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Abstract

We propose an adaptive biasing algorithm aimed at enhancing the sampling of
multimodal measures by Langevin dynamics. The underlying idea consists in general-
izing the standard adaptive biasing force method commonly used in conjunction with
molecular dynamics to handle in a more effective fashion multidimensional reaction
coordinates. The proposed approach is anticipated to be particularly useful for re-
action coordinates, the components of which are weakly coupled, as illuminated in a
mathematical analysis of the long-time convergence of the algorithm. The strength
as well as the intrinsic limitation of the method are discussed and illustrated in two
realistic test cases.

1 Introduction
Sampling of multimodal measures is a central problem in many scientific areas, such
as statistical simulations, in particular molecular dynamics, which constitutes the
primary focus of the present work. One standard approach to deal with such a situation
consists in resorting to biasing techniques — e.g. importance sampling methods, in
order to reduce the multimodal nature of the targeted measure. Under these premises,
the main difficulty is evidently to devise the correct bias.

One class of methods proposed in the framework of molecular dynamics and which
has proven to be useful also for a variety of applications [15] are adaptive biasing
numerical schemes. The underlying idea here consists in designing adaptively the bias
such that the new targeted measure be uniform along a priori chosen directions. Only
these directions have to be chosen, but not the precise analytical expression of the bias.
Examples of such class of approaches include the Wang-Landau algorithm [58], non-
equilibrium metadynamics [33, 11] and the adaptive biasing force (ABF) method [17,
26], which will constitute the main thrust of this contribution. The reader is referred
to [39, Chapter 5] for a general, mathematically-oriented presentation of adaptive
methods.

Let us introduce the ABF method. In what follows, the algorithms will be pre-
sented in the framework of sampling of configurational space and overdamped Langevin
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dynamics, but generalization to sampling of phase space and standard Langevin dy-
namics is straightforward, as can be seen in Section 4. The canonical, Boltzmann-
Gibbs, measure will be considered here:

dµ(q) = Z−1 exp(−βV (q)) dq, (1)

where β is proportional to the inverse temperature, q ∈ D, V : D → R is the so-called
potential energy function, which is assumed to be a smooth function in the following,
Z =

∫
D exp(−βV (q)) dq and D = {q, V (q) < ∞} is the configurational space. The

overdamped Langevin dynamics writes:

dQt = −∇V (Qt) dt+
√

2β−1dBt, (2)

where Bt is an n-dimensional standard Brownian motion. Under mild conditions on V ,
this dynamics is ergodic with respect to the measure µ, i.e. trajectory or time averages
converge to canonical averages.

For a multimodal measure µ, the sampling obtained with Qt is, however, rather
poor. Indeed, the typical problem with dynamics (2) is that the process Qt remains
trapped for long times in some metastable states. The purpose of an adaptive bi-
asing force is to enhance sampling by subtracting from V a potential such that the
aforementioned metastable features are eliminated. This relies on an assumed a priori
knowledge of those “coordinates” that remain trapped — viz. “slow variables” of the
dynamics, also called “collective variables” or “reaction coordinates”. This method can
thus be seen as an adaptive importance sampling method.

In the following, emphasis will be put on the case where two slow variables have
been identified, namely ξ1 : D → T, and ξ2 : D → T, where T denotes the one-
dimensional torus. Throughout the present work, ξ1 and ξ2 will be assumed to be
smooth functions such that |∇ξ1| 6= 0 and |∇ξ2| 6= 0.

For simplicity, let us consider for the moment simple reaction coordinates:

D = Tn, ξ1(x) = x1, ξ2(x) = x2, (3)

where the components of x are referred to as: x = (x1, x2, x3...n). The case of general
ξi’s will be discussed below, in Sections 3 and 4. In this simple framework, one
standard ABF–like method is [37]:

dYt =
(
−∇V +

2∑
α=1

Γαt ◦ (ξ1, ξ2)∇ξα
)

(Yt) dt+
√

2β−1dBt,

for α = 1, 2, Γαt (x1, x2) = E(∂xαV (Yt) | (ξ1, ξ2)(Yt) = (x1, x2)).

(4)

In practice, the dynamics is discretized in time, and the biasing forces, Γαt , are approx-
imated by empirical or time averages in each cells of a grid of the values of (ξ1, ξ2). The
bottom line of the method is to observe that, in the long-time limit, (Γ1

t ,Γ
2
t ) converges

to ∇A, where A is the so-called free energy associated to V and (ξ1, ξ2) — see [38].
At equilibrium, the potential eventually becomes V − A ◦ (ξ1, ξ2), which is such that
the associated Boltzmann-Gibbs measure, proportional to exp(−β(V − A ◦ (ξ1, ξ2))),
has uniform marginal laws along (ξ1, ξ2). Indeed, the free energy is defined, up to an
additive constant, as:

A(x1, x2) = −β−1 ln

(∫
exp(−βV (x1, x2, x3...n))dx3...n

)
. (5)

Using the definition (5) of the free energy A, it is easy to check that the equilibrium
probability density for (4), namely

ψ∞(x1, x2, x3...n) ∝ exp
(
− β(V (x1, x2, x3...n)−A(x1, x2))

)
is such that the marginal law of ψ∞ along (ξ1, ξ2) is uniform:∫

Tn−2

ψ∞(x1, x2, x3...n)dx3...n = 1T2 .

2



Another related important property of the stochastic differential equation (4) is that
the dynamics along (ξ1, ξ2) has a simple diffusive behavior, since, by a straightforward
Itô calculus, for any test function ϕ : T2 → R,

∂tE(ϕ((ξ1, ξ2)Yt)) = β−1 E(∆ϕ((ξ1, ξ2)Yt)) (6)

which is a weak form for the heat equation on the marginal law along (ξ1, ξ2) of
the density of Yt. Roughly speaking, the energy landscape has been flattened in the
(ξ1, ξ2)-direction.

The aim of this work is to explore a generalization of the ABF method — originally
devised to compute a free-energy difference, which is a quantity of paramount impor-
tance in statistical mechanics [14, 39] — focusing primarily on its adaptive importance
sampling feature and with the objective of obtaining a diffusion along some chosen
directions. More specifically, we have in mind the case of m reaction coordinates with
m ≥ 4, for which the standard ABF approach cannot be used, because it would re-
quire that the biasing forces, namely m functions of m variables, be approximated
by a Monte Carlo procedure which is admittedly computationally prohibitive as m
increases. Moreover, the fact that the biased dynamics along the reaction coordinates
is a simple diffusion in the whole torus Tm seems somewhat inappropriate, given that
exploration of such a space may become extraordinarily long for large m.

