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Abstract. We consider the problem of minimizing Euler’s elastica energy for
simple closed curves confined to the unit disk. We approximate a simple closed
curve by the zero level set of a function with values +1 on the inside and −1 on the
outside of the curve. The outer container now becomes just the domain of the phase
field. Diffuse approximations of the elastica energy and the curve length are well
known. Implementing the topological constraint thus becomes the main difficulty
here. We propose a solution based on a diffuse approximation of the winding
number, present a proof that one can approximate a given sharp interface using
a sequence of phase fields, and show some numerical results using finite elements
based on subdivision surfaces.

1. Introduction

Elastic structures confined to a certain volume or area appear in many situations.
For example inner membranes in biological cells separate an inner region from the rest
of the cell and consist of an elastic bilayer. The inner structures are confined by the
outer cell membrane. Since the inner membrane contributes to the biological function
it is advantageous to include a large membrane area in the cell. In two dimensions
elastic structures confined to a plane ball have been experimentally produced by Boué
et alii [4] (see also [9, 18]). They show that with increasing length the structures
become more and more complex. We are considering here the problem corresponding
to a one-dimensional closed elastic wire constrained in a two-dimensional container
of circular shape. More precisely we consider a wire whose equilibrium (i.e. stress-,
strain-free) configuration is given by a circle of radius L/2π, and we suppose that
both the friction between the wire and the boundary of the container, and the friction
between portions of the wire that are in contact are negligible. We are interested in
finding (stable) shapes of the folded wire constrained in the container. More precisely
we are interested in those shapes that are obtainable via pure bending deformation
processes starting from the equilibrium configuration (in particular no stretching is
allowed).

We adopt the following mathematical description of the problem. We represent
the container by the closed unit disk B1(0) := {z ∈ R2 : |z| ≤ 1} and the folded

(isotropic) elastic wire by an immersion γ : S1
L → B1(0) of the circle S1

L of radius
L/2π in the unit closed disk. As for the bending elastic energy, we consider the
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classical Euler’s elastica energy associated to the immersion γ. The configurations
we are interested in correspond to the (local) minimizers of the bending energy among
the closed curves that are supported in the unit ball, and that can be reached via
a deformation path that starts from the circle S1

L, and along which the following
three constraints are fulfilled: the length of the immersed curve remains equal to L
(so that we exclude stretching of the wire); the elastic (bending) energy is uniformly
bounded; the immersed curve may have multiple self-contact points, but does not
have “self-crossings” (as this would correspond to self-interpentration of the wire).
It turns out (see Section 2) that the class of immersed curves satisfying the above
constrains corresponds to the closure (with respect to the W 2,2-weak topology) of
length-preserving diffeomorphisms of S1

L into B1(0). In this formulation there are
several intrinsic difficulties. Minimizers (for large prescribed length) are expected
to have multiple touching points. Therefore the associated Euler-Lagrange equation
involves several Lagrange multipliers and an explicit characterization of the class
of curves in which the minimum is attained is difficult to obtain. Furthermore the
constraints of being confined to the unit ball and of not developing “self-crossings”
are difficult to maintain in a steepest descent method.

In this paper we propose a phase field approximation of the above problem. We
justify our approach by an asymptotic analysis and investigate the problem by nu-
merical simulations. As we already remarked above, in the original sharp interface
formulation admissible configurations correspond to immersions that can be approx-
imated by a sequence of simple and closed curves. Since simple and closed curves
bound an inner set we can approximate such sets by smooth fields with values close
to +1 inside and close to −1 outside. Prescribing the confinement condition is now
rather simple: the outer container just becomes the domain of definition for the ap-
proximating phase fields and a boundary condition ensures that emerging structures
do not leave the domain. An approximation of Euler’s elastica energy is well known,
implementing the topological condition thus becomes the main difficulty. One nec-
cessary condition is that the phase field approximation of the winding number has
to be close to 2π. We will use a gradient flow for a relaxed diffuse approximation
of the elastica energy that includes soft constraints for the prescribed length and for
the winding number. For “generic situations” we observe that this is sufficient to
keep the right topology, and avoid that phase interfaces cross transversally. How-
ever, in general this method does not exclude that a phase disconnects into several
pieces. To deal with this issue we show that an additional variable can detect multiple
components and can be used to prevent structures from disconnecting.

Let us remark that the same phase-fields approximation we use in this paper for the
bending energy, has been successfully used in similar contexts (e.g. [10, 11, 12, 5, 6]).
The main differences between our results and the previous literature are on the one
hand the numerical methods we develop to solve the (diffuse interface) gradient flow,
on the other hand the inclusion of the topological constraint in the energy.

The plan of the paper is the following. In Section 2 we discuss the constrained
minimization problem in its sharp interface formulation. In Section 3 we introduce
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the diffuse interface approximation. In Section 4 we will prove that we can approxi-
mate a given sharp interface configuration with a sequence of phase fields. In Section
5 numerical simulations are presented that show that our approach works reasonably
well for “well-behaved” initial data. A more exotic example shows that our topolog-
ical constraint is in general not sufficient to enforce the correct topology for phase
boundaries. In the Appendix we therefore propose an improved formulation for the
constrained problem and indicate why this will lead to the correct result.

