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THE ADAPTIVE PROJECTED SUBGRADIENT METHOD

CONSTRAINED BY FAMILIES OF QUASI-NONEXPANSIVE MAPPINGS

AND ITS APPLICATION TO ONLINE LEARNING

KONSTANTINOS SLAVAKIS1 AND ISAO YAMADA2

Abstract. Many online, i.e., time-adaptive, inverse problems in signal processing and machine learning fall

under the wide umbrella of the asymptotic minimization of a sequence of non-negative, convex, and continuous

functions. To incorporate a-priori knowledge into the design, the asymptotic minimization task is usually

constrained on a fixed closed convex set, which is dictated by the available a-priori information. To increase

versatility towards the usage of the available information, the present manuscript extends the Adaptive Projected

Subgradient Method (APSM) by introducing an algorithmic scheme which incorporates a-priori knowledge in the

design via a sequence of strongly attracting quasi-nonexpansive mappings in a real Hilbert space. In such a way,

the benefits offered to online learning tasks by the proposed method unfold in two ways: 1) the rich class of quasi-

nonexpansive mappings provides a plethora of ways to cast a-priori knowledge, and 2) by introducing a sequence

of such mappings, the proposed scheme is able to capture the time-varying nature of a-priori information. The

convergence properties of the algorithm are studied, several special cases of the method with wide applicability

are shown, and the potential of the proposed scheme is demonstrated by considering an increasingly important,

nowadays, online sparse system/signal recovery task.

1. Introduction

Many online, i.e., time-adaptive, inverse problems in signal processing and machine learning can be recast

as follows [2, 19,30,32,34,35,37,40,47,49,50,53,54,58,66]; if the non-negative integer n ∈ N denotes discrete

time, having at our disposal a sequence of multidimensional data (an, dn)n∈N ⊂ R
L × R, the objective of an

online learning method is to infer a possibly time-varying unknown mapping x∗ : RL → R, which relates the

previous data under the following model:

dn = x∗(an) + ζn, ∀n ∈ N. (1)

In other words, at the n-th time instant, the L-dimensional input signal an interacts with the signal/system

which underlies x∗, and our observation is the real valued dn which is contaminated by the additive noise ζn.

Online learning methods show distinct differences from their batch counterparts due to the following fun-

damental reason: batch optimization methods are mobilized after all the necessary data are available to the

designer, whereas, in the online scenario, the sequential nature of the data (an, dn)n∈N dictates that at each

time instant n, the newly arriving (an, dn) should be efficiently incorporated into the learning process, without
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the need of solving the optimization task from scratch. Such a sequential mode is not prescribed only by the

need for computational efficiency and savings. The online processing of data becomes an efficient tool also in

cases of dynamic scenarios, where not only the probability density function of the input data (an)n∈N changes

with time, but also where the unknown mapping x∗ shows a time-varying nature. In such time dependent

environments, and in order to monitor the time variations of the underlying signals and systems, the designer

is compelled to gradually disregard data which are associated to the remote past, and to put emphasis on

recently received (an, dn). It becomes clear that flexible and multifaceted online learning tools are needed

in order to deal with fast emerging signal processing and machine learning applications, like sparsity-aware

learning [2, 19,35,40], time-adaptive sensor networks [17,20], etc.

The unknown mapping x∗ of (1) could be either linear or non-linear. Our assumption on the linearity or not

of x∗ dictates the choice of possible spaces into which we perform our search for x∗. If x∗ is assumed linear,

then our working space becomes the classical Euclidean R
L [32,47]. On the other hand, if x∗ is assumed non-

linear, a mathematical sound way to model a fairly large amount of non-linear systems is to work in a possibly

infinite dimensional Reproducing Kernel Hilbert Space (RKHS) [3]; a strategy which has been particularly

successful in machine learning and pattern recognition tasks [11, 30, 37, 48, 53, 54, 57, 58]. Since the Euclidean

R
L is a renowned Hilbert space, and in order to offer a unifying framework for linear and non-linear systems,

the stage of the following discussion will be based on a real Hilbert space H.

Given an estimate x ∈ H of the unknown x∗, the most common way to validate x, with respect to the

model (1), is to penalize the disagreement of the observed output dn with x(an), i.e., the real-valued difference

x(an) − dn. A classical way to quantify such a perception of loss is to use the quadratic function in order to

form the penalty (x(an)− dn)
2. The popularity of the quadratic loss function is based on its optimality in

estimation tasks where the contaminating noise process (ζn)n∈N is Gaussian [31]. However, in order to establish

a general framework for estimation problems, where the noise process is not constrained to be Gaussian, and

in order to build estimators which show robustness to a wide variety of outliers, we give ourselves the freedom

to employ any convex function L : R → [0,∞), and not just the quadratic one, in order to quantify our

perception of loss (see for example [49]). Having the data (an, dn) as parameters in the design, the following

function is naturally defined on the space H of our estimates: Θn : H → [0,∞) : x 7→ L(x(an)− dn). Due to

the online nature of the problem, i.e., the sequential data (an, dn)n∈N, we end up in a sequence of loss functions

(Θn)n∈N. We stress here that since L can be any convex function, Θn is not bound to be differentiable.

Theory, e.g., Bayesian inference [31], as well as everyday practice suggest that apart from the information

included in the training sequence (an, dn)n∈N, estimation is enhanced if one employs also the a-priori knowledge

about the unknown system x∗. We will abide here by the set theoretic estimation approach [21] and quantify

the a-priori knowledge as a closed convex set C in H. The first attempt to attack the task of online learning

as the asymptotic minimization of a sequence (Θn)n∈N, over a nonempty closed convex set C, was given in

[62,63], by means of the following simple iteration, called the Adaptive Projected Subgradient Method (APSM);

for an arbitrary initial point u0 ∈ H, let

∀n ∈ N, un+1 :=







PC

(

un − λn
Θn(un)

‖Θ′
n(un)‖

2Θ
′
n(un)

)

, if Θ′
n(un) 6= 0,

PC(un), if Θ′
n(un) = 0,

where λn ∈ (0, 2), PC stands for the metric projection mapping onto C, and Θ′
n(un) denotes any subgradient

of Θn at un, ∀n ∈ N. The previous recursion is a time-adaptive generalization of the classical algorithm

of Polyak [44], which deals with the minimization problem of a fixed, non-smooth, convex and continuous

function Θ over C. Besides the new directions for online learning [58], the previous recursion has offered also
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a unification of several standard algorithms in classical adaptive filtering [32,47]. Indeed, by letting H := R
L,

for an appropriately chosen sequence (Θn)n∈N, and by substituting PC with the identity mapping, the previous

recursion [62, 63, 66] results in the classical Normalized Least Mean Squares (NLMS) [1, 41] and the, vastly

used nowadays, Affine Projection Algorithm (APA) [33,43].

It is often the case that a single closed convex set C, or even better, a single metric projection mapping

PC , cannot capture the diversity of the a-priori knowledge in signal processing applications. For example,

in a robust beamforming problem [55], the a-priori knowledge is usually expressed as C =
⋂M

m=1 Cm, where

{Cm}Mm=1 is a number of closed convex sets, with associated projection mappings {PCm}Mm=1 that are usually

easy to compute. However, an analytic expression for PC might not be available [55]. Secondly, erroneous

a-priori information may result into an empty C =
⋂M

m=1 Cm = ∅ [55, 67]. How is it possible to deal with

multiple closed convex sets {Cm}Mm=1 where an analytical expression of PC is not available, or the {Cm}Mm=1

share an empty intersection? Avoiding the straightforward and recently popular solution of relaxing the

original constraints, the study in [56] provides with a solution to the previous problem and extends [62,63] by

using a mapping T , in the place of PC , which belongs to the general class of strongly attracting nonexpansive

mappings. Indeed, the method [56] demonstrated its potential in a wide variety of online learning tasks, which

span from classical linear adaptive filtering [67] to non-linear classification and regression tasks [58].

It is natural to ask now whether we can add more freedom to the usage of the a-priori knowledge. Our

motivation is based on a couple of elementary observations. First, given the well-known fact that a nonempty

closed convex set C is the set of all minimizers of the distance function d(·, C) to C, one of the ways to

visualize a-priori knowledge could be the set of all minimizers of a generally non-smooth convex function

defined on an appropriate Hilbert space H. Secondly, it is often the case in practice where a minimizer of

a convex function cannot be reached either by an analytical formula or a computationally cheap process. A

powerful mapping, whose recursive application is known to minimize a generally non-differentiable convex

function, is the subgradient projection mapping [6, 7, 64]. It is also known that this operator belongs to the

class of quasi-nonexpansive mappings [6,7,64], which strictly contains all the strongly attracting nonexpansive

mappings, utilized in [56]. Now, the question arises naturally: does the APSM still operate when constrained

by the general class of quasi-nonexpansive mappings, and can we, thus, devise a method with more freedom

in incorporating a-priori information, than in the studies of [56, 62, 63]? Given the wide applicability of the

APSM in online learning tasks [58], it is anticipated that such a generalization will add further flexibility to

the APSM in order to tackle more challenging online learning tasks, which have been recently emerging both

in signal processing and machine learning [2, 17,19,20,35,40].

The present manuscript introduces an extension of the APSM [56,62,63], towards a more flexible usage of

the a-priori information, in two ways: 1) by considering a strictly larger class of mappings than in [56,62,63],

and in particular, operators taken from the rich family of quasi-nonexpansive mappings, and 2) by letting these

mapping to be time-varying in order to capture the, quite often in signal processing and machine learning

applications, dynamic nature of the a-priori information. Put in mathematical terms, the problem to be

studied is the following.

Problem 1 (Constrained asymptotic minimization task). Given a sequence of convex, continuous, and not

necessarily differentiable functions (Θn : H → [0,∞))n∈N, and a sequence of strongly attracting quasi-

nonexpansive mappings (Tn : H → H)n∈N, with nonempty fixed point sets (Fix(Tn))n∈N, we are looking

for a sequence (un)n∈N that asymptotically minimizes (Θn)n∈N over (Fix(Tn))n∈N. Strictly speaking, our

objective is to generate a (un)n∈N such that limn→∞Θn(un) = 0, and the set of its strong cluster points

S((un)n∈N) lies in lim supn→∞ Fix(Tn), i.e., S((un)n∈N) ⊂ lim supn→∞ Fix(Tn).
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Our algorithmic tool to tackle the previous optimization task is the following.

Algorithm 1. Given an arbitrary initial point u0 ∈ H, generate the following sequence:

∀n ∈ N, un+1 :=







Tn

(

un − λn
Θn(un)

‖Θ′
n(un)‖

2Θ
′
n(un)

)

, if Θ′
n(un) 6= 0,

Tn(un), if Θ′
n(un) = 0,

(2)

where λn ∈ (0, 2) and Θ′
n(un) stands for any subgradient of Θn at un, ∀n ∈ N.

The manuscript is organized as follows. A series of necessary definitions and facts are included in Section 2.

The algorithm and its convergence analysis follow in Section 3. Special cases of the algorithm, with a wide

application range in online learning, can be found in Section 4. The potential of the method is shown in

Section 5 by introducing a low-complexity time-adaptive learning technique for the increasingly important,

nowadays, sparse system/signal recovery task.

