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Abstract. We investigate the role of migratory birds in the spread of H5N1 avian influenza,
focusing on the interaction of a migratory bird species with nonmigratory poultry. The model is of
patch type and is derived with the aid of reaction-advection equations for the migratory birds in the
air along the flyways. Poultry may reside at some or all of the four patches of the model, which
consist of the breeding patch for the migratory birds, their winter feeding patch, and two stopover
patches where birds rest and refuel on their migration. Outward and return migratory routes can
be different. The equations for the migratory birds contain time delays which represent the flight
times for migratory birds along particular sectors. Delays also appear in the model coefficients
via quantities which represent flight survival probabilities for the various sectors. We establish
results on positivity, boundedness, global asymptotic stability of the disease-free equilibrium, and
the persistence of infection. We also discuss extensions of the model to include the seasonality of the
migration phenomenon. Numerical simulations support the analytical findings; here we used data
on H5N1 infected ducks in the Poyang Lake region of China.
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1. Introduction. Of the various H5N1 introductions into different regions of the
world, at least some were most likely due to migratory birds (Kilpatrick et al. [21]).
Apart from migratory birds, other main causes of H5N1 introduction include the
trade in poultry and poultry products and the trade in wild birds. In previous works
(Gourley, Liu, and Wu [14], Bourouiba et al. [6]), we developed mathematical models
of the bird migration phenomenon with the ultimate aim of understanding the role of
migratory birds in spreading the highly pathogenic avian influenza (H5N1), leading to
a massive outbreak in wild birds at Lake Qinghai in central China (2005). Bourouiba
et al. [6] particularly focused on bar-headed (Anser indicus) geese migration in the
Central Asian Flyway from Mongolia to India. Migratory birds encounter a variety
of climatic and other conditions at their breeding and wintering locations and along
their flyways and resting places (stopover sites), which led us initially to consider
the possibility of a partial differential equation model. It also became apparent to
us in the early stages of our work that even in the absence of disease dynamics a
realistic model of bird migration would necessarily be a complicated one. Eventually,
we settled on models of patch type, where the patches are the breeding and wintering
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locations and the various stopover sites along the migration flyway where birds stop
to rest and eat (refuel). In between patches the migration flyway is a one-dimensional
continuum along which bird density is modelled using reaction-advection equations. In
our previous works we have allowed for the fact that migration is essentially a periodic
phenomenon. In the model derivation in [14] and [6] the reaction-advection equations
are eliminated and the system reduced to a system of delay differential equations
for the numbers of birds on the patches, where the delays represent the flight times
between patches. One of the patches is the breeding patch, and in our models births
are assumed to occur only on this patch. Another specific patch is considered to be
the winter feeding patch, which is at the other end of the migration flyway. In [14] the
spring and fall migration routes linking the breeding and wintering feeding grounds
share their stopovers, while they are essentially distinct in [6]. A significant advantage
of our approaches to modelling the migration phenomenon is that it recognizes that
birds will encounter very different conditions at different stages of their migration.
For example, our models easily allow mean flight velocities and in-flight mortalities
to vary from sector to sector, and conditions in each patch (such as vulnerability to
predation during a stopover) can be different. The aim of the present paper is to
develop our previous ideas to understand the role of the interplay between migratory
birds and nonmigratory birds, particularly poultry, in the persistence and recurrence
of H5N1 in endemic regions.

In this paper we focus on the role of migratory birds in H5N1 spread, and we
concentrate on the interaction of one migratory species with poultry. The poultry do
not move, and no explicit consideration is given here to the trade in poultry and its
vaccination. Unlike our previous works, in which we allowed any number of stopover
patches, here we consider four patches which are the breeding and wintering patches
together with two other patches which are stopover patches, one for the outward and
one for the return migration. Migratory birds in the air are accounted for indirectly.
We allow for the possible presence of poultry at all four patches, although in reality
there may be none at one or more of them.

In section 2, we present a careful model derivation along with some baseline
assumptions about the initial conditions and birth rate function at the breeding patch.
We then discuss the boundedness and positiveness of solutions and the dissipativeness
of the model system (section 3); the global threshold dynamics: global asymptotical
stability of the disease-free nontrivial equilibrium (section 4); and the persistence of
infection (section 5). In section 6, we discuss how our results and model can be
extended to more biologically realistic situations involving periodic coefficients, and
we present numerical simulations using available literature data on the poultry around
the region of Poyang Lake in China, where live H5N1 infected ducks were found and
H5N1 is thought to be endemic [10]. In this region, poultry farming includes backyard
chickens and domestic ducks and geese [10, 33].

2. Model derivation. Our model is basically of patch type but is derived with
the aid of reaction-advection equations which describe the migration of the birds along
the flyways. There are four patches on which poultry reside and migratory birds pass
through. The four patches are labelled b, o, w, r for the breeding patch, the outgoing
stopover patch, the wintering patch, and the returning stopover patch, respectively.
The breeding patch is that on which migratory birds breed, while the wintering patch
is where they spend the winter season. Patches o and r are stopover patches along
the fall and spring migratory routes, respectively. In reality migratory birds usually
have multiple stopovers on both their fall and spring routes; these have been lumped
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together so that there is just one stopover in each direction.
We let Sb

m and Ibm denote the numbers of susceptible and infected migratory birds
in the breeding patch b; So

m and Iom the numbers in the outgoing stopover patch o;
and so on. Similarly, Ibp, I

o
p , I

w
p , Irp denote the numbers of infected poultry in the four

patches. We shall assume that the total number of poultry (susceptible plus infected)
in a patch is a constant Np with superscript to denote the patch. No such assumption
is made for migratory birds.

For the model derivation, proper account needs to be taken of the birds that are
in flight between two patches on their migratory route. We shall allow mean flight
velocities and in-flight mortalities to depend on susceptible/infected status and on the
sector. Let Sbo

m (t) denote the number of susceptible migratory birds in flight between
patch b and patch o, and let x denote the physical space. The flyway is to be thought
of as a one-dimensional closed curve starting and ending at the location of patch b,
denoted xb. Therefore, x can be formally defined as arc length along the flyway for
a particular sector. We illustrate the model derivation by considering susceptible
migratory birds along one particular sector, and we shall focus on the sector from
the breeding patch b to the outward stopover patch o. The other sectors can be
treated similarly. With x denoting the arc length measured from patch b located
at xb, the quantity of susceptible birds in the air along points of this flyway will be
modelled by a density (with respect to the arc length) sbom(t, x), which satisfies the
linear reaction-advection equation

(2.1)
∂sbom(t, x)

∂t
= −U bo

s

∂sbom(t, x)

∂x
− μbo

mss
bo
m(t, x),

where U bo
s is the mean flight velocity of susceptible migratory birds between patches

b and o, and μbo
ms is the per capita in-flight mortality for these birds as they transit

between those patches. The flux of birds out of patch b is U bo
s sbom(t, xb), and we want

to use (2.1) to calculate the flux into patch o, which is U bo
s sbom(t, xo). Define

fξ(x) = sbom(ξ + x/U bo
s , x).

A calculation using (2.1) shows that

dfξ(x)

dx
= −μbo

ms

U bo
s

fξ(x).

Integrating from xb to xo and then choosing ξ = t− xo/U
bo
s gives

(2.2) sbom(t, xo) = αs
bo s

bo
m(t− τsbo, xb),

where

(2.3) τsbo =
xo − xb

U bo
s

and αs
bo = exp

(
−μbo

ms

U bo
s

(xo − xb)

)
with xo − xb denoting the distance along the flyway from xb to xo. The quantity τsbo
is this distance divided by the mean flight velocity and is therefore the journey time
for susceptible migratory birds along this sector. The quantity αs

bo is the probability
that a susceptible bird will survive the sector of the migration that we are discussing.

Now, if we also write the flux out of the breeding patch at xb as dsboS
b
m(t) (so dsbo

is the per capita departure rate), then the flux into the outward stopover patch at xo
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is calculated as follows:

U bo
s sbom(t, xo) = αs

boU
bo
s sbom(t− τsbo, xb)

= (flux out of patch b at time t− τsbo)α
s
bo

= αs
bod

s
bo S

b
m(t− τsbo).

What we have achieved here is to rigorously derive the first term in the right-hand
side of the third equation of system (2.4) below. All other flux terms into the various
patches involve other time delays τ and journey survival probabilities α with appro-
priate sub- and superscripts, which we trust are self-explanatory. These terms can be
derived similarly. The remaining terms in system (2.4) involve per capita mortalities
within patches (for example, μb

ms for susceptible migratory birds in patch b) and mass
action terms for the rates at which susceptible birds become infected. A susceptible
migratory bird on a patch may catch the virus either from an infected migratory bird,
or from infected poultry on the patch. For patch b the respective contact rates are
denoted βb

m and βb
pm. We assume that no migratory bird can catch the disease while

in flight between patches.
As far as birth of migratory birds is concerned, we assume that this happens only

on the breeding patch b and that only susceptible birds can produce offspring. The
birth rate is therefore taken to be of the form Bm(Sb

m), where the function Bm(·)
satisfies certain assumptions to be stated later. Based on all these assumptions,
we propose the following system of delay differential equations as a model for the
migratory bird dynamics:

Ṡb
m = Bm(Sb

m) + αs
rbd

s
rbS

r
m(t− τsrb)− βb

mSb
mIbm − βb

pmSb
mIbp − dsboS

b
m − μb

msS
b
m,

İbm = αi
rbd

i
rbI

r
m(t− τ irb) + βb

mSb
mIbm + βb

pmSb
mIbp − diboI

b
m − μb

miI
b
m,

Ṡo
m = αs

bod
s
boS

b
m(t− τsbo)− βo

mSo
mIom − βo

pmSo
mIop − dsowS

o
m − μo

msS
o
m,

İom = αi
bod

i
boI

b
m(t− τ ibo) + βo

mSo
mIom + βo

pmSo
mIop − diowI

o
m − μo

miI
o
m,

Ṡw
m = αs

owd
s
owS

o
m(t− τsow)− βw

mSw
mIwm − βw

pmSw
mIwp − dswrS

w
m − μw

msS
w
m,

İwm = αi
owd

i
owI

o
m(t− τ iow) + βw

mSw
mIwm + βw

pmSw
mIwp − diwrI

w
m − μw

miI
w
m,

Ṡr
m = αs

wrd
s
wrS

w
m(t− τswr)− βr

mSr
mIrm − βr

pmSr
mIrp − dsrbS

r
m − μr

msS
r
m,

İrm = αi
wrd

i
wrI

w
m(t− τ iwr) + βr

mSr
mIrm + βr

pmSr
mIrp − dirbI

r
m − μr

miI
r
m.