2. The sharp interface minimization problem

We first discuss the minimization problem in its sharp interface formulation. Con-
sider the unit ball B1(0) ⊂ R2, a given length constraint L > 0, and define the
following class of admissable curves

ML :=
{
γ : [0, L]→ B1(0), γ is a closed and simple C2-curve, |γ′| = 1

}
. (2.1)

In particular, elements of ML can be represented by C2-diffeomorphisms of the stan-
dard sphere. For γ ∈ML Euler’s elastica energy is given by

B(γ) :=

∫ L

0

|γ′′(s)|2 ds. (2.2)

We then consider the constrained minimization problem: find the optimal value

mL := inf
γ∈ML

B(γ), (2.3)

and characterize minimal sequences and possible limit points. Since we expect touch-
ing points for the optimal structures, minimizers will in general not belong to the
class ML. However, we do obtain the following compactness property.

Proposition 2.1. Let (γk)k∈N be a minimal sequence in ML. Then there exists
γ ∈ W 2,2([0, L]), such that

γk → γ weakly in W 2,2([0, L]) (2.4)

for a subsequence k →∞. The curve γ has the following properties:

γ is C1 − closed, (2.5)

γ([0, L]) ⊂ B1(0), (2.6)

|γ′(s)| = 1 for all s ∈ [0, L], (2.7)

γ can touch the unit circle only tangentially, (2.8)

γ has no transversal crossings, (2.9)

where the last property means that γ can touch itself only tangentially. Furthermore,
if we denote by Xk : R2 → {0, 1} the characteristic function of the open subset of
B1(0) that is enclosed by γk we obtain that

Xk → X strongly in L1(R2). (2.10)
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The limit characteristic function X has the following properties:

X = XE, where E ⊂ B1(0) is a set of finite perimeter, (2.11)

∂∗E ⊂ supp(γ). (2.12)

Finally, γ lies always on the same side of E: after changing the orientation of γ if
neccessary,

νE(x) =
∑
γ(s)=x

γ′(s)⊥ for H1-almost all x ∈ ∂∗E, (2.13)

where in the last equation ⊥ denotes the clockwise rotation by π/2 and νE the inner
unit normal of E.

Proof. By the minimizing property of γk we have that there exists Λ > 0 such that

B(γk) ≤ Λ.

We moreover assume that all γk are parametrized by arclength. Since γ maps to the
unit ball we therefore have a uniform bound of the sequence (γk)k∈N in W 2,2(0, L).
We therefore deduce (2.4) and by Sobolev embedding Theorem that γ ∈ C1,1/2([0, L])
and that

γk → γ strongly in C1,α([0, L]) for all 0 ≤ α <
1

2
. (2.14)

This also implies that (2.5)-(2.9) holds.
For the inner sets we have a uniform area bound by the confinement constraint

and a uniform bound on the perimeter, that has length L by the length constraint.
Therefore Xk is uniformly bounded in BV (R2) und we deduce that for a subsequence
(2.10) holds and that X is the characteristic set E satisfying (2.11),(2.12).

Finally we can orient all γk such that γ′(s)⊥ equals the inner normal of the set
that is enclosed by γk. Then we obtain for any function η ∈ C1

c (R2) from the Gauß
Theorem and by (2.14) that

−
∫
R2

νE(x) · η(x) d|∇X |(x) =

∫
R2

X (x)∇ · η(x) dx

= lim
k→∞

∫
R2

Xk(x)∇ · η(x) dx

= − lim
k→∞

∫ L

0

γ′k(s)
⊥ · η(γk(s)) ds

=

∫ L

0

γ′(s)⊥ · η(γk(s)) ds,

which proves (2.13) since η was arbitrary. �

Proposition 2.1 in particular shows that minimizers of (2.3) belong to the closure
ML of ML with respect to the weak-W 2,2([0, L])-topology. For our purposes, however,
we only need the following alternative characterization of ML: curves in ML can be
approximated strongly in W 2,2 by closed simple curves that are strictly contained in
the unit ball.
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Proposition 2.2. For any γ ∈ ML there exists a sequence (γk)k∈N of simple closed
C2-curves with

γk → γ as k →∞ strongly in W 2,2([0, L]), (2.15)

|γ′k|(s) = 1 for all s ∈ [0, L], (2.16)

γk([0, L]) ⊂ B1(0). (2.17)

Proof. (i) We first assume that γ([0, L]) ⊂ B1(0) and therefore that

δ := dist(γ, S1(0)) > 0.

Repeating the proof of [1, Corollary 5.2] under the additional hypothesis that, being
γ ∈ML, γ is the W 2,2-weak-limit of a sequence of diffeomorphisms of the unit circle
with equi-bounded “bending-energy”, we obtain the existence of a sequence (ck)k∈N
of simple closed C2-curves and a sequence (λk)k∈N of positive numbers such that,

ck → γ as k →∞ strongly in W 2,2([0, L]), (2.18)

|c′k|(s) = λk for all s ∈ [0, L]. (2.19)

From (2.18) it follows that λk → 1 as k →∞. Let

δk := dist(ck, S1(0))

then (2.18) yields δk → δ as k →∞. We now define

γk(s) :=
1

λk
ck(s), s ∈ [0, L]

and observe that γk is a simple closed C2-curve with |γ′k(s) = 1| for all s ∈ [0, L].
Moreover we have

γk → γ strongly in W 2,2(0, L),

dist(γk, S1(0)) = 1− 1− δk
λk

→ δ,

in particular γk([0, L]) ⊂ B1(0) for k large enough. Therefore (γk)k∈N has all required
properties.