2. Preliminaries

We start with several notations which will be frequently used in the sequel.

The set of all non-negative integers, positive integers, and real numbers will be denoted by N, N∗, and R,

respectively. The set of all subsequences of N will be denoted by N
#
∞, i.e., N#

∞ := {N ⊂ N : N is infinite}

[46]. Any N ∈ N
#
∞ can be also denoted by the standard way of N = (nk)k∈N. Define, also, N∞ := {N ⊂ N :

N \N is finite} [46]. In other words, N∞ contains all the “neighborhoods of ∞”, with respect to N, while N
#
∞

is its associated “grill” [46].

Henceforth, the symbol H will stand for a real Hilbert space, equipped with an inner product 〈·, ·〉, and a

norm ‖·‖ :=
√

〈·, ·〉. In the case whereH becomes the Euclidean R
L, L ∈ N∗, any element of RL will be denoted

by boldfaced symbols. The inner product of RL will be the classical vector dot product, i.e., 〈v1,v2〉 := v
t
1v2,

∀v1,v2 ∈ R
L, where the superscript t stands for vector/matrix transposition.

Given an x ∈ H and a ρ > 0, an open ball is defined as the set B(x, ρ) := {v ∈ H : ‖x− v‖ < ρ}, while a

closed ball B[x, ρ] := {v ∈ H : ‖x− v‖ ≤ ρ}. Given S,Υ ⊂ H, the relative interior of S with respect to Υ is

defined as riΥ S := {̊v ∈ S : ∃ρ > 0, ∅ 6= (B(̊v, ρ) ∩Υ) ⊂ S}. The interior of S is defined as intS := riH S.

Given S ⊂ H, define the distance function to S as follows: d(·, S) : H → [0,∞) : x 7→ d(x, S) :=

inf{‖x− v‖ : v ∈ S}. Given any nonempty closed convex set C ⊂ H, the (metric) projection onto C is defined

as the mapping PC : H → C which maps to an x ∈ H the (unique) PC(x) ∈ C such that ‖x− PC(x)‖ = d(x,C).

Definition 2 (Subdifferential and subgradient). Given a convex function Θ : H → R, the subdifferential of

Θ is defined as the set-valued mapping:

∂Θ : H → 2H : x 7→ ∂Θ(x) := {v ∈ H : ∀y ∈ H, 〈v, y − x〉+Θ(x) ≤ Θ(y)}.

In the case where Θ is continuous at x, then ∂Θ(x) 6= ∅ [29]. Any element in ∂Θ(x) will be called a subgradient

of Θ at x, and will be denoted by Θ′(x). If Θ is Gâteaux differentiable at x, then ∂Θ(x) becomes a singleton,

and the unique element of ∂Θ(x) is nothing but the classical Gâteaux differential of Θ at x. Notice, also, the

well-known fact: 0 ∈ ∂Θ(x) ⇔ x ∈ argminv∈H Θ(v).

Example 3. The subdifferential of the metric distance function to a closed convex set C ⊂ H is given as

follows:

∂d(x,C) =







NC(x) ∩B[0, 1], if x ∈ C,
x−PC(x)
d(x,C) , if x ∈ H \ C,

where NC(x) := {v ∈ H : ∀y ∈ C, 〈v, y − x〉 ≤ 0}. Notice that ∀x ∈ H, ∀d′(x,C) ∈ ∂d(x,C), ‖d′(x,C)‖ ≤ 1.
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Definition 4 ([5–7, 64]). Given a mapping T : H → H, the set of all fixed points of T , i.e., Fix(T ) := {v ∈

H : T (v) = v}, is called the fixed point set of T . Assume a T : H → H such that Fix(T ) 6= ∅. The mapping

T will be called quasi-nonexpansive if ∀x ∈ H, ∀v ∈ Fix(T ), ‖T (x)− v‖ ≤ ‖x− v‖. It can be verified that the

fixed point set of a quasi-nonexpansive mapping is closed and convex, e.g., [6, Prop. 2.3 and 2.6]. If

∃η > 0 : ∀x ∈ H,∀v ∈ Fix(T ), η ‖x− T (x)‖2 ≤ ‖x− v‖2 − ‖T (x)− v‖2 ,

then T will be called η-attracting or strongly attracting quasi-nonexpansive.

Now, if ∀x, y ∈ H, ‖T (x)− T (y)‖ ≤ ‖x− y‖, then T will be called nonexpansive. In the case where T

is both nonexpansive and strongly attracting quasi-nonexpansive, then it will be called strongly attracting

nonexpansive.

In particular, an 1-attracting (quasi)-nonexpansive mapping will be called firmly (quasi)-nonexpansive.

Fact 5 (Equivalent description of strongly attracting quasi-nonexpansive mappings [60, 64]). The following

statements are equivalent for a mapping T : H → H.

1. T is η-attracting quasi-nonexpansive.

2. T is 1
1+η -averaged quasi-nonexpansive. A mapping T is called α-averaged quasi-nonexpansive, with α ∈

(0, 1), if there exists a quasi-nonexpansive mapping R : H → H such that T = (1− α)I + αR.

In particular, T is firmly quasi-nonexpansive iff T is 1
2 -averaged quasi-nonexpansive. Notice that ∀α ∈ (0, 1),

Fix(T ) = Fix(R), which suggests that given a quasi-nonexpansive mapping R, we can always construct a

strongly attracting quasi-nonexpansive T that shares the same fixed point set with R.

Example 6 (Subgradient projection mapping). Given a convex continuous function Θ, such that lev≤0 Θ :=

{v ∈ H : Θ(v) ≤ 0} 6= ∅, define the subgradient projection mapping TΘ : H → H with respect to Θ as follows:

TΘ(x) :=







x− Θ(x)

‖Θ′(x)‖2
Θ′(x), if x ∈ H \ lev≤0 Θ,

x, if x ∈ lev≤0 Θ,

where Θ′(x) is any subgradient in ∂Θ(x). If I stands for the identity mapping in H, the mapping

T
(λ)
Θ := I + λ(TΘ − I), λ ∈ (0, 2),

will be called the relaxed subgradient projection mapping with respect to Θ. It can be verified that ∀λ ∈

(0, 2), Fix(T
(λ)
Θ ) = Fix(TΘ) = lev≤0 Θ [6]. Moreover, ∀λ ∈ (0, 2), the mapping T

(λ)
Θ is 2−λ

λ -attracting quasi-

nonexpansive [6].

Example 7 (Relaxed metric projection mapping). Let a nonempty closed convex set C ⊂ H and its associated

metric projection mapping PC . Then, the relaxed (metric) projection mapping, T
(α)
C := I + α(PC − I),

α ∈ (0, 2), is 2−α
α -attracting nonexpansive with fixed point set Fix(T

(α)
C ) = C [5].

Example 8 ([5,63]). Let T1, T2 be η1- and η2-attracting (quasi)-nonexpansive mappings, respectively. Assume

also that Fix(T1) ∩ Fix(T2) 6= ∅. Then, the mapping T1T2 is η1η2
η1+η2

-attracting (quasi)-nonexpansive, and

Fix(T1T2) = Fix(T1) ∩ Fix(T2).

Definition 9 (Demiclosed mapping at 0). A mapping T : H → H will be called demiclosed at 0 if the following

property holds; for a sequence (xn)n∈N ⊂ H, and an x∗ ∈ H,

if







xn
n→∞
−−−⇀ x∗,

T (xn)
n→∞
−−−→ 0,

then T (x∗) = 0,

where the symbols ⇀ and → denote weak and strong convergence in H, respectively.
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Example 10 ([42, Lem. 2]). If T : H → H is a nonexpansive mapping, then I − T is demiclosed at 0.

Example 11 ([6, Prop. 6.10], [60]). Let a continuous convex function Θ : H → R such that lev≤0 Θ 6= ∅.

Then, ∀λ ∈ (0, 2), the mapping I − T
(λ)
Θ is demiclosed at 0, where T

(λ)
Θ stands for the relaxed subgradient

projection mapping with respect to Θ.

Fact 12 ([63]). Assume a sequence (xn)n∈N ⊂ H, and a closed convex set C ⊂ H. Assume that

∃κ > 0 : ∀v ∈ C, ∀n ∈ N, κ ‖xn+1 − xn‖
2 ≤ ‖xn − v‖2 − ‖xn+1 − v‖2 .

If there exists, also, a hyperplane Π such that riΠ C 6= ∅, then ∃x∗ ∈ H such that x∗ = limn→∞ xn.

Definition 13 (Inner and outer limits [4, 46]). Given a sequence of subsets (Sn)n∈N ⊂ H, define the inner

and outer limits:

lim inf
n→∞

Sn :=

{

x ∈ H : ∃N ∈ N∞,∃xn ∈ Sn,∀n ∈ N, such that lim
n∈N

xn = x

}

=

{

x ∈ H : lim sup
n→∞

d(x, Sn) = 0

}

=
⋂

N∈N#
∞

⋃

n∈N

Sn (3)

=
⋂

ǫ>0

[

∞
⋃

n=1

∞
⋂

k=n

(Sk +B[0, ǫ])

]

, (4)

lim sup
n→∞

Sn :=

{

x ∈ H : ∃N ∈ N
#
∞,∃xn ∈ Sn,∀n ∈ N, such that lim

n∈N
xn = x

}

=
{

x ∈ H : lim inf
n→∞

d(x, Sn) = 0
}

=
⋂

N∈N∞

⋃

n∈N

Sn

=
⋂

ǫ>0

[

∞
⋂

n=1

∞
⋃

k=n

(Sk +B[0, ǫ])

]

,

where Sk + B[0, ǫ] := {s + b : s ∈ Sk, b ∈ B[0, ǫ]}, and the overline symbol stands for the closure of a set. In

a similar fashion, given a sequence of subsets (Sn)n∈N, and a subsequence N = (nk)k∈N ∈ N
#
∞, the notation

lim infn∈N Sn is defined as lim infk→∞ Snk
. Likewise, lim supn∈N Sn := lim supk→∞ Snk

.

3. The Analysis of the Algorithm

3.1. A useful theorem. Prior to the analysis of Algorithm 1, we state and prove Theorem 15, which will be

repeatedly used in the sequel. The proof of Theorem 15 will be based on the following assumption.

Assumption 14. Assume a sequence of mappings (Tn : H → H)n∈N with nonempty fixed point sets

(Fix(Tn))n∈N. For any subsequence N ∈ N
#
∞, for any sequence (xn)n∈N ⊂ H, and for any γ > 0 such

that ∀n ∈ N , d(xn,Fix(Tn)) ≥ γ, there exists a δ > 0 such that lim infn∈N ‖(I − Tn)(xn)‖ ≥ δ.

Theorem 15. Assume a sequence of mappings (Tn : H → H)n∈N, with nonempty fixed point sets (Fix(Tn))n∈N,

such that Assumption 14 is satisfied.

1. Assume a subsequence N ∈ N
#
∞, a sequence (xn)n∈N ⊂ H and an x∗ ∈ H.

If







xn
n∈N
−−−→ x∗,

(I − Tn)(xn)
n∈N
−−−→ 0,

then x∗ ∈ lim inf
n∈N

Fix(Tn).
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2. Let S((xn)n∈N) be the set of all strong cluster points of a sequence (xn)n∈N.

