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Abstract

Tuza conjectured that for every graph G, the maximum size ν of
a set of edge-disjoint triangles and minimum size τ of a set of edges
meeting all triangles satisfy τ ≤ 2ν. We consider an edge-weighted ver-
sion of this conjecture, which amounts to packing and covering triangles
in multigraphs. Several known results about the original problem are
shown to be true in this context, and some are improved. In particular,
we answer a question of Krivelevich who proved that τ ≤ 2ν∗ (where ν∗

is the fractional version of ν), and asked if this is tight. We prove that
τ ≤ 2ν∗ − 1√

6

√
ν∗ and show that this bound is essentially best possible.

1 Introduction

We shall assume in this paper that graphs are simple, and use the term multi-
graph when parallel edges are permitted. Let G = (V,E) be a graph and let
T = T (G) be the set of triangles of G. A packing is a set of edge-disjoint
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triangles and a transversal is a set of edges which meets every triangle. We
define the following parameters:

ν(G) = max{|Z| : Z ⊆ T (G) is a packing in G} and

τ(G) = min{|F | : F ⊆ E(G) is a transversal in G}.

These are the usual packing and transversal parameters for the hypergraph
with vertex set E and hyperedges corresponding to T .

It is immediate that ν(G) ≤ τ(G) ≤ 3ν(G) since, given a maximum set
T ′ of ν(G) edge-disjoint triangles, every transversal must contain at least one
edge from each triangle in T ′, and on the other hand, the set of all edges in T ′
is a transversal. The following conjecture was proposed by Tuza [12] in 1981.
It asserts that the trivial upper bound 3ν on τ can be improved.

Conjecture 1.1 (Tuza). 2ν(G) ≥ τ(G) for every graph G.

It is worthwhile to interpret ν(G) and τ(G) as solutions to integer programs,
so let us pause to do so now. Let A be the edge-triangle incidence matrix of
G, i.e., Ae,t = 1 if the triangle t contains the edge e and otherwise Ae,t = 0.
Then we have:

ν(G) = max{〈1, x〉 : Ax ≤ 1 and x ∈ ZT+},
τ(G) = min{〈1, y〉 : A>y ≥ 1 and y ∈ ZE

+},

where 1 ∈ ZT or 1 ∈ ZE denotes the all-1 function (it is clear from the context
which of the two possibilities applies), and the inner product 〈·, ·〉 is the usual
one, 〈u, v〉 =

∑
t∈T u(t)v(t) if u, v ∈ ZT+ or

∑
e∈E u(e)v(e) if u, v ∈ ZE

+.
Relaxing the integrality constraints, we find the following dual linear pro-

grams:

ν∗(G) = max{〈1, x〉 : Ax ≤ 1 and x ∈ RT
+}, (1)

τ ∗(G) = min{〈1, y〉 : A>y ≥ 1 and y ∈ RE
+}, (2)

whose optimal values ν∗(G) and τ ∗(G) are called the fractional packing number
and fractional transversal number , respectively. This gives us the following
meaningful chain of inequalities:

τ(G) ≥ τ ∗(G) = ν∗(G) ≥ ν(G).

Although Tuza’s Conjecture 1.1 remains wide open, there have been a number
of useful partial results. Below we highlight three of these.

Theorem 1.2 (Krivelevich [8]). For every graph G we have:
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(i) 2ν(G) ≥ τ ∗(G).

(ii) 2ν∗(G) ≥ τ(G).

Theorem 1.3 (Tuza [13]). Conjecture 1.1 holds whenever G is planar.

Theorem 1.4 (Haxell [4]). For every graph G, we have 2.87 ν(G) ≥ τ(G).

There is a natural weighted analogue of Tuza’s triangle packing problem.
Namely, if w : E → Z+ is an edge-weighting , then using the edge-triangle matrix
A introduced above, we define

νw(G) = max{〈1, x〉 : Ax ≤ w and x ∈ ZT
+},

τw(G) = min{〈w, y〉 : A>y ≥ 1 and y ∈ ZE
+}.

In other words, νw(G) is the largest number of (not necessarily distinct) trian-
gles such that each edge e is contained in at most w(e) of them, and we say
that such a collection of triangles is a (weighted) packing . Similarly, τw(G)
is the minimum weight of a transversal, where the weight of an edge-set R is
defined as the sum of the weights of its elements, w(R) =

∑
e∈R w(e).

As before, relaxing the integrality constraints gives us dual linear programs:

ν∗w(G) = max{〈1, x〉 : Ax ≤ w and x ∈ RT
+} (3)

τ ∗w(G) = min{〈w, y〉 : A>y ≥ 1 and y ∈ RE
+} (4)

and we have the chain of inequalities:

τw(G) ≥ τ ∗w(G) = ν∗w(G) ≥ νw(G).

Admissible solutions x and y to the linear programs (3) and (4) are called
fractional packings and fractional transversals , respectively.

Given a weighting w of a graph G, we can define a multigraph G′ by re-
placing each edge e in G with w(e) parallel edges. We consider a triangle in G′

to be a K3-subgraph of G′ (i.e. no multiple edges), and define the packing and
transversal numbers ν and τ for G′ accordingly. Any weighted packing in G
corresponds naturally to a packing of same size in G′ and vice versa, implying
that νw(G) = ν(G′). Also any transversal with weight k in G corresponds
naturally to a transversal of size k in G′, but the other direction is not gen-
erally true. However, if C is any optimal transversal in G′ and e ∈ C then C
also contains all edges that are parallel to e. Hence C corresponds naturally
to a transversal of weight |C| in G. Consequently, we have τw(G) = τ(G′).
Similarly, the fractional packing and covering parameters for (G,w) and G′

are the same. Thus it is admissible to investigate packings and transversals in



4

multigraphs instead of the weighted problems in simple graphs. We will do so
in Sections 2 and 4.

