnk ≤ fn for all k ≥ Kn, with fn arbitrary such that fn → 0+ monotonely.

We now build our strongly converging sequence dn. Begin by fixingm1 ∈ N and define

εm1 := min
1≤i≤m1

τ iKi .

Given tn → 0+, there exists an N(εm1) ∈ N such that for all n ≥ N(εm1)

tn ≤ εm1 .

By the definition of εm1 , it also holds that

tn ≤ τm1

Km1
.

For all n < N(εm1), set dn := δ1K1
. Now define j1 to be the smallest index such that

tN(εm1 )
> τm1+j1

Km1+j1
,

and define l1 ≥ 1 to be the first index such that

tN(εm1 )+l1
≤ τm1+j1

Km1+j1
.
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By the third assumption on Kn, j1 exists since τnKn → 0+, with n, and l1 ex-
ists since tn → 0+. Then using these indices, we set dn = δm1

Km1
for all n =

N(εm1), . . . , N(εm1) + l1 − 1.
Given for all n = N(εm1)+ i with i = 0, . . . , l1− 1, tn ∈ [0, τm1

Km1
] and dn = δm1

Km1
,

it holds that y + tndn ∈M (cf. (23)). Thus, IM (y + tndn) = 0.
At this point we definem2 := m1+j1 and repeat the process described above with

m2 in place of m1. Clearly, εm2 ≤ εm1 and N(εm2) ≥ N(εm1). If N(εm1) + l1 − 1 <
N(εm2), then set dn = δm1

Km1
for all n such that N(εm1) + l1 − 1 ≤ n < N(εm2). As

l1 ≥ 1, tn ≤ εm1 so that t ∈ [0, τm1

Km1
] and y + tndn ∈ M still holds. Also note that

the case “N(εm2) < N(εm1) + l1 − 1” cannot happen. Indeed, this would require,
for all n = N(εm2), . . . , N(εm1) + l1 − 1, that τm2

Km2
< tn ≤ εm2 , but εm2 ≤ τm2

Km2
by

definition, a contradiction. The rest continues as before.
To see that the process continues indefinitely, let p ≥ 1 and consider that the

convergence of τnKn → 0+ ensures the existence of a jp ∈ N such that tN(εmp )
>

τ
mp+jp
Kmp+jp

. With jp fixed, we now look to increase the number n larger than N(εmp).

We do this by checking if tN(εmp )+i
> τ

mp+jp
Kmp+jp

for i = 1, 2, . . . . As jp is fixed, so

is τ
mp+jp
Kmp+jp

. Therefore, the convergence of tn → 0+ implies the existence of some lp

such that tN(εmp )+lp
≤ τ

mp+jp
Kmp+jp

, by definition, we define mp+1 and continue as before.

This ensures that the process is perpetual.
Summarizing, we describe the construction via the following diagram:

dn = δ1K1
, . . . , δ1K1︸ ︷︷ ︸

1≤n<N(εm1 )

| δm1

Km1
, . . . , δm1

Km1︸ ︷︷ ︸
N(εm1 )≤n<N(εm2)

| δm2

Km2
, . . . , δm2

Km2︸ ︷︷ ︸
N(εm2 )≤n<N(εm3)

| . . . ,

that is, dn is a subsequence of δnKn . Furthermore, we have for all μ > 0 and large n
that

||d− δnKn || ≤ ||d− δn||+ ||δn − δnKn || ≤ μ+ tn ≤ 2μ,

so that δnKn → d as n→ ∞, and thus dn as well.
Due to the fact that y+tndn ∈M , recall that the second-order difference quotients

can be transformed into the sum

Q(dn;λ) +
−2〈λ,Δtng(y)(dn)〉

tn
.

Clearly, |∇y + tn∇dn|22 ≥ |∇y|22 + 2tn∇y · ∇dn a.e. on Ω. Therefore,

−2〈λ,Δtng(y)(dn)〉
tn

=
−2

tn

∫
A(y)

λ

( |∇y + tn∇dn|22 − |∇y|22
tn

)
dx

≤ −2

tn

∫
A(y)

2λ∇y · ∇dndx =
−2〈v, dn〉

tn
≤ tεn.