(ii) We next consider the general case γ([0, L]) ⊂ B1(0). First we observe that
γ([0, L]) ∩ B1(0) cannot be empty for L > 2π (for L ≤ 2π any minimizing sequence
converges to a parametrization of the circle with length L). In fact, assume the
contrary and let (cl)l∈N be a sequence in ML approximating γ weakly in W 2,2([0, L]).
Then, using Gauß Theorem

L = lim
l→∞

∫ L

0

νl(s) · γl(s) ds = lim
l→∞

∫
R2

Xl(x)∇ · x dx = 2π,

which is a contradiction. Therefore γ cannot be entirely contained in the unit circle.
Next consider ξ ∈ C∞c (B1(0)). Then there exists t0 > 0 and a smooth evolution of

diffeomorphisms ϕt : B1(0) → B1(0), t ∈ (−t0, t0), such that

∂

∂t
ϕt(s) = ξ(ϕt(s)) for all s ∈ [0, L], ϕ0 = Id .
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Then ct(s) := ϕt(γ(s)) defines a smooth evolution of C1-closed W 2,2 curves such

that all ct are contained in B1(0) and such that ct → γ strongly in W 2,2([0, L]) as

t→ 0. We compute for the length L(t) :=
∫ L

0
|c′t(s)| ds that

d

dt

∣∣∣
t=0
L(t) = −

∫ L

0

γ′′(s) · ξ(γ(s)) ds (2.20)

and observe that this expression cannot vanish for all ξ ∈ C∞c (B1(0)) since otherwise
γ([0, L]) ∩ B1(0) consists of a collection of straight lines, which contradicts the fact
that γ can touch S1(0) only tangentially. Therefore we find ξ ∈ C∞(B1(0)) and
t0 > 0 such that the length of ct is strictly increasing on [0, t0) and such that ct → γ
strongly in W 2,2([0, L]) as t ↘ 0. In the following we fix such ξ and t0 and define
modified curves with length L,

γt(s) :=
L

L(t)
ct(σ(s)), s ∈ [0, L]

where σ(s) denotes the arclength reparametrization, such that |γ′t| ≡ 1 holds. Then
γt is strictly contained in B1(0). Moreover, we claim that γt ∈ ML. In fact let
(cl)l∈N be a sequence in ML approximating γ weakly in W 2,2([0, L]). Define curves
cl,t(s) := ϕt(cl(s)) according to the variation field ξ fixed above. Then it follows from
(2.20), the choice of ξ, and the weak W 2,2 convergence of cl to γ that

d

dt

∣∣∣
t=0
L(l, t) = −

∫ L

0

c′′l (s) · ξ(cl(s)) ds > 0

for all l large enough. We then set

γl,t(s) :=
L

L(l, t)
cl,t(σl(s)), s ∈ [0, L]

as above and obtain that γl,t ∈ ML. Moreover we have that γl,t → γt as l → ∞
weakly in W 2,2([0, L]), hence γt ∈ ML. Thus, we can apply part (i) and obtain a
sequence of γt,k ∈ ML that approximates γt strongly in W 2,2. Taking a diagonal
sequence proves the claim in the general case. �

3. The diffuse interface approximation

Phase field approximations of sharp interface problems are widely used for numer-
ical simulations and arise from mean field descriptions of phase separation processes
in various applications. In the following u : B1(0) → R is a smooth function. The
basis of the phase field formulation is an interfacial energy of the form

Lε(u) :=
1

c0

∫
B1(0)

(ε
2
|∇u|2 +

1

ε
W (u)

)
dx. (3.1)

Here ε > 0 is a small parameter and W denotes the standard quartic double-well
potential

W (r) =
1

4
(1− r2)2. (3.2)
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It is well-known [15] that 1
c0
Lε approximates the curve length functional in the sense

of Gamma-convergence, where

c0 :=

∫ 1

−1

√
2W (s) ds. (3.3)

A phase-field analogue of Euler’s elastica energy was already proposed by De Giorgi
[8]. For the modified version

Bε(u) =
1

c0

∫
B1(0)

1

ε

(
− ε∆u+

1

ε
W (u)

)2

(3.4)

the approximation property was proved in two and three dimensions [17]. Moreover,
following [2] we introduce the diffuse winding number

Tε(u) =
1

c0

∫
B1(0)

(
− ε∆u+

1

ε
W (u)

)
|∇u|. (3.5)

Finally we propose to approximate the constrained minimization problem (2.3) by
the problem of minimizing

Fε(u) = Bε(u) + ε−α
(
Lε(u)− L

)2

+ ε−β
(
Tε(u)− 2π

)2

(3.6)

under the boundary conditions

u(x) = −1, ∇u(x) · x = 0 for all |x| = 1, (3.7)

that prevent diffuse interface from touching the outer container.
The existence of minimizers for (3.6), (3.7) follows with the direct method of cal-

culus of variations. Since we are interested in minimizers of the functional B the
adequate statement regarding the relation between the sharp and diffuse minimiza-
tion problems would be the Gamma-convergence of Fε to B. Though we are not able
to prove such result in full generality, nevertheless we do obtain a compactness result
and a lower bound estimate in the case of a regular limit point as a consquence of
[17] (see also [19]).

Proposition 3.1. Let (uε)ε>0 be a sequence of smooth functions uε : B1(0)→ R that
satisfy the boundary condition (3.7) and assume that

sup
ε>0
Fε(uε) < ∞. (3.8)

Then there exists a set E ⊂ B1(0) of finite perimeter such that

uε → 2XE − 1 strongly in L1(B1(0)). (3.9)

Moreover, the diffuse interface measures

µε :=
1

c0

(ε
2
|∇uε|2 +

1

ε
W (uε)

)
dx (3.10)
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converge in measure to a Radon measure µ with support in B1(0). If µ is given by a
curve γ ∈ML in the sense of∫

R2

η(x) dµ(x) =

∫ L

0

η(γ(s)) ds for all η ∈ C0
c (R2), (3.11)

then

B(γ) ≤ lim inf
ε→0

Fε(uε) (3.12)

holds.