(2.4)

The mean time spent in a particular patch is relevant to the flowout rate of the bird
species from the patch and can be written, for example, in the case of the outward
stopover patch, as 1/dsow for susceptible birds. We aim to keep all parameters free
where possible, but it would be reasonable to state that the mean time spent in a
particular patch is probably related to other system parameters. For example, in the
case of the outward stopover patch it will very probably be related to the duration of
the flight to that patch, since this will determine how much refueling is needed, and
possibly also to the anticipated fuel requirement for the next segment of the journey
if birds are behaving optimally, since flight costs increase considerably with increasing
body mass. At stopover sites there is also a tradeoff between gaining fuel and avoiding
predation. These considerations are discussed in Weber, Ens, and Houston [34]. Birds
may also spend more time at sites where energy expenditure would be low, and this
in turn depends on the temperature at the site. Bauer et al. [2] cite evidence that a
temperature decline of 10◦C increases energy expenditure by around 40%.
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The equations of system (2.4) are coupled with the following four equations gov-
erning the poultry population dynamics (2.5). The poultry do not migrate, and we
defer the consideration of commercial trading of poultry to a future study. We as-
sume that on each patch the total poultry population is constant, so, for example,
Ibp+Sb

p = N b
p on patch b, where Sb

p is the number of susceptible poultry on that patch.
On a particular patch, poultry can catch the virus either from infected poultry on
that patch or from infected migratory birds that happen to be on that patch. The
respective contact rates are βp and βmp with superscripts to denote the patch. Per
capita mortality for poultry (including the culling of the poultry as a disease control
and prevention measure) is denoted by μp with superscript. These considerations lead
to the equations

İbp = βb
p(N

b
p − Ibp)I

b
p + βb

mp(N
b
p − Ibp)I

b
m − μb

pI
b
p,

İop = βo
p(N

o
p − Iop)I

o
p + βo

mp(N
o
p − Iop )I

o
m − μo

pI
o
p ,

İwp = βw
p (N

w
p − Iwp )Iwp + βw

mp(N
w
p − Iwp )Iwm − μw

p I
w
p ,

İrp = βr
p(N

r
p − Irp )I

r
p + βr

mp(N
r
p − Irp )I

r
m − μr

pI
r
p .

(2.5)

All model parameters are assumed to be positive. The appropriate initial conditions
for system (2.4)–(2.5) are

Sb
m(θ) = Sb

m0(θ) ≥ 0, θ ∈ [−τsbo, 0]; Ibm(θ) = Ibm0(θ) ≥ 0, θ ∈ [−τ ibo, 0],

So
m(θ) = So

m0(θ) ≥ 0, θ ∈ [−τsow, 0]; Iom(θ) = Iom0(θ) ≥ 0, θ ∈ [−τ iow, 0],

Sw
m(θ) = Sw

m0(θ) ≥ 0, θ ∈ [−τswr, 0]; Iwm(θ) = Iwm0(θ) ≥ 0, θ ∈ [−τ iwr, 0],

Sr
m(θ) = Sr

m0(θ) ≥ 0, θ ∈ [−τsrb, 0]; Irm(θ) = Irm0(θ) ≥ 0, θ ∈ [−τ irb, 0],

Ibp(0) = Ibp0 ∈ [0, N b
p ], Iop (0) = Iop0 ∈ [0, No

p ],

Iwp (0) = Iwp0 ∈ [0, Nw
p ], Irp (0) = Irp0 ∈ [0, N r

p ]

(2.6)

for prescribed initial functions Sb
m0 ∈ C([−τsbo, 0];R), Ibm0 ∈ C([−τ ibo, 0];R), . . . , and

prescribed initial values Ibp0, I
o
p0, I

w
p0, I

r
p0.

For the state space X , we choose

(2.7) X =

(
8∏

i=1

C(Ii,R)

)
×R4,

which, as the product of the Banach spaces of continuous functions in certain initial
intervals (for migratory birds) and the Euclidean spaces (for poultry), is a Banach
space. In (2.7) the factor of R4 relates to the variables in the poultry equations (2.5),
which never appear with delays. For i = 1, 2, . . . , 8, the factor C(Ii,R) relates to
the variable in the left-hand side of the ith equation of system (2.4), and so the do-
mains for the functions Sb

m(·), Ibm(·), So
m(·), Iom(·), Sw

m(·), Iwm(·), Sr
m(·), Irm(·) are given,

respectively, by

I1 = [−τsbo, 0], I2 = [−τ ibo, 0], I3 = [−τsow, 0], I4 = [−τ iow, 0],

I5 = [−τswr, 0], I6 = [−τ iwr, 0], I7 = [−τsrb, 0], I8 = [−τ irb, 0].
(2.8)

The biologically realistic set of initial data is Y , consisting of the elements of X which
satisfy condition (2.6). We have Y = Y 0 ∪ ∂Y 0, where Y 0 is basically the subset
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of Y corresponding to the presence of infected poultry or infected migratory birds
somewhere, so that

Y 0 = {(Sb
m(·), Ibm(·), So

m(·), Iom(·), Sw
m(·), Iwm(·), Sr

m(·), Irm(·), Ibp, Iop , Iwp , Irp) ∈ Y :

at least one of Sb
m(·), So

m(·), Sw
m(·), or Sr

m(·) is ≥ 0 and �≡ 0 on its domain;

at least one of Ibp, I
o
p , I

w
p , Irp > 0; and/or

at least one of Ibm(·), Iom(·), Iwm(·), or Irm(·) is ≥ 0 and �≡ 0 on its domain},

(2.9)

where the domains for the various functions are given by (2.8). Then, ∂Y 0 is a subset
of Y relating to those solutions of (2.4)–(2.5) for which all the Im and Ip variables
remain zero for all time, i.e., the disease-free solutions.

We now discuss the assumptions on the birth function Bm(Sb
m). First note that,

since the α quantities are bounded by 1,

(2.10)
αs
boα

s
owα

s
wrα

s
rbd

s
bod

s
owd

s
wrd

s
rb

(dsbo + μb
ms)(d

s
wr + μw

ms)(d
s
ow + μo

ms)(d
s
rb + μr

ms)
< 1.

We shall often assume that the birth function satisfies the following hypotheses.
Hypothesis (H1). Bm(Sb

m) is a continuous function of Sb
m and satisfies Bm(0) = 0;

Bm(Sb
m) ≥ 0 when Sb

m ≥ 0; and Bsup
m < ∞, where Bsup

m = sup {Bm(Sb
m), Sb

m ≥ 0},
and there exists Ŝb

m > 0 with
(2.11)
Bm(Sb

m)

dsbo + μb
ms

>

(
1− αs

boα
s
owα

s
wrα

s
rbd

s
bod

s
owd

s
wrd

s
rb

(dsbo + μb
ms)(d

s
wr + μw

ms)(d
s
ow + μo

ms)(d
s
rb + μr

ms)

)
Sb
m when Sb

m < Ŝb
m

and
(2.12)
Bm(Sb

m)

dsbo + μb
ms

<

(
1− αs

boα
s
owα

s
wrα

s
rbd

s
bod

s
owd

s
wrd

s
rb

(dsbo + μb
ms)(d

s
wr + μw

ms)(d
s
ow + μo

ms)(d
s
rb + μr

ms)

)
Sb
m when Sb

m > Ŝb
m.

Hypothesis (H1) is a natural assumption to ensure the existence of a positive
equilibrium of the isolated bird species population in the absence of diseases. This
assumption also implies, in the case where Bm is continuously differentiable, that

B′
m(0)

dsbo + μb
ms

≥ 1− αs
boα

s
owα

s
wrα

s
rbd

s
bod

s
owd

s
wrd

s
rb

(dsbo + μb
ms)(d

s
wr + μw

ms)(d
s
ow + μo

ms)(d
s
rb + μr

ms)
≥ B′

m(Ŝb
m)

dsbo + μb
ms

.

For the linearized stability of equilibria, and also for persistence, we need to strengthen
this to strict inequality in the following hypothesis.

Hypothesis (H2). Bm(Sb
m) is a continuously differentiable function of Sb

m, and
(2.13)

B′
m(0)

dsbo + μb
ms

> 1− αs
boα

s
owα

s
wrα

s
rbd

s
bod

s
owd

s
wrd

s
rb

(dsbo + μb
ms)(d

s
wr + μw

ms)(d
s
ow + μo

ms)(d
s
rb + μr

ms)
>

B′
m(Ŝb

m)

dsbo + μb
ms

.

3. Positivity and boundedness. We first establish a result on nonnegativity
and eventual strict positivity. The birth function here does not need to satisfy all of
the assumptions in (H1).

Theorem 3.1. Suppose that Bm(·) is continuous and satisfies Bm(Sb
m) ≥ 0 when

Sb
m ≥ 0. Then each component of the solution of system (2.4)–(2.5), subject to initial

data (2.6), remains nonnegative. If, additionally, at least one of
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(i) on some patch the number of infected migratory birds is not identically zero
on the relevant initial interval (for example, Ibm0 �≡ 0 on [−τ ibo, 0]) or

(ii) on some patch the initial number of infected poultry is positive, and on some
(not necessarily the same) patch the number of infected or susceptible migra-
tory birds is not identically zero on the relevant initial interval

holds, then there exists T ∗ > 0, which is independent of the initial data, such that
Im(t) > 0 and Ip(t) > 0 for all t > T ∗ and on every compartment.

Proof. The first statement of the theorem follows immediately from Smith [30,
Theorem 5.2.1, p. 81].

To prove case (i) of the second part of the theorem, we focus on the case Ibm0 �≡ 0
on [−τ ibo, 0]. Then, the fourth equation of system (2.4) implies that Iom(t) �≡ 0 on
t ∈ [0, τ ibo]. Indeed, if this were false, then nonnegativity of solution components
would yield that the first and third terms in the right-hand side of the fourth equation
(the first term in particular) are identically zero for t ∈ [0, τ ibo], and this contradicts
Ibm0 �≡ 0. So there exists some time t∗ ∈ [0, τ ibo] such that Iom(t∗) > 0. Also,

İom(t) ≥ (βo
mSo

m(t)− diow − μo
mi)I

o
m(t).

A simple comparison argument therefore assures us that Iom(t) > 0 for all t ≥ t∗.
Having established that the variable Iom(t) becomes positive and remains so, we

deduce the same for the variable Iwm(t) using the sixth equation of (2.4). This equation
shows that Iwm(t) cannot remain zero; otherwise the same would be true for Iom(t).
Once Iwm(t) becomes positive it remains so. Similarly, we conclude the same for Irm(t)
and Ibm(t).

Theorem 5.2.1 of [30, p. 81] also implies that the number of infected poultry on a
patch cannot exceed Np for that patch. To see that the numbers of infected poultry
become and remain positive on each patch is straightforward; for example, if Ibp(t)

remained zero, then the first equation of (2.5) shows that the same is true for Ibm(t),
a contradiction. Once Ibp(t) has become positive, then, since İbp(t) ≥ −μb

pI
b
p(t), I

b
p(t)

must remain positive.
Finally, we prove case (ii) of the second part of the theorem. Suppose it is on patch

b that the initial number of infected poultry is positive, and suppose there is another
patch on which the number of susceptible migratory birds is not identically zero on the
relevant initial interval (if this is the case for infected migratory birds, then case (i)
would apply). Arguments similar to those described for case (i) show that Ibp(t) > 0
for all t > 0 and also that, whichever patch has its susceptible migratory birds not
identically zero initially, eventually all patches must have a strictly positive number of
susceptible migratory birds. In particular, Sb

m(t) > 0 for t sufficiently large, so that the
product Sb

m(t)Ibp(t) > 0. Knowing this, the second equation of system (2.4) shows that

Ibm(t) cannot remain zero for all time. Then, since İbm(t) ≥ (βb
mSb

m(t)−dibo−μb
mi)I

b
m(t),

we see that once Ibm(t) becomes positive it remains so for all time and in particular
on an interval of length τ ibo. But this puts us back into case (i), since we can translate
forward in time. So from this point the argument proceeds as before.