The approach proposed herein consists in considering the dynamics:
dXt = −∇

(
V −

2∑
α=1

Aαt ◦ ξα
)

(Xt) dt+
√

2β−1dBt,

for α = 1, 2,
dAαt
dxα

(xα) = E(∂xαV (Xt) | ξα(Xt) = xα).

(7)

The interest of this dynamics is that only two one-dimensional functions have to
be approximated. It is, therefore, expected that the Monte Carlo approximation of
the biasing functions will be faster. One can check that this dynamics retains some
essential features of the ABF dynamics (4), namely the fact that it leads to a simple
diffusive behavior in each direction ξα (see Section 2.1 below): for any test function
ϕ : T→ R, and for α ∈ {1, 2},

∂tE(ϕ(ξα(Xt))) = β−1 E(ϕ′′(ξα(Xt))).

As a consequence, the marginal laws along ξ1 and along ξ2 of the equilibrium measure
of the dynamics are uniform laws over T. It ought to be noted, however, that (6) does
not hold in general in such a situation, and that the marginal law of the equilibrium
measure along (ξ1, ξ2) is not in general a uniform law over T2. This is presented in
detail in Section 2.1.

A motivation for considering dynamics (7) is that in the decoupled case, where

V (x1, x2, x3...n) = V (x1) + V (x2, x3...n) or
V (x1, x2, x3...n) = V (x2) + V (x1, x3...n),

(8)

then (7) is equivalent to (4). The key idea here is that, if the two reaction coordinates,
ξ1 and ξ2 ,are “not too strongly coupled”, then (7) should be as effective as (4), at a
far reduced cost.

In Section 2, we propose a mathematical analysis of the long-time convergence
of (7), which quantifies the underlying decoupling assumption. Section 3 is devoted
to a discussion of some generalization of the idea of the present work, in particular
to the case of m non-linear reaction coordinates with m > 2. Finally, in Section 4,
we report two numerical illustrations on non-trivial test cases, which illuminate the
interest and the limitation of the approach.
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2 A convergence result
Let us introduce the Fokker-Planck equation associated to (7). Let us further refer
ψ(t, x) to as the density of the distribution of Xt. This function satisfies the partial
differential equation:

∂tψ = div
(
∇V ψ + β−1ψ

)
− ∂x1

((A1
t )
′(x1)ψ)− ∂x2

((A2
t )
′(x2)ψ),

(A1
t )
′(x1) =

∫
∂x1

V (x)ψ(t, x) dx2 dx3...n∫
ψ(t, x) dx2 dx3...n

,

(A2
t )
′(x2) =

∫
∂x2V (x)ψ(t, x) dx1 dx3...n∫

ψ(t, x) dx1 dx3...n

.

(9)

where (Aαt )′ corresponds in what follows to the derivative of the one-dimensional
function xα 7→ Aαt (xα).

2.1 Diffusive behavior
Let us introduce the marginal laws along x1 and x2 of ψ:

ψx1(t, x1) =

∫
ψ(t, x) dx2 dx3...n and ψx2(t, x2) =

∫
ψ(t, x) dx1 dx3...n. (10)

These marginal laws exhibit a simple diffusive behavior:

Proposition 1 The probability distribution functions ψx1 and ψx2 satisfy the heat
equation: for α ∈ {1, 2},

∂tψ
xα − β−1∂xα,xαψ

xα = 0 on T. (11)

This property is easy to demonstrate by integrating the partial differential equation
satisfied by ψ in (9) over the xi, for i ∈ {1, . . . n} \ {α}.

As a simple consequence of (11), the marginal laws ψx1 and ψx2 converge to their
equilibrium value 1T exponentially fast with rate

r = 4π2,

for example in the following relative entropy sense (see Definition 1 below):∫
ψxα(t, ·) ln(ψxα(t, ·)) ≤

∫
ψxα(0, ·) ln(ψxα(0, ·)) exp(−2β−1rt). (12)

2.2 Stationary state
If A1

t and A2
t reach a stationary state A1

∞ and A2
∞, it is standard that the stationary

probability distribution function in (9) is:

ψ∞(x) ∝ exp(−β(V (x)−A1
∞(x1)−A2

∞(x2))).

Thus, proving the existence of a stationary state is tantamount to proving the existence
of a couple (A1

∞, A
2
∞) solution to (note that the functions Aα∞ are defined up to an

additive function):

(A1
∞)′(x1) =

∫
∂x1

V (x) exp(−β(V (x)−A2
∞(x2))) dx2 dx3...n∫

exp(−β(V (x)−A2
∞(x2))) dx2 dx3...n

,

(A2
∞)′(x2) =

∫
∂x2

V (x) exp(−β(V (x)−A1
∞(x1))) dx1 dx3...n∫

exp(−β(V (x)−A1
∞(x1))) dx1 dx3...n

.

(13)
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Let us set
ρα(xα) = exp(−βAα∞(xα)).

Finding a solution to (13) is then equivalent to find a couple (ρ1, ρ2) solution to (note
that the functions ρα are defined up to a multiplicative constant):

ρ1(x1) =

∫
exp(−βV (x))

ρ2(x2)
dx2 dx3...n,

ρ2(x2) =

∫
exp(−βV (x))

ρ1(x1)
dx1 dx3...n.

(14)

Proposition 2 Let us assume that V is a continuous function on Tn. Then, there
exists a solution to (14), and thus there exists a stationary state (ψ∞, A

1
∞, A

2
∞) to (9).

Proof : Let us build a sequence of continuous functions ρ1
n : T→ R∗+ as (ρ1

0 = 1):

ρ1
n+1(x1) = Z1

n+1

∫
exp(−βA(x1, x2))∫
exp(−βA(x1, x2))

ρ1
n(x1)

dx1

dx2,

where Z1
n+1 is chosen such that

∫
1/ρ1

n+1(x1) dx1 = 1 and A is the free energy (5)
introduced above. It is clear that if (ρ1

n)n≥0 converges in L∞(T) to ρ1
∞, then ρ1 =

ρ1
∞ and ρ2 =

∫
exp(−βA(x1, x2))

ρ1
∞(x1)

dx1 is a solution to (14). We use the Arzelà–

Ascoli theorem to show that (ρ1
n)n≥0 is a compact sequence in the space of real-

valued continuous functions over T, endowed with the L∞-norm, which concludes the
existence proof.