The subject of this paper is the following weighted version of Tuza’s con-
jecture.

Conjecture 1.5. For every graph G = (V,E) and w : E → Z+, we have

2νw(G) ≥ τw(G).

First we generalize Krivelevich’s Theorem 1.2 to the weighted case. For
Krivelevich’s result, the inequality between ν and τ ∗ is tight for K4 and we
show that the same bound holds in the weighted case. On the other hand, the
inequality between τ and ν∗ is not tight and we show that an improvement can
be made.

Theorem 1.6. For every graph G = (V,E) and w : E → Z+ we have

(i) τw(G) ≤ 2τ ∗w(G)−
√
τ ∗w(G)/6 + 1, and

(ii) 2νw(G) ≥ τ ∗w(G).

Although (i) may appear to be a rather small improvement on Krivelevich’s
original result, we show that this improvement is best possible up to a loga-
rithmic factor (even for the unweighted case). See Section 2. This answers a
question of Krivelevich about the tightness of his bounds.

We also prove weighted analogues of Tuza’s and Haxell’s theorems in Sec-
tions 3 and 4, respectively. We shall extend Tuza’s Theorem 1.3 to weighted
graphs embedded in an arbitrary surface. We refer to [9] for standard termi-
nology concerning graphs on surfaces. A cycle C of a graph embedded in a
surface is said to be surface-separating if cutting the surface along C discon-
nects the surface. Note that every facial cycle (i.e. a cycle bounding a face) is
surface-separating.

Theorem 1.7. Suppose that a graph G is embedded in a surface such that
every triangle is surface-separating. Then for every w : E → Z+, we have

2 νw(G) ≥ τw(G).

Since every cycle in a graph embedded in the plane is surface-separating,
Theorem 1.7 yields the following extension of Tuza’s Theorem 1.3.

Corollary 1.8. For every planar graph G = (V,E) and every w : E → Z+, we
have 2 νw(G) ≥ τw(G).
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Interestingly, the introduction of weights seems to simplify the proof of
Tuza’s theorem, while it appears to make things more difficult for Haxell’s
theorem (in fact we get a slightly larger constant factor).

Theorem 1.9. For every graph G and w : E → Z+, we have

2.92 νw(G) ≥ τw(G).

When considering fractional versions of integer programming problems, it
is natural to wonder “how fractional” optimal solutions need to be. For in-
stance, it is immediate that three perfect matchings pack in a bridgeless cubic
graph H if and only if H is 3-edge-colourable, and Edmonds’ matching poly-
tope theorem [1] proves that there is always a fractional packing of value 3.
The Berge-Fulkerson conjecture asserts that there always exists a half-integral
packing of value 3. Numerous other theorems and conjectures in combinato-
rial optimization concern this phenomena (see also [5], [7], [11]). Returning
to our problem of packing and covering triangles, for any positive integer k,
let νk = νw (τk = τw) where w : E → Z+ is the constant function of value k.
It is immediate from the rationality of the matrix A that for every graph G
there exists an integer k so that ν∗(G) = 1

k
νk(G) and τ ∗(G) = 1

k
τk(G). The

question which arises is whether or not there exists a fixed integer k so that
1
k
νk(G) = ν∗(G) for every graph G (i.e. whether or not there is a fixed k so

that there always exists an optimal fractional packing assigning rationals with
denominator k). We resolve this question in the negative with the following
theorem, proved in Section 5.

Theorem 1.10. There does not exist a fixed integer k so that ν∗(G) = 1
k
νk(G)

for every graph G, and similarly there is no fixed k so that τ ∗(G) = 1
k
τk(G) for

every graph G.

2 Comparing τw and ν∗w
In this section we establish Theorem 1.6. Here we prefer to work in the set-
ting of multigraphs, rather than weighted graphs (see the discussion in the
introduction about their equivalence). Given this correspondence, part (ii) of
Theorem 1.6 follows immediately from Krivelevich’s original proof applied to
multigraphs. To show part (i), we require the following two preliminary results.
Recall that an edge cut in a multigraph G is a set F ⊆ E(G) for which there
exists a vertex set W ⊆ V (G) where F is the set of edges with one end in W
and one end in V (G) \W .
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Theorem 2.1 (Edwards [2]). If G is a multigraph with e edges, then G has an
edge cut of size at least e/2 +

√
e/8− 1.

Lemma 2.2. If G is a triangle-free multigraph with v vertices, then G has an
independent vertex set of size at least

√
v/3.

Proof sketch. To see this, observe that either G has a vertex of degree at least√
v/3 whose neighbours form an independent set, or the greedy algorithm

(choosing a vertex to add to the independent set and deleting its neighbours)
yields an independent set of the desired size. �

The factor of
√

3 in the above lemma can easily be improved, but is all we
require for our theorem. In fact, a difficult theorem due to Kim [6] gives a best
possible improvement to the above lemma, showing that the conclusion may be
improved to find an independent set of size Ω(

√
v log v). However, applying his

theorem instead of our easy lemma would not improve the bound we achieve.
The only additional ingredient required for the proof is the notion of com-

plementary slackness. This is a fundamental property in the world of linear
programming, and can be found in most books on the subject, such as [10].
With this we are ready to establish property (i) in Theorem 1.6.