It follows that

lim sup
n→∞

[−2〈v, dn〉
tn

+Q(dn;λ)

]

≤ lim sup
n→∞

−2〈v, dn〉
tn

+ lim sup
n→∞

Q(dn;λ) = lim sup
n→∞

Q(dn;λ) = Q(d;λ).
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Here, the last equality follows from the continuity of Q(·, λ), which is demonstrated
via the following implication:

dn → d in H1
0 (Ω) ⇒ |∇dn|22 → |∇d|22 in L1(Ω).

Lastly, since 0 ∈ TM (y) ∩ {v}⊥ the function

ϕ(d) :=

{
Q(d;λ), d ∈ TM (y) ∩ {v}⊥ ,
+∞ otherwise,

equals zero at zero. Hence, ϕ is the Mosco epilimit of the second-order difference
quotients and therefore amounts to the second-order Mosco epiderivative of IM , as
was to be shown.

Remark 6.8. The reader should note the reliance of the proof on the fact that
λ ∈ L∞(Ω). This is a crucial point which allows Q(d;λ) to be well defined and
provides the validity of the convergence arguments for the associated integrals. This
represents a substantial difference from arguments carried out in finite dimensions,
where no such consideration on λ is necessary. We refer the reader to the end of this
paper for an example in which λ ∈ L∞(Ω).

We immediately obtain the following corollary.
Corollary 6.9 (the proto-derivative of NM). Let y ∈ M , where M is defined

as above and v ∈ NM (y). If there exists λ ∈ L∞(Ω) with λ ≥ 0 a.e.A(y) and
λ = 0 a.e. I(y) such that v = −2div (λ∇y), then the normal cone operator is proto-
differentiable and the following are equivalent:

1. w ∈ PNM [(y, v)](d).
2. w ∈ −2div (λ∇d) +NK(y,v)(d).

3. (w + 2div (λ∇d), d) ∈ K(y, v)× [K(y, v)]
−
: 〈w + 2div (λ∇d), d〉 = 0.

Here, K(y, v) := TM (y) ∩ {v}⊥, i.e., the critical cone.
Proof. The result follows from (17) via the formula (18) in Theorem 6.7. Indeed,

due to the differentiability of the quadratic form as a function of d and the convexity
of the critical cone, ∂(Q(d;λ) + IK(y,v)(d)) = ∇Q(d;λ) + NK(y,v)(d). Furthermore,
since K(y, v) is a cone, we have from Lemma 4.2.5 in [5] that

u ∈ NK(y,v)(d) ⇐⇒ (d, u) ∈ K(y, v)× [K(y, v)]
−
: 〈u, d〉 = 0.

The assertion then follows.
The next result follows similarly to the polyhedric case.
Corollary 6.10 (the proto-derivative of S). Let (u, y) ∈ gphS, where u =

Ay + v with v ∈ NM (y). If there exists λ ∈ L∞(Ω) with λ ≥ 0 a.e.A(y) and λ =
0 a.e. I(y) such that v = −2div (λ∇y), then S is proto-differentiable and the following
are equivalent:

1. d ∈ PS[(u, y)](w).
2. w ∈ Ad− 2div (λ∇d) +NK(y,v)(d).

3. w−Ad+2div (λ∇d) ∈ [K(y, v)]
−
, d ∈ K(y, v), 〈w−Ad+2div (λ∇d), d〉 = 0,

or equivalently,

TgphS(u, y) =
{
(w, d) ∈ Y ∗ × Y

∣∣∣
w −Ad+ 2div (λ∇d) ∈ [K(y, v)

]−
, d ∈ K(y, v), 〈w −Ad+ 2div (λ∇d), d〉 = 0

}
.

Here, v := u−Ay.
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Proof. The proof is analogous to that of Theorem 4.6. The rest follows from
Corollary 6.9.

It remains to argue that Ad− 2div (λ∇d) is a coercive bounded linear operator in
order to demonstrate that we have characterized not only the proto-derivative of S,
but also the Hadamard directional derivative. Indeed, by letting Ã· := A·−2div (λ∇·),
the proto-derivative of S in direction w ∈ H−1(Ω) is characterized as the solution(s)
to the following variational inequality:

Find d ∈ H1
0 (Ω) : 〈Ãd− w, d′ − d〉H−1,H1

0
≥ 0 ∀d′ ∈ K(ȳ, v̄).

