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ON THE USE OF RIGID BODY MODES IN THE DEFLATED

PRECONDITIONED CONJUGATE GRADIENT METHOD

T.B. JÖNSTHÖVEL†, M.B. VAN GIJZEN, C. VUIK‡, AND A. SCARPAS†

Abstract. Large discontinuities in material properties, such as encountered in composite mate-
rials, lead to ill-conditioned systems of linear equations. These discontinuities give rise to small
eigenvalues that may negatively affect the convergence of iterative solution methods such as the
Preconditioned Conjugate Gradient (PCG) method. This paper considers the Deflated Precon-
ditioned Conjugate Gradient (DPCG) method for solving such systems. Our deflation technique
uses as the deflation space the rigid body modes of sets of elements with homogeneous material
properties. We show that in the deflated spectrum the small eigenvalues are mapped to zero and
no longer negatively affect the convergence. We justify our approach through mathematical anal-
ysis and we show with numerical experiments on both academic and realistic test problems that
the convergence of our DPCG method is independent of discontinuities in the material properties.

1. Introduction

Finite element computations are indispensable for the simulation of material behavior. Recent
developments in visualization and meshing software give rise to high-quality but very large meshes.
As a result, large systems with millions of degrees of freedom need to be solved. In our application,
the finite element stiffness matrix is symmetric, positive definite and therefore the Preconditioned
Conjugate Gradient (PCG) method is the method of choice. The PCG method is also well suited
for parallel implementations which are needed in practical applications.

Many finite element computations involve simulation of inhomogenous materials. The difference
in properties of materials lead to large jumps in the entries of the stiffness matrix. We have shown
in [8] that these jumps slow down the convergence of the PCG method. By decoupling those
regions with a deflation technique a more robust PCG method can be constructed: the Deflated
Preconditioned Conjugate Gradient (DPCG) method.

The deflation based preconditioners have successfully been applied within the field of computa-
tional fluid dynamics, with excellent results on problems with discontinuous jumps in coefficients
[16], [5],[15]. We extend the technique of subdomain deflation, introduced in [13], to rigid body
modes deflation to remove the effect of the rigid body modes from the linear system. The concept of
using rigid body modes to speed up computations has been widely used in algebraic multigrid meth-
ods [18], [7] and the FETI framework [11], [10]. However, in this paper we present a new deflation
strategy of using rigid body modes based on the underlying geometry and the physical properties
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of the problem. Moreover, we note that as far as we know this is the first successful application of
deflation based preconditioning applied to coupled systems of partial differential equations.

In [8] we showed there is a correlation between the number of rigid body modes of sub-bodies
of materials contained within the FE mesh and the number of small eigenvalues of the stiffness
matrix. We used rigid body modes combined with existing deflation techniques to remove those
small eigenvalues from the spectrum of the stiffness matrix. We introduced the DPCG method that
uses deflation vectors that contain the rigid body modes of sets of elements with similar properties.
In this paper we will show how to choose these sets of elements and provide a mathematical
justification of this choice. We will derive a cheap and general applicable method to compute those
rigid body modes. Finally, we will present numerical experiments on composite materials to validate
our results.

2. Problem definition: composite materials

Until recently, because of the extremely long execution time, memory and storage space demands,
the majority of FE simulations of composite materials were performed by means of homogenization
techniques [4]. Unfortunately these techniques do not provide an understanding of the actual
interaction between the components of the material. Nevertheless, it is known that component
interaction is the most critical factor in determining the overall mechanical response of the composite
material.

In this paper, we consider asphalt concrete as an example of a composite material. It consists of
a mixture of bitumen, aggregates and air voids. Obviously the difference between the stiffness of
bitumen and the aggregates is significant, especially at high temperatures.

We obtain accurate finite element meshes of the asphalt concrete materials by means of Computed
Tomography (CT) X-ray scans and additional, specialized software tools like Simpleware ScanFE
[14].

We use the computational framework described in [4] to simulate the response of a composite
material that is subjected to external forces by means of small load steps. By using the FE method
we obtain the corresponding stiffness matrix. Solving linear system (1),

(1) Ku = f

is the most time consuming computation of the FE simulation. In this equation u represents the
change of displacement of the nodes in the FE meshes and f the force unbalance in the system,
which is determined by the difference of the internal forces within the system and the external
forces exerted on the system. The internal forces are computed by solving non-linear equations for
each finite element. The computing time and costs are negligible compared to solving linear system
(1). The stiffness matrix K is symmetric positive definite for elastic, constrained systems, hence
∀u �= 0 : uTKu > 0 and all eigenvalues of K are positive. Within the context of mechanics, 1

2u
TKu

is the strain energy stored within the system for displacement vector u, [1]. Energy is defined as a
non-negative entity, hence the strain energy must be non-negative also.

3. On theory of DPCG

3.1. Motivation of rigid body modes deflation. We have shown in [8] that the number of
iterations to convergence for preconditioned CG is highly dependent on the number of aggregates
in a mixture as well as the ratio of the E moduli. Increasing the number of aggregates introduces
correspondingly more (clustered) small eigenvalues in stiffness matrixK. The jumps in the E moduli
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are related to the size of the small eigenvalues. We know from [17] that the smallest eigenvalues
correspond to the slowly converging components of the solution.