Theorem 2.3. If G is a multigraph, then τ(G) ≤ 2ν∗(G)−
√
ν∗(G)/6 + 1.

Proof. Let E = E(G) and let T = T (G). Fix an optimal fractional transversal
g : E → R and an optimal fractional packing f : T → R so that we have
f(T ) = ν∗(G) = τ ∗(G) = g(E). If a triangle t ∈ T has edges e1, e2, e3, we say
that t is tight if g(e1) + g(e2) + g(e3) = 1. Similarly, we say that an edge e ∈ E
is tight if

∑
t∈T ,e∈t f(t) = 1. Observe that by the complementary slackness for

dual linear programs (1) and (2), g(e) > 0 implies that e is tight, and f(t) > 0
implies that t is tight. Hence, when computing f(T ) and g(E), we need only
consider tight triangles and tight edges, respectively.

Let Z denote the set of all edges e ∈ E having g(e) = 0. All edges in E \Z
are tight by complementary slackness, and we partition them into four sets
A,B,C,D as follows: for every edge e ∈ E \ Z, let e ∈ A if 0 < g(e) < 1/2;
e ∈ B if g(e) = 1/2; e ∈ C if 1/2 < g(e) < 1; e ∈ D if g(e) = 1. The
tight triangles of G can then be partitioned into five sets, T1, . . . , T5 where for
i ∈ {1, 2, 3}, a tight triangle t is a member of Ti if t has exactly i edges in A.
Since A is a set of tight edges, if we let |A| = a this immediately implies that

a =
∑
e∈A

( ∑
t∈T ,e∈t

f(t)
)

= f(T1) + 2f(T2) + 3f(T3). (5)
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Tight triangles with no edges in A have either two edges in Z and one edge
in D, or one edge in Z and two edges in B. Let T4 denote the former set and
let T5 denote the latter. Note that each triangle in T1 has one edge in each of
A, Z and B ∪ C, and each triangle in T2 has two edges in A and one edge in
B ∪C. The triangles of T3 and T4 are the only tight triangles with no edges in
B ∪ C. Since B ∪ C ∪D is a set of tight edges, if we let |B| = b, |C| = c, and
|D| = d, we thus get

b+ c =
∑

e∈B∪C

( ∑
t∈T ,e∈t

f(t)
)

= f(T1) + f(T2) + 2f(T5). (6)

and
d = f(T4). (7)

We now use (5), (6) and (7) to get a lower bound for ν∗(G), as follows:

ν∗(G) = f(T )

= f(T1) + f(T2) + f(T3) + f(T4) + f(T5)
≥
(
1
4
f(T1) + 1

2
f(T2) + 3

4
f(T3)

)
+
(
1
2
f(T1) + 1

2
f(T2) + f(T5)

)
+ f(T4)

=
a

4
+
b+ c

2
+ d.

To complete the proof we will show that G has a transversal of size at most

2

(
a

4
+
b+ c

2
+ d

)
− 1√

6

√
a

4
+
b+ c

2
+ d + 1 (8)

and use the fact that the function 2x−√x
6

+1 is increasing for x ≥ 1
4

combined
with the inequality of the previous paragraph.

Let H be the graph with vertex set B, where two elements e, e′ of B are
adjacent if e, e′ are two edges of some tight triangle in G. Note that a tight
triangle with two edges in B must have its third edge in Z. Since g is a
fractional transversal, no triangle can have all three edges in Z, which implies
that H is triangle-free. Hence, by Lemma 2.2, H has an independent vertex
set I ⊆ B of size at least

√
b/3. We claim that (B \ I) ∪ C ∪ D, along with

the complement of any edge-cut in G′ = G[A ∪ I], is a transversal of G. To
see this, first note that a triangle in G has at most 2 edges in Z, and if it has
exactly 2 edges in Z then its third edge is in D. If a triangle in G contains an
edge of Z but no edge of D then it contains either an edge of C, or two edges of
B (in which case it is tight and thus contains at least one edge of B \ I). Any
triangle containing no edges of Z or D either contains an edge of (B \ I) ∪ C
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or only edges of A ∪ I (in which case at most two of them are in an edge-cut
of G′).

By Theorem 2.1, if G′ has e′ = |A|+ |I| edges, then it has an edge-cut S of
size at least e′/2 +

√
e′/8− 1. Let R be the edge-complement of S in G′, and

let L = (B \ I) ∪ C ∪D ∪R. Then L is a transversal of G, and moreover,

|L| ≤ (b− |I|) + c+ d+
(
e′/2−

√
e′/8 + 1

)
= (b− |I|) + c+ d+

(
a+ |I|

2
−
√
a+ |I|

8

)
+ 1

≤ a

2
+ b+ c+ d−

( |I|
2

+

√
a

8

)
+ 1

≤ a

2
+ b+ c+ 2d− 1√

6

(√
b

2
+

√
3a

4
+ d

)
+ 1

≤ 2

(
a

4
+
b+ c

2
+ d

)
− 1√

6

√
3a

4
+
b

2
+ d+ 1 .

If a ≥ c, then the right-hand side in the above inequality is at most (8), as
desired. Thus it suffices to prove that a ≥ c is implied by the optimality of the
fractional transversal g. To see this, note that if a < c, then we may define
gε : E → R from g by adding ε > 0 to each edge in A and subtracting ε from
each edge in C. Every tight triangle has at least as many edges in A as in
C, so g′ is a transversal of the tight triangles for every ε > 0. Given that the
remaining triangles are not tight, there is a sufficiently small value of ε such
that g′ is a fractional transversal of G. However then g′(E) < g(E), so the
optimality of g yields the desired contradiction.