It first ought to be noted that since V is continuous, there exists positive reals a, b
such that 0 < a ≤ exp(−βA) ≤ b on T2. We, hence, have, for all x1 ∈ T,∫

exp(−βA(x1, x2))∫
exp(−βA(x1, x2))

ρ1
n(x1)

dx1

dx2 ≥
∫

exp(−βA(x1, x2))

b

∫
1

ρ1
n(x1)

dx1

dx2 ≥
a

b
.

Likewise, ∫
exp(−βA(x1, x2))∫
exp(−βA(x1, x2))

ρ1
n(x1)

dx1

dx2 ≤
b

a
.

>From this, one also obtains a
b ≤ Z

1
n+1 ≤ b

a which implies: ∀n ≥ 0,

a2

b2
≤ ρ1

n ≤
b2

a2
.

The equicontinuity property remains to be checked to conclude the proof with the
Arzelà–Ascoli theorem. This property is, however, straightforward to check by noting
that

|ρ1
n(x1)− ρ1

n(x′1)| ≤ b2

a2

∫
| exp(−βA(x1, x2))− exp(−βA(x′1, x2))| dx2.

♦

This altogether proves the existence of a stationary state. Its uniqueness is a
consequence of the convergence result stated in the next section, which holds under
an additional weak-coupling assumption (see (18) below).

A consequence of (14), which is also consistent with (11), is that the marginal
probability density functions (see (10)) of ψ∞ along x1 and x2 are uniform:

ψx1
∞ (x1) =

∫
ψ∞(x) dx2 dx3...n = 1 and ψx2

∞ (x2) =

∫
ψ∞(x) dx1 dx3...n = 1.

5



Last, it is worth noting that by and large A1
∞ and A2

∞ are not the free energies
associated to x1 and x2 and defined as — which should be compared with the definition
of the bidimensional free energy (5):

A1(x1) = −β−1 ln

(∫
exp(−βV (x1, x2, x3...n))dx2dx3...n

)
,

A2(x2) = −β−1 ln

(∫
exp(−βV (x1, x2, x3...n))dx1dx3...n

)
.

(15)

Actually, a special case for which A1
∞ = A1 and A2

∞ = A2 (up to additive constants)
is the decoupled case, namely if the two-dimensional free energy A (defined by (5))
writes as a sum of a function of x1 and a function of x2, which is equivalent, up to an
additive constant, to:

A(x1, x2) = A1(x1) +A2(x2). (16)

Under these premises, it is easy to check that ρα = exp(−βAα) is the unique solution
to (14), up to a multiplicative constant. It ought to be noted that (8) implies (16).

2.3 Convergence
Let us now consider a stationary state (ψ∞, A

1
∞, A

2
∞) to (9). The aim of this section

is to prove the convergence of (9) to this stationary state.
Let us first introduce the conditional probability density functions:

ψ∞|x1
(x2, x3...n) =

ψ∞(x1, x2, x3...n)

ψx1∞ (x1)
= ψ∞(x1, x2, x3...n)

and
ψ∞|x2

(x1, x3...n) =
ψ∞(x1, x2, x3...n)

ψx2∞ (x2)
= ψ∞(x1, x2, x3...n).

In our particular case, this consists only in freezing one variable of ψ∞.
To achieve this objective, we will need tools related to logarithmic Sobolev inequal-

ities. We recall that (see [3, 4, 57]):

Definition 1 A probability measure ν is said to satisfy a logarithmic Sobolev inequal-
ity with constant ρ > 0 (in short: LSI(ρ)) if for all probability measures µ such that
µ is absolutely continuous with respect to ν (denoted µ� ν in the following),

H(µ|ν) ≤ 1

2ρ
I(µ|ν),

where
H(µ|ν) =

∫
ln

(
dµ

dν

)
dµ

is the relative entropy of µ with respect to ν and

I(µ|ν) =

∫ ∣∣∣∣∇ ln

(
dµ

dν

)∣∣∣∣2 dµ
is the so-called Fisher information of µ with respect to ν.

Since the measures ψ∞|x1
(x2, x3...n) dx2dx3...n and ψ∞|x2

(x1, x3...n) dx1dx3...n are
defined on a compact space (Tn−1) and since ψ∞ is smooth, it follows from standard
arguments — e.g. Holley-Stroock criterion, that they satisfy logarithmic Sobolev
inequalities. Let us introduce the associated positive constants ρ1 and ρ2:

ψ∞|x1
(x2, x3...n) dx2dx3...n (resp. ψ∞|x2

(x1, x3...n) dx1dx3...n) satisfies
a LSI with constant ρ1 (resp. ρ2) for all x1 ∈ T (resp. x2 ∈ T).

(17)
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We also need to introduce the coupling constants

κ1 = ‖∇x2,x3...n(∂x1V )‖L∞(Tn) and κ2 = ‖∇x1,x3...n(∂x2V )‖L∞(Tn)

which are well defined since V is assumed to be smooth over Tn. It is worth noting
that κ1 = 0 or κ2 = 0 is equivalent to (8), which implies the relation (16). This
motivates the terminology of coupling constants.

For the convergence result to hold, we need the coupling constants to be sufficiently
small compared to the logarithmic Sobolev constants ρ1 and ρ2:

ρ1ρ2 ≥ β2κ1κ2. (18)

We are now in a position where we can state the main mathematical result of this
contribution.

Theorem 1 Let us assume (18). The probability density function ψ(t, ·) then con-
verges to ψ∞ exponentially fast: for any ε ∈ (0, λ), ∃C > 0, ∀t ≥ 0∫

Tn
|ψ(t, x)− ψ∞(x)| dx ≤ C exp

(
− β−1 min

(
(λ− ε), r

)
t

)
(19)

where r = 4π2 and

λ =
ρ1 + ρ2 −

√
(ρ1 − ρ2)2 + 4κ1κ2

ρ1ρ2

4
(20)

is a positive constant. Furthermore, for any positive time t0 and ε ∈ (0, λ), ∃C̄ > 0,
∀t ≥ t0, ∫

T
|(Aαt )′ − (Aα∞)′|2 ≤ C̄ exp

(
− 2β−1 min

(
(λ− ε), r

)
t

)
, (21)

where α ∈ {1, 2}.

The interpretation of this theorem is that, if the coupling constants κ1 and κ2 are
sufficiently small, the dynamics converges exponentially fast with a rate essentially

limited by
min(ρ1, ρ2)

2
(namely λ when κ1 = 0 or κ2 = 0). This constant is expected

to be larger than the logarithmic Sobolev constant of the original measure µ (which
gives the rate of convergence of the original dynamics (2)) if ξ1 and ξ2 are well chosen
— see related discussions in the work [38, 35].