If







S((xn)n∈N) 6= ∅,

(I − Tn)(xn)
n→∞
−−−→ 0,

then S((xn)n∈N) ⊂ lim sup
n→∞

Fix(Tn).

Proof. 1. We will prove Theorem 15.1 by contradiction, i.e., assume that x∗ /∈ lim infn∈N Fix(Tn).

By (3), lim supn∈N d(x∗,Fix(Tn)) > 0, i.e., there exists τ > 0, and ∃N ′ ∈ N
#
∞, such that ∀n ∈ N ′ ∩N ,

d(x∗,Fix(Tn)) > τ .

Moreover, since limn→∞ xn = x∗, there exists an N0 ∈ N∞ such that ∀n ∈ N0 ∩ N , ‖x∗ − xn‖ < τ
2 .

Having these in mind, the triangle inequality ‖x∗ − v‖ ≤ ‖x∗ − xn‖ + ‖xn − v‖, ∀v ∈ Fix(Tn), leads us to

the following:

∀n ∈ N0 ∩N ′ ∩N, d(xn,Fix(Tn)) ≥ d(x∗,Fix(Tn))− ‖x∗ − xn‖ > τ −
τ

2
=: γ > 0.

Hence, there exists a subsequence N ′′ := N0 ∩N ′ ∩N ∈ N
#
∞ such that ∀n ∈ N ′′, d(xn,Fix(Tn)) ≥ γ.

Now, by Assumption 14, there exists a δ > 0 such that

0 < δ ≤ lim inf
n∈N ′′

‖(I − Tn)(xn)‖ = lim
n∈N ′′

‖(I − Tn)(xn)‖ = 0,

where the last two equalities come from the fact that N ′′ ⊂ N . This contradiction establishes Theorem 15.1.

2. Choose arbitrarily an x∗ ∈ S((xn)n∈N). By definition, there exists a subsequence N ∈ N
#
∞ such that

limn∈N xn = x∗. Hence, by Theorem 15.1, x∗ ∈ lim infn∈N Fix(Tn). By Definition 13, ∃N0 ∈ N∞ and

∃x′n ∈ Fix(Tn), ∀n ∈ N ∩N0 such that limn∈N∩N0 x
′
n = x∗.

Clearly, N ′ := N ∩N0 ∈ N
#
∞. In other words, ∃N ′ ∈ N

#
∞, ∃x′n ∈ Fix(Tn), ∀n ∈ N ′ such that limn∈N ′ x′n =

x∗, i.e., x∗ ∈ lim supn→∞ Fix(Tn) by Definition 13. Since x∗ was chosen arbitrarily, Theorem 15.2 is

established. �

Next is an example of a sequence of mappings which satisfies Assumption 14, and which will be used later

on in the sequel. Another example of a family of mappings which satisfies Assumption 14, and which relates

to the minimization of an ℓ1-norm loss function, will be seen in Lemma 26.4.

Example 16. Assume a sequence of nonempty closed convex sets (Sn)n∈N, the associated sequence of relaxed

metric projection mappings

T
(αn)
Sn

:= I + αn(PSn − I), αn ∈ (0, 2),∀n ∈ N,

and the existence of a sufficiently small ǫ > 0 such that αn ∈ [ǫ, 2), ∀n ∈ N. Then, the sequence of mappings

(T
(αn)
Sn

)n∈N satisfies Assumption 14.

Proof. First of all, by Example 7, ∀n ∈ N, Fix(T
(αn)
Sn

) = Sn. Choose, now, arbitrarily an N ∈ N
#
∞, a sequence

(xn)n∈N ⊂ H, and a γ > 0, such that ∀n ∈ N , d(xn,Fix(T
(αn)
Sn

)) = d(xn, Sn) ≥ γ. Then, it is easy to verify by

the definition of T
(αn)
Sn

that

∀n ∈ N,
∥

∥

∥
(I − T

(αn)
Sn

)(xn)
∥

∥

∥
= αnd(xn, Sn) ≥ ǫγ > 0.

Therefore, there exists a δ > 0 such that lim infn∈N

∥

∥

∥
(I − T

(αn)
Sn

)(xn)
∥

∥

∥
≥ δ, and Assumption 14 is established.

�
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3.2. The Main Analysis. Given a sequence of convex, continuous, and not necessarily differentiable functions

(Θn : H → [0,∞))n∈N, and a sequence of ηn-attracting quasi-nonexpansive mappings (Tn : H → H)n∈N, with

ηn > 0, ∀n ∈ N, and with nonempty fixed point sets (Fix(Tn))n∈N, the convergence analysis of Algorithm 1,

given in Theorem 18, will be based on the following series of assumptions.

Assumption 17.

1. There exists an N ∈ N∞ such that ∀n ∈ N , Ωn := Fix(Tn) ∩ lev≤0 Θn 6= ∅.

2. There exists an N ∈ N∞ such that Ω :=
⋂

n∈N Ωn 6= ∅.

3. Choose an ǫ ∈ (0, 1], and let ∀n ∈ N, λn ∈ [ǫ, 2− ǫ].

4. The sequence (Θ′
n(un))n∈N is bounded.

5. Define η̌ := inf{ηn : n ∈ N}, η̂ := sup{ηn : n ∈ N}. Then, assume that η̌ > 0 and η̂ < ∞.

6. The sequence of relaxed subgradient projection mappings (T
(λn)
Θn

)n∈N satisfies Assumption 14.

7. The sequence of mappings (Tn)n∈N satisfies Assumption 14.

8. Assume that ∀n ∈ N, Tn := T , where T is a strongly attracting quasi-nonexpansive mapping with Fix(T ) 6=

∅, and I − T is demiclosed at 0.

9. The set S((un)n∈N) of all strong cluster points of the sequence (un)n∈N is nonempty.

10. There exists a hyperplane Π such that riΠ(Ω) 6= ∅.

Theorem 18 (Properties of Algorithm 1).

1. Let Assumption 17.1 hold true. Then, ∀n ∈ N , d(un+1,Ωn) ≤ d(un,Ωn).

2. Let Assumption 17.2 hold true. Then, ∀n ∈ N , d(un+1,Ω) ≤ d(un,Ω).

3. Let Assumption 17.2 hold true. Then, ∀v ∈ Ω, the sequence (‖un − v‖)n∈N converges.

4. Let Assumption 17.2 hold true. Then, the set of all weakly sequential cluster points of the sequence (un)n∈N

is nonempty, i.e., W((un)n∈N) 6= ∅.

5. Let Assumptions 17.2 and 17.3 hold true. Then,

lim
n→∞

∥

∥

∥
(I − T

(λn)
Θn

)(un)
∥

∥

∥
= lim

n→∞

Θn(un)

‖Θ′
n(un)‖

= 0,

where, in order to avoid ambiguities, we let 0
0 := 0.

6. Let Assumptions 17.2, 17.3, and 17.4 hold true. Then, limn→∞Θn(un) = 0.

7. Let Assumptions 17.2, 17.3, 17.6, and 17.9 hold true. Then, S((un)n∈N) ⊂ lim supn→∞ lev≤0 Θn. If, in

addition, the set S((un)n∈N) is a singleton, i.e., there exists a u∗ such that {u∗} = S((un)n∈N), then,

u∗ ∈ lim infn→∞ lev≤0 Θn.

8. Let Assumptions 17.2 and 17.5 hold true. Then, limn→∞(I − Tn)(T
(λn)
Θn

(un)) = 0.

9. Let Assumptions 17.2, 17.3, 17.5, 17.7, and 17.9 hold true. Then, S((un)n∈N) ⊂ lim supn→∞ Fix(Tn). If,

in addition, the set S((un)n∈N) is a singleton, i.e., there exists a u∗ such that {u∗} = S((un)n∈N), then,

u∗ ∈ lim infn→∞ Fix(Tn).

10. Let Assumptions 17.2, 17.3, and 17.8 hold true. Then, W((un)n∈N) ⊂ Fix(T ).

11. Let Assumptions 17.2, 17.3, 17.8, and 17.9 hold true. Then, S((un)n∈N) ⊂ Fix(T ).

12. Let Assumptions 17.2, 17.3, 17.5, and 17.10 hold true. Then, ∃u∗ ∈ H : limn→∞ un = u∗, i.e., S((un)n∈N) =

{u∗}.

Proof. 1. By assumption 17.1, ∀n ∈ N , lev≤0 Θn 6= ∅. Recall also the fundamental fact that 0 ∈ ∂Θn(un) ⇔

un ∈ argminv∈H Θn(v).
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Fix any n ∈ N . Consider the case where un /∈ lev≤0 Θn ⇔ Θn(un) > 0 ⇒ Θ′
n(un) 6= 0. Then, by (2),

un+1 = Tn

(

un − λn
Θn(un)

‖Θ′
n(un)‖

2Θ
′
n(un)

)

. Now, assume that un ∈ lev≤0 Θn ⇔ Θn(un) = 0. If Θ′
n(un) = 0,

then by (2), un+1 = Tn(un). On the other hand, if Θ′
n(un) 6= 0, then, again, un+1 = Tn(un), since

Θn(un) = 0. To summarize, (2) takes the following form:

∀n ∈ N, un+1 :=







Tn

(

un − λn
Θn(un)

‖Θ′
n(un)‖

2Θ
′
n(un)

)

, if un /∈ lev≤0 Θn,

Tn(un), if un ∈ lev≤0 Θn.

If we combine this result with Example 6, then it can be easily verified that the previous recursion can be

equivalently viewed as follows: ∀n ∈ N , un+1 = TnT
(λn)
Θn

(un), where T
(λn)
Θn

stands for the relaxed subgradient

projection mapping w.r.t. Θn.

Now, since T
(λn)
Θn

is a 2−λn

λn
-attracting quasi-nonexpansive mapping, with Fix(T

(λn)
Θn

) = lev≤0 Θn, it can

be easily verified by Example 8 that the mapping TnT
(λn)
Θn

is (2−λn)ηn
2−λn(1−ηn)

-attracting quasi-nonexpansive, with

Fix(TnT
(λn)
Θn

) = Fix(Tn) ∩ Fix(T
(λn)
Θn

) = Fix(Tn) ∩ lev≤0 Θn = Ωn, ∀n ∈ N . Hence, by Definition 4, we have

that ∀n ∈ N , ∀v ∈ Ωn,

0 ≤
(2− λn)ηn

2− λn(1− ηn)
‖un − un+1‖

2 =
(2− λn)ηn

2− λn(1− ηn)

∥

∥

∥
un − TnT

(λn)
Θn

(un)
∥

∥

∥

2

≤ ‖un − v‖2 −
∥

∥

∥
TnT

(λn)
Θn

(un)− v
∥

∥

∥

2
= ‖un − v‖2 − ‖un+1 − v‖2 (5)

⇒ ‖un+1 − v‖ ≤ ‖un − v‖ . (6)

If we apply infv∈Ωn , on both sides of (6), then we obtain Theorem 18.1.

2. Due to Assumption 17.2, to the fact that Ω is closed and convex, to PΩ(un) ∈ Ω ⊂ Ωn, ∀n ∈ N , and to (6),

we have:

∀n ∈ N, d(un,Ω) = ‖un − PΩ(un)‖ ≥ ‖un+1 − PΩ(un)‖

≥ ‖un+1 − PΩ(un+1)‖ = d(un+1,Ω), (7)

which is nothing but Theorem 18.2.