This result is best possible up to a logarithmic factor. To see this, let G be a
graph formed by taking any n-vertex triangle-free graphH and adding one apex
vertex completely joined toH. Taking each edge incident to the apex with value
1/2 gives a fractional transversal in G. This shows that τ ∗(G) ≤ n/2. Suppose
now that R is a transversal for G. If R contains an edge xy of H, we may
replace this edge by the edge joining the apex with x, and this would still be a
transversal. Therefore, we may assume thatR contains only edges incident with
the apex. Let U ⊆ V (H) be the set of endvertices of the edges in R (excluding
the apex). Since R is a transversal, the set V (H)\U is an independent set in H.
If H is a Ramsey graph (a largest triangle-free graph without an independent
set of size k), then the bound for triangular Ramsey numbers r(3, k) (the
aforementioned result of Kim [6]) shows that k = Θ(

√
n log n) where n =
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r(3, k) − 1. In particular, |V (H) \ U | < k, so |R| = |U | ≥ n − Θ(
√
n log n ).

This implies that τ(G) ≥ 2 τ ∗(G)−Θ
(√

τ ∗(G) log τ ∗(G)
)
.

3 Graphs on a surface

In this section we prove that the weighted version of Tuza’s conjecture holds
for planar graphs by proving a more general statement, Theorem 1.7. Tuza
himself proved the unweighted version of the planar case (Theorem 1.3). Our
argument is quite similar to his proof, but in some ways the introduction of
weights simplifies the situation.

Proof of Theorem 1.7. Let G and w be a counterexample of Theorem 1.7 so
that |E| + w(E) is minimum. We shall establish properties of G,w in a few
steps. Let us observe that none of these properties uses embeddability in a
surface, but all reductions used in the proofs preserve embeddability and do
not introduce new triangles.

(1) w(e) > 0 for every e ∈ E.

Suppose (for a contradiction) that w(e) = 0, and consider the graph G′ =
G − e and the weight function w′ obtained by restricting w to E \ {e}. Since
adding e to a transversal of G′ yields a transversal of G with the same weight,
we have 2νw(G) = 2νw′(G

′) ≥ τw′(G
′) = τw(G) which is a contradiction.

(2) Every e ∈ E is in at least two triangles.

If e is not in any triangle, then G − e is a smaller counterexample, which
is contradictory. Next suppose that e is in exactly one triangle with edge
set {e, f1, f2}. Now modify w to form a new weight function w′ by setting
w′(e) = w(e) − 1 and w′(fi) = w(fi) − 1 for i = 1, 2. Let R be an (inclusion-
wise) minimal transversal of G with w′(R) = τw′(G). Clearly, if R contains f1
or f2, then it does not contain e. Thus, we conclude:

2νw(G) ≥ 2νw′(G) + 2 ≥ τw′(G) + 2 = w′(R) + 2 ≥ w(R) ≥ τw(G).

This contradiction proves (2).

(3) If e ∈ E is in exactly two triangles, then w(e) ≤ 1.

Suppose (for a contradiction) that (3) fails and the edge e with w(e) ≥
2 is in exactly two triangles with edge sets {e, f1, f2} and {e, f3, f4}. Next,
modify w to form a new weight function w′ by setting w′(e) = w(e) − 2 and
w′(fi) = w(fi) − 1 for 1 ≤ i ≤ 4. Let R be a minimal transversal of G with
w′(R) = τw′(G). By minimality, R cannot contain e and at least one of f1, f2
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and at least one of f3, f4. It follows from this that w(R) ≤ w′(R) + 4. This
gives us

2νw(G) ≥ 2νw′(G) + 4 ≥ τw′(G) + 4 = w′(R) + 4 ≥ w(R) ≥ τw(G)

which is a contradiction.

(4) G does not contain a vertex v so that the set N(v) of its neighbors induces
a cycle.

Suppose (for a contradiction) that (4) is false and that N(v) induces a cycle
with (cyclic) order u1, u2, . . . , uk. Note that by (1) and (3) we have w(vui) = 1
for every 1 ≤ i ≤ k. Now set G′ = G − v and let w′ be the function obtained
from the restriction of w to E(G′) by setting w′(u2i−1u2i) = w(u2i−1u2i)− 1 for
1 ≤ i ≤ bk

2
c. Let R′ be a transversal of G′ with w′(R′) = τw′(G

′). If R′ does
not use any of the edges u2i−1u2i for 1 ≤ i ≤ bk

2
c then we may extend R′ to

a transversal R of G by adding dk
2
e edges of the form vuj and we have that

w(R) ≤ w′(R′)+dk
2
e ≤ w′(R′)+2bk

2
c. On the other hand, if R′ uses an edge of

the form u2i−1u2i, then we may extend R′ to a transversal R of G by adding bk
2
c

edges of the form vui. In this case we have w(R) ≤ w(R′)+bk
2
c ≤ w′(R′)+2bk

2
c.

This gives us

2νw(G) ≥ 2νw′(G
′) + 2bk

2
c ≥ τw′(G

′) + 2bk
2
c

= w′(R′) + 2bk
2
c ≥ w(R) ≥ τw(G)

which is a contradiction.