Proof : The proof is an adaptation of the proof for the long-time convergence
of the ABF process, which can be found in [38]. It can be assumed without loss of
generality that β = 1 up to the following change of variable: t̃ = β−1t, ψ̃(t̃, x) = ψ(t, x)
and Ṽ (x) = βV (x).

Let us first rewrite the partial differential equation satisfied by ψ as:

∂tψ = div

(
ψ∇

(
ψ

ψ∞

))
+ ∂x1

(
((A1
∞)′ − (A1

t )
′)ψ
)

+ ∂x2

(
((A2
∞)′ − (A2

t )
′)ψ
)
.

Let us consider then the relative entropies

E(t) = H(ψ|ψ∞) =

∫
Tn
ψ(t, ·) ln(ψ(t, ·)/ψ∞)

and, for α ∈ {1, 2},

EαM (t) = H(ψxα |ψxα∞ ) =

∫
T
ψxα(t, ·) ln(ψxα(t, ·)).

The aim of the present proof is to show that E(t) converges to 0 exponentially fast. It
is already clear from (11) that EαM (t) converges to zero exponentially fast (see (12)),
so that it is enough to consider

Eαm(t) = E(t)− EαM (t) =

∫
T
H(ψ|xα(t, ·)|ψ∞|xα)ψxα(t, xα)dxα,

7



where
H(ψ|xα(t, ·)|ψ∞|xα) =

∫
Tn−1

ψ|xα(t, ·) ln(ψ|xα(t, ·)/ψ∞|xα)

is the relative entropy, with respect to ψ∞|xα , of the conditional probability density
functions

ψ|x1
(t, x2, x3...n) =

ψ(t, x1, x2, x3...n)

ψx1(t, x1)
and ψ|x2

(t, x1, x3...n) =
ψ(t, x1, x2, x3...n)

ψx2(t, x2)
.

Let us focus on the case α = 1, albeit similar computations hold for α = 2. Let us
compute

dE1
m

dt
=
dE

dt
− dE1

M

dt
,

= −
∫
Tn

∣∣∣∣∇ ln

(
ψ

ψ∞

)∣∣∣∣2 ψ +

2∑
γ=1

∫
Tn

((Aγt )′ − (Aγ∞)′) ∂xγ ln

(
ψ

ψ∞

)
ψ (22)

+

∫
T
|∂x1

ln (ψx1)|2 ψx1 .

It is rather easy to check the following identity:

(Aαt )′ − (Aα∞)′ =

∫
Tn−1

∂xα ln

(
ψ

ψ∞

)
ψ

ψxα
dxα dx3...n − ∂xα ln (ψxα) , (23)

where α = 1 (resp. α = 2) when α = 2 (resp. α = 1). Using (23) in (22), we obtain

dE1
m

dt
= −

∫
Tn

∣∣∣∣∂x2,x3...n
ln

(
ψ

ψ∞

)∣∣∣∣2 ψ
−
∫
Tn

∣∣∣∣∂x1
ln

(
ψ

ψ∞

)∣∣∣∣2 ψ +

∫
T

(∫
Tn−1

∂x1
ln

(
ψ

ψ∞

)
ψ dx2 dx3...n

)2
1

ψx1
dx1

−
∫
Tn
∂x1 ln (ψx1) ∂x1 ln

(
ψ

ψ∞

)
ψ +

∫
T
|∂x1 ln (ψx1)|2 ψx1

+

∫
Tn

(
(A2

t )
′ − (A2

∞)′
)
∂x2

ln

(
ψ

ψ∞

)
ψ.

By virtue of the Cauchy-Schwarz inequality, the term on the second line is non-positive.
Using again (23), we, hence, have

dE1
m

dt
≤ −

∫
Tn

∣∣∣∣∂x2,x3...n
ln

(
ψ

ψ∞

)∣∣∣∣2 ψ − ∫
T
∂x1

ln (ψx1)ψx1
(
(A1

t )
′ − (A1

∞)′
)

+

∫
Tn

(
(A2

t )
′ − (A2

∞)′
)
∂x2

ln

(
ψ

ψ∞

)
ψ. (24)

We now need an estimate for |(A1
t )
′−(A1

∞)′|. For any coupling measure π ∈ Π(ψ|x1
(t, ·), ψ∞|x1

),
it holds:

|(A1
t )
′(x1)− (A1

∞)′(x1)|

=

∣∣∣∣∫
Tn−1×Tn−1

(∂x1
V (x1, x2, x3...n)− ∂x1

V (x1, x
′
2, x
′
3...n)) π(dx2 dx3...n, dx

′
2 dx

′
3...n)

∣∣∣∣
≤ ‖∇x2,x3...n

(∂x1
V )‖L∞

∫
R×R
|(x2, x3...n)− (x′2, x

′
3...n)|π(dx2 dx3...n, dx

′
2 dx

′
3...n)

≤ κ1

∫
R×R
|(x2, x3...n)− (x′2, x

′
3...n)|π(dx2 dx3...n, dx

′
2 dx

′
3...n).

Taking the infimum over all π ∈ Π(µt,x, µ∞,x), we obtain

|(A1
t )
′(x1)− (A1

∞)′(x1)| ≤ κ1W (ψ|x1
(t, ·), ψ∞|x1

)

8



whereW stands for the (L1) Wasserstein distance. We will now resort to the fact that
if ν is a probability measure satisfying a logarithmic Sobolev inequality with constant
ρ, then we have the Talagrand inequality (see [6, 45]): For all probability measures µ
such that µ� ν,

W (µ, ν) ≤
√

2

ρ
H(µ|ν).

Using (17) together with the Talagrand inequality, we, thus, obtain (the proof being
evidently similar for α = 2): for α ∈ {1, 2},

|(Aαt )′(xα)− (Aα∞)′(xα)| ≤ κα
√

2

ρα
H(ψ|xα(t, ·)|ψ∞|xα). (25)

Using this estimate in (24), the constants ρ1 and ρ2 introduced in (17), and Cauchy-
Schwarz and Young inequalities, we get:

dE1
m

dt
≤ −1

2

∫
Tn

∣∣∣∣∂x2,x3...n
ln

(
ψ

ψ∞

)∣∣∣∣2 ψ +

√∫
T
|(A1

t )
′ − (A1

∞)′|2 ψx1

√∫
T
|∂x1

ln (ψx1)|2 ψx1

+
1

2

∫
T

∣∣(A2
t )
′ − (A2

∞)′
∣∣2 ψx2

≤ −ρ1E
1
m + κ1

√
2

ρ1
E1
m

√
I(ψx1 |ψx1∞ ) +

1

2
κ2

2

2

ρ2
E2
m.