In general, the limit measure µ will not be given by a curve in ML but will enjoy
some weak regularity (being an integral varifold with weak mean curvature in L2).
We will demonstrate in Appendix A that µ can consist of several disjoint curves and
therfore does not belong to ML. On the other hand we are mainly interested in the
numerical simulation of a steepest descent evolution for Fε and this in fact works
sufficiently well. In general a more complex functional is needed, and we propose in
Appendix A a possible choice.

4. Construction of recovery sequences

Whereas we cannot prove that minimizer uε converge to curves γ ∈ ML we can
show that any such curve γ can be approximated by a suitable recovery sequence.
This result also extends to the improved functional we propose in the next section
and justifies our approximation of the sharp interface minimization problem. We
first start with the most regular case.

Lemma 4.1. Let γ ∈ML be given. Then there exists a sequence uε : B1(0)→ [−1, 1]
of smooth phase fields such that the diffuse interface measures µε (as defined in (3.10))
converge to the measure µ that is

µε → c0H1bγ (4.1)

as ε→ 0. Furthermore for all ε > 0 holds

Lε(uε) = L+R(L)
ε , (4.2)

Tε(uε) = 2π +R(T )
ε , (4.3)

Bε(uε) = B(γ) +R(B)
ε , (4.4)

where R
(L)
ε , R

(T )
ε are exponentially small in ε > 0 and R

(B)
ε is of order O(ε2). In

particular,

Fε(uε) → B(γ) (4.5)

for any choice of α, β > 0 in (3.6).

Proof. The construction is standard and uses the optimal profile q for the one-
dimensional minimisation in the Cahn–Hilliard energy, the signed distance func-
tion from γ, and an interpolation to the stationary points ±1. To be precise, let
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q : R→ (−1, 1) be the solution of

−q′′ +W ′(q) = 0, (4.6)

q(−∞) = −1, q(+∞) = 1, q(0) = 0. (4.7)

Then

q′(r) =
√

2W (q(r)) (4.8)

holds for all r > 0 and with (3.2) we have

q(r) = tanh
(
r/
√

2
)
. (4.9)

Moreover there exists δ > 0 such that signed distance function d from γ (taken
positive in the region inside of γ) is of class C2. Next fix a smooth symmetric cut-off
function η ∈ C∞(R),

0 ≤ η ≤ 1, η(r) = 1 for r ∈ [−1, 1], η(r) = 0 for |r| ≥ 2, η′ ≤ 0.

We then define

qε(r) := η
(2r

δ

)
q
(r
ε

)
+ sgn(t)

(
1− η

(2r

δ

))
and

uε(x) := qε(d(x)). (4.10)

Step 1: Consider the parametrization

ψ : [0, L)× (−δ, δ) → B1(0), ψ(s, t) = γ(s) + tν(s), (4.11)

which is injective by the choice of δ and continuously differentiable with

detDψ(s, t) = 1− tκ(s). (4.12)

We then compute that

Lε(uε) =

∫ L

0

∫ δ

−δ

(ε
2
q′ε(t)

2 +
1

ε
W (qε(t)

)
(1 + tκ(s)) dt ds

=

∫ L

0

∫ δ/2

−δ/2

1

ε

(1

2
q′(t/ε)2 +W (q(t/ε)

)
(1 + tκ(s)) dt ds

+

∫ L

0

∫
{δ/2<|t|<δ}

(ε
2
q′ε(t)

2 +
1

ε
W (qε(t))

)
(1 + tκ(s)) dt ds. (4.13)
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By the symmetry of q and (4.8), (4.9) we obtain for the first integral on the right-hand
side that

∫ L

0

∫ δ/2

−δ/2

1

ε

(1

2
q′(t/ε)2 +W (q(t/ε)

)
(1 + tκ(s)) dt ds

= 2L

∫ δ/2ε

0

q′(t)
√

2W (q(t)) dt

= c0L− 2L

∫ 1

q( δ
2ε

)

√
2W (r) dr

= c0L−
√

2L
(

1− tanh
( δ

2
√

2ε

))
−
√

2L

3

(
1− tanh3

( δ

2
√

2ε

))
(4.14)

Furthermore, using (4.8) again

q′ε =
2

δ
η′
(2t

δ

)(
q
( t
ε

)
− 1
)

+
1

ε
η
(2t

δ

)
q′
( t
ε

)
=
(

1− q
( t
ε

))(
− 2

δ
η′
(2t

δ

)
+

1√
2ε
η
(2t

δ

)(
1 + q

( t
ε

)))
.

With this equality and the symmetry of qε we calculate for the second integral in
(4.13) that

∫
{δ/2<|t|<δ}

(ε
2
q′ε(t)

2 +
1

ε
W (qε(t))

)
(1 + tκ(s)) dt

= 2

∫ δ

δ
2

(
1− q

( t
ε

))2(ε
2

(
− 2

δ
η′
(2t

δ

)
+

1√
2ε
η
(2t

δ

)(
1 + q

( t
ε

)))2

+
1

4ε

(
1 + q

( t
ε

))2)
dt

(4.15)

Together with (4.14) we obtain (4.2) with

R(L)
ε = −

√
2L
(

1− tanh
( δ

2
√

2ε

))
−
√

2L

3

(
1− tanh3

( δ

2
√

2ε

))
+ 2L

∫ δ

δ
2

(
1− q

( t
ε

))2 ε

2

(
− 2

δ
η′
(2t

δ

)
+

1√
2ε
η
(2t

δ

)(
1 + q

( t
ε

)))2

dt

+ 2L

∫ δ

δ
2

(
1− q

( t
ε

))2 1

4ε

(
1 + q

( t
ε

))2)
dt,

which is exponentially small in ε > 0.
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Step 2: Let ξ ∈ C0(B1(0)). We compute that

µε(ξ) =

∫ L

0

∫ δ

−δ

(ε
2
q′ε(t)

2 +
1

ε
W (qε(t)

)
ξ(γ(s) + tν(s))(1 + tκ(s)) dt ds

=

∫ L

0

∫ δ
2ε

− δ
2ε

(
q′(t)2 +W (q)

)
ξ(γ(s) + εtν(s))(1 + εtκ(s)) dt ds

+

∫ L

0

∫
{ δ
2
<|t|<δ}

(ε
2
q′ε(t)

2 +
1

ε
W (qε(t)

)
ξ(γ(s) + tν(s))(1 + tκ(s)) dt ds.