We now consider the boundedness of the solutions of system (2.4)–(2.5).
Theorem 3.2. Assume that Bm(·) is continuous, Bm(Sb

m) ≥ 0 when Sb
m ≥ 0,

and Bsup
m < ∞, where Bsup

m := sup{Bm(Sb
m), Sb

m ≥ 0}. Then every solution of (2.4)–
(2.5) with initial data in Y is bounded, and the solution semiflow defined by solutions
of (2.4)–(2.5) in space Y is dissipative and has a global attractor.

Proof. The total number of migratory birds N tot
m (t) in the system at a given time

is the sum of the total number of susceptible and infected migratory birds in the four
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stopovers b, o, w, and r and the total number of susceptible and infected migratory
birds in each of the four flyways linking the stopovers, denoted bo, ow, wr, and ro,
i.e., N tot

m = Stot
m + Itotm , with Itotm = Ibm + Iom + Iwm + Irm + Ibom + Iowm + Iwr

m + Irbm and
Stot
m = Sb

m + So
m + Sw

m + Sr
m + Sbo

m + Sow
m + Swr

m + Srb
m .

In a given flyway, the number of birds in the air is given by the integral of the
bird density. Recall that the density of susceptible birds in each of the four flyways is
denoted sbom , sowm , swr

m , srbm , respectively. Similarly, the density of infected birds in each
of the four flyways is denoted ibom, iowm , iwr

m , irbm . Hence, the total number of birds in the
flyway linking patches o and w is

Sow
m + Iowm =

∫ xw

xo

[sowm (t, x) + iowm (t, x)] dx,

and there are similar expressions for the other flyways.
Assuming that the migration flyways are fixed over time, and that the average

bird velocity in the flyways is constant, leads to Ṅ tot
m = Ṡtot

m + İtotm , with

Ṡtot
m = Ṡb

m + Ṡo
m + Ṡw

m + Ṡr
m

+

∫ xo

xb

∂sbom
∂t

dx+

∫ xw

xo

∂sowm
∂t

dx+

∫ xr

xw

∂swr
m

∂t
dx+

∫ xb

xr

∂srbm
∂t

dx
(3.1)

and

İtotm = İbm + İom + İwm + İrm

+

∫ xo

xb

∂ibom
∂t

dx+

∫ xw

xo

∂iowm
∂t

dx+

∫ xr

xw

∂iwr
m

∂t
dx+

∫ xb

xr

∂irbm
∂t

dx.
(3.2)

Using (2.4) and advection equations analogous to (2.1) in all the flyways leads to

Ṅ tot
m(3.3)

= Bm(Sb
m)

+ αs
rbd

s
rbS

r
m(t− τsrb) + αs

bod
s
boS

b
m(t− τsbo)

+ αs
owd

s
owS

o
m(t− τsow) + αs

wrd
s
wrS

w
m(t− τswr)

−
[∫ xo

xb

[
U bo
s

∂sbom(t, x)

∂x
+ μbo

mss
bo
m(t, x)

]
dx

+

∫ xw

xo

[
Uow
s

∂sowm (t, x)

∂x
+ μow

mss
ow
m (t, x)

]
dx

+

∫ xr

xw

[
Uwr
s

∂swr
m (t, x)

∂x
+ μwr

mss
wr
m (t, x)

]
dx

+

∫ xb

xr

[
U rb
s

∂srbm(t, x)

∂x
+ μrb

mss
rb
m(t, x)

]
dx

]

+ αi
rbd

i
rbI

r
m(t− τ irb) + αi

bod
i
boI

b
m(t− τ ibo)

+ αi
owd

i
owI

o
m(t− τ iow) + αi

wrd
i
wrI

w
m(t− τ iwr)
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−
[∫ xo

xb

[
U bo
i

∂ibom(t, x)

∂x
+ μbo

mii
bo
m(t, x)

]
dx

+

∫ xw

xo

[
Uow
i

∂iowm (t, x)

∂x
+ μow

mii
ow
m (t, x)

]
dx

+

∫ xr

xw

[
Uwr
i

∂iwr
m (t, x)

∂x
+ μwr

mii
wr
m (t, x)

]
dx

+

∫ xb

xr

[
U rb
i

∂irbm(t, x)

∂x
+ μrb

mii
rb
m(t, x)

]
dx

]

− (dsbo + μb
ms)S

b
m − (dsow + μo

ms)S
o
m − (dswr + μw

ms)S
w
m − (dsrb + μr

ms)S
r
m

− (dibo + μb
mi)I

b
m − (diow + μo

mi)I
o
m − (diwr + μw

mi)I
w
m − (dirb + μr

mi)I
r
m.

Taking the example of infected birds in the flyway bo, each integral term in (3.3) can
be expressed in the following form:∫ xo

xb

[
U bo
i

∂ibom(t, x)

∂x
+ μbo

mii
bo
m(t, x)

]
dx

= U bo
i ibom(t, xo)︸ ︷︷ ︸

incoming flux of infected birds into o

− U bo
i ibom(t, xb)︸ ︷︷ ︸

outgoing flux of infected birds from b

+

∫ xo

xb

μbo
mii

bo
m(t, x) dx.

(3.4)

Recall that the outgoing flux of infected birds leaving patch b is also equal to diboI
b
m(t)

and that the incoming flux of birds entering patch o was shown to be equal to
αi
bod

i
boI

b
m(t − τ ibo) in the previous section. So all terms in (3.3) that represent fluxes

cancel out in pairs. Hence, (3.3) can be further simplified to

Ṅ tot
m = Bm(Sb

m)

−
[∫ xo

xb

[μbo
mss

bo
m(t, x) + μbo

mii
bo
m(t, x)] dx +

∫ xw

xo

[μow
mss

ow
m (t, x) + μow

mii
ow
m (t, x)] dx

+

∫ xr

xw

[μwr
mss

wr
m (t, x) + μwr

mii
wr
m (t, x)] dx +

∫ xb

xr

[μrb
mss

rb
m(t, x) + μrb

mii
rb
m(t, x)] dx

]
− μb

msS
b
m − μo

msS
o
m − μw

msS
w
m − μr

msS
r
m − μb

miI
b
m − μo

miI
o
m − μw

miI
w
m − μr

miI
r
m.

(3.5)

This gives

(3.6) Ṅ tot
m (t) ≤ Bsup

m − CN tot
m (t),

where

C = min{μb
mi, μ

o
mi, μ

w
mi, μ

r
mi, μ

bo
mi, μ

ow
mi, μ

wr
mi, μ

rb
mi,

μb
ms, μ

o
ms, μ

w
ms, μ

r
ms, μ

bo
ms, μ

ow
ms, μ

wr
ms, μ

rb
ms}.

From (3.6), it follows that

(3.7) lim sup
t→∞

N tot
m (t) ≤ Bsup

m /C,
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which implies the boundedness of the total number of migratory birds in the system.
As the total number of poultry in the system is assumed to be constant on each patch,
we obtain the boundedness of all solutions of (2.4)–(2.5) subject to condition (2.6),
and the dissipativeness of the associated semiflow on the space. This dissipativeness
then implies the existence of the global attractor (see, for example, [15]).

4. Local and global stability of the disease-free equilibrium. If (H1)
holds, then system (2.4)–(2.5) has a trivial equilibrium in which all components of
the system are zero, and a disease-free equilibrium in which there are no infected
poultry or migratory birds, but there is a population of susceptible migratory birds
on each patch. In this equilibrium, the components (Sb

m, So
m, Sw

m, Sr
m) are determined

by the following equations:

Bm(Sb
m) + αs

rbd
s
rbS

r
m = (dsbo + μb

ms)S
b
m,

αs
bod

s
boS

b
m = (dsow + μo

ms)S
o
m,

αs
owd

s
owS

o
m = (dswr + μw

ms)S
w
m,

αs
wrd

s
wrS

w
m = (dsrb + μr

ms)S
r
m.

(4.1)

Combining these equations shows that the equilibrium values of Sb
m are determined

from the following equation:

(4.2)
Bm(Sb

m)

dsbo + μb
ms

=

(
1− αs

boα
s
owα

s
wrα

s
rbd

s
bod

s
owd

s
wrd

s
rb

(dsbo + μb
ms)(d

s
wr + μw

ms)(d
s
ow + μo

ms)(d
s
rb + μr

ms)

)
Sb
m.

Obviously, Sb
m = 0 satisfies this equation. Hypothesis (H1) assures us of the existence

of one more root Sb
m = Ŝb

m > 0 of (4.2). The corresponding equilibrium values of the
susceptible migratory birds on the other patches are denoted Ŝo

m, Ŝw
m, and Ŝr

m; these
values are found from the last three equations of (4.1).

Our main result of this section is Theorem 4.2, which provides a set of conditions
which ensure that the disease-free equilibrium is globally asymptotically stable to per-
turbations involving the introduction of both infected poultry and infected migratory
birds. Before proceeding, we present short subsections which deal with subsystems of
either migratory birds or poultry in the absence of disease.

4.1. Subsystem of migratory birds. It is necessary for what follows to un-
derstand completely the dynamics of the subsystem of four equations consisting of
just the equations for the susceptible migratory birds, when the numbers of infected
migratory birds and infected poultry remain zero for all time on every patch. This
subsystem is

Ṡb
m = Bm(Sb

m) + αs
rbd

s
rbS

r
m(t− τsrb)− dsboS

b
m − μb

msS
b
m,

Ṡo
m = αs

bod
s
boS

b
m(t− τsbo)− dsowS

o
m − μo

msS
o
m,

Ṡw
m = αs

owd
s
owS

o
m(t− τsow)− dswrS

w
m − μw

msS
w
m,

Ṡr
m = αs

wrd
s
wrS

w
m(t− τswr)− dsrbS

r
m − μr

msS
r
m,

(4.3)

and if (H1) holds, then it has exactly two equilibria, (0, 0, 0, 0) and (Ŝb
m, Ŝo

m, Ŝw
m, Ŝr

m),
the latter being found by solving (4.1). The initial data for system (4.3) is just
the Sm components of (2.6), and each of the four initial functions is assumed to be
nonnegative.
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Theorem 4.1. Suppose that (H1) and (H2) hold. Then each solution of (4.3)
for which at least one of the initial components is not identically zero on its initial
interval (for example, Sb

m0 �≡ 0 on [−τsbo, 0]) satisfies (Sb
m(t), So

m(t), Sw
m(t), Sr

m(t)) →
(Ŝb

m, Ŝo
m, Ŝw

m, Ŝr
m) as t → ∞.