When a matrix Kunc represents a rigid body, i.e., an unconstrained mechanical problem (with
no essential boundary conditions) the strain energy equals zero for the rigid body displacements
as the system remains undeformed and the matrix is positive semi-definite, ∀u : uTKuncu ≥ 0.
More specifically, the number of rigid body modes of any unconstrained volume equals the number
of zero-valued eigenvalues of its corresponding stiffness matrix. When a matrix has zero-valued
eigenvalues the kernel N (A) is non-trivial. Moreover the basis vectors of the kernel of a stiffness
matrix represent the principal directions of the rigid body modes. In general, two types of rigid
body modes exist: translations and rotations. In three dimensions this implies six possible rigid
body modes and hence six kernel vectors can be associated with the rigid body modes.

For any finite element computation we consider subsets of unconstrained elements as rigid bodies.
Their corresponding (sub) stiffness matrices are assemblies of the element stiffness matrices. In the
context of asphalt concrete the aggregates are sub-sets of elements, with their E modulus as a
shared property, as well as the bitumen and the air voids.

In [8] we conclude that the number of aggregates times the number of rigid body modes per
aggregate (6 in three dimensions) is equal to the number of small eigenvalues of stiffness matrix
K. By using the deflation technique we augment the Krylov subspace with pre-computed rigid
body modes of the aggregates and remove all corresponding small eigenvalues from the system. As
a result the number of iterations of the Deflated Preconditioned Conjugated Gradient method is
nearly not affected by jumps in material stiffness or by the number of aggregates.

3.2. Recursively Deflated PCG. For the description of deflation we split the solution of (1) into
two parts [5]

(2) u =
�
I − PT

�
u+ PTu,

and let us define the projection P by,

(3) P = I −KZ(ZTKZ)−1ZT, Z ∈ Rn×m

where Z is the deflation subspace, i.e., the space to be projected out of the system, and I is
the identity matrix of appropriate size. We assume that m � n and Z has rank m. Under this
assumption Kc ≡ ZTKZ is symmetric positive definite and may be easily computed and factored.
Hence,

(4)
�
I − PT

�
u = ZK−1

c ZTKu = ZK−1
c ZTf

can be computed immediately. We only need to compute PTu. Because KPT is symmetric,

(5) KPT = PK,

we solve the deflated system,

(6) PKû = Pf

for û using the CG method and multiply the result by PT. We should note that (6) is singular.
However, the projected solution PTû is unique, it has no components in the null space, N (PK) =
span{Z}. Moreover, from [9], [17] we learn that the null space of PK never enters the iteration
process and the corresponding zero-eigenvalues do not influence the solution.

The definition of P given by (3) does not provide insight in the effect of individual deflation
vectors on the spectrum of PK. The next theorem defines a recursive deflation operator which
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can be used for more extensive eigenvalue analysis of PK. Moreover, it will justify our choice of
deflation vectors on which we elaborate later.

Definition 3.1. P (k) = I −KZk(ZT
k KZk)−1ZT

k with Zk = [Z̃1, Z̃2, ..., Z̃k], where Z̃j ∈ Rn×lj and
has rank lj.

Theorem 3.1. Let P (k) and Zk as in Definition 3.1, then P (k)K = PkPk−1 · · ·P1K where Pi+1 =
I − K̃iZ̃i+1(Z̃T

i+1K̃iZ̃i+1)−1Z̃T
i+1, K̃i = PiK̃i−1, K̃1 = P1K, K̃0 = K, Z̃T

i K̃i−1Z̃T
i and ZT

i KZi are
non-singular because Zi are of full rank and K is a symmetric positive definite matrix.

Proof. by induction,

i. show P1K = P (1)K where Z1 = Z̃1 ∈ Rn×l1 ,
ii. assume Pi−1K̃i−2 = K̃i−1 = P (i−1)K where Zi−1 = [Z̃i−1, Z̃i−2, · · · , Z̃1], show that

PiK̃i−1 = P (i)K where Zi = [Z̃i, Zi−1], Zi−1 ∈ Rn×l(i−1), Z̃i ∈ Rn×li and l =
�i

r=i li.

For the start of the induction we have to prove [i.]. The induction hypothesis is given by [ii.]. We
first show that P1K = P (1)K,

P1K = K −KZ̃1(Z̃
T
1 KZ̃1)

−1Z̃T
1 K

= K −KZ1(Z
T
1 KZT

1 )
−1ZT

1 K

= P (1)K.

which implies that (i.) is proved. For (ii.) we assume Pi−1K̃i−2 = P (i−1)K, and prove that this
implies PiK̃i−1 = P (i)K,

P (i)K = K −KZi(Z
T
i KZi)

−1ZT
i K

= K −
�
KZi−1 KZ̃i

��� ZT
i−1

Z̃T
i

� �
KZi−1 KZ̃i

��−1 �
ZT
i−1K
Z̃T
i K

�

= K −
�
KZi−1 KZ̃i

�
E−1

�
ZT
i−1K
Z̃T
i K

�
(7)

where,

E =

�
ZT
i−1KZi−1 ZT

i−1KZ̃i

Z̃T
i KZi−1 Z̃T

i KZ̃i

�

The matrix E =

�
E11 E12

E21 E22

�
is a symmetric 2x2 block matrix. Its inverse is defined as follows

[12],

E−1 =

�
E−1

11 + E−1
11 E12(E22 − E21E

−1
11 E21E

−1
11 ) −E−1

11 E12(E22 − E21E
−1
11 E12)−1

−(E22 − E21E
−1
11 E12)−1E12E

−1
11 (E22 − E21E

−1
11 E−1

12 )−1

�

with,

Ψ = Z̃T
i KZ̃i − Z̃T

i KZi−1

�
ZT
i−1KZi−1

�−1
ZT
i−1KZ̃i
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it follows that