As argued in Remark 4.4, if Ã is coercive, bounded, and linear, then classical ar-
guments can be applied to demonstrate that for any w ∈ H−1(Ω), d is the unique
solution of the variational inequality and d(·) is Lipschitz continuous on all ofH−1(Ω).
Consequently, PS[(ū, ȳ)] would be single-valued and Lipschitz and therefore, coincide
with the Hadamard directional derivative of S (cf. section 2).

Proposition 6.11 (Hadamard directional differentiability of S). Let (u, y) ∈
gphS, where u = Ay + v with v ∈ NM (y). If there exists λ ∈ L∞(Ω) with λ ≥
0 a.e.A(y) and λ = 0 a.e. I(y) such that v = −2div (λ∇y), then S is Hadamard
directionally differentiable.

Proof. As argued above, it suffices to demonstrate that A·−2div (λ∇·) is bounded,
linear, and coercive from H1

0 (Ω) into H
−1(Ω).

Since linearity is obvious, we focus on proving the boundedness and coercivity of
this operator. Let d ∈ H1

0 (Ω) be arbitrary and consider the following argument:

||Ad− 2div (λ∇d)||H−1

≤ ||A||L||d||H1
0
+ 2 sup

ϕ∈H1
0 (Ω)

||ϕ||
H1

0
=1

∣∣∣∣∣
∫
A(y)

λ∇d · ∇ϕdx
∣∣∣∣∣ ≤ ||A||L||d||H1

0
+ 2||λ||L∞ ||d||2H1

0
,

whence we obtain the boundedness. To see that coercivity holds, let d ∈ H1
0 (Ω) be

arbitrarily fixed and consider

〈Ad− 2div (λ∇d), d〉H−1 ,H1
0
≥ ξ||d||2H1

0
+ 2

∫
Ω

λ|∇d|2dx ≥ ξ||d||2H1
0
.

It follows that A·−2div (λ∇·) is linear, bounded, and coercive, as was to be shown.
Corollary 6.10 once again demonstrates the power of the variational analytic

method, as we now have a formula characterizing the Hadamard directional derivative
of the solution mapping S of an important class of linear elliptic variational inequal-
ities in function space in which nonpolyhedric constraints on the state are involved.
As mentioned in Remark 4.4, we have now extended Mignot’s classical result beyond
the realm of polyhedricity.

As in the polyhedric case, we will also require the following cone in order to derive
explicit stationarity conditions.

Proposition 6.12 (the polar cone [K(y, v)]
−
). Let y ∈ M , where M is defined

as in (14). Then

[K(y, v)]−

=
{−2div (μ∇y) ∈ H−1(Ω)

∣∣μ ∈ L2(Ω) : μ ≥ 0 a.e.A0(∇y), μ = 0 a.e. I(∇y)} .
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Proof. We begin by demonstrating the inclusion “⊇” for the assertion and denote
the right-hand side of the equation by K0. Let w ∈ K0 and consider an arbitrary
d ∈ K(y, v). Then

〈w, d〉H−1 ,H1
0
= 〈−2div (μ∇y), d〉H−1,H1

0
= (2μ∇y,∇d)L2(Ω)l

=

∫
A0(∇y)

2μ∇y · ∇ddx +

∫
A+(∇y)

2μ∇y · ∇ddx.

Continuing, we recall the characterization of d provided in Proposition 6.6, which
provides us with∫

A0(∇y)
2μ∇y · ∇ddx +

∫
A+(∇y)

2μ∇y · ∇ddx =

∫
A0(∇y)

2μ∇y · ∇ddx ≤ 0.