Employing (11), it is standard to show that (see [38, Lemma 12] for example):

I(ψx
1

(t, ·)|ψx1
∞ ) ≤ I0 exp(−2rt)

where I0 = I(ψx
1

(0, ·)|ψx1
∞ ) and, we recall, r = 4π2. We finally find for any positive η1:

dE1
m

dt
≤ −ρ1(1− η1)E1

m +
κ2

2

ρ2
E2
m +

κ2
1

2ρ2
1η1

I0 exp(−2rt).

Utilizing a similar reasoning with α = 2, the following system of inequalities is ob-
tained, wherein η1, η2 are positive real numbers to be fixed:

dE1
m

dt
≤ −ρ1(1− η1)E1

m +
κ2

2

ρ2
E2
m +

κ2
1

2ρ2
1η1

I0 exp(−2rt),

dE2
m

dt
≤ −ρ2(1− η2)E2

m +
κ2

1

ρ1
E1
m +

κ2
2

2ρ2
2η2

I0 exp(−2rt).

In the limit η1 = η2 = 0, we get the linear system:
du1

dt
≤ −ρ1u

1 +
κ2

2

ρ2
u2,

du2

dt
≤ −ρ2u

2 +
κ2

1

ρ1
u1,

for which it can be be shown quite simply that, under the assumption (18),

∀t ≥ 0, ‖(u1, u2)(t)‖ ≤ ‖(u1, u2)(0)‖ exp(−2λt)

where λ is defined by (20). It is then easy to reach the result (19), employing the
Csiszár-Kullback inequality: ∫

|ψ − ψ∞| ≤
√

2H(ψ|ψ∞) (26)

and the fact that H(ψ|ψ∞) = E = EαM + Eαm. We refer the reader, for example, to
the end of the proof of Theorem 1 in [36] for a similar reasoning.

Finally, the convergence results (21) on (A1
t )
′ and (A2

t )
′ are easily obtained from (25)

and the fact that (using (11)) ψx1 and ψx2 are bounded from below by a positive con-
stant for times larger than any arbitrary small positive time, see the beginning of
Section 3.3.2 in [38] for more details. ♦
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3 Discussion and generalizations

3.1 The case of nonlinear reaction coordinates
We now would like to discuss generalizations of the approach introduced above, in
the case where (ξ1, ξ2) are not simply (x1, x2), which constitutes the vast majority of
practical situations.

Let us denote ξ1 : D → T, and ξ2 : D → T, the chosen variables forming the
multidimensional reaction coordinate. A natural generalization of (7) is the following:

dXt = −∇

(
V −

2∑
α=1

Aαt ◦ ξα

)
(Xt) dt+

√
2β−1dBt,

for α = 1, 2,
dAαt
dzα

(zα) = E(fαt (Xt)|ξα(Xt) = zα),

(27)

where fαt stand for the so-called local mean forces associated to ξα and defined by:

f1
t =

(
∇(V −A2

t ◦ ξ2) · ∇ξ1
|∇ξ1|2

− β−1div

(
∇ξ1
|∇ξ1|2

))
(28)

and

f2
t =

(
∇(V −A1

t ◦ ξ1) · ∇ξ2
|∇ξ2|2

− β−1div

(
∇ξ2
|∇ξ2|2

))
. (29)

It ought to be noted that (27) reduces to (7) in the specific case of ξα(x) = xα.
If ψ denotes the probability density function of Xt, then the marginal probability

density functions are:

ψξα(t, zα) =

∫
Σα(zα)

ψ(t, x) δξα(x)−zα(dx)

which boils down to (10) in the case of ξα(x) = xα.
The conditional measure δξα(x)−zα(dx) obeys the following definition: For any test

function ϕ : D → R,∫
D
ϕ(x) dx =

∫
T

∫
Σα(zα)

ϕ(x) δξα(x)−zα(dx) dzα,

where Σα(zα) = {x ∈ D, ξα(x) = zα}. A corollary of the coarea formula is that:

∂zαψ
ξα =

∫
Σα(zα)

(
∇ψ · ∇ξα
|∇ξα|2

+ div

(
∇ξα
|∇ξα|2

)
ψ

)
δξα(x)−z(dx). (30)

For detailed proofs and references, the reader is referred to [39, Lemma 3.10].
One can check the following property, reminiscent of (11):

Proposition 3 Let us assume that

|∇ξ1| = |∇ξ2| = 1. (31)

The probability distribution functions ψξ1 and ψξ2 satisfy the heat equation: for α ∈
{1, 2},

∂tψ
ξα − β−1∂zα,zαψ

ξα = 0 on T. (32)

Proof : Let us prove (32) for α = 1, the proof being evidently similar for α = 2. For
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any test function ϕ : T→ R:∫
T
∂tψ

ξ1ϕ =

∫
D
∂tψ ϕ ◦ ξ1

=

∫
D

div
(

(∇(V −A1
t ◦ ξ1 −A2

t ◦ ξ2)ψ + β−1∇ψ)
)
ϕ ◦ ξ1

= −
∫
D

(
(∇(V −A1

t ◦ ξ1 −A2
t ◦ ξ2)ψ + β−1∇ψ)

)
· ∇ξ1 ϕ′ ◦ ξ1

= −
∫
D
∇(V −A2

t ◦ ξ2) · ∇ξ1 ψ ϕ′ ◦ ξ1 +

∫
D

(A1
t )
′ ◦ ξ1ψ ϕ′ ◦ ξ1

− β−1

∫
D
∇ψ · ∇ξ1 ϕ′ ◦ ξ1

= −
∫
D
∇(V −A2

t ◦ ξ2) · ∇ξ1 ψ ϕ′ ◦ ξ1 +

∫
D
f1
t ψ ϕ

′ ◦ ξ1

− β−1

∫
D
∇ψ · ∇ξ1 ϕ′ ◦ ξ1

= −β−1

∫
D

∆ξ1 ψ ϕ
′ ◦ ξ1 − β−1

∫
D
∇ψ · ∇ξ1 ϕ′ ◦ ξ1

= −β−1

∫
T
∂z1ψ

ξ1ϕ′,

where we used (30) for the last equality. This is, indeed, a weak formulation of (32).
♦

Assumption (31) essentially amounts to assuming that ξα is the signed distance to
Σα(0). It is straightforward to generalize the above result by changing the assump-
tion (31) to: |∇ξ1| and |∇ξ2| are constant functions. It is also possible to generalize it
to the case where |∇ξ1| (resp. |∇ξ2|) depends on x only through ξ1(x) (resp. ξ2(x))
with slight modifications of the definition of the functions fαt . Generalization of the
convergence results of Theorem 1 to this setting is also possible, yet we will not pursue
in this direction here.