(E−1)11 =
�
ZT
i−1KZi−1

�−1
+
�
ZT
i−1KZi−1

�−1
ZT
i−1KZ̃iΨ

−1Z̃T
i KZi−1

�
ZT
i−1KZi−1

�−1

(E−1)12 = −
�
ZT
i−1KZi−1

�−1
ZT
i−1KZ̃iΨ

−1

(E−1)21 = −Ψ−1Z̃T
i KZi−1

�
ZT
i−1KZi−1

�−1

(E−1)22 = Ψ−1

substitute this into (7) leads to,

P (i)K = K −
�
KZi−1 KZ̃i

� � E−1
11 ZT

i−1K + E−1
12 Z̃T

i K
E−1

21 ZT
i−1K + E−1

22 Z̃T
i K

�

= K −

�
KZi−1E

−1
11 ZT

i−1K +KZi−1E
−1
12 Z̃T

i K +KZ̃iE
−1
21 ZT

i−1K +KZ̃iE
−1
22 Z̃T

i K
�

= K −KZi−1

�
ZT
i−1KZi−1

�−1
ZT
i−1K(8)

−KZi−1

�
ZT
i−1KZi−1

�−1
ZT
i−1KZ̃iΨ

−1Z̃T
i KZi−1

�
ZT
i−1KZi−1

�−1
ZT
i−1K

+KZi−1

�
ZT
i−1KZi−1

�−1
ZT
i−1KZ̃iΨ

−1Z̃T
i K

+KZ̃iΨ
−1Z̃T

i KZi−1

�
ZT
i−1KZi−1

�−1
ZT
i−1K

−KZ̃iΨ
−1Z̃T

i K

In order to show PiK̃i−1 = P (i)K we now elaborate PiK̃i−1,

PiK̃i−1 = K̃i−1 − K̃i−1Z̃i

�
Z̃T
i K̃i−1Z̃i

�−1
Z̃T
i K̃i−1

= P (i−1)K − P (i−1)KZ̃i

�
Z̃T
i P

(i−1)KZ̃i

�−1
Z̃T
i P

(i−1)K

= K −KZi−1

�
ZT
i−1KZi−1

�−1
ZT
i−1K

−

�
K −KZi−1

�
ZT
i−1KZi−1

�−1
ZT
i−1K

�
Z̃i ·

�
Z̃T
i

�
K −KZi−1

�
ZT
i−1KZi−1

�−1
ZT
i−1K

�
Z̃i

�−1
·

Z̃T
i

�
K −KZi−1

�
ZT
i−1KZi−1

�−1
ZT
i−1K

�

= K −KZi−1

�
ZT
i−1KZi−1

�−1
ZT
i−1K

−

�
KZ̃i −KZi−1

�
ZT
i−1KZi−1

�−1
ZT
i−1KZ̃i

�
·Ψ−1

·

�
Z̃T
i K − Z̃T

i KZi−1

�
ZT
i−1KZi−1

�−1
ZT
i−1K

�

= K −KZi−1

�
ZT
i−1KZi−1

�−1
ZT
i−1K(9)

−KZi−1

�
ZT
i−1KZi−1

�−1
ZT
i−1KZ̃iΨ

−1Z̃T
i KZi−1

�
ZT
i−1KZi−1

�−1
ZT
i−1K

+KZi−1

�
ZT
i−1KZi−1

�−1
ZT
i−1KZ̃iΨ

−1Z̃T
i K

+KZ̃iΨ
−1Z̃T

i KZi−1

�
ZT
i−1KZi−1

�−1
ZT
i−1K

−KZ̃iΨ
−1Z̃T

i K
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note that (8) and (9) are identical, so PiK̃i−1 = P (i)K.
�

Theorem 3.1 provides us with a theoretical framework in which we construct the deflation vectors.
We will see that by subsequently adding rigid body modes of particular sets of elements to the
deflation space the number of small eigenvalues of the deflated system is smaller compared to the
non-deflated system.

3.3. Condition numbers of Deflated matrices. Let us denote the ith eigenvalue of K in non-
decreasing order by λi(K) or simply by λi. Theorem 10.2.6 in [6] provides a bound on the error of
CG. After k iterations of the CG method, the error is bounded by,

�u− uk�K ≤ 2�u− u0�K

�√
κ− 1

√
κ+ 1

�k

where κ = κ(K) =
λn

λ1
is the spectral condition number of K, and the K-norm of u is given by

�u�K =
√
uTKu.

To obtain a useful bound for the error of CG for positive semi-definite matrices we define the
effective condition number of a semi-definite matrix D ∈ Rn×n with corank m to be the ratio of
the largest and smallest positive eigenvalue,

(10) κeff(D) =
λn

λm+1
.

Theorem 2.2 from [5] here repeated as Theorem 3.2 implies that a bound on the condition number
of P (k)K can be obtained.

Theorem 3.2. Let P (k) as defined in Definition 3.1 and suppose there exists a splitting K = C+R
such that C and R are symmetric positive semi-definite with N (C) = span{Zk} the null space of
C. Then for ordered eigenvalues λi,

(11) λi(C) ≤ λi(P
(k)K) ≤ λi(C) + λmax(P

(k)R).