Let us now consider the embedding of G. If every triangle is facial (i.e., it
bounds a face), then it follows from (2) that every edge of G is in exactly two
facial triangles and then applying (4) to any vertex gives us a contradiction.
Otherwise, we may choose a non-facial surface-separating triangle t so that the
number of edges in one of the surface components of t, say S, is minimal. Now
every edge properly inside S is in exactly two facial triangles (again by (2))
and then applying (4) to any vertex properly inside S gives us a contradiction.
This completes the proof.

4 Comparing τw and νw

In this section we will establish Theorem 1.9. As in Section 2, we prefer to work
in the setting of multigraphs, rather than weighted graphs (see the discussion
in the introduction about their equivalence).

Theorem 4.1. Let G be a multigraph. Then τ(G) ≤
(
3− 2

25

)
ν(G).
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In the case of (unweighted) simple graphs, Haxell [4] proved that τ ≤ cν,
where c ≈ 2.866. Our constant 3− 2

25
= 2.92 is slightly larger. The rest of this

section is devoted to the proof of Theorem 4.1. The proof structure follows
roughly the same lines as in [4], and we have kept similar notation when it was
possible. The proofs of Lemmas 4.3 and 4.5 are taken directly from [4], and
are included here for completeness.

We say that a family F of triangles in a graph is independent if the elements
of F are pairwise edge-disjoint. Let B be an independent family of triangles in
G of size ν = ν(G). We say that a triangle in G is of type (B, i) if it has exactly
i edges in common with the set E[B]. Note that every triangle in G is of type
(B, i) for some i ∈ {1, 2, 3}. Let B1 be an independent family of triangles of
type (B, 1) of maximum size in G, and let γ be defined by |B1| = γν.

Lemma 4.2. τ(G) ≤ (3− 2
3
γ)ν.

Proof. For each T ∈ B1, let T̂ denote the triangle in B that shares an edge
with T , let e(T ) denote the edge shared by T and T̂ , let v(T ) be the unique
vertex of T which is not incident to e(T ), let v̂(T ) be the unique vertex of
T̂ which is not incident to e(T ), and let E ′(T ) be the set of edges between
v(T ) and v̂(T ) (see Figure 1). Let B̂1 = {T̂ : T ∈ B1}. From the maximality

T̂

T

e(T )

v(T )

v̂(T )

E′(T )

Figure 1: Triangles T and T̂ .

of B it follows that |B̂1| = |B1|. Since every family of triangles of the form
(B \ B̂1)∪{T or T̂ : T ∈ B1} is an independent family of triangles of size ν(G),
for every triangle S that is edge-disjoint from B \ B̂1, there exists T ∈ B1 such
that S shares an edge with T as well as with its counterpart T̂ ∈ B̂1. Then
such a triangle contains either e(T ) or an edge from E ′(T ). Consequently, the
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set C = C1 ∪ C2, where

C1 = E[B \ B̂1] ∪ {e(T ) : T ∈ B1} and

C2 =
⋃

T∈B1
E ′(T ),

is a transversal of G. We will show that |C| ≤ (3− 2
3
γ)ν. Clearly, |C| ≤ |C1|+

|C2\C1| = (3−2γ)ν+ |C2\C1|. We define the set J = {T ∈ B1 : E ′(T ) ⊆ C1},
and we define γ0 by |J | = γ0ν.

Now consider a triangle U ∈ B1. If |E ′(U) \ C1| 6= 0 then U ∈ B1 \ J .
Consider the case that |E ′(U)\C1| ≥ 2. So there are edges f1, f2 ∈ E ′(U)\C1.
Then these two edges together with the four edges in (E(U)∪E(Û)) \ {e(U)}
form two edge-disjoint triangles, say T1(U) and T2(U). Hence at least one
of f1, f2, say f1, must belong to E[B]; otherwise (B \ {Û}) ∪ {T1(U), T2(U)}
would be an edge-disjoint family of triangles, contradicting the maximality
of B. Since f1 /∈ C1, we conclude that f1 ∈ E(T̂ ) \ e(T ) for some triangle
T ∈ B1. If f2 /∈ E(T ) \ {e(T )}, then (B \ {Û , T̂}) ∪ {T, T1(U), T2(U)} is a
family of edge-disjoint triangles, contradicting the maximality of B. So f2 ∈
E(T )\{e(T )}. Since f1 and f2 have the same endpoints, it follows that the edge
f2 is uniquely determined and that v(T ) = v̂(T ). This implies that E ′(T ) = ∅
and, therefore, T ∈ J . Since we could not get the same conclusion for a third
edge in E ′(U) \ C1, this also implies that |E ′(U) \ C1| = 2.

The above proof shows that, for any triangle U ∈ B1, the set E ′(U) \ C1

contains at most two edges and, therefore, |C2 \ C1| ≤ 2(γ − γ0)ν. Moreover,
if E ′(U) \ C1 contains two edges, then one of them belongs to E[J ] \ C1.
Therefore, we also have |C2 \C1| ≤ (γ− γ0 + 2γ0)ν = (γ+ γ0)ν. Consequently,
we have

|C2 \ C1| ≤
1

3
(2γ − 2γ0)ν +

2

3
(γ + γ0)ν =

4

3
γν

and hence |C| ≤ (3− 2γ)ν + |C2 \ C1| ≤ (3− 2
3
γ)ν.

Next, we let G′ = G − E[B1]. Note that ν(G′) = (1 − γ)ν, and that all
triangles in G′ are of type (B, 2) or of type (B, 3). Let B2 be an independent
family of triangles of type (B, 2) of maximum size in G′, and let β be such that
|B2| = βν.

Lemma 4.3. τ(G) ≤ (3
2

+ 5
2
γ + 2β)ν.