Proof. Similarly to the proof of Theorem 3.1, we see that all variables in system
(4.3) remain nonnegative for t ≥ 0 and that in fact they all eventually become strictly
positive and remain so. The structure of system (4.3) allows us to apply Theorem
5.4.1 of Smith [30] on convergence to equilibrium, to conclude that all solutions of
(4.3) must converge to one of the equilibria. To decide which one is the attractor,
we can use linear stability theory. The linearization of (4.3) about the equilibrium
(Sb∗

m , So∗
m , Sw∗

m , Sr∗
m ) with Sc∗

m = 0 or Sc∗
m = Ŝc

m for each c = b, o, w, r has a structure
involving positive coefficients for all delayed variables, so that it suffices to consider
only the real roots of the characteristic equation. Solutions of the linearized system
with temporal dependence exp(λt) lead to the characteristic equation

λ−B′
m(Sb∗

m ) + dsbo + μb
ms

=
αs
boα

s
owα

s
wrα

s
rbd

s
bod

s
owd

s
wrd

s
rb exp (−λ(τsrb + τsbo + τsow + τswr))

(λ+ dsrb + μr
ms)(λ + dswr + μw

ms)(λ + dsow + μo
ms)

.
(4.4)

The left-hand side of (4.4) is increasing in λ, while the right-hand side is decreasing in
λ when λ ≥ 0. Therefore, if the left-hand side exceeds (is smaller than, respectively)
the right-hand side when λ = 0, we are assured that all real roots including the
dominant root are negative (or positive, respectively). Therefore, (H2) ensures that
the equilibrium (0, 0, 0, 0) is linearly unstable and the equilibrium (Ŝb

m, Ŝo
m, Ŝw

m, Ŝr
m)

is linearly asymptotically stable.
To conclude that (Ŝb

m, Ŝo
m, Ŝw

m, Ŝr
m) is the global attractor, we need to show that

no solution satisfying the requirements on the initial conditions may approach the
unstable equilibrium (0, 0, 0, 0) as t → ∞. This unstable equilibrium still has an
infinite-dimensional stable manifold due to the presence of delay. We briefly explain
why there cannot be a solution (Sb

m(t), So
m(t), Sw

m(t), Sr
m(t)) → (0, 0, 0, 0). Another

similar calculation is explained much more thoroughly later, in the proof of our Theo-
rem 5.2. Since each component of the solution becomes and remains strictly positive,
without loss of generality we can assume each component has this property initially.
A contradiction can be reached by using a comparison argument to show that the
solution which supposedly approaches the zero solution is also bounded below by the
exponentially growing function δ exp(λt)d, where δ > 0 is a suitably chosen small con-
stant, λ > 0 is the dominant eigenvalue of the linearization at (0, 0, 0, 0), and exp(λt)d
is the solution of the linearized system corresponding to the dominant eigenvalue. The
vector d is known to have positive components [30, Theorem 5.5.1].

4.2. Stability with migratory birds absent. We next consider the stability
of the disease-free equilibrium in the situation when migratory birds are completely
absent. Then we need only consider (2.5) when the Im variables are all zero. But
in this case system (2.5) decouples completely, and each equation determines the
number of infected poultry on a particular patch. It follows immediately that the
conditions for the infected poultry to die out on every patch when no migratory birds
are introduced are

(4.5) −βb
pN

b
p+μb

p > 0, −βo
pN

o
p+μo

p > 0, −βw
p N

w
p +μw

p > 0, −βr
pN

r
p+μr

p > 0.
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4.3. Stability (of the positive disease-free equilibrium) with poultry
absent. If there are no poultry (susceptible or infected), then we can calculate nec-
essary and sufficient conditions for the disease-free equilibrium to be linearly stable
to perturbations involving the introduction of migratory birds. The subsystem that
needs to be studied is the linear system

İbm = αi
rbd

i
rbI

r
m(t− τ irb) + βb

mŜb
mIbm − diboI

b
m − μb

miI
b
m,

İom = αi
bod

i
boI

b
m(t− τ ibo) + βo

mŜo
mIom − diowI

o
m − μo

miI
o
m,

İwm = αi
owd

i
owI

o
m(t− τ iow) + βw

mŜw
mIwm − diwrI

w
m − μw

miI
w
m,

İrm = αi
wrd

i
wrI

w
m(t− τ iwr) + βr

mŜr
mIrm − dirbI

r
m − μr

miI
r
m.

(4.6)

The structure of this system enables us to apply the theory due to Smith [29]. Corol-
lary 3.2 of that paper assures us that the zero solution of system (4.6) is asymptoti-
cally stable if and only if the zero solution of the corresponding undelayed system is
asymptotically stable. It needs to be carefully noted, however, that the corresponding
undelayed system is system (4.6) with the delays set to zero where they appear in the
arguments of the state variables. Delays also feature indirectly in system (4.6) via the
α coefficients such as αi

rb. Those delays are not set to zero. Corollary 3.2 of [29] also
provides a useful set of necessary and sufficient conditions, involving determinants, for
the stability modulus (the eigenvalue of largest real part, which is known to be real
here) to be strictly negative. Applying these conditions, noting carefully what consti-
tutes the undelayed system here, leads to the following conditions for the asymptotic
stability of the nontrivial disease-free equilibrium when there are no poultry:

(4.7)

dibo + μb
mi − βb

mŜb
m > 0, diow + μo

mi − βo
mŜo

m > 0,

diwr + μw
mi − βw

mŜw
m > 0, dirb + μr

mi − βr
mŜr

m > 0,

(dibo + μb
mi − βb

mŜb
m)(diow + μo

mi − βo
mŜo

m)(diwr + μw
mi − βw

mŜw
m)

× (dirb + μr
mi − βr

mŜr
m) > αi

boα
i
owα

i
wrα

i
rbd

i
bod

i
owd

i
wrd

i
rb.

Corollary 3.2 of [29] actually provides just four inequalities and, when applied to
(4.6), furnishes three of the first four inequalities shown above, together with the
fifth. However, it can be shown that these inequalities hold if and only if all five
inequalities of (4.7) hold.

4.4. Stability with infection in both poultry and migratory birds. The
next theorem presents conditions for global asymptotic stability of the disease-free
equilibrium for solutions involving both infected poultry and infected migratory birds.
Not surprisingly, one needs to impose an additional inequality involving the cross-
infection parameters βc

pm, with c = b, o, w, r, as follows:(
(dibo + μb

mi − βb
mŜb

m)(−βb
pN

b
p + μb

p)− βb
pmβb

mpŜ
b
mN b

p

)
×
(
(diow + μo

mi − βo
mŜo

m)(−βo
pN

o
p + μo

p)− βo
pmβo

mpŜ
o
mNo

p

)
×
(
(diwr + μw

mi − βw
mŜw

m)(−βw
p N

w
p + μw

p )− βw
pmβw

mpŜ
w
mNw

p

)
×
(
(dirb + μr

mi − βr
mŜr

m)(−βr
pN

r
p + μr

p)− βr
pmβr

mpŜ
r
mN r

p

)
> αi

boα
i
owα

i
wrα

i
rbd

i
bod

i
owd

i
wrd

i
rb(−βb

pN
b
p + μb

p)(−βo
pN

o
p + μo

p)

× (−βw
p N

w
p + μw

p )(−βr
pN

r
p + μr

p).

(4.8)
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In condition (4.8), we implicitly assume that each factor on the left-hand side is
positive. This is equivalent to the requirement

βb
pmβb

mpŜ
b
mN b

p < (dibo + μb
mi − βb

mŜb
m)(−βb

pN
b
p + μb

p),

βo
pmβo

mpŜ
o
mNo

p < (diow + μo
mi − βo

mŜo
m)(−βo

pN
o
p + μo

p),

βw
pmβw

mpŜ
w
mNw

p < (diwr + μw
mi − βw

mŜw
m)(−βw

p N
w
p + μw

p ),

βr
pmβr

mpŜ
r
mN r

p < (dirb + μr
mi − βr

mŜr
m)(−βr

pN
r
p + μr

p).

(4.9)

Theorem 4.2. Suppose that the birth function Bm(·) satisfies Hypotheses (H1)
and (H2) and that inequalities (4.5) and (4.7) hold. Suppose further that the cross-
infection coefficients βc

pm with c = b, o, w, r are sufficiently small so that (4.8) and

(4.9) hold. Then the equilibrium (Ŝb
m, 0, Ŝo

m, 0, Ŝw
m, 0, Ŝr

m, 0, 0, 0, 0, 0) of system (2.4)–
(2.5) is globally asymptotically stable for all initial data (2.6) in which at least one
Sm variable is not identically zero on its initial interval (for example, Sb

m0 �≡ 0 on
[−τsbo, 0]).

Proof. First note that if the cross-infection coefficients βc
pm with c = b, o, w, r are

all zero, then (4.8) follows automatically from (4.5) and (4.7).
Since the Im and Ip variables remain nonnegative, the four Sm variables satisfy

a system of differential inequalities. This system is precisely (4.3) with every = sign
replaced by ≤. A comparison argument using Theorem 5.1.1 of Smith [30] implies
that each Sm component is bounded above by the corresponding Sm component of
the solution of (4.3), where the two components share the same initial data. In view
of Theorem 4.1, it follows that, for each c = b, o, w, r,

lim sup
t→∞

Sc
m(t) ≤ Ŝc

m.

Therefore, for any ε > 0, it is true that, for sufficiently large t, Sc
m(t) ≤ Ŝc

m + ε for
each c = b, o, w, r. Therefore, for sufficiently large t, the Im and Ip variables obey the
inequalities

İbm ≤ αi
rbd

i
rbI

r
m(t− τ irb) + βb

m(Ŝb
m + ε)Ibm − (μb

mi + dibo)I
b
m + βb

pm(Ŝb
m + ε)Ibp,

İom ≤ αi
bod

i
boI

b
m(t− τ ibo) + βo

m(Ŝo
m + ε)Iom − (μo

mi + diow)I
o
m + βo

pm(Ŝo
m + ε)Iop ,

İwm ≤ αi
owd

i
owI

o
m(t− τ iow) + βw

m(Ŝw
m + ε)Iwm − (μw

mi + diwr)I
w
m + βw

pm(Ŝw
m + ε)Iwp ,

İrm ≤ αi
wrd

i
wrI

w
m(t− τ iwr) + βr

m(Ŝr
m + ε)Irm − (μr

mi + dirb)I
r
m + βr

pm(Ŝr
m + ε)Irp ,

İbp ≤ βb
pN

b
pI

b
p + βb

mpN
b
pI

b
m − μb

pI
b
p,

İop ≤ βo
pN

o
p I

o
p + βo

mpN
o
pI

o
m − μo

pI
o
p ,

İwp ≤ βw
p N

w
p Iwp + βw

mpN
w
p Iwm − μw

p I
w
p ,

İrp ≤ βr
pN

r
p I

r
p + βr

mpN
r
p I

r
m − μr

pI
r
p .

(4.10)

Again by Theorem 5.1.1 of Smith [30], each Im and Ip variable is bounded above by
a system of differential equations associated with (4.10), namely, system (4.10) with
every ≤ replaced by =. We need to show that every Im(t) and Ip(t) tends to 0 as
t → ∞, and it suffices to show that this is the case for the corresponding system of
differential equations, which is of course linear.