Hence, the inclusion holds.
We now use an analogous argument as in the proof of Proposition 6.5 to demon-

strate equality. We first need to argue that K0 is closed and convex. Since the
argument for convexity is identical to the one in Proposition 6.5 we need only demon-
strate closedness of K0. First note that K0 is the image of the set

L0 :=
{
2μ∇y ∈ G(Ω)

∣∣μ ∈ L2(Ω) : μ ≥ 0 a.e.A0(∇y) μ = 0 a.e. I(∇y)}
under the negative divergence operator. The image set −div (L0) is clearly convex;
we refer the reader to Lemma 6.14 to see that −div (L0) is closed provided L0 is
closed. Let wn ∈ L0 such that wn → w in L2(Ω)l. Then by the closedness of G(Ω),
w ∈ G(Ω). By definition, wn ∈ L0 implies that there exist μn ∈ L2(Ω) such that
wn = μn∇y. The rest follows analogously to the closure argument for N0(z) found in
the proof of Proposition 6.5. Hence, L0 and, as argued above, K0 are closed in their
respective spaces.

Assume now there exists w∗ ∈ [K(y, v)]
−
such that w∗ /∈ K0. Then there exists a

δ ∈ H1
0 (Ω) strongly separately the two sets, i.e.,

〈w∗, δ〉H−1,H1
0
> 0, 〈w, δ〉H−1,H1

0
≤ 0 ∀w ∈ K0.

Therefore, δ /∈ K(y, v). Conversely, using the definition ofK0 and the characterization
of K(y, v) provided by Proposition 6.6, we obtain δ ∈ K(y, v), a contradiction. Hence,
the equality holds.

We can now derive the optimality conditions for the associated MPEC.
Proposition 6.13 (explicit strong stationarity conditions). Under the given data

assumptions, let (ū, ȳ) be a (locally) optimal solution to the corresponding MPEC. If
there exist λ ∈ L∞(Ω) such that ū = Aȳ − div (λ∇ȳ), then there exist multipliers
p ∈ H1

0 (Ω) and μ ∈ L2(Ω) such that

0 = ∇uJ(ū, ȳ) + p,(24)

0 = ∇yJ(ū, ȳ)−A∗p+ 2div (λ∇p) − 2div (μ∇ȳ),(25)

0 = Aȳ − ū− 2div λ∇ȳ,(26)

where{ ∇ȳ · ∇p ≤ 0 a.e.A0(∇ȳ)
∇ȳ · ∇p = 0 a.e.A+(∇ȳ)

∣∣∣∣ μ ≥ 0 a.e.A0(∇ȳ)
μ = 0 a.e. I(∇ȳ)

∣∣∣∣ λ ≥ 0 a.e.A(∇ȳ)
λ = 0 a.e. I(∇ȳ)

}
.
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Proof. The proof follows analogously to that which was used for Theorem 4.6.
We therefore need to characterize [TgphS(ū, ȳ)]

−
.

By definition

[TgphS(u, y)]
−

=
{
(p∗, q∗) ∈ H1

0 (Ω)×H−1(Ω) |〈p∗, w〉+ 〈q∗, d〉 ≤ 0 ∀(w, d) ∈ TgphS(u, y)
}
.

Then by using the characterization from Corollary 6.10, we have the equivalent rela-
tion

[TgphS(u, y)]
−
=

{
(p∗, q∗) ∈ H1

0 (Ω)×H−1(Ω) |
〈p∗, Ad− 2div (λ∇d) + r〉+ 〈q∗, d〉 ≤ 0 ∀(d, r) ∈ gphNK(y,v)

}
.

Rearranging terms, it follows that

[TgphS(u, y)]
−
=

{
(p∗, q∗) ∈ H1

0 (Ω)×H−1(Ω) |
〈A∗p∗ − 2div (λ∇p) + q∗, d〉+ 〈p∗, r〉Y ∗,Y ≤ 0 ∀(d, r) ∈ gphNK(y,v)

}
.

This is equivalent to

(A∗p∗ − 2div (λ∇p) + q∗, p∗) ∈ [
gphNK(y,v)

]−
= [K(y, v)]− ×K(y, v).