Moverover, the effective condition number of P (k)K is bounded by,

(12) κeff(P
(k)K) ≤

λn(K)

λm+1(C)
.

Proof. See [5] (p445). �
The large discontinuities in matrix entries due to strongly varying material properties in the

FE discretization induce unfavorable eigenvalues (either large or small) in the spectrum of stiffness
matrix K. The effective condition number of P (k)K is bounded by the smallest eigenvalue of
C and the largest eigenvalue of K. To remove the discontinuities and thus eliminating those
unfavorable eigenvalues we decouple the sub-matrices of stiffness matrix K that correspond to
different materials by finding the correct splitting. The eigenvalues of the decoupled sub-matrices
determine the spectrum of P (k)K. However, due to the large differences in stiffness the value
of the eigenvalues for different sub-matrices can vary over several order of magnitudes. We use a
preconditioner to map the spectra of the sub-matrices onto the same region, around 1. The deflation
technique can be used in conjunction with ordinary preconditioning techniques such as diagonal
scaling or Incomplete Cholesky factorization. This is a two-level approach, treating the smallest
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eigenvalues and largest eigenvalues by deflation and preconditioning respectively. By choosing a
smart combination of deflation and preconditioning a more favorable spectrum is obtained, yielding
a smaller condition number and less iterations. For a symmetric preconditioner M = LLT, e.g.
diagonal scaling, we extend the result of Theorem 3.2 to

(13) κeff(L
−1P (k)KL−T ) ≤

λn(L−1KL−T )

λm+1(L−1CL−T )
.

4. Recursive Deflation for FE problems

4.1. Recursive Deflation strategy. In this section we introduce a strategy to construct the
deflation space Zj for P (j)K of Definition 3.1 to obtain decoupled problems using Theorems 3.2
and 3.1. Our starting point is by observing that null spaces of sets of elements are represented by
the rigid body modes of those sets of elements. By choosing sets of elements we define C and the
nullspace of C is our deflation space, which is by definition spanned by the rigid body modes. In
Appendix A an algorithm is given for computing rigid body modes of sets of elements.

We have an arbitrary FE mesh Ω consisting of elements ei, i = 1, ..., n and m materials, sorted
by decreasing stiffness. We will elaborate on the importance of the ordering by material stiffness
in Section 4.2. Material j of the FE mesh can have multiple bodies jk which is the collection of
connected elements that share the same material property. We note that each body of material
induces a jump in the entries of the stiffness matrix of which the size depends on the differences
in stiffness of the corresponding materials. Hence it is important to distinguish all bodies of all
materials as we want to decouple those regions in the stiffness matrix. The set of elements that makes
up a body l of the material j is defined as Ωl

j , where Ω =
�m

j=1{
�jk

l=1 Ω
l
j}. Let I = {i : ei ⊂ Ω}

be defined as the index set of Ω. The index set of Ωl
j is Il

j =
�
i : ei ⊂ Ωl

j

�
. We also define index

set I
l,Γ
j =

�
i :

�
ei ⊂ Ω\Ωl

j

�
∧
�
ei ∩ ek �= ∅, ∀ek ⊂ Ωl

j

��
, which contains all indices of the elements

of Ω\Ωl
j that are connected to (the boundary elements of) Ωl

j .
Start with material j = 1 and body l = 1, which corresponds to sub-mesh Ω1

1. This yields the
first splitting:

K̃0 = A = C0 +R0

C0 =
�

i∈I1
1

NT
eiKeiNei +

�

i∈I\{I1,Γ
1 ∪I1

1}

NT
eiKeiNei

R0 =
�

i∈I1,Γ
1

NT
eiKeiNei

The matrix C0 consists of the assembly of all finite elements that belong to body l = 1 of material
j = 1. Matrix Kei is the element stiffness matrix of element ei with corresponding connectivity
matrix Nei .The matrix R0 consists of the assembly of all finite elements that share nodes with
the elements on the boundary of body l = 1 of material j = 1 but that are not contained within
sub-mesh Ω1

1. The first splitting yields, N (C0) = Z̃1 and P1 = I − Ã0Z̃1(Z̃T
1 Ã0Z̃1)−1Z̃T

1 . By
this splitting we have decoupled the first body of material 1 from all other materials. The rigid
body modes of all elements corresponding to the first body of material 1 are contained in N (C0).
We construct Ã1 = P1A = P1(C0 + R0) = P1C0 + P1R0 = C0 + R̃0, where P1C0 = C0 follows
by definition of P1. Continuing with the second body of material 1 and repeating the previous
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decoupling step gives