3. Fix arbitrarily v ∈ Ω. By (6), the sequence (‖un − v‖)n∈N is non-increasing and bounded; hence convergent.

This establishes Theorem 18.3.

4. Since (un)n∈N is bounded by Theorem 18.3, W((un)n∈N) 6= ∅ [27, Thm. 9.12]. This establishes Theorem 18.4.

5. There is no loss of generality if we assume that ∀n ∈ N , Θ′
n(un) 6= 0. To see this, notice that for all n ∈ N

such that Θ′
n(un) = 0, we obtain Θn(un) = 0 ⇒ Θn(un)

‖Θ′
n(un)‖

= 0
0 := 0. Hence, in such a case, the claim of

Theorem 18.5 holds true.

Assume, now, any v ∈ Ω. Recall also that the mapping Tn is quasi-nonexpansive, with Ω ⊂ Fix(Tn),

∀n ∈ N , and easily verify ∀n ∈ N , ∀v ∈ Ω,

‖un+1 − v‖2 =

∥

∥

∥

∥

Tn

(

un − λn
Θn(un)

‖Θ′
n(un)‖

2Θ
′
n(un)

)

− v

∥

∥

∥

∥

2

≤

∥

∥

∥

∥

un − λn
Θn(un)

‖Θ′
n(un)‖

2Θ
′
n(un)− v

∥

∥

∥

∥

2

=

∥

∥

∥

∥

(un − v)− λn
Θn(un)

‖Θ′
n(un)‖

2Θ
′
n(un)

∥

∥

∥

∥

2

= ‖un − v‖2 + λ2
n

Θ2
n(un)

‖Θ′
n(un)‖

2 − 2λn
Θn(un)

‖Θ′
n(un)‖

2

〈

un − v,Θ′
n(un)

〉

. (8)
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By the definition of the subgradient, we have that 〈v − un,Θ
′
n(un)〉 + Θn(un) ≤ Θn(v) = 0. If we merge

this into (8), we obtain the following:

‖un+1 − v‖2 ≤ ‖un − v‖2 + λ2
n

Θ2
n(un)

‖Θ′
n(un)‖

2 − 2λn
Θ2

n(un)

‖Θ′
n(un)‖

2 = ‖un − v‖2 − λn(2− λn)
Θ2

n(un)

‖Θ′
n(un)‖

2 .

This implies in turn that

∀n ∈ N,∀v ∈ Ω, 0 ≤
Θ2

n(un)

‖Θ′
n(un)‖

2 ≤
λn(2− λn)

ǫ2
Θ2

n(un)

‖Θ′
n(un)‖

2 ≤
‖un − v‖2 − ‖un+1 − v‖2

ǫ2
.

However, by Theorem 18.3, the sequence (‖un − v‖2)n∈N is convergent, and hence Cauchy. The definition

of a Cauchy sequence implies that limn→∞(‖un − v‖2 − ‖un+1 − v‖2) = 0. This fact and the previous

inequality establish limn→∞
Θn(un)

‖Θ′
n(un)‖

= 0.

Now, notice that for all n ∈ N :

∥

∥

∥
un − T

(λn)
Θn

(un)
∥

∥

∥
= λn

Θn(un)

‖Θ′
n(un)‖

≤ 2
Θn(un)

‖Θ′
n(un)‖

.

Take limn→∞ on both sides of this inequality, and recall the previous result to easily verify that

lim
n→∞

∥

∥

∥
un − T

(λn)
Θn

(un)
∥

∥

∥
= 0.

In other words, Theorem 18.5 holds true.

6. Since the sequence (Θ′
n(un))n∈N is assumed bounded, there exists aD > 0 such that ∀n ∈ N, ‖Θ′

n(un)‖ ≤ D.

Notice, now, that for all those n ∈ N such that Θ′
n(un) 6= 0, we have

Θn(un) =
∥

∥Θ′
n(un)

∥

∥

Θn(un)

‖Θ′
n(un)‖

≤ D
Θn(un)

‖Θ′
n(un)‖

. (9)

Moreover, for all those n ∈ N such that Θ′
n(un) = 0, it is clear by the well-known fact 0 ∈ ∂Θn(un) ⇔

un ∈ argminv∈H Θn(v), that Θn(un) = 0. If we take limn→∞ on both sides of (9), and if we also recall

Theorem 18.5, the claim is established.

7. Notice that ∀n ∈ N , Fix(T
(λn)
Θn

) = lev≤0 Θn. Hence, S((un)n∈N) ⊂ lim supn→∞ lev≤0 Θn is a direct conse-

quence of Theorems 15 and 18.5. The claim for the case of S((un)n∈N) = {u∗} can be easily obtained if we

let N := N in Theorem 15.1.

8. Here we will use Definition 4 two times; one for the mapping Tn, and one for T
(λn)
Θn

. In other words, ∀n ∈ N ,

∀v ∈ Ω,

η̌
∥

∥

∥
(I − Tn)(T

(λn)
Θn

(un))
∥

∥

∥

2
= η̌

∥

∥

∥
T
(λn)
Θn

(un)− TnT
(λn)
Θn

(un)
∥

∥

∥

2
≤ ηn

∥

∥

∥
T
(λn)
Θn

(un)− TnT
(λn)
Θn

(un)
∥

∥

∥

2

≤
∥

∥

∥
T
(λn)
Θn

(un)− v
∥

∥

∥

2
−
∥

∥

∥
TnT

(λn)
Θn

(un)− v
∥

∥

∥

2

=
∥

∥

∥
T
(λn)
Θn

(un)− v
∥

∥

∥

2
− ‖un+1 − v‖2

≤ ‖un − v‖2 −
2− λn

λn

∥

∥

∥
un − T

(λn)
Θn

(un)
∥

∥

∥

2
− ‖un+1 − v‖2

≤ ‖un − v‖2 − ‖un+1 − v‖2 .

Divide the above inequality by η̌ > 0, recall Theorem 18.3, and take limn→∞ on both sides of the resulting

inequality to obtain limn→∞(I − Tn)(T
(λn)
Θn

(un)) = 0. This establishes Theorem 18.8.
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9. First, since S((un)n∈N) 6= ∅, notice that S((T
(λn)
Θn

(un))n∈N) = S((un)n∈N). To establish, for example,

S((un)n∈N) ⊂ S((T
(λn)
Θn

(un))n∈N), choose arbitrarily a u∗ ∈ S((un)n∈N), which implies that there exists a

subsequence N ′ ∈ N
#
∞ such that limn∈N ′ un = u∗. Then, it is easy to verify that

∀n ∈ N ′,
∥

∥

∥
u∗ − T

(λn)
Θn

(un)
∥

∥

∥
≤ ‖u∗ − un‖+

∥

∥

∥
(I − T

(λn)
Θn

)(un)
∥

∥

∥
.

Take limn∈N ′ on both sides of the previous inequality, so that the following result is obtained by Theo-

rem 18.5: u∗ ∈ S((T
(λn)
Θn

(un))n∈N). Similar arguments can be used in order to derive S((T
(λn)
Θn

(un))n∈N) ⊂

S((un)n∈N).

Now, it becomes clear under the previous discussion, that if we define xn := T
(λn)
Θn

(un), ∀n ∈ N, in

Theorem 15, then Theorem 18.9 becomes a direct consequence of Theorems 15 and 18.8.

10. Theorem 18.4 guarantees that W((un)n∈N) 6= ∅. Fix arbitrarily a u∗ ∈ W((un)n∈N). By definition, there

exists a subsequence N ′ ∈ N
#
∞ such that un

n∈N ′

−−−⇀ u∗.

Recall Theorem 18.5 and easily verify that un − T
(λn)
Θn

(un)
n∈N ′

−−−→ 0. This together with un
n∈N ′

−−−⇀ u∗

imply that

T
(λn)
Θn

(un)
n∈N ′

−−−⇀ u∗. (10)

Recall, now, Theorem 18.8 in order to obtain (I − T )(T
(λn)
Θn

(un))
n∈N ′

−−−→ 0. This result, (10), and Defini-

tion 9 lead us to (I − T )(u∗) = 0 ⇔ u∗ ∈ Fix(T ). This establishes Theorem 18.10.

11. This is a direct consequence of Theorem 18.10 and the well-known fact that S((un)n∈N) ⊂ W((un)n∈N).

12. It is easy to verify by Assumptions 17.3 and 17.5 that

(2− λn)ηn
2− λn(1− ηn)

=
(2− λn)ηn

(2− λn) + λnηn
≥

ǫη̌

2(1 + η̂)
> 0.

Using also (5), we easily verify under Assumption 17.2 that

∀n ∈ N,∀v ∈ Ω,
ǫη̌

2(1 + η̂)
‖un − un+1‖

2 ≤ ‖un − v‖2 − ‖un+1 − v‖2 . (11)

The claim of Theorem 18.12 is a direct consequence of (11), Assumption 17.10, and Fact 12. �

4. Special Cases of the General Algorithm

4.1. Exploring (Tn)n∈N. The available a-priori information about the model (1) enters Algorithm 1 through

the sequence of mappings (Tn)n∈N, i.e., implicitly via the sequence of sets (Fix(Tn))n∈N. Given that n ∈ N

stands for time, the sequence (Tn)n∈N aims to capture the dynamic nature of a-priori information, which

is usually met in signal processing and machine learning applications. For example, it is often the case

in adaptive signal processing to face a channel whose impulse response changes slowly with time. Notice

also here that the sequence (Tn)n∈N belongs to the rich family of strongly attracting quasi-nonexpansive

mappings. To demonstrate the versatility offered by this class of mappings in the usage of the available a-

priori knowledge, examples of such mappings, mobilized extensively in various contexts of optimization theory

[7], are demonstrated in this section. More specifically, in order to apply the proposed scheme to a real-world

problem, the following Example 23 considers a non-smooth loss function which infuses sparsity information in

(1). Such a loss function will be incorporated in Algorithm 29 to devise an algorithmic solution to the online

sparse system/signal recovery task of Section 5.

Example 19 (Resolvent). For a set-valued mapping A : H → 2H, its graph is defined as the set gph(A) :=

{(x, y) ∈ H × H : y ∈ A(x)}. The mapping A will be called monotone if ∀(x1, y1), (x2, y2) ∈ gph(A),

〈x1 − x2, y1 − y2〉 ≥ 0 [7, 8, 38, 46]. A monotone mapping A will be called maximal if no enlargement of
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its graph is possible without destroying monotonicity, i.e., ∀(x, y) ∈ H × H \ gph(A), there exists a pair

(x0, y0) ∈ gph(A) such that 〈x− x0, y − y0〉 < 0 [7,8,38,46]. For example, the linear mapping induced by any

positive semi-definite matrix is maximal monotone [46, Examples 12.2 and 12.7].

Now, given a maximal monotone mappingA : H → 2H, and a ξ > 0, its resolvent T (ξ) := (I+ξA)−1 : H → H

is an 1-attracting nonexpansive mapping, where (·)−1 stands for the inverse of a mapping. The fixed point set

of T (ξ) becomes Fix(T (ξ)) = {x ∈ H : 0 ∈ A(x)}. For example, in the case of a positive semi-definite matrix,

this fixed point set is nothing but the null space of the matrix.