(4.16)

As above we conclude that the second term is expentially small in ε > 0 and that
(4.8) we derive

lim
ε→0

µε(ξ) = c0

∫ L

0

ξ(γ(s)) ds = c0

∫
γ

ξ dHn−1,

which proves (4.1).

Step 3: From (4.8) we obtain, using the shortcuts η = η(δ−12t), q = q(ε−1t) etc., that

− εq′′ε +
1

ε
W ′(qε)

= (1− q)
(
ε

4

δ2
η′′ − 4

δ
√

2
η′(1 + q)− 1

ε
η(1− η)(1− q)

)
(4.17)

is exponentially small in ε > 0. For the distance function we have

(∆d)(γ(s) + tν(s)) =
κ(s)

1 + tκ(s)
(4.18)

and for the diffuse mean curvature we obtain

−ε∆uε +
1

ε
W ′(uε) = −εq′′ε +

1

ε
W ′(qε) + εq′ε∆d. (4.19)

Therefore∫
B1(0)

(
− ε∆uε +

1

ε
W ′(uε)

)
|∇uε| (4.20)

=

∫ L

0

∫ δ

−δ

(
− εq′′ε (t) +

1

ε
W ′(qε(t)) + εq′ε(t)

κ(s)

1 + tκ(s)

)
q′ε(t)(1 + tκ(s)) dt ds

=
(∫ L

0

κ(s) ds
)∫ δ

−δ
εq′ε(t)

2 dt

+ 2
(∫ L

0

κ(s) ds
)∫ δ

δ
2

(
− εq′′ε (t) +

1

ε
W ′(qε(t))

)
tq′ε(t) dt. (4.21)
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Since γ is closed and simple we have
∫ L

0
κ(s) ds = 2π. Therefore

Tε(uε)− 2π = −4π

c0

∫ ∞
δ

εq′ε(t)
2 dt+

4π

c0

∫ δ

δ
2

(
− εq′′ε (t) +

1

ε
W ′(qε(t))

)
tq′ε(t) dt

=: R(T )
ε (4.22)

and similarly as above one shows that this term is exponentially small in ε > 0.

Step 4: As above we deduce that

Bε(uε)

=
1

c0

∫ L

0

∫ δ

−δ

1

ε

(
− εq′′ε (t) +

1

ε
W ′(qε(t)) + εq′ε(t)

κ(s)

1 + tκ(s)

)2

(1 + tκ(s)) dt ds

=
1

c0

∫ L

0

∫ δ

0

εq′ε(t)
2κ(s)2

( 1

1 + tκ(s)
+

1

1− tκ(s)

)
dt ds

+

∫ L

0

∫ δ

0

(
− εq′′ε (t) +

1

ε
W ′(qε(t))

)2 1

ε
(1 + tκ(s)) dt ds

=
(∫ L

0

κ(s)2 ds
) 2

c0

∫ δ
2ε

0

q′(t)2 dt

+ ε2 2

c0

∫ L

0

∫ δ

0

q′(t)2t2κ(s)2 1

1− ε2t2κ(s)2
dt ds

+
2

c0

∫ L

0

∫ δ

δ
2

1

ε
q′ε(t)

2κ(s)2
( 1

1 + tκ(s)
+

1

1− tκ(s)

)
dt ds

+

∫ L

0

∫ δ

0

(
− εq′′ε (t) +

1

ε
W ′(qε(t))

)2 1

ε
(1 + tκ(s)) dt ds (4.23)

The last two terms on the right-hand side are exponentially small and we finally

obtain (4.4) with R
(B)
ε = O(ε2). �

We next can prove the general case.

Proposition 4.2. Let γ ∈ML. Then the same conclusions as in Lemma 4.1 hold.

Proof. By Proposition 2.2 we can approximate γ strongly in W 2,2([0, L]) by a se-
quence of closed simple C2-curves (γk)k∈N that satisfy (2.16) and (2.17). In particular
γk ∈ML and since γk → γ strongly in W 2,2([0, L])

B(γk) → B(γ) (4.24)

as k →∞. Lemma 4.1 yields a sequence of functions (uε,k)k∈N that satisfy (3.7) and

Fε(uε,k) → B(γk)

as ε→ 0. Choosing now a suitable diagonal sequences proves the claim. �
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5. Numerical simulations

In order to demonstrate the feasibility of the above phase field approach to model
confined elastic curves we present some numerical results. To be exact, we use a finite
element approach to discretize a viscous gradient flow of the energy Fε, after some
modifications described below, in space and advance the equation in time using a
first order fully implicit scheme. For other numerical approaches to a diffuse interface
approximation of constrained Willmore flow see for example [14, 11, 10].