K̃1 = P1A = C0 + R̃0 = C1 +R1 + R̃0

C1 =
�

i∈I1
1

NT
eiKeiNei +

�

i∈I2
1\I

1,Γ
1

NT
eiKeiNei +

�

i∈I\
�2

l=1{I
l,Γ
1 ∪Il

1}

NT
eiKeiNei

R1 =
�

i∈I2,Γ
1 \I1,Γ

1

NT
eiKeiNei

Hence, N (C1) = Z̃2 and P2 = I − Ã1Z̃2(Z̃T
2 Ã1Z̃2)−1Z̃T

2 . Continue for all bodies and materials. At
splitting m =

�n−1
j=1 jk + l for material n and body l,

K̃m−1 = Cm−2 + R̃m−2 = Cm−1 +Rm−1 + R̃m−2

Cm−1 =
n−1�

q=1

�
qk�

r=1

�
�

i∈P
NT

eiKeiNei

��

+
l�

r=1

�
�

i∈C
NT

eiKeiNei

�

+
�

i∈U
NT

eiKeiNei

Rm−1 =
�

i∈B
NT

eiKeiNei

where,

P = I
r
q \






q−1�

j=1

jk�

s=1

I
s,Γ
j






C = I
r
n\






n−1�

j=1

jk�

s=1

I
s,Γ
j




 ∪

�
l−1�

s=1

I
s,Γ
n

�

U = I\

�
n−1�

q=1

�
qk�

r=1

I
r,Γ
q ∪ I

r
q

��
∪

�
l�

r=1

I
r,Γ
n ∪ I

r
n

�

B = I
l,Γ
n \






n−1�

j=1

jk�

s=1

I
s,Γ
j




 ∪

�
l−1�

s=1

I
s,Γ
n

�

Hence, N (Cm−1) = Z̃m and Pm−1 = I − K̃m−1Z̃m(Z̃T
mK̃m−1Z̃m)−1Z̃T

m = P with P = I −

AZ(ZTAZ)−1ZT and span{Z} =
�m

j=1 span{Z̃j}. The above expression for K̃m−1 is rather com-
plex. We have divided the index sets needed for assembly of Cm−1 and Rm−1 into 4 sub-sets, P, C,
U and B. The set P contains all element indices that belong to body r of material q except for all
elements that are included in boundary element sets of previously assembled materials and bodies.
The set C contains all the element indices that belong to body r of current material n except for all
elements that are included in boundary element sets of previously assembled materials and bodies,
and the l − 1 assembled bodies of the current material. The set U contains all the element indices
that belong to materials and bodies that have not been assembled yet. The set B contains all
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element indices that belong to elements that lie against the boundary of body l of current material
n but without all elements that are contained within boundary sets of previously assembled bodies
and materials.

4.1.1. Illustrative example: 1D Poisson equation. The main results of this paper are on 3D me-
chanical problems. However, the general deflation theory and strategy provided can be applied to
any FE problem. We will illustrate the effect of the deflation operator on the 1D Poisson equation
with discontinuous coefficients. For this case deflation is easier to understand and analyze when
compared to 3D mechanical problems. The 1D Poisson equation reads,

−
d

dx

�
c(x)

du(x)

dx

�
= f(x), x ∈ [0, l](14)

u(0) = 0,
du

dx
(l) = 0(15)

where c(x) is a given piecewise constant function, u(x) the unknown displacement field and f(x)
the given source term.

We discretize Equation (14) with the finite element method using linear first-order shape func-
tions and equally spaced elements of size h. It is well known that in this particular case the finite
element stencil for the 1D Poisson equation reads,

(16)

�
c(xi) −c(xi+1)
−c(xi) c(xi+1)

�

Introduce a FE mesh for the line [0, l] including 3 domains Ω1 = {x1, .., x4}, Ω2 = {x5, .., x8}

and Ω3 = {x9, .., x13}.
For sake of simplicity we will write ci = c(xi) where i = 1, ..., 13, x1 = h and x13 = l. Furthermore

because ci is constant on each material domain we will use ci = c1, ci = c2 and ci = c3 on Ω1, Ω2

and Ω3 respectively.
After discretization we obtain,

(17) Ku = hf(x)

where,

K =
1

h





2c1 −c1

−c1

. . .
. . . ∅

. . . 2c1 −c1
−c1 c1 + c2 −c2

−c2

. . .
. . .

. . . 2c2 −c2
−c2 c2 + c3 −c3

−c3

. . .
. . .

∅
. . . 2c3 −c3

−c3 c3





and u =
�
u1, u2, ..., u13]T

�
, x =

�
x1, x2, ..., x13]T

�
. The stiffness matrix K of Equation (17) is

preconditioned by M � K. In this example we take M = diag(K).
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Figure 1. spectrum of M−1K where [c1, c2, c3] = [1, 104, 108].
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Figure 2. sparsity pattern C0, C1 and C2. Nonzero elements represented by sym-
bols; corresponding to deflated material, interface elements and remaining elements
pictured by bold crosses, circles and non bold crosses respectively.

The spectrum of M−1K is given by Figure 1. Clearly the smallest eigenvalue, which is of
O
�
10−10

�
and induced by the (only real) rigid body contained in the mesh, is much smaller com-

pared to the other eigenvalues. Moreover, it affects the condition number of M−1K. Now we apply
the deflation strategy by finding a correct splitting of K. We sort the materials in decreasing order
of diffusion. Figure 2 shows the sparsity pattern of the three splitting matrices C0, C1 and C2. In
matrix C0 the assembly of the elements belonging to stiffest material 3, is represented by the bold
crosses. The interface between weaker material 2 and 3, which goes to R0 , is represented by the
circles and all other elements are represented by the non bold crosses. The second splitting is the
decoupling of material 2 from the system, again those elements are represented by the bold crosses.
The interface between material 2 and 3 has been removed already, the interface between material
2 and 1 goes to R1. The remaining splitting is the decoupling of material 1 from the boundary
conditions which go to R2.
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Figure 3. spectrum of M−1Ci (� correct, +++ wrong choice deflation vectors) com-
pared to spectrum of M−1K (+)

4.2. Deflation vectors in the neighborhood of a jump. If some elements of a less stiff material
are assigned to the element set of a stiffer material, the material stiffness matrices are not decoupled.
We illustrate this with a simple example. When a node belongs to two elements and two different
materials and is assigned to the wrong (least stiff) element with respect to the splitting of K, then
by applying the preconditioner the coupling between the stiffness matrices remains. For instance,
the 1D Poisson problem and preconditioning based on diagonal scaling, the entry on the main
diagonal is c1 + c2, with c1 � c2. Clearly, when decoupled correctly, we have in splitting of K
only c2 on the main diagonal of C, hence M−1C gives c2

c1+c2
≈ 1. With a wrong choice of deflation

vectors, we have c1 on the main diagonal of C, hence M−1C gives c1
c1+c2

≈
1
c2

� 1. However all

other terms on the diagonal of M−1C will be approximately 1, introducing small eigenvalues for
this material and unfavorable local spectrum of eigenvalues of M−1C.