The assertion then follows from Propositions 6.6 and 6.12.
Note that λ ∈ L2(Ω) always exists for a solution (ū, ȳ) such that ū = Aȳ −

div (λ∇ȳ). Moreover, as λ is in essence the multiplier associated with the inequality
used in the description of Kψ, which is incidentally to be understood in the range
space L1(Ω), it does not seem unreasonable to expect λ ∈ L∞(Ω). In the final part of
this section, we provide a typical example of an MPEC with gradient constraints for
which we demonstrate that λ ∈ L∞(Ω) at a solution. Using M as defined throughout
this section, consider the following MPEC:

min 1
2 ||y − yd||2L2(Ω) +

α
2 ||u− c||2L2(Ω)

s.t. u ∈ L2(Ω), y ∈ H1
0 (Ω),

u ∈ −Δy +NM (y).

Here, Δ is the Laplacian, ψ ≡ 1, Ω = BR(0) ⊂ R
l is the open ball of radius R. (R

sufficiently large), c is a positive constant, and yd is a radially symmetric function (in
H1

0 (Ω)) defined by

yd(x1, x2) =

{
R − c

4 |x|22 − 1
c , 0 ≤ |x|2 < 2

c ,
R − |x|2, 2

c ≤ |x|2 ≤ R.

Clearly, (c, yd) is a global minimizer of the objective functional. Moreover, we have

|∇yd(x)|22 =

{
c2

4 |x|22, 0 ≤ |x|2 < 2
c ,

1, 2
c ≤ |x|2 ≤ R.

It follows that yd ∈M with

I(yd) =
{
0 ≤ |x|2 < 2

c

}
and A(yd) =

{
2

c
≤ |x|2 ≤ R

}
.
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For any v ∈ NM (yd), we know by Proposition 6.6 that there exists λ ∈ L2(Ω) such
that v = −2div (λ∇y). Thus, given the feasibility of yd, it remains to show that
λ ∈ L∞(Ω) such that the complementarity conditions hold and that yd is a solution
to the following partial differential equation:

(27) (c, φ)L2 = (∇y,∇φ)L2 + 2(λ∇y,∇φ)L2 ∀φ ∈ H1
0 (Ω).

We begin with the ansatz for the multiplier

λ = 0 a.e. I(yd) and λ =
1

2

( c
2
|x|2 − 1

)
a.e.A(yd).

It is easy to check that λ and |∇yd|22 − 1 are complementary, and, given that the
free boundary is defined by all (x1, x2) such that |x|2 = 2/c, we see that λ is in fact
continuous. Consider then that for a fixed arbitrary φ ∈ H1

0 (Ω),

(∇yd,∇φ)L2 + 2(λ∇y,∇φ)L2

=

∫
A(y)

−x
|x|2 · ∇φdx− c

2

∫
I(y)

x · ∇φdx − 2

∫
A(y)

λ
x

|x|2 · ∇φdx

= −
∫
A(y)

(1 + 2λ)
x

|x|2 · ∇φdx − c

2

∫
I(y)

x · ∇φdx

=

∫
A(y)

∇ ·
(
(1 + 2λ)

x

|x|2

)
φdx +

∫
∂I(y)

φds− c

2

∫
I(y)

x · ∇φdx

=

∫
A(y)

∇ ·
(
(1 + 2λ)

x

|x|2

)
φdx +

∫
∂I(y)

φds+ c

∫
I(y)

φdx−
∫
∂I(y)

φds.

By substituting the value of λ on the active set, the previous equation yields the
desired result. Hence,

(∇yd,∇φ) + 2(λ∇yd,∇φ) = (c, φ).

It follows that (c, yd) is a feasible point for the MPEC and therefore, as argued above,
the global minimizer.

We note that it is certainly possible to create further examples, and we conjecture
that a multiplier λ ∈ L∞(Ω) will exist in the presence of a smooth enough boundary
and control.

Appendix. Proof of Theorem 3.1.
Proof. We first derive that S is a Lipschitz continuous function with respect to

u ∈ Y ∗. By Theorem 3.3.4 in [4], there exists a unique y solving the variational
inequality for each u ∈ Y ∗. Let (u1, y1) and (u2, y2) be two arbitrary control-state
pairs (S(ui) = yi). Then by the convexity of M , the generalized equation used to
describe S can be formulated in variational form for each pair as follows:

〈Ay1 − u1, y
′ − y1〉Y ∗,Y ≥ 0 ∀y′ ∈M,(28)

〈Ay2 − u2, y
′′ − y2〉Y ∗,Y ≥ 0 ∀y′′ ∈M.(29)
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Substituting y′ = y2 and y′′ = y1 into (28) and (29), respectively, and recognizing
that

〈Ay2 − u2, y
′′ − y2〉 = 〈u2 −Ay2, y2 − y′′〉Y ∗.Y ,

we add the two inequalities together and obtain

〈Ay1 − u1 + u2 −Ay2, y2 − y1〉Y ∗.Y ≥ 0.