Proof. Let H = G[E[B]\(E[B1]∪E[B2])]. Maximality of B1 and B2 imply that
every type (B, 1) triangle in G contains an edge of E[B1], and every triangle
of type (B, 2) contains an edge of E[B1] ∪ E[B2]. Consequently, every triangle
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that is edge-disjoint from E[B1]∪E[B2], is of type (B, 3) and, therefore, also a
triangle in H. Hence, if C ′ is a transversal of H, then the set

C = E[B1] ∪ E[B2] ∪ C ′

is a transversal of G. Now, we know that H has a bipartite subgraph S with
at least 1

2
|E(H)| edges. Thus, C ′ = E(H) \ E(S) is a transversal of H. It

follows that |C ′| ≤ 1
2
|E(H)| = 1

2
(3− γ − 2β)ν. Thus, |C| ≤ (3

2
+ 5

2
γ + 2β)ν as

desired.

We let B′ be an independent family of triangles in G′ of maximum size,
subject to the condition that |E[B′] \E[B]| ≥ βν. We know that such a family
exists, because B2 satisfies the condition. Observe that B′ is an inclusion-
maximal independent family of triangles in G′. We define α by |B′| = αν.

From now on, we use the same notation as in Figure 1, but where the set
B′ plays the role that the set B was playing before. More precisely, if T is a
triangle of type (B′, 1) in G′, we let T̂ be the triangle in B′ that shares an edge
with T , we let e(T ) be the edge shared by T and T̂ , we let v(T ) be the unique
vertex of T which is not incident to e(T ), we let v̂(T ) be the unique vertex of
T̂ which is not incident to e(T ), and we let E ′(T ) be the set of edges between
v(T ) and v̂(T ) in G′.

We let B′1 be an independent family of triangles of type (B′, 1) in G′ such
that for each T ∈ B′1, we have e(T ) 6∈ E[B], and such that B′1 has maximum
cardinality with these properties. We define δ by |B′1| = δν.

Lemma 4.4. Let S be any subset of B′1. Then the family of triangles:

B̃′ = S ∪ B′ \ {T̂ : T ∈ S}, (9)

is an independent family of triangles in G′ such that |E[B̃′] \ E[B]| ≥ βν.
Moreover, B̃′ has maximum size with this property.

Proof. Let T ∈ S. By definition of B′1, we have e(T ) 6∈ E[B], and since there
are no triangles in G′ of type (B, 1), we have E(T ) ∪ E(T̂ ) \ {e(T )} ⊂ E[B].
This implies that E[B̃′] \ E[B] = E[B′] \ E[B], which proves the first assertion
of the lemma. The second assertion is immediate since |B̃′| = |B′|.
Lemma 4.5. τ ≤ (3γ + 3δ + 3α− β)ν.

Proof. We let
C = E[B1] ∪ E[B′1] ∪

(
E[B] ∩ E[B′]

)
.

Then clearly |C| ≤ (3γ + 3δ + 3α − β)ν. To complete the proof, it suffices to
show that C is a transversal of G. Since E[B1] ⊆ C, it suffices to prove that
every triangle in G′ has an edge in C.
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First, let T be a triangle of type (B′, 1) in G′. If e(T ) ∈ E[B], then e(T ) ∈
E[B] ∩ E[B′], so E[T ] intersects C. Else, we know that E[T ] intersects E[B′1]
since otherwise adding T to B′1 would contradict the maximality of B′1; so every
triangle of type (B′, 1) in G′ intersects C.

Now, let T be a triangle of type (B′, 2) or (B′, 3) in G′. Since in G′ all
triangles have type (B, 2) or (B, 3), E[T ] necessarily contains at least one edge
in E[B] ∩ E[B′]. Therefore E[T ] intersects C, which concludes the proof that
C is a transversal of G.

In G′, we define the set of triangles B̂′1 = {T̂ : T ∈ B′1} ⊆ B′ and we consider
the edge-set E0 defined by

E0 = E[B′ \ B̂′1] ∪
⋃

T∈B′1
{e(T )}. (10)

We are now going to define a subset I of B′1, and a function f : I → 2E[G′] that
associates to each triangle in I a set of edges of G′. The set I and the function
f are chosen simultaneously according to the following properties:

– for each T ∈ I, we have f(T ) ⊆ E ′(T ) \ E[B′] and |f(T )| = 2;
– the sets (f(T ))T∈I are pairwise disjoint, and so are the sets (E(T ))T∈I ;
– for any T, U ∈ I, the sets f(T ) and E(U) are disjoint;
– I has maximum cardinality subject to these properties.

By Lemma 4.4, any set B̃′ of the form of Eq. (9) satisfies the hypotheses
of the definition of B′. Replacing B′ by B̃′ may change the cardinality of the
set I defined above. From now on we will assume that, among all sets B̃′ of
the form of Eq. (9), the set B′ is the one for which the set I has the maximum
cardinality. We let Î = {T̂ : T ∈ I} and we define η by |I| = |Î| = ην.

Lemma 4.6. α + η ≤ 1− γ.

Proof. For T ∈ I, the two edges of f(T ), together with the four edges in
(E(T )∪E(T̂ )) \ {e(T )} form two edge-disjoint triangles, say T1(T ) and T2(T ).
Now, by definition of I, the family of triangles

A = {T1(T ), T2(T ) : T ∈ I} ∪
(
B′ \ Î

)
is an edge-disjoint family of triangles in G′. Since |A| = |B′|+ |Î| = (α + η)ν,
we have (α + η)ν ≤ ν(G′) = (1− γ)ν.