Purely for economy of notation, we shall in fact finish the proof for the case when
ε = 0. The proof has to work for a small positive ε, but the usual continuity arguments
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assure us of this. We shall briefly comment on this point again later. The fact that
inequality (4.8) is a strict inequality is crucial.

If we seek trial solutions of the differential equation system associated with (4.10)
of the form

(Ibm, Iom, Iwm, Irm, Ibp, I
o
p , I

w
p , Irp) = eλt(ξb, ξo, ξw, ξr, ηb, ηo, ηw, ηr),

we obtain a characteristic equation of the form G(λ) = det (λI − A(λ)) = 0, where
A(λ) is a matrix whose off-diagonal entries are nonnegative and nonincreasing in λ.
We may apply Theorem 5.5.1 of [30, p. 92] to conclude that the linear stability of the
equilibrium is completely determined by the real roots of the characteristic equation.
The algebra is very complicated, and it is necessary to make full use of the relationships
between the components ξb, ηb, . . . to simplify the determinant as much as possible.
Eventually, we can show that G(λ) is given by

G(λ) =

(
(λ+ dibo + μb

mi − βb
mŜb

m)(λ− βb
pN

b
p + μb

p)

βb
mpN

b
p

− βb
pmŜb

m

)

×
(
(λ+ diow + μo

mi − βo
mŜo

m)(λ − βo
pN

o
p + μo

p)

βo
mpN

o
p

− βo
pmŜo

m

)

×
(
(λ+ diwr + μw

mi − βw
mŜw

m)(λ− βw
p N

w
p + μw

p )

βw
mpN

w
p

− βw
pmŜw

m

)

×
(
(λ+ dirb + μr

mi − βr
mŜr

m)(λ− βr
pN

r
p + μr

p)

βr
mpN

r
p

− βr
pmŜr

m

)
− αi

boα
i
owα

i
wrα

i
rbd

i
bod

i
owd

i
wrd

i
rb(λ − βb

pN
b
p + μb

p)(λ− βo
pN

o
p + μo

p)(λ − βw
p N

w
p + μw

p )

× (λ− βr
pN

r
p + μr

p) exp
(−λ(τ irb + τ ibo + τ iow + τ iwr)

)
βr
mpβ

b
mpβ

o
mpβ

w
mpN

r
pN

b
pN

o
pN

w
p

.

(4.11)

We shall prove that all real roots of the equation G(λ) = 0 are strictly negative.
This will be achieved by using a monotonicity argument, but, before proceeding, we
note that we are in the situation in which Corollary 5.5.2 of [30, p. 93] applies, which
assures us that the disease-free equilibrium is linearly asymptotically stable if and only
if it is linearly asymptotically stable in the corresponding system without delays in
the arguments of the variables (the model coefficients still involve delays through the
α coefficients). Removal of the delays only in the arguments of the variables, leaving
their presence via the α coefficients undisturbed, corresponds to formally setting the
exponential term in (4.11) to 1 and making no other changes. We write the modified
characteristic equation as G0(λ) = 0. This equation is no longer transcendental but
an eighth order polynomial. After some algebra, the equation G0(λ) = 0 can be
rewritten as

F1(λ) = F2(λ),

where

F1(λ) =

(
1− βb

pmβb
mpŜ

b
mN b

p

(λ+Ab)(λ+Bb)

)(
1− βo

pmβo
mpŜ

o
mNo

p

(λ+Ao)(λ +Bo)

)

×
(
1− βw

pmβw
mpŜ

w
mNw

p

(λ+Aw)(λ +Bw)

)(
1− βr

pmβr
mpŜ

r
mN r

p

(λ+Ar)(λ+Br)

)
,

(4.12)
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and

(4.13) F2(λ) =
αi
boα

i
owα

i
wrα

i
rbd

i
bod

i
owd

i
wrd

i
rb

(λ+Ab)(λ+Ao)(λ +Aw)(λ+Ar)

with

(4.14)

Ab = dibo + μb
mi − βb

mŜb
m, Bb = −βb

pN
b
p + μb

p,

Ao = diow + μo
mi − βo

mŜo
m, Bo = −βo

pN
o
p + μo

p,

Aw = diwr + μw
mi − βw

mŜw
m, Bw = −βw

p N
w
p + μw

p ,

Ar = dirb + μr
mi − βr

mŜr
m, Br = −βr

pN
r
p + μr

p.

By inequalities (4.5) and (4.7), all quantities in (4.14) are positive. Therefore F2(λ)
is decreasing for λ ≥ 0. Also, by (4.9), each factor in the expression for F1(λ) is
monotonically increasing and positive when λ ≥ 0. Therefore, F1(λ) is monotonically
increasing for λ ≥ 0. Moreover, by inequality (4.8), F1(0) > F2(0). By continuity,
this strict inequality will still hold if we repeat the analysis for a sufficiently small
positive ε in (4.10). For such an ε it is therefore clear that all real roots including the
dominant root of F1(λ) = F2(λ), and therefore of G0(λ) = 0, are strictly negative.

We have shown via a comparison argument involving an associated linear system
that the Im and Ip variables all approach zero as t → ∞. The asymptotic behavior
of the Sm variables is then determined by subsystem (4.3), the dynamics of which is
described in Theorem 4.1. The proof is complete.

5. Disease persistence. In this section we prove that, under certain conditions,
all the variables Im(t), Ip(t) representing the infected compartments are persistent
in the strong, uniform sense, i.e., that there exists some constant η > 0 which is
independent of the initial conditions such that, for each c = b, o, w, r,

(5.1) lim inf
t→∞ Icm(t) ≥ η, lim inf

t→∞ Icp(t) ≥ η.

This is achieved using the persistence theory due to Hale and Waltman [15] and, in
particular, Theorem 4.1 of their paper. There are other approaches to persistence;
see, for example, Samanta [26] for a nonautonomous epidemic model. Let a metric
space Y be the closure of an open set Y 0, so that Y = Y 0 ∪ ∂Y 0, where ∂Y 0 is the
boundary of Y 0. Let T (t) be a C0-semigroup on Y satisfying

(5.2) T (t) : Y 0 → Y 0, T (t) : ∂Y 0 → ∂Y 0.

Assume that the restricted semiflow has the global attractor A∂ , and assume that

Ã∂ =
⋃

x∈A∂

ω(x),

where ω(x) is the ω-limit set of x. Then we have the following result from Hale and
Waltman [15].

Theorem 5.1 (Hale and Waltman). Suppose that T (t) satisfies (5.2) and that
(i) there is a t0 ≥ 0 such that T (t) is compact for t > t0;
(ii) T (t) is point dissipative in Y ;
(iii) Ã∂ is isolated and has an acyclic covering M .
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Then T (t) is uniformly persistent (i.e., there exists η > 0 such that, for any y ∈ Y 0,
lim inft→∞ d(T (t)y, ∂Y 0) ≥ η) if and only if, for each Mi ∈ M ,

(5.3) W s(Mi) ∩ Y 0 = Φ.

Hale and Waltman permit the Mi to be chosen as isolated invariant sets and not
necessarily as equilibria, but for our purposes here each Mi is a boundary equilibrium
of our model. Assuming (H1) holds, these are the two equilibria, denoted M1 and
M2, in which the variables Im and Ip are zero on every patch. The set M is the union
M = M1 ∪M2. In our setting, acyclicity of the covering M1 ∪M2 means that neither
of the equilibria M1, M2 is connected to itself via a homoclinic connection within
∂Y 0, and that there is no cycle with M1 → M2 → M1 within ∂Y 0. Finally, W s(Mi)
is the stable manifold of Mi. Note that the superscript s on any letter other than W
has a different meaning (susceptible), but there is no risk of confusion.

In this paper Y and Y 0 are defined in the paragraph containing (2.9). Next we
define the C0-semigroup T (t). Recall the initial data has the form (2.6). For any
initial datum

(Sb
m0(·), Ibm0(·), So

m0(·), Iom0(·), Sw
m0(·), Iwm0(·), Sr

m0(·), Irm0(·), Ibp0, Iop0, Iwp0, Irp0) ∈ Y,

we let Sb
m(t), Ibm(t), So

m(t), Iom(t), Sw
m(t), Iwm(t), Sr

m(t), Irm(t), Ibp(t), I
o
p (t), I

w
p (t), Irp(t)

be the solution of system (2.4)–(2.5) and define T (t) by

T (t) (Sb
m0(·), Ibm0(·), So

m0(·), Iom0(·), Sw
m0(·), Iwm0(·), Sr

m0(·), Irm0(·), Ibp0, Iop0, Iwp0, Irp0)
= (Sb

m(t+ ·), Ibm(t+ ·), So
m(t+ ·), Iom(t+ ·), Sw

m(t+ ·), Iwm(t+ ·),
Sr
m(t+ ·), Irm(t+ ·), Ibp(t), Iop (t), Iwp (t), Irp (t)),

(5.4)

where again the domains for the functions are inferred from (2.8); for example,
Sb
m(t + ·) is the function θ ∈ [−τsbo, 0] �→ Sb

m(t + θ) ∈ R. We prove the following
theorem on disease persistence.

Theorem 5.2. Let Hypotheses (H1) and (H2) hold, and suppose that (4.5) holds
together with (

(dibo + μb
mi − βb

mŜb
m)(−βb

pN
b
p + μb

p)− βb
pmβb

mpŜ
b
mN b

p

)
×
(
(diow + μo

mi − βo
mŜo

m)(−βo
pN

o
p + μo

p)− βo
pmβo

mpŜ
o
mNo

p

)
×
(
(diwr + μw

mi − βw
mŜw

m)(−βw
p N

w
p + μw

p )− βw
pmβw

mpŜ
w
mNw

p

)
×
(
(dirb + μr

mi − βr
mŜr

m)(−βr
pN

r
p + μr

p)− βr
pmβr

mpŜ
r
mN r

p

)
< αi

boα
i
owα

i
wrα

i
rbd

i
bod

i
owd

i
wrd

i
rb(−βb

pN
b
p + μb

p)(−βo
pN

o
p + μo

p)

× (−βw
p N

w
p + μw

p )(−βr
pN

r
p + μr

p).

(5.5)

Assume further that the initial data (2.6) satisfies (i) or (ii) of Theorem 3.1, in either
case with the additional requirement that at least one of the Sm components not be
identically zero on its initial interval.

Then there exists η > 0, which is independent of the initial conditions, such that
the solution of (2.4)–(2.5), subject to (2.6), satisfies (5.1) for each c = b, o, w, r.
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Proof. We will apply Theorem 5.1, and we first seek to prove that T (t) satisfies
(5.2). Let us prove that T (t) : Y 0 → Y 0. Choose some initial datum in Y 0. We
know from Theorem 3.1 that all solution components must remain nonnegative, but
suppose that during the evolution there exists a time t∗ > 0 when the solution leaves
Y 0 and arrives at ∂Y 0. At the time t∗ we will have

Ibm(t∗ + θ) ≡ 0, θ ∈ I2; Iom(t∗ + θ) ≡ 0, θ ∈ I4;

Iwm(t∗ + θ) ≡ 0, θ ∈ I6; Irm(t∗ + θ) ≡ 0, θ ∈ I8;

Ibp(t
∗) = 0; Iop (t

∗) = 0; Iwp (t∗) = 0; Irp (t
∗) = 0.