4.2.1. Illustrative example: 1D Poisson equation (continued). We illustrate the effect of incorrect
decoupling by analyzing the spectrum of the splitting matrices for the 1D Poisson equation. Figure
3 shows the spectrum of M−1Ci for the correct (star) and wrong (bold cross) choice of deflation
vectors compared to the spectrum of M−1K. After applying three deflation operations, we observe
from the spectrum of M−1C2 that the smallest eigenvalue of the wrong choice of deflation vectors
is much smaller than the smallest eigenvalue for the correct choice of deflation vectors, which
coincides with the smallest eigenvalue value in the spectrum of M−1K. Moreover, we can see from
the spectrum of C0 and C1 that the wrong choice is clearly been made with respect to coupling of
material 3 and material 2. The effective condition number of the wrong choice of deflation vectors
will affect the performance of DPCG. Figure 4 shows the convergence of the error of DPCG and
PCG for correct(+) and wrong(-) choice of deflation vectors. The performance of DPCG(−) is
worse than DPCG(+), as predicted by values of the eigenvalues in Figure 3.

4.3. DPCG algorithm. The deflation method was proposed by [13]. A practical variant of the
Deflated Preconditioned Gradient Method from [16] is given by Algorithm 1.

4.3.1. Additional work DPCG. The projector P is never computed explicitly. We compute the
sparse matrix KZ = KZ as well as the inverse of the small dense matrix E = ZTKZ beforehand.
Assume the (full rank) deflation space has dimension d � n where K ∈ Rn×n implying Z ∈ Rn×d,
E ∈ Rd×d and KZ ∈ Rn×d. Evaluation of w = Pv is equal to w = v − KZE−1ZTv. Stiffness
matrix K, deflation vectors Z and matrix KZ are sparse. We compare the cost of one matrix
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Figure 4. Convergence of DPCG and PCG where [c1, c2, c3] = [1, 104, 108] and
DPCG+, DPCG− represent correct and wrong choice of deflation vectors respec-
tively.

Algorithm 1 Deflated preconditioned CG solving Ku = f
Select u0. Compute r0 = (f − Ku0), set r̂0 = Pr0 and p0 = r̂0
Solve My0 = r̂0 and set p0 = y0
for j = 0, 1, ... until convergence do

ŵj = PKpj

αj =

�
r̂j ,yj

�

�
ŵj ,pj

�

ûj+1 = ûj + αjpj
r̂j+1 = r̂j − αjŵj
Solve Myj+1 = r̂j+1

βj =

�
r̂j+1,yj+1

�

�
r̂j ,yj

�

pj+1 = yj+1 + βjpj
end for
u = ZK−1

c ZTf + PT ûj+1

vector product of the stiffness matrix K and the deflation matrix P by comparing the number of
flops. Assume that the average number of nonzeros for each row of K, ZT and KZ is α, β and
γ respectively. The total number of flops of one matrix vector multiplication with stiffness matrix
K is 2αn. The (cumulative) number of flops of P is (2βd) + (2d2) + (2γn) + n, clearly 2γn is
the dominating term but is difficult to estimate as γ depends on the number of deflation vecotrs.
However, if the number of deflation vectors is small and Z very sparse, the number of nonzeros in
KZ will be comparable to the number of nonzeros of K and the number of flops of both operators
will be of the same order of magnitude. Choosing dense deflation vectors with much overlap may
cause operator P to be more expensive than K in terms of flops.

5. Numerical experiments

Both experiments in this section concern the analysis of asphaltic materials subjected to an
external force. These materials give rise to coupled partial differential equations [4]. The experi-
ments make use of the same set of material parameters. We distinguish between three materials:
aggregates, bitumen, and air voids. The corresponding stiffness coefficients (E modulus) are given
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in Table 1 and are the dominating contributions to the entries of the stiffness matrix. In order to
illustrate the effect of the discontinuities on the convergence of PCG, we show results for 4 sets of
parameters. The first set (i.) from Table 1 contains realistic material parameters. The other sets
do not have a direct physical meaning to asphaltic materials, but are used for illustration of the
performance of deflation. We have conducted the experiments with two different preconditioners,
diagonal scaling and Incomplete Cholesky with a drop tolerance of 10−2. This drop tolerance was
determined after performing several tests with ILUPACK [2] and represents the optimal value in
terms of memory usage (lower drop tolerance demands more memory) and the speed of the back
solve (lower tolerance yields a slower back solve) against the performance of the preconditioner in
terms of reduction in number of iterations of DPCG. We have implemented PCG and DPCG into
the existing parallel FE software package CAPA-3D [3]. All experiments were done on a cluster
of Dell workstations containing 8 CPUs Intel Xeon E5450, running at 3.00GHz and connected by
Infiniband.