Now, we let K = {T ∈ B′1 : E ′(T ) ⊆ E0}, we let K̂ = {T̂ ∈ B′ : T ∈ K},
and we define δ0 by |K| = |K̂| = δ0ν.

Lemma 4.7. τ ≤ (3γ + 3α− 2δ0)ν ≤ (3− 3η − 2δ0)ν.
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Proof. We define the set of edges

C = E[B1] ∪ E[B′ \ K̂] ∪ {e(T ) : T ∈ K},

and we observe that |C| ≤ (3γ + 3α− 2δ0)ν ≤ (3− 3η − 2δ0)ν (for the second
inequality we have used Lemma 4.6).

Now we prove that C is a transversal of G. Since E[B1] ⊆ C, it suffices to
prove that C is a transversal in G′. By Lemma 4.4, every family of triangles
of the form (B′ \ K̂) ∪ {T or T̂ : T ∈ K} is an inclusion-maximal independent
family of triangles in G′. Therefore for every triangle U in G′ that is edge-
disjoint from B′ \ K̂, there exists T ∈ K such that U shares an edge with T as
well as with its counterpart T̂ ∈ K̂. Then the triangle U contains either e(T )
or an edge from E ′(T ). In the first case, E(U) intersects C; in the second case,
since by the definition of K, E ′(T ) is contained in E0 ⊆ C, E(U) intersects C
as well.

Lemma 4.8. τ ≤ (3− δ + 4η + δ0)ν.

Proof. First we define a subset I ′ of B′1 \ I by

I ′ = {T ′ ∈ B′1 \ (I ∪ K) : E(T ′) ∩ (
⋃
T∈I

f(T )) 6= ∅}.

We define η′ by |I ′| = η′ν. Since I ′ is a family of edge-disjoint triangles, it
follows that |I ′| ≤ |⋃T∈I f(T )| = 2|I|, hence η′ ≤ 2η. Let A = B′1\(I∪I ′∪K)

and Â = {T̂ : T ∈ A} ⊆ B′. We now recall the definition (10) of the edge-set
E0 and define the following set of edges of G:

C = E[B1] ∪ E0 ∪ E1 ∪ E2 ∪ E3 ∪ E4,

where

E1 =
⋃
T∈I

(
E(T ) ∪ E(T̂ ) ∪ f(T )

)
,

E2 =
⋃

T∈I′
E(T̂ ),

E3 =
⋃

T∈K
E(T̂ ),

E4 =
⋃

T∈A
E ′(T ).

We claim that C is a transversal of G. Since E[B1] ⊆ C and E[B′ \ Â] ⊆
E0 ∪ E1 ∪ E2 ∪ E3 ⊆ C, we only have to consider triangles in G′ which are
edge-disjoint from B′ \ Â. By Lemma 4.4, every family of triangles of the form
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(B′ \ Â) ∪ {T or T̂ : T ∈ A} is an inclusion-maximal independent family of
triangles in G′. Therefore, for every triangle U in G′ that is edge-disjoint from
B′ \ Â, there exists T ∈ A such that U shares an edge with T as well as with
its counterpart T̂ ∈ Â. Then the triangle U contains either e(T ) or an edge
from E ′(T ). In the first case, E(U) intersects E0; in the second case, E(U)
intersects E4. Hence C is a transversal of G.

It remains to show that |C| ≤ (3− δ + 4η + δ0)ν. Clearly,

|C| ≤ |E[B1]|+ |E0|+ |E1 \ E0|+ |E2 \ E0|+ |E3 \ E0|
+ |E4 \ (E0 ∪ E1 ∪ E2 ∪ E3)|

≤
(
3γ + 3α− 2δ + 6η + 2η′ + 2δ0

)
ν + |E4 \ (E0 ∪ E1 ∪ E2 ∪ E3)|.

Let us consider a triangle U ∈ A. We claim that |E ′(U) \ (E0 ∪ E1 ∪ E2 ∪
E3)| ≤ 1. Assume to the contrary that there are two distinct edges f1, f2 ∈
E ′(U) \ (E0 ∪E1 ∪E2 ∪E3). If f1 ∈ E[B′] then, since f1 /∈ E0 ∪E1 ∪E2 ∪E3,
we have f1 ∈ E(T̂ ) for a triangle T ∈ A. Since T /∈ I ′, the set E(T ) ∪ E(T̂ )
is disjoint from {f(T ′) : T ′ ∈ I}. Hence the set B̃′ = (B′ ∪ {T}) \ {T̂} not
only satisfies the hypothesis of the definition of B′, but the sets I, I ′, K,
E0 . . . E4, C satisfy the hypotheses of their definition also with respect to B̃′
instead of B′. Moreover, since T /∈ K, we have v(T ) 6= v̂(T ) and, therefore,
f2 /∈ E(T ) ∪ E(T̂ ). Hence f2 belongs to B̃′ exactly if it belongs to B′. So we
can work with B̃′ instead of B′ without affecting the involved edge sets or the
status of f2. Since f1 /∈ B̃′, we may assume in the first place that f1 /∈ B′
and, by a similar argument, that also f2 /∈ B′. However, then we can define
f(U) = {f1, f2} and the set I ∪ {U} satisfies the hypotheses of the definition
of I, contradicting the maximality of |I|. This proves the claim.