3.2 The multi-dimensional setting
When more than two variables describing the multidimensional reaction coordinate
are needed, the biasing procedure introduced above can be generalized as follows:

(i) In the case of m collective variables ξ1, . . . , ξm, a natural generalization would
consist in biasing the dynamics by a potential A1

t ◦ ξ1 + . . . + Amt ◦ ξm, using
a straightforward extension of the dynamics (27). It is worth noting that the
complexity is typically linear in m, whereas it is exponential in m for a standard
ABF approach. For another biasing approach, in the context of multiple reaction
coordinates, the reader is referred to [48].

(ii) In the case of m collective variables, one might want to keep certain collective
variables coupled, e.g. ξ1 and ξ2. A natural way to build a biased dynamics
in such a case consists in considering a biasing potential A1,2

t ◦ (ξ1, ξ2) + A3
t ◦

ξ3 + . . . + Amt ◦ ξm, and using an adequate formula for updating A1,2
t based on

the standard ABF approach (4) (see [39, Section 5.1.1] for example for adequate
formulae for general (ξ1, ξ2)).

As mentioned above and roughly speaking, biasing the potential by the sum A1
t ◦

ξ1+. . .+Amt ◦ξm rather than by am-dimensional adaptive potential At◦(ξ1, . . . , ξm) —
which would yield a perfect diffusion along the m-dimensional vector (ξ1, . . . , ξm)(Xt)
— is tantamount to supposing some sort of decoupling on the collective variables
ξ1, . . . , ξm. More precisely, if the free energy associated to (ξ1, . . . , ξm) writes as a sum
of functions A1 ◦ ξ1 + . . . + Am ◦ ξm, then the two algorithms (generalized-ABF and
ABF) are equivalent. We, therefore, expect the method to be efficient if the collective
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variables are loosely coupled, as would be the case for two dihedral angles distant
from each other in a molecule. Conversely, should the two collective variables be
more strongly coupled, it might be interesting to resolve this coupling in the adaptive
potential, as discussed in item (ii) above.

3.3 Further generalizations
In practice, it may be difficult to implement the dynamics (27), in particular on account
of the computations of the analytical expressions for fαt which may be cumbersome.
A natural idea, which is, however, not supported by any mathematical reasoning,
consists in simplifying the expressions for fαt , considering, for example:

f1 =

(
∇V · ∇ξ1
|∇ξ1|2

− β−1div

(
∇ξ1
|∇ξ1|2

))
, (33)

or even
f1 =

∇V · ∇ξ1
|∇ξ1|2

, (34)

and similar formulae for f2. A very practical approach can be stated as follows: If
A1
t and A2

t happen to converge to some functions A1
∞ and A2

∞, then it is always
possible to fix this bias, and then to use unbiasing procedures akin to those described
in Section 4.1 below — see (41), to obtain canonical averages.

4 Illustrations for free-energy calculations
In this section, we illustrate the interest and the limitation of the approach in two test
cases, using the Namd simulation package [47]. Propagation of motion is performed
employing Langevin dynamics, in lieu of overdamped Langevin. Estimates of the
biasing force rely upon trajectory, time averages rather than empirical averages over
many replicas. Use is made of expression (33) to determine the local mean force.
Overall, the method utilized here is similar to the biasing techniques (7)–(27) described
above.

4.1 Recovering the free energy
To recover the free energy associated to some of the reaction coordinates chosen to
bias the dynamics, one can simply use a grid of the values of the reaction coordinates,
and classical formulas for the free energy or its derivative. This relies on the fact that
from (7)–(27), if ((A1

t )
′, (A2

t )
′) reaches an equilibrium ((A1

∞)′, (A2
∞)′), then the law

of Xt at equilibrium is proportional to exp(−β(V −A1
∞ ◦ ξ1 −A2

∞ ◦ ξ2)).
Let us be more precise, considering (27). To get the free energy A(z1, z2) associated

to the bidimensional reaction coordinate (ξ1, ξ2), one can use the formula (compare
with (5) which is (35) in the simple case (ξ1, ξ2) = (x1, x2)):

A(z1, z2) = −β−1 ln

∫
exp(−βV (x))δ(ξ1,ξ2)(x)−(z1,z2)(dx). (35)

It is indeed easy to verify that, at equilibrium,

lim
ε→0
−β−1 lnE(δε ((ξ1, ξ2)(Xt)− (z1, z2))) +A1

∞(z1) +A2
∞(z2) = A(z1, z2) (36)

up to an additive constant. Here, δε denotes an approximation of identity converging
to a Dirac mass at 0 when ε goes to 0. In practice, piecewise constant approximation
is obtained over a grid of values accessible to the reaction coordinates.

Another interesting formula to compute A(z1, z2) derives from the formula:

∇A(z1, z2) = Eµ
(
F (X)|(ξ1, ξ2)(X) = (z1, z2)

)
(37)
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where the notation Eµ means that X is distributed according to µ and F is a two-
dimensional vector defined by: ∀α ∈ {1, 2},

Fα =

2∑
γ=1

G−1
α,γ∇ξγ · ∇V − β−1div

(
2∑

γ=1

G−1
α,γ∇ξγ

)
, (38)

whereG−1
α,γ denotes the (α, γ)-component of the inverse of the matrix with components:

∀α, γ ∈ {1, 2},
Gα,γ = ∇ξα · ∇ξγ . (39)

It is easy to check that if the time marginal law of Xt solution to (27) reaches an
equilibrium, then

E
(
F (Xt)|(ξ1, ξ2)(Xt) = (z1, z2)

)
= ∇A(z1, z2). (40)

At equilibrium, the law ofXt is, indeed, proportional to exp(−β(V −A1
∞◦ξ1−A2

∞◦ξ2)),
which only differs from µ by a multiplicative function of (ξ1, ξ2), which thus cancels
out in the conditional average (40).