Table 1. E modulus for different materials

aggregate bitumen air voids
i. 69000 5000 100
ii. 690000 5000 100
iii. 69000 500 100
iv. 69000 5000 10−2

5.1. Experiment 1: cylinder containing aggregates and bitumen. The case given in Figure
5 is a cylinder of soft material (air voids) containing three aggregates embedded in a layer of bitumen.
We compare DPCG and PCG in combination with diagonal scaling. The case involves a mixture
of materials that is subjected to an external force applied to the upper boundary of the volume.
Zero displacement boundary conditions are imposed on the base of the volume, this is homogenous
Dirichlet boundary conditions to all degrees of freedom in the x, z-plane for y = 0. We note that
the case resembles the uniaxial compression test, which is a standard laboratory test. We observe
the convergence behavior of DPCG and PCG for variations in the E modulus of the bitumen and
aggregates as given in Table 1. We compare a standard choice for the values of parameter E [4]
with increased stiffness of the aggregates, and decreasing stiffness for the bitumen and air voids.

Table 2. example 1: CPU wall time(s) PCG and DPCG

PCG DPCG
iter cpu (s) iter cpu(s)

i. 648 0.288 143 0.204
ii. 1089 0.477 154 0.175
iii. 746 0.328 149 0.172
iv. 1581 0.677 242 0.276

Figure 6 shows the convergence of PCG and DPCG for parameter sets (i.) to (iv.). Clearly the
convergence of the solution with PCG is slow and highly oscillating. PCG compared to DPCG is
also slower in terms of CPU time. But due to the small problem size, this is more a qualitative
example rather than quantitative. We observe in the plots of sets (i.) to (iii.) that the value of
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(a) (b)

Figure 5. FE mesh and schematic representation of cylinder containing three
aggregates represented by sphericals
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Figure 6. Convergence of PCG and DPCG (bold line) for cylinder containing
three aggregates

the material stiffness for the aggregates and bitumen does not influence the number of iterations
of DPCG. This is what we expected. The stiffness matrices corresponding to the aggregates and
bitumen have been decoupled. The effective condition number is bounded by the smallest eigenvalue
of the least stiff material, the air voids. This can also be observed in the plot of set (iv). The
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number of iterations of DPCG increases from 150 towards 242 for air. As the value of the material
stiffness of the air voids changes from 100 to 10−2, the effective condition number increases as
well as the number of iterations of both DPCG and PCG. However, this is not surprising as the
smallest (non-zero) eigenvalue is determined by the least stiff material, due to the decoupling of
the stiffness matrices corresponding to the different materials. When the stiffness decreases, the
smallest eigenvalue will become smaller and subsequently the condition number increases. We do
not consider this as a shortcoming of the deflation method as it can and must be solved by applying
the right preconditioner.

5.2. Experiment 2: FE mesh from CT scan. The case given in Figure 7 is a FE mesh of a
real life sample of asphaltic material obtained from CT scan. We compare DPCG and PCG in
combination with incomplete Cholesky with drop tolerance 10−2. The case involves a mixture of
materials that is subjected to an external force applied to the upper boundary of the volume. Zero
displacement boundary conditions are imposed on three sides of the volume, this is homogenous
Dirichlet boundary conditions to all degrees of freedom in the x, z-, x, y- and y, z- planes for y = 0,
z = 0 and x = 0 respectively. We observe the convergence behavior of DPCG and PCG for
variations in the E modulus of the bitumen and aggregates as given in Table 1. We compare a
standard choice of parameters [4] with increased stiffness of the aggregates, and decreasing stiffness
for the bitumen.

Figure 7. FE mesh from CT scan of real slice of asphaltic material

There is a difference between the artificial cylinder and the sample of real asphaltic material.
Where it was possible to decouple all materials in case of the cylinder, for a FE mesh obtained
from a CT scan this is much more involved. We can see from Figure 8 (b) and (c) that there exist
many small bodies of material. Each body is represented in the deflation space by six rigid body
modes. However, due to overlap, many of these sparse vectors will become zero, implying a singular
deflation matrix. Moreover, because of the large number of small bodies and thus deflation vectors,
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(a) (b) (c)

Figure 8. deflation strategy, identify sets of elements corresponding to material:
(a) aggregates, (b) bitumen and (c) air voids.
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Figure 9. Convergence of PCG and DPCG for a real slice of asphaltic material

it would be more favorable in terms of overhead to collapse these bodies into one entity. Therefore
we have used an adapted version of the deflation strategy of Section 4.1.1. By combining sets of
elements of different materials, we still have a decoupling when we keep in mind the decreasing order
of stiffness for the construction of the splitting of Theorem 3.2. We note that we lose some rigid
body modes, and hence a worse bound of the condition number for PK but we gain performance
because of a large reduction in deflation vectors and avoid singularity of the deflation matrix. Also
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Table 3. example 2: CPU wall time(s) PCG and DPCG

PCG DPCG
iter cpu (s) iter cpu(s)

i. 648 13.18 261 7.26
ii. 821 17.48 332 9.31
iii. 756 15.21 331 8.89

we have omitted set (iv.) from this test because the FE software would not run this value of air
voids due to collapsing elements (negative Jacobian).

We observe in Figure 8 that PCG has a strongly oscillating path of convergence and DPCG
has nearly a straight line. Clearly the unfavorable eigenvalues have been removed by deflation.
However, the system is not decoupled completely because the number of iterations is not invariant
for different sets of material parameters. But the number of iterations of DPCG is much smaller
compared to PCG. The performance of DPCG in terms of CPU walltime is also better compared
to PCG.