Since t∗ can serve as the initial time, it follows from uniqueness of solutions that, for
all t > t∗,

Ibm(t+ θ) ≡ 0, θ ∈ I2; Iom(t+ θ) ≡ 0, θ ∈ I4;

Iwm(t+ θ) ≡ 0, θ ∈ I6; Irm(t+ θ) ≡ 0, θ ∈ I8;

Ibp(t) = 0; Iop (t) = 0; Iwp (t) = 0; Irp (t) = 0.

But this is impossible because if the initial datum lies in Y 0, then, by Theorem 3.1,
every Im and every Ip variable eventually becomes strictly positive and remains so.
So T (t) : Y 0 → Y 0. It is trivial to see that T (t) : ∂Y 0 → ∂Y 0. Indeed, if all the Ip
variables are initially zero and all the Im variables are initially identically zero on their
respective initial intervals, then uniqueness of solutions implies that these variables
remain zero for all future time. We have shown that T (t) satisfies (5.2).

Hypothesis (i) of Theorem 5.1 holds as a simple application of the Arzelà–Ascoli
theorem, with

t0 = max(τsbo, τ
i
bo, τ

s
ow, τ

i
ow, τ

s
wr, τ

i
wr, τ

s
rb, τ

i
rb).

Hypothesis (ii), the point dissipativity, holds and follows from Theorem 3.2.
With regard to (iii) of Theorem 5.1, we are assuming that Hypothesis (H1) of this

paper holds, so we choose M = M1 ∪M2, where M1 and M2 are the two equilibria in
which the Im and Ip variables are zero on every patch. Specifically,

M1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

M2 = (Ŝb
m, 0, Ŝo

m, 0, Ŝw
m, 0, Ŝr

m, 0, 0, 0, 0, 0),
(5.6)

where Ŝb
m, Ŝo

m, Ŝw
m, Ŝr

m are (uniquely, by Hypothesis (H1)) found from equations
(4.1). The covering M = M1 ∪M2 is acyclic because M2 is a global attractor for the
subsystem (4.3) consisting of the Sm equations only. This was shown in Theorem 4.1.

We now prove that W s(M1) ∩ Y 0 = Φ and W s(M2) ∩ Y 0 = Φ. We include
the full details of only the latter calculation. Suppose, for a contradiction, that
W s(M2) ∩ Y 0 �= Φ. Then a solution exists which is initially in Y 0 and in W s(M2).
The former implies that this solution initially has one of its Ip variables positive
or one of its Im variables not identically zero, and Theorem 3.1 then yields that,
eventually, Im(t) > 0 and Ip(t) > 0 for this solution, for every superscript b, o, w, r.
We may translate forward in time and assume this to be so initially. Also, since this
solution starts in W s(M2), Im(t) → 0 and Ip(t) → 0 as t → ∞, for each superscript
b, o, w, r. The asymptotic behavior of the Sm variables is then determined by the
subsystem (4.3), and we showed in Theorem 4.1 that (Sb

m(t), So
m(t), Sw

m(t), Sr
m(t)) →

(Ŝb
m, Ŝo

m, Ŝw
m, Ŝr

m), given by (4.1), as t → ∞.
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Let ε > 0 be sufficiently small such that

(
(dibo + μb

mi − βb
m(Ŝb

m − ε))(−βb
p(N

b
p − ε) + μb

p)− βb
pmβb

mp(Ŝ
b
m − ε)(N b

p − ε)
)

×
(
(diow + μo

mi − βo
m(Ŝo

m − ε))(−βo
p(N

o
p − ε) + μo

p)− βo
pmβo

mp(Ŝ
o
m − ε)(No

p − ε)
)

×
(
(diwr + μw

mi − βw
m(Ŝw

m − ε))(−βw
p (N

w
p − ε) + μw

p )− βw
pmβw

mp(Ŝ
w
m − ε)(Nw

p − ε)
)

×
(
(dirb + μr

mi − βr
m(Ŝr

m − ε))(−βr
p(N

r
p − ε) + μr

p)− βr
pmβr

mp(Ŝ
r
m − ε)(N r

p − ε)
)

< αi
boα

i
owα

i
wrα

i
rbd

i
bod

i
owd

i
wrd

i
rb(−βb

p(N
b
p − ε) + μb

p)(−βo
p(N

o
p − ε) + μo

p)

× (−βw
p (N

w
p − ε) + μw

p )(−βr
p(N

r
p − ε) + μr

p),

(5.7)

which is possible because of the strict inequality in (5.5). Then, for all t sufficiently
large, Ibp(t) ≤ ε, Iop (t) ≤ ε, Iwp (t) ≤ ε, Irp (t) ≤ ε and

Sb
m(t) ≥ Ŝb

m − ε, So
m(t) ≥ Ŝo

m − ε, Sw
m(t) ≥ Ŝw

m − ε, Sr
m(t) ≥ Ŝr

m − ε.

Therefore, for t sufficiently large,

İbm ≥ αi
rbd

i
rbI

r
m(t− τ irb) + βb

m(Ŝb
m − ε)Ibm + βb

pm(Ŝb
m − ε)Ibp − diboI

b
m − μb

miI
b
m,

İom ≥ αi
bod

i
boI

b
m(t− τ ibo) + βo

m(Ŝo
m − ε)Iom + βo

pm(Ŝo
m − ε)Iop − diowI

o
m − μo

miI
o
m,

İwm ≥ αi
owd

i
owI

o
m(t− τ iow) + βw

m(Ŝw
m − ε)Iwm + βw

pm(Ŝw
m − ε)Iwp − diwrI

w
m − μw

miI
w
m,

İrm ≥ αi
wrd

i
wrI

w
m(t− τ iwr) + βr

m(Ŝr
m − ε)Irm + βr

pm(Ŝr
m − ε)Irp − dirbI

r
m − μr

miI
r
m,

İbp ≥ βb
p(N

b
p − ε)Ibp + βb

mp(N
b
p − ε)Ibm − μb

pI
b
p,

İop ≥ βo
p(N

o
p − ε)Iop + βo

mp(N
o
p − ε)Iom − μo

pI
o
p ,

İwp ≥ βw
p (N

w
p − ε)Iwp + βw

mp(N
w
p − ε)Iwm − μw

p I
w
p ,

İrp ≥ βr
p(N

r
p − ε)Irp + βr

mp(N
r
p − ε)Irm − μr

pI
r
p .

(5.8)

This is a linear differential inequality system. All delay terms have positive coefficients.
By further shrinking ε if necessary, we can arrange it so that all off-diagonal terms also
have positive coefficients. We may then assert, by Theorem 5.1.1 of Smith [30], that
each component of a solution of (5.8) is greater than or equal to the corresponding
component of a solution of the system of differential equations associated with (5.8)
when ≥ is replaced by =, provided that the two solutions are initially ordered in this
way.

Calculations similar to those used in the proof of Theorem 4.2 can be used to
study the characteristic equation of the system of differential equations associated
with (5.8). The characteristic equation can be put in the form F ε

1 (λ) = F ε
2 (λ), where

F ε
1 (λ) and F ε

2 (λ) have the same structure as (4.12) and (4.13), respectively, but involve
the small number ε. Inequality (5.7) implies that F ε

1 (0) < F ε
2 (0). Since F ε

2 (∞) = 0
and F ε

1 (∞) = 1, it follows that the characteristic equation has a real positive root λ∗,
with a corresponding solution to the system of differential equations of the form
δ exp(λ∗t) c for any real δ (but we take δ > 0), in which (crucially) every component
of the constant vector c is strictly positive. Note that F ε

1 (λ) and F ε
2 (λ) do not need

to have the monotonicity properties of F1(λ) and F2(λ).
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We have a solution that supposedly lies in W s(M2) and should approach M2 as
t → ∞. Yet, by the above-mentioned comparison argument, its Im and Ip components
satisfy, for a suitably chosen δ > 0,

(5.9) (Ibm(t), Iom(t), Iwm(t), Irm(t), Ibp(t), I
o
p (t), I

w
p (t), Irp (t)) ≥ δ exp(λ∗t) c.

This is clearly a contradiction, and so W s(M2) ∩ X0 = Φ. The positive number δ
is chosen so that (5.9) holds initially, which for some variables means at all times in
their initial intervals. For example, one requirement is that δ should satisfy Ibm0(θ) ≥
δ exp(λ∗θ)c1 for all θ ∈ [−τ ibo, 0], where c1 > 0 is the first component of c. Since
Ibm0(·) ∈ C[−τ ibo, 0], and since we noted earlier that we may translate forward in time
and assume that Ibm0(θ) > 0 for all θ ∈ [−τ ibo, 0], this and all other requirements are
clearly met if δ > 0 is sufficiently small.

We briefly discuss the proof that W s(M1)∩Y 0 = Φ, which is similar. If a solution
exists starting in Y 0 and in W s(M1), then the former implies that this solution has
one of its Sm components starting off not identically zero. Arguments similar to those
of the proof of Theorem 3.1 show that, for the full system (2.4)–(2.5), each Sm variable
eventually becomes and remains strictly positive. Without loss of generality, it may
be assumed that each Sm variable is strictly positive at all points of its initial interval,
and this makes it possible to choose the positive number δ̄ mentioned below. Since
this solution starts in W s(M1), all Sm, Im, and Ip components tend to zero as t → ∞.
For any ε > 0 it follows that, for t sufficiently large,

Ṡb
m ≥ (1− ε)B′

m(0)Sb
m + αs

rbd
s
rbS

r
m(t− τsrb)− (εβb

m + εβb
pm + dsbo + μb

ms)S
b
m

with similar inequalities for S0
m, Sw

m, and Sr
m. By another comparison argument, each

Sm variable is bounded below by the corresponding component of the solution of the
associated differential equation system. However, for a sufficiently small ε > 0, the
latter has a real positive dominant eigenvalue λ∗∗—this follows from the inequality

B′
m(0)

dsbo + μb
ms

> 1− αs
boα

s
owα

s
wrα

s
rbd

s
bod

s
owd

s
wrd

s
rb

(dsbo + μb
ms)(d

s
wr + μw

ms)(d
s
ow + μo

ms)(d
s
rb + μr

ms)
,

a consequence of (H2)—and corresponding solution δ̄ exp(λ∗∗t) c̄, where c̄ is a four-
dimensional vector with strictly positive components and δ̄ > 0 is chosen advanta-
geously. The rest of the argument proceeds as for the verification thatW s(M2)∩X0 =
Φ.

Theorem 5.1 now yields persistence of the disease, but we still need to establish
(5.1), i.e., that it persists in both the poultry and migratory bird populations. We
briefly sketch a proof that this is so. If the disease were to die out in the migratory
birds, then, by (4.5), it would die out in the poultry also. On the other hand, if it
were to die out in the poultry, then, by (2.5), it would die out in the migratory birds.
Both possibilities contradict the persistence just proved.