5.1. Evolution equation in the numerical simulations. As it turns out, for
finite epsilon, the numerical method does not always yield a perfect transition layer.
For large prescribed length L it can be energetically favorable to not follow the
optimal profile of the transition layer—thus increasing the value of the diffuse length
functional—in cases where two transistion layers were close together. It was therefore
necessary to introduce a penalty for the discrepancy of the phase field to the optimal
profile. This term is

Mε(u) = σmis

∫
B1(0)

(
ε

2
|∇u|2 − 1

ε
W (u)

)2

.

It is evident from the proof of Lemma 4.1 that the addition of such a term does not
change the construction of the recovery sequence and simply vanishes in the limit of
small ε if σ scales as some power of 1

ε
.

Unfortunately, the non-differentiability of the factor |∇u| in the diffuse winding
number proves to be another problem for the gradient flow. Its gradient yields ∇u

|∇u| ,

so the second derivative blows up where |∇u| vanishes. Using the fact that the
discrepancy of the phase field and the optimal profile have to vanish, we have

|∇u| =
√

2

ε

√
W (u) =

1√
2ε

∣∣1− u2
∣∣ .

The second derivative—which is necessary for the Newton-Raphson iteration used in
the implicit time integration—of this term still blows up when u = ±1, however, the
phase field should remain in the interval [0, 1]. For the computation, we thus simply
leave out the absolute value in this term and observe that the phase field behaves
nicely in the simulation.

In conclusion, we numerically compute the viscous gradient flow of the energy

Fε(u) = Bε(u) + ε−α (Lε(u)− L)2 + cβε
−β (T ε(u)− T

)2
+Mε(u), (5.1)

where

T ε(u) =
1

c0

∫
B1(0)

(
− ε∆u+

1

ε
W (u)

) 1√
2ε

(
1− u2

)
.

The boundary conditions are clamped, i.e., u = −1 on the boundary of the domain
and the normal derivative of u on the boundary vanishes.
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Name Length Winding Number Mismatch Length
Constraint Constraint Penalty Target

Circle 1 off off off n/a
Circle 2 off on on n/a
Relaxation on on on 8.7838
Topology 1 on off on 8.7838
Topology 2 on on on 8.7838

Table 1. The parameters for the numerical experiments

5.2. Numerical method. The space discretization of (5.1) requires some care, since
its weak formulation requires u to be in H2(B1(0)), making it impossible to use a
piecewise linear interpolation directly. While there are several options to resolve
this problem, we resort to using a conforming, i.e., continuously differentiable finite
element discretization. To this end, we construct basis functions derived from Loop
subdivision surfaces, which can be thought of as a generalization of multivariate
splines to tessellations of arbitrary topology [13]. The use of subdivision surfaces
for this problem has been suggested in [7], where one can also find a description of
convergence properties. In addition, we use the method described in [3] to fix the
clamped boundary conditions. The computational domain is a disk of radius one,
discretized using distmesh [16]. In order to advance the system in time, we use a
simple first order implicit Euler scheme, since accuracy of the time integration is not
our primary concern.

5.3. Simulation parameters and results. We use a triangulation of the domain
consisting of 17 813 faces. The transition length ε is kept fixed at 0.025, much larger
values produced a significant mesh effect. The parameters α and β are fixed at 2 and
cβ = 3. The mismatch penalization σmis is 0.02ε−2.

For the numerical method it is essential to impose initial conditions that already
are close to an optimal profile of a simple closed curve. To generate such initial
conditions, we take black and white image to represent the interior and exterior of
the initial curve, apply a Gaussian blur and use the grayscale data as the initial
function values. It is then necessary to relax this initial condition in order for it to
be close enough to an optimal profile for the penalty terms to make sense. We thus,
in the beginning, chose a small timestep (10−6), and slowly increase the penalization
of the length- and the topological constraint. The initial conditions are plotted after
this relaxation phase which lasts 200 timesteps. The timestep is then increased to
the regular value of 10−5. In addition, we slowly increase the target value L for the
length constraint, starting at the value of the diffuse length functional at the initial
condition (after relaxation). For comparison, we also provide some simulation results
lengh or winding number constraints.

In the following, we briefly describe the simulation results. The parameters for the
various simulations are indicated in Table 1. There, “on” for a penalty term means
that the respective term is used as in equation (5.1). “Off” means the term is not
present in the energy used for the computation.
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(a) Time vs. radius plot (b) Difference between the expanding cir-
cle solution with and without winding
number and mismatch penalization

Figure 1. Expanding circle

Expanding circle (Circle 1–2). Figure 1 shows the expansion of a circle of initial
radius 0.3 with and without length constraint. While it is clear that the phase
field approximation of Euler’s elastica energy Bε alone gives a good approximation
for the Willmore flow of a radially symmetric initial condition, one can see from
the radius-vs.-time plot that the topological constraint does not influence this rate of
expansion. The difference of the phase field of the two simulations (with and without
topological and mismatch penalty) is shown in Figure 1(b). Note that the maximum
of the deviation is small compared to 1.
Relaxation of a folded mirror-symmetric structure (Relaxation). It is clear
that the gradient flow routine will only find local minima of the energy, and it stands
to reason that there are many such local minima. We want to investigate the relaxed
energy of the gradient flow with initial condition shown in Figure 2(a). Figure 2(b) il-
lustrates the evolving surface. The final relaxed state, with its diffuse energy overlaid,
can be seen in Figure 2(c). The final energy is 33.6.
Topological transition (Topology 1–2). We investigate the effectiveness of the
penalization of the diffuse winding number as it differs from 2π. To this end, we
start a simulation with fairly high energy in the state illustrated in Figure 3(a).
Figures 3(b) and 3(c) show the state at t = 0.08 for the simulation not penalizing the
diffuse winding number and penalizing the diffuse winding number, respectively. One
can clearly see that the simulation without penalization is getting close to pinching
off at two positions. Finally, one can see that a topological transition occured in
Figure 3(d), while the curve in Figure 3(e) remained simply connected. Both figures
are taken at t = 0.1. The overlaid diffuse winding number functional in those figures
clearly shows how the topological transition changes the calculated winding number
integral.
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(a) Initial condition (after initial relax-
ation)

(b) Zero level sets of the intermediate
stages, the arrow indicates the direc-
tion of the flow.