Example 20 (Proximity mapping). Given a lower semi-continuous function Φ : H → R, the Moreau envelope

of index γ > 0 of Φ is the function

Φ(γ) : H → R : x 7→ inf
y∈H

(

Φ(y) +
1

2γ
‖x− y‖2

)

. (12)

Then, the proximity mapping TγΦ is defined as the mapping which maps to an x ∈ H the unique minimizer

of (12) [23,24,39]. It can be verified that the proximity mapping TγΦ is 1-attracting nonexpansive with fixed

point set Fix(TγΦ) = {x ∈ H : Φ(x) = infy∈H Φ(y)} [23, 24].

Example 21 (Inconsistent a-priori information). Assume that the available a-priori knowledge about our

system is a gathering of several pieces of information which take the form of the following nonempty closed

convex sets: Γ, {Cm}Mm=1 in H, with M ∈ N∗. With Γ we denote the information that our system should

surely satisfy, called the absolute or hard constraint. Ideally, our solution set is Γ ∩ (
⋂M

m=1 Cm). However,

it is quite often the case that the available pieces of a-priori knowledge are inconsistent, i.e., the previous

intersection is the empty set, e.g., [55]. To tackle such a problem, we define the following proximity function:

∀x ∈ H, p(x) :=
∑M

m=1 βmd2(x,Cm), where {βm}Mm=1 are convex weights, i.e., {βm}Mm=1 ⊂ (0, 1], such that
∑M

m=1 βm = 1. The proximity function is everywhere Fréchet differentiable, and its differential is the mapping

p′ := 2
∑M

m=1 βm(I − PCm) : H → H. Define, now, as our new solution set Ξ := argmin{p(x) : x ∈ Γ}. The

non-emptiness of Ξ is guaranteed if at least one of {Cm}Mm=1 or Γ is bounded [61]. In words, Ξ is the set of all

those points in Γ that least violate, in the sense of the previous proximity function, the rest of the constraints

{Cm}Mm=1. Under the previous setting, and ∀λ ∈ (0, 2), the mapping Tp := PΓ(I − λp′), is (1 − λ
2 )-attracting

nonexpansive with fixed point set Fix(Tp) = Ξ [18,22,61,65,67].

Example 22 (The class T of mappings [6]). For any x, y ∈ H, define the following set: H(x, y) := {v ∈ H :

〈x− y, v − y〉 ≤ 0}. In words, the set H(x, y) is the closed halfspace onto which y is the metric projection of x.

Now, a mapping T : H → H is said to belong to the class T of mappings, if ∀x ∈ H, Fix(T ) ⊂ H(x, T (x)) [6].

An equivalent description of the class T is as follows: T ∈ T iff T is firmly quasi-nonexpansive [6, Proposition

2.3]. Moreover, ∀T ∈ T, Fix(T ) =
⋂

x∈H H(x, T (x)). For example, the subgradient projection mapping TΘ

(Example 6) belongs to this class [6, Proposition 2.3].

Definition 23 (Sparsity-aware loss function). Henceforth, the notation j1, j2, for any integers j1 ≤ j2, will

stand for {j1, j1 + 1, . . . , j2}. Assume that H := R
L, for some L ∈ N∗. We introduce, here, the following

sequence of convex, continuous, non-negative functions (Φn : H → [0,∞))n∈N. Given a sequence of weight

vectors (wn)n∈N ⊂ R
L, with positive components, i.e., wn,j > 0, ∀j ∈ 1, L, ∀n ∈ N, and a positive parameter

ρ > 0, we define

∀n ∈ N,∀x ∈ R
L, Φn(x) := max{0,

L
∑

j=1

wn,j|xj | − ρ}. (13)
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It is clear that the 0-th level set for each Φn is a weighted ℓ1-ball, i.e.,

∀n ∈ N, lev≤0 Φn = Bℓ1 [wn, ρ] := {x ∈ R
L :

L
∑

j=1

wn,j|xj | ≤ ρ}.

The fixed point set of the relaxed subgradient projection mapping T
(νn)
Φn

, νn ∈ (0, 2), is the weighted ℓ1-

ball, i.e., Fix(T
(νn)
Φn

) = Bℓ1 [wn, ρ]. The sequence Bℓ1 [wn, ρ] has been very useful in building sparsity-aware

online learning methods in [35,51,52]. There, the metric projection mapping PBℓ1
[wn,ρ] was employed, whose

computation scales to the order of O(L log2 L).

Following a different path than [35, 51, 52], the information carried by (Bℓ1 [wn, ρ])n∈N is viewed from an

alternative angle in this study: ∀n ∈ N, Bℓ1 [wn, ρ] is not just a closed convex set, onto which we project,

but it is also the set of minimizers of the non-smooth loss function Φn. In order to minimize the non-

smooth Φn, the subgradient information will be used. However, the employment of such an information is

not possible via [56, 62, 63], since the subgradient projection mapping (Definition 6) belongs to the class of

strongly attracting quasi-nonexpansive mappings, which is strictly larger than the class of strongly attracting

nonexpansive operators, utilized in [56].

The set Bℓ1 [wn, ρ] is a closed convex set, and its metric projection mapping is given as follows. To save

space, we give here a short description. For the full discussion, the interested reader can refer to [35].

Fact 24 (Metric projection mapping onto the weighted ℓ1-ball [35]). Given x ∈ R
L \Bℓ1 [wn, ρ], there exists

an l∗ ∈ 1, L, and a set of integers {lj}j∈l∗+1,L ⊂ l∗ + 1, L, such that the metric projection PBℓ1
[wn,ρ](x) is given

by a permutation on the components of the following vector
[

x1 −

∑l∗
i=1 wn,i|xi| − ρ
∑l∗

i=1w
2
n,i

sgn(x1)wn,1, . . . , xl∗ −

∑l∗
i=1 wn,i|xi| − ρ
∑l∗

i=1w
2
n,i

sgn(xl∗)wn,l∗ , 0, . . . , 0

]t

, (14)

where














|xj| >
∑l∗

i=1 wn,i|xi|−ρ
∑l∗

i=1 w
2
n,i

wn,j, ∀j ∈ 1, l∗,

|xj| ≤
∑lj

i=1 wn,i|xi|−ρ
∑lj

i=1 w
2
n,i

wn,j, ∀j ∈ l∗ + 1, L.

Without any loss of generality, we assume that PBℓ1
[wn,ρ](x) is given by (14) in the sequel.

Regarding Definition 23, consider the following assumptions.

Assumption 25.

1. The sequence of weight vectors (wn)n∈N is constructed such that ∀n ∈ N, ∀j ∈ 1, L, wn,j ∈ [ǫ̌, ǫ̂], for some

ǫ̌, ǫ̂ > 0.

2. Given the sequence of relaxed subgradient projection mappings (T
(νn)
Φn

)n∈N, with respect to the sequence

(Φn)n∈N in Definition 23, there exists ǫ′ ∈ (0, 1] such that ∀n ∈ N, νn ∈ [ǫ′, 2− ǫ′].

Lemma 26. The following properties hold true.

1. The subdifferentials of the loss functions (Φn)n∈N, defined in (13), are given in Table 1.

2. Let Assumption 25.1 hold true. Then, ∀x ∈ R
L, (Φ′

n(x))n∈N is bounded.

3. Let Assumption 25.1 hold true. Then, int(
⋂

n∈NBℓ1 [wn, ρ]) 6= ∅.

4. Let Assumptions 25.1 and 25.2 hold true. Then, the sequence of relaxed subgradient projection mappings

(T
(νn)
Φn

)n∈N satisfies Assumption 14.
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x ∂Φn(x)
∑n

j=1wn,j|xj | < ρ, {0}.

∑n
j=1wn,j|xj | > ρ, Jx = ∅,

{[

wn,1 sgn(x1)

...
wn,L sgn(xL)

]}

.

∑n
j=1wn,j|xj | > ρ, Jx 6= ∅,

conv {u1, . . . ,u2τ },

where the vectors uk, ∀k ∈ 1, 2τ , are given by

uk,j :=







wn,j sgn(xj), if j /∈ Jx,

±wn,j, if j ∈ Jx.

∑n
j=1wn,j|xj | = ρ, Jx = ∅, conv

{

0,

[

wn,1 sgn(x1)

...
wn,L sgn(xL)

]}

.

∑n
j=1wn,j|xj | = ρ, Jx 6= ∅, conv{0,u1, . . . ,u2τ }.

Table 1. Here, Jx := {j ∈ 1, L : xj = 0}, and τ stands for the cardinality of Jx, whenever

Jx 6= ∅. The conv symbol stands for the convex hull of a set.

Proof. 1. To save space, the calculation of the subdifferentials in Table 1 is omitted. These results can be

reproduced by using standard arguments of convex analysis, e.g., [45, Thm. 25.6].

2. Lemma 26.2 can be easily established by Assumption 25.1 and Table 1.

3. Choose any x ∈ B(0, ρ
Lǫ̂). Then, ∀j ∈ 1, L, |xj | ≤

ρ
Lǫ̂ . Moreover,

∑L
j=1wn,j|xj| ≤

∑L
j=1 ǫ̂

ρ
Lǫ̂ = ρ. Hence,

B(0, ρ
Lǫ̂) ⊂ Bℓ1 [wn, ρ], ∀n ∈ N. This clearly suggests that 0 ∈ int(

⋂

n∈NBℓ1 [wn, ρ]), which establishes

Lemma 26.3.

4. First, notice that ∀n ∈ N, Fix(T
(νn)
Φn

) = Bℓ1 [wn, ρ]. Now, according to Assumption 14, fix arbitrarily a

subsequence N ∈ N
#
∞, a sequence (xn)n∈N ⊂ R

L, and a γ > 0 such that ∀n ∈ N , d(xn, Bℓ1 [wn, ρ])) ≥ γ.

Notice by Fact 24 the following: ∀n ∈ N ,

γ2 ≤ d2(xn, Bℓ1 [wn, ρ]) =
∥

∥

∥
xn − PBℓ1

[wn,ρ](xn)
∥

∥

∥

2

=

l∗
∑

j=1

(

∑l∗
i=1 wn,i|xn,i| − ρ

)2

(

∑l∗
i=1w

2
n,i

)2 w2
n,j +

L
∑

j=l∗+1

x2n,j

≤
l∗
∑

j=1

(

∑l∗
i=1 wn,i|xn,i| − ρ

)2

(

∑l∗
i=1w

2
n,i

)2 w2
n,j +

L
∑

j=l∗+1

(

∑lj
i=1 wn,i|xn,i| − ρ

)2

(

∑lj
i=1w

2
n,i

)2 w2
n,j

≤

(

∑L
i=1wn,i|xn,i| − ρ

)2

(

∑l∗
i=1 w

2
n,i

)2

L
∑

j=1

w2
n,j,

which, in turn, results into

Φ2
n(xn) =

(

L
∑

i=1

wn,i|xn,i| − ρ

)2

≥ γ2

(

∑l∗
i=1w

2
n,i

)2

∑L
j=1w

2
n,j

≥ γ2
ǫ̌4

Lǫ̂2
=: δ′2 > 0, ∀n ∈ N.
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Notice, also, by Example 6 and Lemma 26.2 that ∀n ∈ N ,

∥

∥

∥
(I − T

(νn)
Φn

)(xn)
∥

∥

∥
= νn

Φn(xn)

‖Φ′
n(xn)‖

≥ ǫ̌
δ′

D
> 0,

which clearly suggests that ∃δ > 0 such that lim infn∈N

∥

∥

∥
(I − T

(νn)
Φn

)(xn)
∥

∥

∥
≥ δ. This establishes Lemma 26.4.