Consequently, we have |E4 \ (E0∪E1∪E2∪E3)| ≤ |A| = (δ− η− η′− δ0)ν.
Note that this last equality holds because the sets I, K, I ′ and A are disjoint
by definition. Hence we have |C| ≤ (3γ + 3α − δ + 5η + η′ + δ0)ν. Using
Lemma 4.6 and the fact that η′ ≤ 2η, we obtain |C| ≤ (3− δ + 4η + δ0)ν.

Proof of Theorem 4.1. Combining inequalities in Lemmas 4.2–4.8, we have:(
1
5

+ 4
75

+ 8
75

+ 8
25

+ 8
25

)
τ ≤ 1

5

(
3− 2

3
γ
)
ν + 4

75

(
3
2

+ 5
2
γ + 2β

)
ν

+ 8
75

(3γ + 3δ + 3α− β) ν + 8
25

(3γ + 3α− 2δ0) ν

+ 8
25

(3− δ + 4η + δ0) ν,

which gives τ ≤
(
41
25

+ 32
25

(γ + α + η)− 8
25
δ0
)
ν ≤ 73

25
ν =

(
3− 2

25

)
ν.
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5 Integrality

The goal of this section is to establish Theorem 1.10, the proof of which re-
lies on the family of graphs {Gk}k∈N defined below. Each graph Gk has two
distinguished vertices called terminals which are joined by an edge called the
terminal edge. The graph G0 consists of a single edge which is its terminal
edge. For k ≥ 1 the graph Gk is constructed as follows (see Figure 2 be-
low). Start with the 5-wheel graph W5 consisting of a 5-cycle with vertices
v1, v2, . . . , v5 and an additional vertex u joined to v1, v2, . . . , v5. To obtain Gk,
take a copy of Gk−1 for each edge xy of W5 and identify the terminal edge of
this copy with xy. We define v1, v2 to be the terminal vertices of Gk (so the
edge v1v2 is the terminal edge).

Gk−1 Gk

v1 v2

Figure 2: Recursive construction of graphs Gk.

Lemma 5.1. For every k ∈ N, we have

τ ∗(Gk) = ν∗(Gk) =
5

2k

(
20k − 1

19

)
.

Proof. For every triangle t in Gk we define the height of t to be the smallest
integer i so that t appears in a copy of Gi used in the recursive construction.
It is straightforward to verify that for 1 ≤ j ≤ k the graph Gk has exactly
5 · 10k−j triangles of height j. We now define the function fk on the triangles
Tk of Gk by the rule that fk(t) = 2−j where j is the height of the triangle t.
We claim that fk is a fractional packing. To this end, note that if an edge e
appears in a copy of Gi but is not its terminal edge, then it will not appear
in any triangles of height greater than i. The only way that e can appear in
two triangles of height i is if it is the terminal edge of a copy of Gi−1 that
was placed on a spoke of W5 to form Gi (in which case it is certainly not the
terminal edge of Gi). So,∑

t∈Tk:e∈t

fk(t) ≤ 2−1 + 2−2 + · · ·+ 2 · 2−k = 1.
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Thus, fk is a fractional packing with value

k∑
j=1

5

2j
10k−j =

5

2k

k∑
j=1

20k−j =
5

2k

(
20k − 1

19

)
.

Next, for every real number 0 ≤ a ≤ 1, we define the function gk,a on the
edges of Gk. We let g0,a be the function that assigns the only edge of G0 the
value a, and for k ≥ 0 we define gk+1,a recursively as shown in Figure 3.

gk,a

gk,0

gk,0gk,0

gk,0

gk+1,a

gk,1−a
2

gk,1+a
2

gk,1−a
2

gk,1+a
2

Figure 3: A fractional transversal on Gk+1.

Note that the terminal edge of Gk is always assigned a under gk,a. From
this it is immediate that for every triangle of height k, the sum of gk,a over
its edges is equal to one. Then, recursively, the same property holds for every
triangle in Gk, so gk,a is a fractional transversal. We claim that the value of gk,a
is equal to 5

2k
(20

k−1
19

) + a
2k

. This is immediate for the base case when k = 0 and
then follows inductively from the following computation (here we use φ(gk,a)
to denote the value of this fractional transversal):

φ(gk,a) = φ(gk−1,a) + 4φ(gk−1,0) + 3φ(gk−1, 1−a
2

) + 2φ(gk−1, 1+a
2

)

= 10 · 5

2k−1

(
20k−1 − 1

19

)
+
a+ 31−a

2
+ 21+a

2

2k−1

= 20 · 5

2k

(
20k−1 − 1

19

)
+

5

2k
+

a

2k

=
5

2k

(
20k − 1

19

)
+

a

2k
.
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We now have that gk,0 is a fractional transversal of Gk with value 5
2k

(20
k−1
19

)
which matches the value of our fractional packing, thus completing the proof.

Proof of Theorem 1.10. It follows from Lemma 5.1 that 2kτ ∗(Gk) is an odd
integer for every k ∈ N. It follows easily from this that 1

m
τm(Gk) 6= τ ∗(Gk)

and 1
m
νm(Gk) 6= ν∗(Gk) whenever m < 2k.

Acknowledgements

We would like to thank the anonymous referee who found a mistake in the proof
of Theorem 1.6 and offered several suggestions which improved the presentation
of the paper.

References

[1] Jack Edmonds. Maximum matching and a polyhedron with 0,1-vertices.
Journal of Research of the National Bureau of Standards, 69:125–130, 1965.

[2] Christopher S. Edwards. An improved lower bound for the number of edges
in a largest bipartite subgraph. Recent advances in graph theory (Proc.
Second Czechoslovak Sympos., Prague, 1974), 167–181, Academia, Prague,
1975.
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