(c) Zero level set of the equilibrium state.
Elastic energy density is shown as overlay.

Figure 2. Mirror symmetric initial condition

Appendix A. A better topological constraint

The numerical simulations presented in this paper suggest that the “topology”
of the diffuse interface is preserved along the gradient flow of Fε when the initial
condition is well-prepared around an element of ML and L is not too large with
respect to the diameter of the domain. However, in general, neither the functional
Fε nor the winding number in the sharp-interface setting enforce the correct topology,
as the following example shows.
Consider

E =
(
B1/2(0) ∪B1/5((0, 3/4))

)
\B1/4(0) (A.1)

and consider diffuse approximations uε obtained via the construction presented in
Lemma 4.1. It is then easy to see that |Tε(uε) − 2π| is exponentially small in ε.
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(a) Initial Condition (after initial relax-
ation)

(b) Critical stage of topological transition
without topological constraint. Diffuse
winding number is shown as overlay.

(c) Critical stage of topological transition
with topological constraint. Diffuse wind-
ing number is shown as overlay.

(d) Past the critical stage of topological
transition without topological constraint.
Diffuse winding number is shown as over-
lay.

(e) Past the critical stage of topological
transition with topological constraint. Dif-
fuse winding number is shown as overlay.

Figure 3. Rotationally symmetric initial condition
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However, ∂E is not in the admissible class ML as it cannot be parametrized by a
single copy of S1.

The reason why our topological constraint does not work properly in this example
is due to the fact that Tε(u) represents an approximation of the so called winding
number, which depends on the orientation induced by E on the connected compo-
nents of ∂E. In particular connected components of ∂E with opposite orientation
(such as ∂B1/4(0) and ∂B1/5((0, 3/4)) in the example above) compensate each other,
and do not contribute to the value of the winding number (and consequently to the
value of Tε(u)). A possibility to avoid such problem (firstly in the sharp-interface) is
the following.

Let (ϕ,Γ) denote a couple constituted by a finite collection Γ ⊂ B1(0) of W 2,2-
regular, simple, closed and disjoint curves, and a function ϕ ∈ C1(Γ, [−1, 1]) such
that |∇Γϕ| ≡ 0 on Γ, that is ϕ assumes a constant value on each of the connected
components of Γ. More precisely let N ∈ N, γi ∈ W 2,2(S1, B1(0)) (i = 1, . . . , N) be
diffeomorphisms such that (γi)∩ (γj) = ∅ for i 6= j, and let Γ =

(
(γ1), . . . , (γN)

)
and

ϕ ≡ ci ∈ [−1, 1] on (γi). We then set

A(ϕ,Γ) :=

∫
Γ

ϕκΓ dH1 =
N∑
i=1

ci

∫
(γi)

κγi dH1. (A.2)

Being γ1, . . . γN simple, regular, closed and disjoint curves, we can find (l1, . . . , lN) ∈
{1, 2}N such that, setting ϕ[Γ] :≡ (−1)li on (γi), we have

T̃ (Γ) := inf{A(ϕ,Γ) : ϕ ∈ BV (Γ), |∇Γϕ|(Ω) = 0} = A
(
ϕ[Γ],Γ

)
=

N∑
i=1

(−1)li
∫

(γi)

κγi dH1 = −2πN.

Hence the functional T̃ (Γ) counts the number of connected components of Γ, with-
out taking into account of their orientation. It is then rather natural to look for a
phase-fields approximation for T̃ (Γ) in order to get a constraint on the topology of
the diffuse interfaces stronger than the one obtained via Tε(u). For this purpose we
proceed as follows. We firstly consider a sequence Aε(ϕ, u) of functionals defined on
couples (ϕ, u) ∈ C1(Ω, [−1, 1])× C2(Ω), and representing a diffuse interface approx-
imation of A(ϕ,Γ), Then, in analogy with T̃ (Γ), we define a functional T̃ε(u) via
minimization with respect to ϕ of Aε(ϕ, u). Finally we define the new topological
constraint penalizing deviations of T̃ε(u) from 2π. More precisely we start setting

Aε(ϕ, u) := εγ
∫
B1(0)

|∇ϕ| dx+
1

εγ

∫
B1(0)

∣∣∇u⊥ · ∇ϕ∣∣ε|∇u| dx
− 1

c0

∫
B1(0)

(
− ε∆u+

1

ε
W ′(u)

)
ϕ|∇u| dx. (A.3)

Aε(ϕ,Γ) formally presents a diffuse interfaces approximation of A(ϕ,Γ). The second
term in (A.3) represents a penalization of order ε−γ of the integral, with respect to the
diffuse-length measure ε|∇u|2LbB1(0), of the variations of ϕ along the diffuse interface
{y ∈ B1(0) : ∇u(y) 6= 0}. Hence this term corresponds to a relaxation (at the diffuse
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interface level) of the (sharp-interface) constraint |∇Γϕ| ≡ 0 on Γ. The third term,
as we have already seen in 4.22, can be thought of as a phase-fields approximation of∫