�

4.2. Exploring (Θn)n∈N. In this section, the metric distance function to closed convex sets will be used in

order to define a sequence of loss functions (Θn)n∈N. Such sequences have already found numerous applications

in online signal processing and machine learning tasks [53, 54, 58, 66, 67], under the light, however, of the

predecessors [56, 62, 63] of the present framework. In this section, this specific sequence (Θn)n∈N will be

blended with the more general class of strongly attracting quasi-nonexpansive mappings in order to construct

Algorithm 29. Given the wide applicability of the techniques in [56,62,63], it is natural to anticipate an even

larger span of usage for Algorithm 29. Such a potential will be demonstrated in Section 5, where Algorithm 29

is applied to the online sparse system/signal recovery task.

Definition 27. Assume a sequence of nonempty closed convex sets (Sn)n∈N. Given a user-defined q ∈ N∗, let

the following index set

Jn := max{0, n − q + 1}, n, ∀n ∈ N.

Notice that the sequence (Jn)n∈N depicts a sliding window on the set N, of length at most q.

Let us introduce a sequence of convex functions (Θn : H → [0,∞))n∈N inductively. For every n ∈ N, and

given a un ∈ H, define the following active index set:

In := {i ∈ Jn : un /∈ Si}.

This set identifies those closed convex sets {Si}i∈In , out of {Sj}j∈Jn , which add on new “information” to our

learning process. The sets with indexes {j ∈ Jn : un ∈ Sj} will not be processed at the time instant n.

In the case where In 6= ∅, we introduce the set of weights {ω
(n)
i }i∈In ⊂ (0, 1], such that

∑

i∈In
ω
(n)
i = 1.

Define, now, the convex function:

∀x ∈ H, Θn(x) :=







∑

i∈In

ω
(n)
i d(un,Si)

Ln
d(x, Si), if In 6= ∅,

0, if In = ∅,
(15)

where Ln :=
∑

i∈In
ω
(n)
i d(un, Si). We define Ln := 0 for all those n ∈ N such that In = ∅.

Lemma 28. The following properties hold true for the sequence of functions (Θn)n∈N given in (15).

1. For every n ∈ N, such that In 6= ∅, we have Ln > 0.

2. For every n ∈ N, lev≤0 Θn =
⋂

i∈In
Si, where we define

⋂

i∈∅ Si := H, to cover also the case where In = ∅.

3. The collection of all the subgradients of (Θn)n∈N is bounded, i.e., ∀n ∈ N, ∀x ∈ H, ‖Θ′
n(x)‖ ≤ 1.

4. For any n ∈ N,

Θ′
n(un) =







1
Ln

∑

i∈In
ω
(n)
i (un − PSi

(un)), In 6= ∅,

0, In = ∅.

Proof. 1. Fix arbitrarily an n ∈ N such that In 6= ∅. By the definition of In, ∀i ∈ In, d(un, Si) > 0. Since,

also, ω
(n)
i ∈ (0, 1], ∀i ∈ In, it is clear by the definition of Ln that Lemma 28.1 holds true.
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2. Fix arbitrarily an n ∈ N. Assume, first, that In = ∅. By (15), it is clear that lev≤0 Θn = H =:
⋂

i∈∅ Si.

Assume, now, that In 6= ∅, and that
⋂

i∈In
Si 6= ∅. It is clear by (15) that

⋂

i∈In
Si ⊂ lev≤0 Θn. Assume,

now, an x /∈
⋂

i∈In
Si, or equivalently, ∃i0 ∈ In such that d(x, Si0) > 0. Then, one can easily verify that

Θn(x) ≥
ω
(n)
i0

d(un,Si0
)

Ln
d(x, Si0) > 0. In other words, x /∈ lev≤0 Θn, and finally lev≤0 Θn ⊂

⋂

i∈In
Si. Notice

that the previous arguments hold true also in the case where
⋂

i∈In
Si = ∅. This establishes Lemma 28.2.

3. Fix arbitrarily an n ∈ N. By (15), basic calculus on subdifferentials [29,46] suggests that

∀x ∈ H, ∂Θn(x) =







∑

i∈In

ω
(n)
i d(un,Si)

Ln
∂d(x, Si), if In 6= ∅,

{0}, if In = ∅.

From now and on, we deal only with the case where In 6= ∅, since the previous equation clearly suggests

that Lemma 28.3 holds trivially in the case of In = ∅.

By Example 3, the subgradient Θ′
n(x) takes the following form:

∀x ∈ H, Θ′
n(x) =

∑

i∈In: x/∈Si

ω
(n)
i d(un, Si)

Ln
d′(x, Si) +

∑

i∈In: x∈Si

ω
(n)
i d(un, Si)

Ln
d′(x, Si)

=
∑

i∈In: x/∈Si

ω
(n)
i d(un, Si)

Ln

x− PSi
(x)

d(x, Si)
+

∑

i∈In: x∈Si

ω
(n)
i d(un, Si)

Ln
d′(x, Si). (16)

Hence,

∀x ∈ H,
∥

∥Θ′
n(x)

∥

∥ ≤
∑

i∈In: x/∈Si

ω
(n)
i d(un, Si)

Ln

‖x− PSi
(x)‖

d(x, Si)
+

∑

i∈In: x∈Si

ω
(n)
i d(un, Si)

Ln
· 1

=
∑

i∈In: x/∈Si

ω
(n)
i d(un, Si)

Ln
+

∑

i∈In: x∈Si

ω
(n)
i d(un, Si)

Ln
= 1.

This establishes Lemma 28.3.

4. Lemma 28.4 is an immediate consequence of (16). �

Algorithm 29. Assume a sequence of nonempty closed convex sets (Sn)n∈N ⊂ H. Moreover, consider a

sequence of convex continuous functions (Φn : H → R)n∈N, such that lev≤0 Φn 6= ∅, ∀n ∈ N. Associated to

each Φn is the relaxed subgradient projection mapping T
(νn)
Φn

(see Definition 6), where νn ∈ (0, 2), ∀n ∈ N.

For an arbitrarily chosen u0 ∈ H, form the following sequence:

∀n ∈ N, un+1 :=







T
(νn)
Φn

(

un − λn
Θn(un)

‖Θ′
n(un)‖

2Θ
′
n(un)

)

, if Θ′
n(un) 6= 0,

T
(νn)
Φn

(un), if Θ′
n(un) = 0,

where the sequence of functions (Θn)n∈N is given in Definition 27, Θ′
n(un) is any subgradient of Θn at un, and

λn ∈ (0, 2), ∀n ∈ N.

Lemma 28.4 and some elementary algebra lead to the following equivalent formulation of the previous

recursion:

∀n ∈ N, un+1 = T
(νn)
Φn

(

un + µn

(

∑

i∈In

ω
(n)
i PSi

(un)− un

))

, (17)
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where µn := λnMn, and

Mn :=











∑

i∈In
ω
(n)
i d2(un,Si)

∥

∥

∥

∑

i∈In
ω
(n)
i (un−PSi

(un))
∥

∥

∥

2 , if
∑

i∈In
ω
(n)
i (un − PSi

(un)) 6= 0,

1, otherwise.

(18)

To avoid any ambiguity in the case where In = ∅, we define in (17) and (18):
∑

i∈∅ ω
(n)
i (PSi

(un) − un) :=
∑

i∈∅ ω
(n)
i PSi

(un)− un := 0. Notice also by the convexity of ‖·‖2 that Mn ≥ 1, and that since λn ∈ (0, 2), we

obtain µn ∈ (0, 2Mn), i.e., the extrapolation parameter µn is able to take values greater than or equal to 2,

∀n ∈ N.

It is needless to say that the results presented in Theorem 18 hold true also for Algorithm 29. Nevertheless,

one can establish additional properties for Algorithm 29, based on the following assumptions.

Assumption 30. Regarding Definition 27 and Algorithm 29, assume the following.

1. Let ω̌ := inf{ω
(n)
i : i ∈ In 6= ∅, n ∈ N} > 0.

2. The sequences (Φ′
n(un))n∈N and (Φ′

n(T
(λn)
Θn

(un)))n∈N are bounded, i.e., there exists a D > 0 such that

∀n ∈ N, max
{

‖Φ′
n(un)‖ ,

∥

∥

∥
Φ′
n(T

(λn)
Θn

(un))
∥

∥

∥

}

≤ D.

3. ∀n ∈ N, Φn : H → [0,∞). See, for example, Definition 23.

Theorem 31. The following statements are valid for Algorithm 29.

1. Let Assumption 17.2 hold true. Then, there exists a D > 0 such that ∀n ∈ N, Ln ≤ D.

2. Let Assumptions 17.2, 17.3, and 30.1 hold true. Then, limn→∞max{d(un, Sj) : j ∈ Jn} = 0.

3. If Assumptions 17.2, 17.3, 17.9, and 30.1 hold true, then S((un)n∈N) ⊂ lim supn→∞ Sn. Moreover, if there

exists a u∗ ∈ H such that limn→∞ un = u∗, i.e., S((un)n∈N) = {u∗}, then u∗ ∈ lim infn→∞ Sn.

4. Let Assumptions 17.2, 17.3, 25.2, and 30.2 hold true. Then, lim supn→∞Φn(un) ≤ 0. If, in addition,

Assumption 30.3 holds true, then limn→∞Φn(un) = 0.

5. The following result applies to the next section where a system/signal recovery task is considered. Assume

Algorithm 29 for the case where H := R
L, L ∈ N∗, equipped with the standard vector inner product.

Assume, also, that the sequence of functions (Φn)n∈N is given by Definition 23. Let Assumptions 17.2,

17.3, 25.1 and 25.2 hold true. Then, S((un)n∈N) ⊂ lim supn→∞Bℓ1 [wn, ρ]. If there exists a u∗ such that

limn→∞un = u∗, then u∗ ∈ lim infn→∞Bℓ1 [wn, ρ].

Proof. 1. Notice, that ∀n ∈ N , ∀i ∈ In, ∀v ∈ Ω,

d(un, Si) = ‖un − PSi
(un)‖ ≤ ‖un − v‖+ ‖v − PSi

(un)‖ ≤ 2 ‖un − v‖ ≤ 2 ‖un0 − v‖ ,

where n0 := minN , the second inequality follows from Example 7, and the third one from (7). Now, by

the definition of Ln, ∀n ∈ N ,

Ln =
∑

i∈In

ω
(n)
i d(un, Si) ≤ 2

∑

i∈In

ω
(n)
i ‖un0 − v‖ = 2 ‖un0 − v‖ .

Choose, now, any D > max{2 ‖un0 − v‖ , L0, . . . , Ln0−1}, and notice that for such a D the claim holds true.