More generally, to estimate canonical averages, one may resort to the classical
unbiasing procedure:

∫
D
ϕdµ =

∫
D
ϕ exp(−β(A1

∞ ◦ ξ1 +A2
∞ ◦ ξ2))ψ∞∫

D
exp(−β(A1

∞ ◦ ξ1 +A2
∞ ◦ ξ2))ψ∞

, (41)

where ψ∞ ∝ exp(−β(V −A1
∞ ◦ξ1−A2

∞ ◦ξ2)) stands for the density of the equilibrium
time marginal law of Xt, once A1

t and A2
t have reached a stationary state. It is

noteworthy that in practice, it is always possible to freeze A1
t and A2

t at a given fixed
time t0 and apply the unbiasing procedure above with the bias A1

t0 ◦ ξ1 + A2
t0 ◦ ξ2

instead of A1
∞ ◦ ξ1 +A2

∞ ◦ ξ2.

4.2 Conformational equilibrium of the alanine dipeptide
The first application of the method is a proof of concept making use of the prototyp-
ical terminally blocked amino acid N–acetyl–N’–methylalanylamide (NANMA), often
referred to as alanine “dipeptide” [51]. The molecular system consisted of NANMA
immersed in a bath of 447 water molecules. Conformational sampling was performed
over a period of 10 ns with the numerical scheme described here, in which the φ and ψ
torsional angles of the backbone were handled as independent order parameters cov-
ering each the [−180;+180] range of the complete Ramachandran map [49]. In the
present implementation of the method, the marginal biases, A1

∞(φ) and A2
∞(ψ), are

periodical — i.e. the average of their derivative is expected to zero out. As a basis
of comparison, a two–dimensional ABF calculation was conducted over a period of
20 ns. For enhanced performances, the Ramachandran map was split into four in-
dividual quadrants, corresponding to fully independent simulations. Furthermore, a
standard molecular-dynamics simulation of equal length was performed, from which
the φ and ψ dihedral angles were extracted to measure the exhaustiveness of the
conformational sampling.

The simulations were carried out using the Namd simulation package [47] in the
isobaric–isothermal ensemble. The pressure and the temperature were fixed at 1 bar
and 300 K, respectively, employing the Langevin piston algorithm [20] and softly
damped Langevin dynamics. The molecular system was replicated in the three direc-
tions of Cartesian space by means of periodic boundary conditions. The particle–mesh
Ewald method [16] was employed to compute electrostatic interactions. The r–RESPA
multiple time–step integrator [56] was used with a time step of 2 fs and 4 fs for short–
and long–range forces, respectively. Covalent bonds involving a hydrogen atom were
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Figure 1: Conformational equilibrium of the alanine dipeptide (NANMA) in an aqueous
solution. Distribution of the (φ, ψ) dihedral angles explored in the course of a 10–ns sim-
ulation, wherein the torsional angles of the backbone were handled as independent order
parameter (A). Reconstruction of the conformational free-energy map, employing expres-
sion (36) (B). Conformational free-energy map obtained from a 20–ns, two-dimensional ABF
calculation (C). For comparison purposes, a similar map was generated from a 20–ns unbiased
MD simulation (D).

constrained to their equilibrium length. The short peptide and its environment were
described by the all-atom Charmm force field [41].

In the past thirty years, the conformational equilibrium of NANMA has been
investigated at different levels of detail, utilizing a variety of numerical schemes and
potential energy functions [24, 51, 9, 42, 50, 1, 55, 46, 44, 30, 13, 53, 7, 34, 2, 12, 40, 59,
31, 10, 43, 19]. Here, the investigation of NANMA is targeted at demonstrating the
ability of the method to recover within reasonable sampling time the two-dimensional
free-energy landscape that characterizes the conformational equilibrium of the peptide
in an aqueous environment. As can be observed in Figure 1, within 10 ns, the essential
features of the (φ, ψ) conformational space appear to have been explored. Plotting
the number of samples accrued in the course of the simulation brings to light the
anticipated coupling between the backbone torsional angles. Concomitant variation
of the φ and ψ angles is mirrored in the two parallel diagonals, which appear to
be oversampled. After convergence of the marginal biases, A1

∞(φ) and A2
∞(ψ), the

two-dimensional free-energy landscape was reconstructed employing Equation (36).
Noteworthily, this map possesses the two expected pronounced minima corresponding
to a right-handed α-helical conformation, often referred to as αR, and to a β strand,
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together with ancillary local minima of higher free energy, associated to the so-called
αD and αL conformational states.

Integration over the basins delineating the αR and the β conformations yields a
free-energy difference of about 0.2 kcal/mol, in favor of the former state, congruent
with previous computer simulations [55, 30, 13, 40, 59, 19]. Most importantly, the
free-energy landscape inferred from the algorithm proposed herein is essentially iden-
tical to that obtained from a 20–ns ABF calculation in (φ, ψ) conformational space.
A glimpse at Figure 1 is sufficient to conclude that not only the two maps appear to
be almost interchangeable, but also, using the same bounds of integration over the
αR and the β basins, the free-energy differences agree quantitatively. It can, however,
be contended that the present toy-example may be somewhat exaggeratedly simple to
be representative of more challenging instances, wherein the variables along which the
local mean force is computed are more strongly coupled. As has been discussed above,
this scenario would constitute a limiting case for the validity of the approach devel-
oped in this contribution. Yet, as will be seen hereafter, estimators of the local mean
force based on simulations handling unidimensional order parameters independently
can still be used profitably to describe accurately rugged multidimensional free-energy
landscapes wherein decoupling of the variables is not straightforward. Last, to illus-
trate the role of importance sampling methods, the (φ, ψ)-map regenerated from a
20–ns unbiased molecular-dynamics simulation. It is apparent from Figure 1 that only
the lowest free-energy states, i.e. αR and β, have been visited, though sampling is by
and large too parsimonious to allow an acceptably precise free-energy difference to be
determined.

4.3 Ion transport across a peptide nanotube
In the second application of the method proposed herein, translocation of an halide
ion through a chemically-tailored peptide nanotube is considered. Such engineered
synthetic channels arise from the self-assembly through an intermolecular hydrogen–
bond network [8] of cyclic peptides of alternated d– and l–chirality [23, 25], in which
all the side chains are pointing outwards. Depending upon its amino-acid sequence,
the resulting anti-parallel β–sheet–like hollow tubular structure can further associate
in the biological membrane with other channels to form nanopores, aggregate at the
water–lipid interface prior to partitioning in the bilayer, disrupting in general the latter
irreversibly, or simply span the membrane as an independent entity [22, 21]. Here, the
peptide nanotube utilized consisted of eight stacked cyclic peptides containing alter-
nated d–leucine and l–tryptophan residues and organized into cyclo[LW]4 units [18].
At thermodynamic equilibrium, the cyclic peptides are 4.7 Åapart. The tubular struc-
ture was immersed in a fully hydrated, thermalized palmitoyloleylphosphatidylcholine
(POPC) bilayer formed by 48 lipid units in equilibrium with 1,572 water molecules.
The molecular assembly was replicated in the three directions of Cartesian space. The
initial dimensions of the simulation cell were 36 × 41 × 79 Å3.