By the coercivity of A, there exists a ξ ∈ R+ \ {0} such that

ξ||y2 − y1||2Y
≤ 〈A(y2 − y1), y2 − y1〉Y ∗.Y ≤ 〈u2 − u1, y2 − y1〉Y ∗,Y ≤ ||u2 − u1||Y ∗ ||y2 − y1||Y .

It follows that there exists L = 1/ξ such that

(30) ||S(u2)− S(u1)||Y ≤ L||u2 − u1||Y ∗ ∀u1, u2 ∈ Y ∗.

Therefore, we can rewrite (2) as follows:

min
{
J̃(u) |u ∈ U

}
,

where J̃(u) := J(u, S(u)). Due to the continuity of S, J̃ remains coercive and bounded
from below by some K. Therefore, the level sets of J̃ , i.e., the sets defined by

levγ J̃ :=
{
u ∈ U

∣∣∣J̃(u) ≤ γ
}
, γ ∈ R,

are bounded in U for all γ ∈ R (cf. Proposition 3.2.8 of [4]). Now let uk be an
infimizing sequence of J̃ , that is,

lim
k
J̃(uk) = inf

u∈U
J̃(u).

Clearly, there exists some γ0 ∈ R+\{0} such that uk ∈ levγ0 J̃ for all k large. Since U is
a Hilbert space and therefore reflexive, we can select a weakly converging subsequence
of {uk}, denoted by {ukl}, such that ukl ⇀ ū. Moreover, the compactness of the
embedding of U into Y ∗, which itself is a Banach space, implies that there exists a
further subsequence ukln →Y ∗ ū. Therefore, ykln = S(ukln ) → S(ū) = ȳ, via (30), so
that the assumptions on J imply

−∞ < K ≤ inf
u∈U

J̃(u) ≤ J̃(ū) ≤ lim inf
n

J̃(ukln ) = lim
k
J̃(uk) = inf

u∈U
J̃(u) ≤ γ0,

as was to be shown.
The following technical lemma guarantees the closure of the image of certain

G(Ω)-sets under the −div operator.
Lemma 6.14. If C ⊂ G(Ω) is a nonempty, closed, convex cone, then −div (C) is

closed in the strong topology on H−1(Ω).
Proof. Let z∗ ∈ cl {−div (C)}. Then there exists a sequence {xn} ⊂ C such

that −div (xn) → z∗ in H−1(Ω). To see that {xn} is bounded in G(Ω), we note the
existence of a positive constant κ > 0 independent of n such that ||−div (xn)||H−1 ≤ κ
and, for each n, a function ϕn ∈ H1

0 (Ω) such that xn = ∇ϕn. Without loss of
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1592 M. HINTERMÜLLER AND T. SUROWIEC

generality, we assume that xn �= 0 for all n; otherwise, we could take a subsequence.
It follows that

κ ≥ || − div (xn)||H−1 = sup
ϕ∈H1

0(Ω)
ϕ �=0

|〈−div (xn), ϕ〉H−1,H1
0
|

||ϕ||H1
0

≥ |(xn,∇ϕn)L2 |
||∇ϕn||L2

= ||xn||L2 ,

from which we deduce the boundedness of {xn} in G(Ω).

Since G(Ω) is a reflexive Banach space, there exists a subsequence {nl} ⊂ {n}
and a function x∗ ∈ G(Ω) such that xnl ⇀ x∗ in G(Ω). Since xnl ∈ C and C is closed
and convex, and therefore, weakly closed, x∗ ∈ C. Moreover, −div (xnl)⇀ −div (x∗)
in H−1(Ω). But then for any z∗ ∈ cl {−div (C)}, there exists some x∗ ∈ C such that
z∗ = −div (x∗), from which the assertion follows.
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