6. Discussions: Numerical simulations and extensions to including sea-
sonality.

6.1. Threshold and generic conditions. We have established the threshold
dynamics of the model system under a generic set of threshold conditions (4.5), (4.7),
and (5.5). This set of generic conditions is sharp in the sense that either the disease
extinction or the disease persistence occurs generically, and here “generic” means strict
inequalities. As an illustration, we carried out numerical simulations using parameter
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Table 1

The parameter definitions and values estimated from sources including Bourouiba et al. [6],
Gourley, Liu, and Wu [14], Javed et al. [18], and Prins and van Wieren [24].

Para Meaning Value

r birth rate of migration birds in patch b 0.009

K carrying capacity of migration birds in patch b 60000

kl = rb, bo, ow,wr

j = b, o, w, r

τskl journey time for susceptible migration birds from patch k to patch l 2 days

τ ikl journey time for infected migration birds from patch k to patch l 2 days

μkl
ms in-flight mortality for susceptible birds as they transit from patch k to l 0.05 day−1

μkl
mi in-flight mortality for infected birds as they transit from patch k to l 0.05 day−1

dskl departure rate of susceptible birds from patch k to l 0.01

dikl departure rate of infected birds from patch k to l 0.01

μj
ms death rate of susceptible birds in patch j 0.00132 day−1

μj
mi death rate of infected birds in patch j 0.0176 day−1

βj
m contact rates among migration birds in patch j variable

βj
pm contact rates between susceptible birds and infected poultry in patch j variable

βj
mp contact rates between susceptible poultry and infected birds in patch j variable

βj
p contact rates among poultry in patch j variable

Nb
p total number of poultry in patch b 1000000

No
p total number of poultry in patch o 500000

Nw
p total number of poultry in patch w 1000000

Nr
p total number of poultry in patch r 300000

μj
p mortality rate of infected poultry in patch j 1 day−1

values available in the literature [6, 14, 18, 24]. The parameters are defined in Table 1.
The birth function was chosen as b(Sb

m) = rSb
m(1 − Sb

m/K) (solutions always remain
below K; otherwise we assume B(Sm) = 0 if Sb

m ≥ K).
Figure 1 shows that if only migratory birds are considered in all patches and no

diseased migratory bird is introduced, then every nontrivial solution of system (4.3)
evolves to the positive equilibrium under Hypothesis (H1). If in addition inequality
(4.7) holds, then, as Figure 2 shows, the disease-free nontrivial equilibrium of the
system (again, with poultry absent) is stable and the disease dies out.

When the poultry is considered, Figure 3 illustrates a situation where (4.7) is
not satisfied (the last of the five inequalities does not hold), and in this case the
disease-free nontrivial equilibrium loses its stability and there is a disease outbreak.
See also Figures 4 and 5 to see how Hypotheses (H1), (H2) and inequalities (4.5),
(4.7), and (4.8) combined decide the outcome of H5N1 infection: either the disease-
free nontrivial equilibrium of system (2.4)–(2.5) is globally asymptotically stable or
the disease persists.

6.2. Seasonality and recurring outbreaks. The Poyang Lake region in Jiang-
xi Province, China, is one of the largest areas of fresh water in China, making it one
of the largest wintering sites for waterbirds in Asia, attracting tens of thousands of
migratory birds of more than 300 species [19]. The Poyang Lake National Nature
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Fig. 1. The solution of system (4.3) goes to the positive equilibrium if Hypothesis (H1) holds.
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Fig. 2. Stability with poultry absent. This figure demonstrates that if Hypothesis (H1) and
inequality (4.7) are satisfied, the disease-free nontrivial equilibrium of the system with poultry absent

is stable. Here βj
m = 5× 10−7 for each j = b, o, w, r.
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Fig. 3. Stability with poultry absent. This figure demonstrates that if inequality (4.7) is not

satisfied, there will be a disease outbreak. Here βb
m = 25× 10−7 and βj

m = 5× 10−7 for j = o, w, r.
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Fig. 4. This figure shows that if Hypotheses (H1), (H2) and inequalities (4.5), (4.7), and (4.8)
hold, then the disease-free nontrivial equilibrium of system (2.4)–(2.5) is globally asymptotically

stable. Here, βj
m = 5× 10−7, βp

j = 8× 10−7, βj
mp = βj

pm = 5× 10−9 for j = b, o, w, r.

Reserve was created in 1983 for migratory birds wintering in this region [19]. It
is also one of the densest areas of poultry farming in China, surrounded by about
10,000 square kilometers of farmland and more than 10 million people [28]. Poultry
farming typically includes backyard chickens and domestic ducks and geese [10, 33].
Densities of poultry around Poyang Lake can be as high as or higher than 100–250
heads of poultry per square kilometer (2007 data on avian influenza from [9]). It is in
the Poyang Lake region that Chen et al. [10] identified H5N1 infected ducks, which
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Fig. 5. This figure shows that if inequalities (4.5), (4.7), and (4.8) do not hold, then the
disease-free equilibrium of system (2.4)–(2.5) loses its stability and the disease persists. Here, the
parameter values are the same as in Figure 4 except that βb

m = 25× 10−7, βb
mp = βb

pm = 5× 10−8.

were labeled as “migratory.” This finding raised the question of the role of migratory
birds as silent spreaders of H5N1. The lack of proper identification of subspecies and
location of capture of the ducks were pointed out on several occasions as limitations
to the conclusion that the birds were indeed wild or migratory [12]. For example, the
migratory birds sampled around the lake were said to involve falcated teal, spotbill,
and mallard ducks; however, only the first is surely migratory, the second is a common
breeder around the lake, and mallards and their descendants are the most common
domesticated species released in the vicinity of the lake by local farmers [12].

The role of migratory wild birds in spreading and maintaining the endemicity of
H5N1 is still to some extent an open question, particularly due to conflicting evidence
of pathogenicity of H5N1 in domesticated and wild ducks [13]. In order to account
for this complex interplay between poultry and migratory birds in an area as dense as
Poyang Lake, we now apply the simplified model of four patches to migratory birds
wintering in the Poyang Lake region, where H5N1 is assumed to be endemic among
poultry. We proceed by first accounting for the seasonality of the migration, which
can be modelled by modifying the basic model (2.4) to allow temporal periodicity as
follows:

(6.1)

Ṡb
m = Bm(Sb

m, t) + αs
rb(t)d

s
rb(t− τsrb)S

r
m(t− τsrb)− βb

mSb
mIbm − βb

pmSb
mIbp

− dsbo(t)S
b
m − μb

msS
b
m,

İbm = αi
rb(t)d

i
rb(t− τ irb)I

r
m(t− τ irb) + βb

mSb
mIbm + βb

pmSb
mIbp − dibo(t)I

b
m − μb

miI
b
m,

Ṡo
m = αs

bo(t)d
s
bo(t− τsbo)S

b
m(t− τsbo)− βo

mSo
mIom − βo

pmSo
mIop − dsow(t)S

o
m − μo

msS
o
m,

İom = αi
bo(t)d

i
bo(t− τ ibo)I

b
m(t− τ ibo) + βo

mSo
mIom + βo

pmSo
mIop − diow(t)I

o
m − μo

miI
o
m,

Ṡw
m = αs

ow(t)d
s
ow(t− τsow)S

o
m(t− τsow)− βw

mSw
mIwm − βw

pmSw
mIwp − dswr(t)S

w
m − μw

msS
w
m,
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İwm = αi
ow(t)d

i
ow(t− τ iow)I

o
m(t− τ iow) + βw

mSw
mIwm + βw

pmSw
mIwp − diwr(t)I

w
m − μw

miI
w
m,

Ṡr
m = αs

wr(t)d
s
wr(t− τswr)S

w
m(t− τswr)− βr

mSr
mIrm − βr

pmSr
mIrp − dsrb(t)S

r
m − μr

msS
r
m,

İrm = αi
wr(t)d

i
wr(t− τ iwr)I

w
m(t− τ iwr) + βr

mSr
mIrm + βr

pmSr
mIrp − dirb(t)I

r
m − μr

miI
r
m.

Here, the time variable t is explicitly incorporated into the birth rate Bm(Sb
m, t)

at the breeding patch, the in-flight survival probabilities αs
c(t), α

i
c(t) (which are no

longer given by expressions of the form (2.3)), and the migration rates dsc(t) and dic(t)
between patches (c = rb, bo, ow,wr, respectively). For annual migration, we assume
these functions are all T -periodic in t. For now, we assume the migration functions are
all positive and continuous, as this will substantially simplify the discussions below.
Under the assumption that Bm(Sb

m, t) is a nonnegative continuous and uniformly
bounded function for all t ∈ R and Sb

m ≥ 0 (with Bm(0, t) = 0 for all t ∈ R), we
can use arguments similar to those in section 3 to establish the nonnegativity and
boundedness of solutions of system (6.1) coupled with (2.5) and subject to the initial
conditions from Y 0 satisfying (2.6).

As for the existence and global attractivity of a positive T -periodic solution of
the subsystem of migratory birds in the absence of disease infection, namely,

Ṡb
m = Bm(Sb

m, t) + αs
rb(t)d

s
rb(t− τsrb)S

r
m(t− τsrb)− dsbo(t)S

b
m − μb

msS
b
m,

Ṡo
m = αs

bo(t)d
s
bo(t− τsbo)S

b
m(t− τsbo)− dsow(t)S

o
m − μo

msS
o
m,

Ṡw
m = αs

ow(t)d
s
ow(t− τsow)S

o
m(t− τsow)− dswr(t)S

w
m − μw

msS
w
m,

Ṡr
m = αs

wr(t)d
s
wr(t− τswr)S

w
m(t− τswr)− dsrb(t)S

r
m − μr

msS
r
m,

(6.2)

we need to assume that the birth rate function Bm(Sb
m, t) is continuously differentiable

with respect to Sb
m, and we need to consider the spectral radius r(TM ) of the time-T

operator TM of the linearized system at the trivial equilibrium. If the birth rate
function Bm(Sb

m, t) is sublinear in the sense that Bm(λSb
m, t) > λBm(Sb

m, t) for all

λ ∈ (0, 1), Sb
m > 0, t ∈ R, we can conclude that when r(TM ) < 1 all solutions of

system (6.2) converge to zero, and when r(TM ) > 1 system (6.2) has a unique positive

T -periodic solution (Ŝb
m(t), Ŝo

m(t), Ŝw
m(t), Ŝr

m(t)) and every solution as specified above
converges to this periodic solution. This threshold dynamics for subsystem (6.2) can
be obtained using an argument similar to that of Theorem 3.2 in [14] based on a
general threshold dynamics theorem for order-preserving maps (Theorem 2.3.4 of [35,
p. 48]).