Γ
ϕκΓ dH1. Finally the first term, whose contribution is infinitesimal of order εγ, is

needed in order to ensure compactness in BV (Ω, [−1, 1]) when minimizing Aε(ϕ, u)
with respect to the first variable. In fact, we remark that, fixed u ∈ C2(Ω), we
can apply the direct method of calculus of variations, and obtain the existence of a
function ϕ[u] ∈ BV (Ω, [−1, 1]) such that

Aε(ϕ[u], u) = inf
ϕ∈C1(Ω,[−1,1])

Aε(ϕ, u),

where Aε(·, u) denotes the lower semi-continuous envelope of Aε(·, u) with respect to
the weak convergence in BV (Ω, [−1, 1]). Hence we define

T̃ε(u) =
1

c0

∫
B1(0)

(
− ε∆u+

1

ε
W (u)

)
ϕ[u]|∇u| dx, (A.4)

F̃ε(u) = Bε(u) + ε−α
(
Lε(u)− L

)2

+ ε−β
(
T̃ε(u)− 2π

)2

(A.5)

and remark that when ϕ[u] ≡ 1 the functional T̃ε(u) coincides with the diffuse winding
number Tε(u).

In order to justify the choice of T̃ε(u) we first show (see Lemma A.1) that if (uε)ε>0

is as in Lemma 4.1 the value of T̃ε(uε) still converges to 2π as ε → 0. Eventually,
in Proposition A.2, we analyze the behavior of T̃ε(·) along sequences {uε}ε approx-
imating (in an “optimal way”) a finite collection Γ of simple closed, disjoint curves
in B1(0), and obtain that T̃ε(uε) converges to T̃ (Γ).

Lemma A.1. Let uε be as in (4.10). Then we have

lim
ε→0

T̃ε(uε) = 2π. (A.6)

Proof. As in the proof of Lemma 4.1 we calculate that up to exponentially small term∫
B1(0)

(
− ε∆uε +

1

ε
W ′(uε)

)
ϕ|∇uε| (A.7)

≈
∫ L

0

∫ δ
2

− δ
2

εq′ε(t)
2κ(s)ϕ(γ(s) + tν(s)) dt ds. (A.8)

Writing γ′(s) = (cosα(s), sinα(s))T and observing that κ(s) = −α′(s) we deduce
that∫ L

0

κ(s)ϕ(γ(s) + tν(s)) ds =

∫ L

0

α(s)∇ϕ(γ(s) + tν(s)) · (1 + tκ(s))γ′(s) ds

− ϕ(γ(0) + tν(0))
(
α(L)− α(0)

)
. (A.9)

We next observe that

γ′(s) =
∇u⊥

|∇u|
(γ(s) + tν(s))
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and define α(x) as the angle in [0, 2π) such that

∇u⊥

|∇u|
(x) =

(
cosα(x)
sinα(x)

)
.

We then obtain for the first term on the right-hand side of (A.9)∣∣∣ ∫ L

0

∫ δ
2

− δ
2

εq′ε(t)
2α(s)∇ϕ(γ(s) + tν(s)) · (1 + tκ(s))γ′(s) dt ds

∣∣∣
=
∣∣∣ ∫
{|d|<δ/2}

α(x)
∇u⊥

|∇u|
(x) · ∇ϕ(x)ε|∇u|2 dx|

∣∣∣
≤ 2π

∫
B1(0)

∣∣∇u⊥ · ∇ϕ∣∣ε|∇u|. (A.10)

For the second term on the right-hand side of (A.9) we have∣∣∣ ∫ δ
2

− δ
2

εq′ε(t)
2ϕ(γ(0) + tν(0))

(
α(L)− α(0)

)∣∣∣ ≤ 2πc0. (A.11)

This shows that for arbitrary ϕ ∈ BV (B1(0); [−1, 1]), up to exponentially small terms
in ε

Aε(ϕ) ≥ 1

εγ

∫
B1(0)

∣∣∇u⊥ · ∇ϕ∣∣ε|∇u| − 2π − 2π

∫
B1(0)

∣∣∇u⊥ · ∇ϕ∣∣ε|∇u| ≥ −2π.

On the other hand for ϕ ≡ 1 we have

Aε(ϕ) = −Tε(u) ≈ −2π.

This shows that limε→0 T̃ε(u) = 2π, as claimed. �

An application of the previous lemma shows that the improved topological con-
straint in the case of a finite collection of simple, disjoint curves adds up the winding
numbers of each single curve. In particular, these configurations are strongly penal-
ized by the modified functional F̃ε.

Proposition A.2. Let E ⊂⊂ B1(0) be an open subset with C2-bounday ∂E =
∪Nj=1(γj) where γj are C2-diffeomorphisms of the unit circle. Let {uε}ε ⊂ C2(Ω)

be constructed as in Lemma 4.1 such that in particular uε → 2χE − 1 in L1(B1(0)).
Then

lim
ε→0

T̃ε(uε) = N2π.

Proof. Since jumps of ϕ from 1 to −1 in the space between two connected components
of ∂E are infitesimal of order εγ, it is enough to repeat the proof of Lemma A.1 for
each connected component of ∂E. �
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[17] M. Röger and R. Schätzle. On a modified conjecture of De Giorgi. Mathematische Zeitschrift,
254(4):675–714, 2006.

[18] N. Stoop, F. K. Wittel, and H. J. Herrmann. Crumpled wires in two dimensions. Phys. Rev.
Lett., 101(9):094101, August 2008.

[19] Y. Tonegawa and Y. Nagase. A singular perturbation problem with integral curvature bound.
Hiroshima Math. Journal, 37(3):455–489, 2007.



22 PATRICK W. DONDL, LUCA MUGNAI, AND MATTHIAS RÖGER
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