2. Recall, here, by Definition 27, that if un is such that In = ∅, then d(un, Sj) = 0, ∀j ∈ Jn. Obviously, this

is equivalent to max{d(un, Sj) : j ∈ Jn} = 0.
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Hence, we deal only with the case of In 6= ∅. For this case, we observe by (15) that

Θn(un) =
∑

i∈In

ω
(n)
i d2(un, Si)

Ln
≥
∑

i∈In

ω
(n)
i d2(un, Si)

D

≥
ω̌

D

∑

i∈In

d2(un, Si) ≥
ω̌

D
max{d2(un, Si) : i ∈ In}, (19)

where the existence of D > 0 is guaranteed by Theorem 31.1.

In order to establish Theorem 18.6, i.e., limn→∞Θn(un) = 0, we have used Assumption 17.4, which

imposes a bound on the sequence of subgradients (Θ′
n(un))n∈N. However, for the case at hand, Lemma 28.3

clearly suggests that boundedness holds true by default, that Assumption 17.4 is not necessary here, and

that Assumptions 17.2, 17.3 are sufficient for establishing limn→∞Θn(un) = 0. Having this result hold

true, apply limn→∞ on both sides of (19) to obtain limn→∞max{d(un, Si) : i ∈ In} = 0.

Recall, now, by the definition of In, in Definition 27, that ∀j ∈ Jn \ In, un ∈ Sj ⇔ d(un, Sj) = 0. This

clearly implies that max{d(un, Si) : i ∈ In} = max{d(un, Sj) : j ∈ Jn}. This equality and the previously

obtained result limn→∞max{d(un, Si) : i ∈ In} = 0 establish Theorem 31.2.

3. We have already seen in Theorem 31.2 that limn→∞max{d(un, Sj) : j ∈ Jn} = 0. Since, by definition,

n ∈ Jn, ∀n ∈ N, the previous result implies that limn→∞ d(un, Sn) = limn→∞ ‖(I − PSn)(un)‖ = 0. Having

these in mind, Theorem 31.3 becomes a direct consequence of Theorem 15 and Example 16.

4. Here, we will utilize Theorems 18.5 and 18.8. To this end, notice that regarding the sequence of mappings

(T
(νn)
Φn

)n∈N, Assumption 17.5 is satisfied here; indeed, notice that ∀n ∈ N, ǫ′

2 ≤ 2−νn
νn

≤ 2
ǫ′ .

Now, Definition 2 suggests that ∀n ∈ N,
〈

T
(λn)
Θn

(un)− un,Φ
′
n(un)

〉

+ Φn(un) ≤ Φn(T
(λn)
Θn

(un)). Notice

that for all those n ∈ N such that Φ′
n(T

(λn)
Θn

(un)) 6= 0, we have

Φn(un) ≤ Φn(T
(λn)
Θn

(un)) +
〈

un − T
(λn)
Θn

(un),Φ
′
n(un)

〉

≤

∥

∥

∥
Φ′
n(T

(λn)
Θn

(un))
∥

∥

∥

νn
νn

|Φn(T
(λn)
Θn

(un))|
∥

∥

∥
Φ′
n(T

(λn)
Θn

(un))
∥

∥

∥

+
∥

∥

∥
un − T

(λn)
Θn

(un)
∥

∥

∥

∥

∥Φ′
n(un)

∥

∥

≤
D

ǫ′

∥

∥

∥
(I − T

(νn)
Φn

)(T
(λn)
Θn

(un))
∥

∥

∥
+D

∥

∥

∥
un − T

(λn)
Θn

(un)
∥

∥

∥
.

For all those n ∈ N where Φ′
n(T

(λn)
Θn

(un)) = 0, we have by Definition 2 that T
(λn)
Θn

(un) ∈ argminv∈H Φn(v),

and since lev≤0 Φn 6= ∅, we obtain Φn(T
(λn)
Θn

(un)) ≤ 0. Therefore, by similar steps as previously, we obtain

the following inequality for such n ∈ N: Φn(un) ≤ D
∥

∥

∥
un − T

(λn)
Θn

(un)
∥

∥

∥
.

If we apply lim supn→∞ on both sides of the previous inequalities, and if we recall Theorems 18.5 and

18.8, then we obtain lim supn→∞Φn(un) ≤ 0. Notice that in the case where Φn : H → [0,∞), ∀n ∈ N, then

the previous analysis leads to limn→∞Φn(un) = 0. This establishes Theorem 31.4.

5. First, notice that since we work in the Euclidean space R
L, S((un)n∈N) = W((un)n∈N). Hence, the fact

S((un)n∈N) 6= ∅ is guaranteed by Theorem 18.4. Now, it can be verified that Theorem 31.5 is a direct

consequence of Theorems 18.4, 18.9, and Lemma 26.4. �

5. Application: Online Sparsity-Aware System/Signal Recovery

The present section will demonstrate the potential of the previously introduced algorithms by devising a

time-adaptive method for the important, nowadays, sparse system/signal recovery task. In particular, we will
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use Algorithm 29 to derive a low-complexity and similarly effective variant of the technique introduced in

[35,50].

Sparsity is the key characteristic of systems or signals whose representation, by means of some basis in

some domain, consists of only a few nonzero coefficients, while the majority of them retain values of negligible

size. The exploitation of sparsity has been attracting recently an interest of exponential growth under the

Compressive Sensing or Sampling (CS) framework [12, 15, 28]. In principle, CS allows the estimation of

sparse signals and systems using fewer measurements than those previously thought to be necessary. More

importantly, recovery is realized by mobilizing efficient constrained minimization schemes. Indeed, it has been

shown that sparsity is favored by ℓ1 constrained solutions [15,16,25,26].

Recall, here, that given two integers j1 ≤ j2, the notation j1, j2 stands for the set {j1, j1+1, . . . , j2}. Assume

a vector x∗ := [x∗,1, . . . , x∗,L]
t in the Euclidean space R

L, L ∈ N∗, where the superscript t stands for vector

transposition. If the support of x∗ is defined as supp(x∗) := {i ∈ 1, L : x∗,i 6= 0}, and the ℓ0 norm of x∗ is

defined as the cardinality of its support, i.e., ‖x∗‖ℓ0 := # supp(x∗), by the term “sparse” x∗, we refer to the

case where ‖x∗‖ℓ0 is considerably smaller than L.

The majority of CS techniques deal with the problem of estimating a sparse system x∗, based on a number

K(< L) of measurements (dn)
K−1
n=0 ⊂ R that are generated by the following linear regression model (see (1)):

dn = a
t
nx∗ + ζn, ∀n ∈ N. (20)

Here, (an)n∈N ⊂ R
L are the input vectors, which excite the unknown x∗, and (ζn)n∈N is a real-valued discrete-

time stochastic process which stands for the contaminating additive noise.

A well-known batch method for estimating the sparse x∗, based on a limited numberK < L of measurements,

is provided by the Least-Absolute Shrinkage and Selection Operator (LASSO) [31,59]:

min{‖Ax− d‖2 : ‖x‖ℓ1 ≤ ‖x∗‖ℓ1 ,x ∈ R
L},

where ‖·‖ stands for the classical Euclidean norm of a vector, ‖·‖ℓ1 for the ℓ1 norm, i.e., ‖x‖ℓ1 :=
∑L

j=1 |xj |,

∀x := [x1, . . . , xL]
t ∈ R

L, d := [d0, . . . , dK−1]
t ∈ R

K , and A ∈ R
K×L is the matrix whose rows are (at

n)
K−1
n=0 .

We stress here that the term “batch” method means that the data (an, dn)
K−1
n=0 have to be available prior to

the application of LASSO.

With only a few recent exceptions, i.e., [2,19,35,40,50], the majority of the proposed, so far, CS techniques

are appropriate for batch mode operation [13–16, 25, 26]. In other words, one has to wait until a fixed and

predefined number K of training data {an, dn}
K−1
n=0 is available prior to application of CS processing methods,

e.g., LASSO, in order to recover the corresponding signal/system estimate. Dynamic online operation for

updating and improving estimates, as new measurements become available, is not feasible by batch processing

methods. The development of efficient, time-adaptive, sparsity-aware techniques is of great importance in

engineering, especially in cases where the signal or system under consideration is time-varying and/or the

available storage resources are limited.

Moving along the path introduced in [2, 19, 35, 40, 50], the present section will deal with the case where

x∗ is not only sparse but it is also allowed to be time-varying. For this reason, the number K of available

data is allowed to take values towards ∞. In this sense, the studies [2, 19, 35, 40, 50] operate in a framework

that is different than the standard CS scenario. The major objective is no longer only the estimation of the

sparse signal or system, based on a limited number of measurements. Letting K → ∞ in the design, the

additional task is the capability of the estimator to track possible variations of the unknown sparse system.

Moreover, this has to take place at an affordable computational complexity, as required by most real time

applications, where time-adaptive estimation is of interest. Consequently, the batch sparsity-aware techniques
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developed under the CS framework, e.g., LASSO or one of its variants, become unsuitable under time-varying

scenarios. The focus, now, becomes the development of a framework that 1) exploits sparsity, 2) exhibits

fast convergence to error floors that are as close as possible to those obtained by their batch counterparts, 3)

offers good tracking performance, and 4) has low computational demands in order to meet the stringent time

constraints that are imposed by most real time operation scenarios. Such a framework was demonstrated in

[35,36,40,50–52]. Here, we focus on [35,50]. Motivated by the previously presented Algorithm 29, we devise

a variant of [35,50], which shows similar performance to [35,50], albeit its lower computational requirements.

The information at our disposal is the sequence of training data (an, dn)n∈N, the a-priori knowledge that

the unknown x∗ in (20) is sparse, as well as an estimate of the cardinality of the support of x∗, i.e., ‖x∗‖ℓ0 .

In the sequel, we will demonstrate a way to incorporate the a-priori knowledge of the estimate of ‖x∗‖ℓ0 in

the design as a series of closed convex sets.

In the spirit of Algorithm 29, we begin by introducing a sequence of closed convex sets (Sn)n∈N, which

associate to the available training data (an, dn)n∈N, and quantify the deviation from the adopted model of

(20) by the introduction of a user-defined tolerance ξ ≥ 0.

Definition 32 (Closed hyperslab). Given the online training data (an, dn)n∈N ⊂ R
L × R, and a user-defined

ξ > 0, we define the following sequence of closed convex sets, called closed hyperslabs:

∀n ∈ N, Sn := {x ∈ R
L : |dn − a

t
nx| ≤ ξ}.

The metric projection mapping PSn can be analytically computed [54, 58], it breaks down to the metric

projection onto a hyperplane, and its computational complexity scales linearly to the number of unknowns L.

In this section we mobilize Algorithm 29, where (Sn)n∈N becomes the sequence of closed hyperslabs of

Definition 32, and (Φn)n∈N is the sequence of sparsity-aware functions introduced in Definition 23. The

Algorithm 29, with the metric projection mapping PBℓ1
[wn,ρ] used instead of T

(νn)
Φn

, was introduced in [35,50].

The necessary complexity in order to compute the PBℓ1
[wn,ρ] is of order O(L log2 L), needed for a sorting

operation, and O(L) multiplications and additions [35,50]. In the present study, due to the utilization of the

relaxed subgradient projection mapping T
(νn)
Φn

in Algorithm 29, together with the simplicity of the subgradients

of Φn, seen in Table 1, we are able to cut down the computational complexity of the algorithm to O(L)

operations. As it will be made clear by the subsequent numerical experiments, the Algorithm 29 results into

a similar performance to its predecessor [35,50].