The argument for Theorem 4.2 can be adapted to establish the global attractivity
of the disease-free periodic solution (Ŝb

m(t), 0, Ŝo
m(t), 0, Ŝw

m(t), 0, Ŝr
m(t), 0, 0, 0, 0, 0) by

considering the linear periodic delay system

İbm = αi
rb(t)d

i
rb(t− τ irb)I

r
m(t− τ irb) + βb

mŜb
m(t)Ibm(6.3)

− (μb
mi + dibo(t))I

b
m + βb

pmŜb
m(t)Ibp,

İom = αi
bo(t)d

i
bo(t− τ ibo)I

b
m(t− τ ibo) + βo

mŜo
m(t)Iom

− (μo
mi + diow(t))I

o
m + βo

pmŜo
m(t)Iop ,

İwm = αi
ow(t)d

i
ow(t− τ iow)I

o
m(t− τ iow) + βw

mŜw
m(t)Iwm

− (μw
mi + diwr(t))I

w
m + βw

pmŜw
m(t)Iwp ,

İrm = αi
wr(t)d

i
wr(t− τ iwr)I

w
m(t− τ iwr) + βr

mŜr
m(t)Irm

− (μr
mi + dirb(t))I

r
m + βr

pmŜr
m(t)Irp ,
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İbp = βb
pN

b
pI

b
p + βb

mpN
b
pI

b
m − μb

pI
b
p,

İop = βo
pN

o
pI

o
p + βo

mpN
o
p I

o
m − μo

pI
o
p ,

İwp = βw
p N

w
p Iwp + βw

mpN
w
p Iwm − μw

p I
w
p ,

İrp = βr
pN

r
p I

r
p + βr

mpN
r
p I

r
m − μr

pI
r
p .

The stability of the above system is determined by the spectral radius r(TI) of the
time-T solution operator of the above linear periodic system of delay differential
equations. The comparison argument in Theorem 4.2 can be modified to show that

(Ŝb
m(t), 0, Ŝo

m(t), 0, Ŝw
m(t), 0, Ŝr

m(t), 0, 0, 0, 0, 0) is asymptotically stable if r(TI) < 1.
This is the periodic analogue of conditions (4.8) and (4.9). Unfortunately, we do not
have an explicit formula for the spectral radius r(TI) in terms of the model parameters.

When r(TM ) > 1 and r(TI) > 1, we have a nontrivial disease-free equilibrium
(Ŝb

m(t), 0, Ŝo
m(t), 0, Ŝw

m(t), 0, Ŝr
m(t), 0, 0, 0, 0, 0), which is unstable. A similar Hale–

Waltman persistence theorem for maps, rather than for semiflows, can be found in
Theorem 3 of [31] or Theorem 4.3 of [16] (see also Theorem 1.3.2 of [35]) and can be
used to establish the disease persistence.

Note that a particular migratory rate can be zero outside a certain season: this will
not affect the aforementioned conclusions but will require that initial data be restricted
so that the corresponding solutions eventually become positive. This delicate issue
was addressed in [14], and the idea of taking a quotient space away from the phase
space to ensure that all solutions become positive eventually works just as well for
the current model when disease compartments are included.

In the simulations that follow, we demonstrate the above discussions assuming
that the wintering patch is the Poyang Lake area, where frequent contact between
migratory birds and farmed poultry is common [12]. The estimate of the migratory
birds in this area is based on the surveys by Barter et al. [1] and Ji et al. [19] in the
Poyang Lake area. The authors of [1] reported 138,643 waterbirds of multiple species
in the province of Jiangxi in 2005. The authors of [19] reported an estimate in the
range of 131,586 (2002) to 423,711 (2005) birds of dominant and common species. We
focus on the common teal, Anas crecca, which has a wide range of spread worldwide
with a global population of 5,900,000–6,900,000birds [3]. More specifically, [1] counted
8,791 (2004) common teals wintering in Jiangxi, while [19] reported 11,007 (2005) and
13,800 (2006) common teals wintering in the Poyang Lake Nature Reserve. Common
teals were recently confirmed to migrate north after wintering in the Poyang Lake
area and can be observed to travel as far as 2,700 km from their wintering ground,
with roughly the following seasonal cycles: 120 days (November 16 to March 15) in
the wintering patch surrounding Poyang Lake; 61 days of spring migration (March 16
to May 15); 123 days on the breeding patch (May 16 to September 15), and 61 days
of fall migration (September 16 to November 15) [32]. They were observed to fly
comfortably at air speeds of 12–13.5 ms−1 in wind tunnels [23]. An average flight
speed of 12.75 ms−1 combined with a total distance of migration of 2,700 km leads to
an estimated total flight time, between breeding and wintering patches or vice versa,
of 2.45 days. Of the 61 day total duration of either migration, 58.55 days is therefore
spent on the stopover patch for the migration.

The clutch size of the common teal is estimated to be 10 eggs, leading to r =
0.0146 (for breeding over 123 days). Adult bird size is roughly 343 g with a short
maturation time of 180 days for both female and male [11]. Survival of healthy birds
in the region examined is difficult to estimate, but with use of the survival to body
mass curve of Schekkerman and Slaterus [27] we estimate a 0.45 annual survival rate
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of healthy birds (μms = 2.2 × 10−3 day−1). Concerning the H5N1 infected teals, we
refer to various sources of inoculation studies of wild birds (e.g., [8, 20]) combined,
for example, in Bourouiba, Teslya, and Wu [5] for a duck species of small size. In
Bourouiba, Teslya, and Wu [5] a susceptible-asymptotic-infected-recovered (SAIR)
epidemic model modelling the highly pathogenic avian influenza (HPAI) infection
of wood ducks was considered with two infectious stages of increasing associated
force of infection. These were associated with a mean duration of infectious period
of 9.86 days, transmission parameter in the range βm = 1.5–3 × 10−3 day−1, and
death rate of infected migratory birds of 0.133 day−1 [5, 8], leading to a removal
rate of infectious migratory birds of μmi = 0.23 day−1, which will be used in the
present simulations. On the other hand, the study of Roche et al. [25] focusing on the
persistence of avian influenza in wildlife used transmission parameters in the range
βm = 5× 10−5–0.1 year−1. We used values of βm in the range that is discussed in the
previous literature.

The densities of poultry in the area where common teals were surveyed is con-
sidered to be 100 to 250 poultry per square kilometer. When considering the bird
protection area of Poyang Lake, which measures 224 km2, these densities correspond
to 22,400 to 56,000 poultry on the wintering ground. The density of poultry along
the migratory route (passing by the region of Shenyang and North Korea) remains
comparable to that surrounding Poyang Lake; hence we consider similar numbers of
poultry on the migratory route. However, on the northernmost breeding areas (teals
and wigeons) in Russia and Siberia there was clearly a drop of density of poultry
[9, 32]; hence, no poultry is considered on the breeding ground. Concerning the dis-
ease dynamics of HPAI, Bouma et al. [4] estimated various transmission parameters
for poultry. These were determined from inoculation experiments using HPAI H5N1.
Pairs of chickens, one directly inoculated with HPAI H5N1, and the other infected
by H5N1 through contact, were examined. The estimated transmission parameter
of HPAI in poultry is 4.78 × 10−4–0.4 day−1 [4, 17]. The mean infectious period of
contact-infected birds of μp = 1/2.5 day−1 [4]. Note that the cross-species transmis-
sion parameters βpm and βmp are assumed to be smaller than those characterizing
transmission within a species. We assume that βmp = βpm = βm/10.

Figures 6 and 7 show the dynamics of the migratory bird population in the ab-
sence of poultry. In the absence of avian influenza, the solutions of the subsystem of
migratory birds converge to a positive solution. In the presence of avian influenza
introduced by migratory birds, the system either evolves to a stable disease-free
periodic solution (Figure 6) or the migratory bird population becomes extinct, which
happens, for example, when βm = 1.5× 10−3 day−1 (not shown). In contrast to the
situation in [14], nonperiodic disease persistent solutions are also observed for trans-
mission coefficients moderately large; however, this particular regime is particularly
sensitive to changes in parameter values (Figure 7).

Figure 8 shows the convergence of the migratory bird subsystem to a periodic
solution with disease persistence induced by the endemicity of the disease in poultry
in the wintering patch. We find that the periodicity of the number of infected poultry
as migratory birds return during the year is possible. In turn, it is the endemicity
of poultry on the wintering patches that is sustaining the epidemic in the migratory
bird population.

6.3. Environmental contamination and other factors. In this paper we
use only direct transmission models. Breban et al. [7] examine the additional role of
environmental transmission, i.e., virions in the environment that have been shed by
infectious birds. Although environmental transmission rates are hundreds of times
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Fig. 6. Number of susceptible migratory birds over 10 years in the absence of poultry. The left
plot shows the situation when no infected migratory birds are introduced (Iwm(0) = 0, Sw

m(0) = 8800),
and the right one shows the situation when Iwm(0) = 1000, Sw

m(0) = 7800. In both cases parameters
are such as to result in evolution to a disease-free periodic solution. Here, βm = 2.3× 10−5 day−1,
r = 15,000, γ = 0.0146 day−1, μms = 0.0022 day−1, and μmi = 0.23 day−1. The death rates in
flight are taken to be equal to those on land.
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Fig. 7. Number of susceptible (left) and infected (right) migratory birds over 100 years in
the absence of poultry showing disease persistence and appearance of nonperiodic oscillation of the
number of migratory birds. Here, Iwm(0) = 10, Sw

m(0) = 8800, βm = 1.5 × 10−4 day−1, r = 15,000,
γ = 0.0146 day−1, μms = 0.0022 day−1, and μmi = 0.23 day−1. The death rates in flight are taken
to be equal to those on land.

lower than direct transmission rates, it is known that the virions can persist in the
environment for a long time. Indeed, environmental transmission apparently pro-
vides a possible persistence mechanism in situations where an epidemic would not be
sustained by direct transmission alone [7, 22]. The model setting in our study here
does not incorporate the environmental contamination and thus may underestimate
the likelihood of an outbreak for a given set of parameter values. How to extend
our model and analysis to address the role of environmental transmission in avian
influenza spread would be an interesting challenge for future study.

6.4. Poultry trading. Iwami et al. [17] considered the effect of the illegal trade
of poultry on the efficiency of the control of avian influenza outbreaks. In their
model, only poultry was considered and the trade was accounted for with movement
of poultry between two patches characterized by two different control configurations
showing that only the complete eradication in the vaccinated area can lead to the
complete eradication in the connected other area.
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Fig. 8. Number of infected poultry on endemic farmed patches (top) and number of susceptible
and infected migratory birds showing the persistence of the disease and convergence to periodic
solutions (bottom). Here, Iwm(0) = 0, Sw

m(0) = 8800, Iwp (0) = 224, Np = 22,400 on all patches except

the breeding patch, which is assumed to be poultry free, βm = 2.14 × 10−5 day−1, r = 15,000, γ =
0.0146 day−1, μms = 0.0022 day−1, μmi = 0.23 day−1, μp = 0.4 day−1, and βp = 1.9×10−5 day−1.

Incorporating the poultry trade network into our model system (2.4)–(2.5) is
possible by modelling the movement of infected poultry birds among the patches
under consideration. Detailed analysis and simulations would, however, require real
data about the poultry trade network and would be an interesting area for further
investigation.
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