6. Conclusion

We considered the application of the Deflated Preconditioned Conjugate Gradient method to
mechanical problems with strongly varying stiffness of materials. We described a simple general
applicable way on how to choose deflation vectors by using the rigid body modes of subsets of
elements. By combining the deflation technique and the computation of the exact rigid body modes
of the components the robust deflated preconditioned gradient method (DPCG) is obtained. The
DPCG method is insensitive to large jumps in the E modulus of materials. The amount of work per
iteration for the deflation operator of DPCG is comparable to one matrix vector product. However,
this does not imply that DPCG becomes twice as expensive as PCG because the preconditioning
step consumes most resources in both time and memory. For most applications, using sparse
deflation vectors, DPCG is roughly 30% more expensive in time per iteration compared to PCG.
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Appendix A. Computing rigid body modes of a finite element

We know from [1] that the rigid body modes of a finite element are spanned by the kernel base
vectors of the corresponding element stiffness matrix. We will show a fast and cheap solution for
the computation of the rigid body modes. The same principle can be easily extended to sets of
finite elements of arbitrary shape and order. We note that the rigid body modes are only defined
by the geometric properties of the element.

In three dimensions a finite element has 6 rigid body motions; three translations and three
rotations. For simplicity we consider a 4 noded tetrahedral element, however all derivations can be
extended to N noded elements without loss of generality. The coordinate vector of the element is
given by,

{ x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4 }
T
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A translation can be considered as a uniform displacement of every node in a given direction.
To obtain three orthogonal translations we choose the x,y and z direction respectively. The three
translation vectors are given by,

{ 1 0 0 1 0 0 1 0 0 1 0 0 }
T

{ 0 1 0 0 1 0 0 1 0 0 1 0 }
T

{ 0 0 1 0 0 1 0 0 1 0 0 1 }
T

The rotations can be easily described using the spherical coordinate system,

x = r cos(θ) sin(φ), y = r sin(θ) sin(φ), z = r cos(φ)

where

r =
�
x2 + y2 + z2, θ = tan−1

�y
x

�
, φ = cos−1

�x
r

�

and θ and φ as in Figure 10(a).
We derive a rotation dθ in the x, y-plane, hence dφ = 0 and dr = 0. The x-y, x-z and y-z

planes contain unique rotations. The corresponding vectors can be found by swapping axis. For
an arbitrary point in space which has spherical coordinates (r, θ, φ) a change dθ in the x, y-plane
yields a displacement in cartesian coordinates of,

dx = −r sin(θ) sin(φ)dθ, dy = r cos(θ) sin(φ)dθ, dz = 0.

(a)

! p1 = (px1 , p
y
1, p

z
1)

dθ1

dθ2
dx1

dx2

p2 = (px2 , p
y
2, p

z
2)

r1

r2

(b)

Figure 10. (a) spherical coordinates, (b) rotation around origin of tetrahedral
element in x, y-plane

Figure 10(b) shows the rotation for one element with respect to the origin over angle dθ. By
using above expressions we obtain all three rotation vectors,

rotation x-y plane,

θj = tan−1

�
yj
xj

�
, φj = cos−1

�
zj
rj

�
,






−r1 sin(θ1) sin(φ1)
r1 cos(θ1) sin(φ1)

0
−r2 sin(θ2) sin(φ2)
r2 cos(θ2) sin(φ2)

0
−r3 sin(θ3) sin(φ3)
r3 cos(θ3) sin(φ3)

0
−r4 sin(θ4) sin(φ4)
r4 cos(θ4) sin(φ4)

0





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rotation y-z plane,

θj = tan−1

�
zj
xj

�
, φj = cos−1

�
yj
rj

�
,






−r1 sin(θ1) sin(φ1)
0

r1 cos(θ1) sin(φ1)
−r2 sin(θ2) sin(φ2)

0
r2 cos(θ2) sin(φ2)
−r3 sin(θ3) sin(φ3)

0
r3 cos(θ3) sin(φ3)
−r4 sin(θ4) sin(φ4)

0
r4 cos(θ4) sin(φ4)






rotation x-z plane,

θj = tan−1

�
zj
yj

�
, φj = cos−1

�
xj

rj

�
,






0
r1 cos(θ1) sin(φ1)
−r1 sin(θ1) sin(φ1)

0
r2 cos(θ2) sin(φ2)
−r2 sin(θ2) sin(φ2)

0
r3 cos(θ3) sin(φ3)
−r3 sin(θ3) sin(φ3)

0
r4 cos(θ4) sin(φ4)
−r4 sin(θ4) sin(φ4)






We compute the null space of each element matrix. Sets of elements make up the bodies of
materials, as a collection of elements share a certain property and are neighbors. The rigid body
modes of a collection of elements is equal to the assembly of the rigid body modes of the individual
elements taking into account the multiplicity of those degrees of freedom that lie in multiple neigh-
boring elements. In the case of asphaltic materials we choose the element stiffness as the property
for discrimination between elements. We can think of stones, bitumen and air voids. We should
note that we compute the rigid body modes of each independent body of material. Hence, two bod-
ies of the same material imply 12 deflation vectors. This has a physical meaning also, two bodies
will not rotate and translate at the same time and at the same rate. Therefore these movements
need to be taken care of independently.
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