The reason for introducing a series of weighted ℓ1-balls Bℓ1 [wn, ρ], instead of the standard unweighted one

Bℓ1 [1, ρ], is that 1) we have observed that the weighted ℓ1-balls, introduced in Definition 23, offer enhanced

convergence speed, as also demonstrated in [16, 25] in a different context, and 2) the weighted balls help us

easily incorporate the a-priori knowledge of the cardinality of the support of x∗, i.e., ‖x∗‖ℓ0 , in the radius ρ,

as the following lemma suggests.

Lemma 33. Assume that the sequence (un)n∈N, generated by Algorithm 29, converges to the desirable x∗.

Then, there exists an N ∈ N∞ such that ∀ρ ≥ ‖x∗‖ℓ0 , ∀n ∈ N , un ∈ Bℓ1 [wn, ρ].

Proof. By definition,
∑L

i=1 wn,i|un,i| =
∑L

i=1
|un,i|

|un,i|+ǫ̌ , ∀n ∈ N. Since limn→∞un = x∗,

lim sup
n→∞

L
∑

i=1

wn,i|un,i| = lim sup
n→∞

L
∑

i=1

|un,i|

|un,i|+ ǫ̌
= lim

n→∞

L
∑

i=1

|un,i|

|un,i|+ ǫ̌

=
∑

i∈supp(x∗)

|x∗,i|

|x∗,i|+ ǫ̌
+

∑

i/∈supp(x∗)

|x∗,i|

|x∗,i|+ ǫ̌
<

∑

i∈supp(x∗)

|x∗,i|

|x∗,i|
= ‖x∗‖ℓ0 .
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The previous strict inequality and the definition of lim sup suggest that there exists an N ∈ N∞ such that ∀n ∈

N we have
∑L

i=1 wn,i|un,i| ≤ ‖x∗‖ℓ0 . In other words, we obtain that ∀n ∈ N , ∀ρ ≥ ‖x∗‖ℓ0 , un ∈ Bℓ1 [wn, ρ].

This establishes Lemma 33. �

In other words, Lemma 33 suggests that in order to have the sequence (un)n∈N converge to x∗, a necessary

condition is to set the radius ρ, in the weighted balls (Bℓ1 [wn, ρ])n∈N, to a value that over-estimates ‖x∗‖ℓ0 .

This strategy will be followed in the subsequent numerical examples.

5.1. Numerical examples. In this section, the performance of the proposed algorithm is evaluated for both

time-invariant and time-varying systems. To save space, only a couple of scenarios are considered. For extensive

experiments on the behavior of similar in spirit algorithms, the interested reader is referred to [35,36].

The proposed methodology is compared to a couple of recent time-adaptive methods [2,19] which belong to

the same algorithmic family; the cost function to be minimized is the sum of a quadratic loss, accounting for

the regression model, together with an ℓ1-norm regularization term, in order to infuse sparsity into the design.

The method RZ-LMS [19] is built upon the classical Least Mean Squares (LMS) algorithm, and employs re-

weighting for the regularization term. Its computational complexity scales linearly with respect to the system

unknowns, i.e., it is of order O(L). Re-weighting of the ℓ1-norm is also utilized in OCCD-TNWL [2], where

the quadratic regression term follows the strategy in the celebrated Recursive Least Squares (RLS) method,

scoring an overall computational complexity of order O(4L2).

Moreover, we mobilized batch methods for solving the classical LASSO [9,10,59], as well as its re-weighted

variant [68]. In other words, for every batch method, each point in the respective curves is the outcome of a

sub-process which takes into account all the available data available till the current time instant. It is clear

that such an operation is infeasible in real-time implementations. Nevertheless, these performances will serve

as benchmarks for the ℓ1-norm regularized least squares solvers.

Fig. 1 refers to the case of a time-invariant system x∗, whose length is L = 100 and only a number of 5

coefficients, placed in arbitrary positions, are nonzero, i.e., ‖x∗‖ℓ0 = 5. The values of the nonzero coefficients

were drawn from a Gaussian distribution of zero mean and variance equal to one. The input signal (an)n∈Z

is defined as a discrete-time Gaussian process of zero mean and variance equal to 1. The vectors (an)n∈N, in

(20), are formed as follows: ∀n ∈ N, an := [an, an−1, . . . , an−L+1]
t. The noise process (ζn)n∈N is Gaussian with

zero mean and variance equal to σ2
n := 0.1.

In Fig. 1, the tag “Proposed” refers to Algorithm 29. The curve “Proposed with exact projection mapping”

refers to Algorithm 29, but with PBℓ1
[wn,ρ] in the place of T

(νn)
Φn

, ∀n ∈ N. This realization was introduced

in [35, 50]. For both “Proposed” and “Proposed with exact projection mapping”, q was set equal to 25,

ω
(n)
i := 1/#In, ∀n ∈ N, in the cases where In 6= ∅, ρ := 6, ǫ̌ := 0.005, and ξ := 2σn.

All of the parameters for the methods “LASSO” [9, 10, 59], “Weighted LASSO” [68], “OCCD-TNWL” [2],

and “RZ-LMS” [19] were tuned for producing the best respective performance for the current setting. More

specifically, the forgetting factor for “OCCD-TNWL” [2], which is an inherent parameter in any RLS-like

scheme, was set equal to 1. Moreover, “RZ-LMS” [19] was tuned in such a way for producing the lowest

error floor for the iteration #450. Although different parameters for the “RZ-LMS” could result into faster

convergence speed, this could only be obtained at the expense of higher error floors.

Fig. 1 demonstrates that “Proposed” and “Proposed with exact projection mapping” lead to similar per-

formances. However, due to the mobilization of T
(νn)
Φn

in “Proposed”, the computational complexity drops

to O(qL), as opposed to O(qL + L logL) in “Proposed with exact projection mapping”, with O(L logL)

accounting for sorting operations which are necessary for the computation of the exact PBℓ1
[wn,ρ].
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Figure 1. Time-invariant sparse system x∗ ∈ R
100, with ‖x∗‖ℓ0 = 5. Here, the Mean Square

Deviation (MSD) is defined as the following function on the number of the training data;

MSD(n) := 1
R

∑R
r=1

∥

∥

∥
x∗ − u

(r)
n

∥

∥

∥

2
, ∀n ∈ N, where R is the total number of independent runs of

the experiment. Here, R := 300.

Fig. 2 refers to the case of a time-varying system. Both the number of nonzero elements of x∗ and the

values of the system’s coefficients are allowed to undergo sudden changes. This is a typical scenario used in

adaptive filtering in order to study the tracking performance of an algorithm in practice. The system used in

the experiments is of dimension 100. The system change is realized as follows: For the first 500 time instances,

the first 5 coefficients are set equal to 1. Then, at time instance 501 the #2 and #4 coefficients are set equal

to zero, and all the odd coefficients from #7 to #15 are set equal to 1. Note that the sparsity level changes

at time instance 501, and it becomes 8 instead of 5. The results are shown in Fig. 2 with the noise variance

being set equal to σ2
n := 0.1.

Notice also here the similarity in the performance of “Proposed” and “Proposed with exact projection

mapping”. Moreover, the “RZ-LMS” shows better tracking ability than “OCCD-TNWL”, with the forgetting

factor set equal to 0.999. In order to raise the tracking ability of the “OCCD-TNWL”, the method should be

able to easily “forget” the remote past and concentrate on recent variations of the system. This is achieved

by reducing the forgetting factor at the expense of an increased error floor. We chose the value of 0.96 for the

forgetting factor of the “OCCD-TNWL” in order to achieve similar error floor to the “Proposed” method, for

both the employed sparse systems.
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Figure 2. Tracking performance for a time-varying sparse system x∗ ∈ R
100. The sys-

tem x∗ changes suddenly at the #501 time instant. Here, as in Fig. 1, MSD(n) :=

1
R

∑R
r=1

∥

∥

∥
x∗ − u

(r)
n

∥

∥

∥

2
, ∀n ∈ N, where R is the total number of independent runs of the ex-

periment. Similarly to Fig. 1, R := 300.
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[5] H. H. Bauschke and J. M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Review, 38

(1996), pp. 367–426.

[6] H. H. Bauschke and P. L. Combettes, A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert

spaces, Mathematics of Operations Research, 26 (2001), pp. 248–264.

[7] , Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, 2011.

[8] H. H. Bauschke, P. L. Combettes, and S. Reich, The asymptotic behavior of the composition of two resolvents, Nonlinear

Analysis: Theory, Methods, and Applications, 60 (2005), pp. 283–301.

23



[9] E. van den Berg and M. P. Friedlander, SPGL1: A solver for large-scale sparse reconstruction, June 2007. Available in

http://www.cs.ubc.ca/labs/scl/spgl1.

[10] , Probing the pareto frontier for basis pursuit solutions, SIAM Journal on Scientific Computing, 31 (2008), pp. 890–912.

[11] P. Bouboulis, K. Slavakis, and S. Theodoridis, Adaptive kernel-based image denoising employing semi-parametric regu-

larization, IEEE Trans. Image Processing, 19 (2010), pp. 1465–1479.

[12] E. Candès, Compressive sampling, in Proceedings of Int. Congress of Mathematics, vol. 3, 2006, pp. 1433–1452.

[13] E. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete

frequency information, IEEE Trans. Inform. Theory, 52 (2006), pp. 489–509.

[14] E. Candès and T. Tao, Decoding by linear programming, IEEE Trans. Information Theory, 51 (2005), pp. 4203–4215.

[15] E. Candès and M. Wakin, An introduction to compressive sampling, IEEE Signal Processing Magazine, 25 (2008), pp. 21–30.

[16] E. Candès, M. Wakin, and S. Boyd, Enhancing sparsity by reweighted ℓ1 minimization, J. Fourier Anal. Appl., 14 (2008),

pp. 877–905.

[17] F. Cattivelli and A. H. Sayed, Modeling bird flight formations using diffusion adaptation, IEEE Trans. Signal Processing,

59 (2011), pp. 2038–2051.

[18] Y. Censor, T. Elfving, N. Kopf, and T. Bortfeld, The multiplesets split feasibility problem and its applications for

inverse problems, Inverse Problems, 21 (2005), pp. 2071–2084.

[19] Y. Chen, Y. Gu, and A. O. Hero, Sparse LMS for system identification, in Proceedings of the IEEE ICASSP, 2009,

pp. 3125–3128.

[20] S. Chouvardas, K. Slavakis, and S. Theodoridis, Adaptive robust distributed learning in diffusion sensor networks.

Accepted for publication in the IEEE Trans. Signal Processing, 2011.

[21] P. L. Combettes, The foundations of set theoretic estimation, Proceedings of IEEE, 81 (1993), pp. 182–208.

[22] P. L. Combettes and P. Bondon, Hard-constrained inconsistent signal feasibility problem, IEEE Trans. Signal Processing,

47 (1999), pp. 2460–2468.

[23] P. L. Combettes and J.-C. Pesquet, Proximal splitting methods in signal processing, in Fixed-Point Algorithms for Inverse

Problems in Science and Engineering, Springer-Verlag, 2011.

[24] P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul., 4

(2005), pp. 1168–1200.
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