The free-energy landscape delineating permeation of a single chloride ion through
the synthetic channel was determined along the longitudinal, ζ, and radial, ρ, direc-
tions of the latter [27]. The surrogate, two-dimensional reaction coordinate (ζ, ρ) was
constructed as a subset of cylindrical polar coordinates, namely the distance separat-
ing the halide ion from the center of mass of the peptide nanotube projected onto its
longitudinal axis, associated with the distance between the ion from this axis. Whereas
the reaction pathway that connects the cytoplasm to the periplasm would span ap-
proximately 40 Å, the present investigation focuses on a 10–Å segment, starting from
the center of mass of the open-ended tubular structure. This restrained pathway was
discretized in 0.1–Å wide bins, in which force samples were accrued. The molecular-
dynamics simulations were performed in the same conditions as described above for
NANMA.

Chemically–engineered peptide nanotubes possess the ability of conducting ions [52].
Assuming an appropriate amino-acid sequence, individual tubular structures can in-
sert in the lipid bilayer, where they act as transmembrane channels [32]. That such
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Figure 2: Permeation of a chloride ion through a peptide nanotube spanning a fully hy-
drated lipid bilayer. ζ denotes the longitudinal axis of the synthetic channel and ρ, the radial
direction. Reconstruction employing expression (36) of the free-energy landscape of ion per-
meation after 1 ns of sampling in which ζ and ρ are treated as independent variables (A).
Free-energy map obtained from a 1–ns two-dimensional ABF calculation (B). 10–ns ABF
calculation, using as a starting point the two-dimensional gradients recovered from the 1–ns
simulation in which ζ and ρ are handled independently and employing expression (37) (C).
As a basis of comparison, (ζ, ρ) free-energy landscape inferred from a converged 30–ns two-
dimensional ABF calculation (D). The lowest free-energy regions found at ζ = −2.4 Å and
ζ = −7.1 Å correspond to an in-plane chelation of the halide ion, where the latter is located
at the geometric center of the cyclic peptide.

channels can be permeated by a small ions has been investigated at the theoretical
level, employing a variety of methods [5, 54, 28, 29]. It has been suggested recently
that whereas diffusion of a sodium ion through a synthetic channel formed of eight
cyclo[LW]4 units and immersed in a fully hydrated POPC bilayer is essentially un-
hampered [18], the same cannot be said for a chloride ion shuttled across the cavity of
an identical peptide nanotube [27]. This result can be rationalized to a large extent
by the lesser hydration number of the cation — viz. approximately 4–6, compared to
that of the halide ion — viz. approximately 6–8 [5], which must undergo considerable
dehydration to enter the open-ended tubular structure. In the midst of the latter,
however, the free-energy landscape characterizing ion permeation is roughly similar
for both species, in–plane coordination being enthalpically favored because it allows
the ion to be better hydrated [18].
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As can be seen in Figure 2, this preference is reflected in the free-energy landscape
obtained from the method proposed herein, handling ζ and ρ as independent variables.
Within 1 ns of sampling, the entire reaction pathway is explored, following what
appears to be a minimum–action path. It is noteworthy that the chloride ion does
not diffuse along a rectilinear path, collinear to the longitudinal axis of the synthetic
channel, e.g. at ζ = 0 Å, but rather avoids the large free-energy barrier of mid–
plane coordination by grazing the wall of the tubular structure to interact with the
amino groups of the cyclo[LW]4 units. Repeated simulations, using different initial
momenta, yield comparable landscapes, yet wherein the higher free-energy regions
are essentially never visited. Interestingly enough, the free-energy minima found at
about −2.4 and −7.1 Å have virtually the same depth. It is remarkable that a limited
simulation length of 1 ns would provide a consistent picture of the path followed by
the chloride ion over the 10–Å stretch of the peptide nanotube, when repeated two-
dimensional ABF calculations of equal length only sample a small fraction of the (ζ,
ρ) configurational space, as shown in Figure 2.

Figure 3: Permeation of a chloride ion through a peptide nanotube spanning a fully hydrated
lipid bilayer. ζ denotes the longitudinal axis of the synthetic channel and ρ, the radial
direction. Gradient of the free energy inferred from a 1–ns simulation wherein ζ and ρ

are handled independently, employing expression (37) (A). For comparison purposes, two-
dimensional gradient of the free energy obtained from a 30–ns ABF calculation in (ζ, ρ)
configurational space (B).

Unfortunately, while the ABF calculation progressively explores the free-energy
landscape of ion permeation, reaching convergence within 30 ns, a simulation of equal
length based on the numerical scheme introduced here only marginally improves the
picture drawn from the aforementioned short 1–ns run. This glaring shortcoming of
the method can be ascribed in large measure to antagonist effects of the biases in
the ζ and in the ρ directions, deteriorating mutually any progress made by the two
variables. It does not mean, however, that the valuable, yet incomplete description of
the reaction pathway cannot be utilized profitably to recover the correct free-energy
landscape, possibly faster than a classical ABF calculation would.

As has been discussed previously, Equation (37) allows the gradient of the free
energy to be estimated on the basis of independent measures of the force acting along
the two order parameters, ζ and ρ. In Figure 3, the reference two-dimensional gradient
of the free energy inferred from a 30–ns ABF calculation is compared to an approxi-
mation thereof obtained after 1 ns of sampling. Although the two vector fields show
significant discrepancies, they also retain common characteristic features, in particu-
lar in the region of lower free energy, visited appropriately by the algorithm described
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herein. In turn, the approximate gradient can be employed as a starting point for
a separate ABF calculation in (ζ, ρ) configurational space, with the hope that the
initial guess of a minimum–action pathway might boost exploration of the complete
free-energy landscape. As highlighted in Figure 2, this appears to be, indeed, true —
after 10 ns, the map inferred from the separate two-dimensional ABF run possesses a
topology essentially identical to that of the reference, 30–ns simulation. However not
interchangeable, the two free-energy landscapes agree quantitatively in the low free-
energy regions — i.e 0 ≤ ρ ≤ 2 Å, albeit only qualitatively so in the higher free-energy
regions corresponding to the wall of the open-ended tubular structure.
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