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Abstract

TheP vsNP problem arose from the question of whether exhaustive béarecessary for problems
with short verifiable solutions. We do not know if even a stiglgorithmic improvement over exhaustive
search is universally possible for &lP problems, and to date no major consequences have beendderive
from the assumption that an improvement exists.

We show that there are natufdP andBPP problems for which minor algorithmic improvements
over the trivial deterministic simulation already entaiiver bounds such aNEXP ¢ P/poly and
LOGSPACE # NP. These results are especially interesting given that aimhprovementsavebeen
found for many other hard problems. Optimistically, one Imigope our results suggest a new path
to lower bounds; pessimistically, they show that carryingjthe seemingly modest program of finding
slightly better algorithms for all search problems may berely difficult (if not impossible).

We also prove unconditional superpolynomial time-spasgtdounds for improving on exhaustive
search: there is a problem verifiable witfn) length witnesses i®(n®) time (for somea and some
functionk(n) < n) that cannot be solved ib(n)“n®*+°() time andk(n)°n°(Y) spacefor everyc > 1.
While such problems can always be solved by exhaustivelséace(2*(™) n®) time andO(k(n) + n®)
space, we can provesaperpolynomidbwer bound in the parameti(n) when space usage is restricted.

*This work originated while the author was a member of theititst for Advanced Study in Princeton, New Jersey, supgdorte
by NSF Grant CCF-0832797 (Expeditions in Computing) and @&kt DMS-0835373 (Pseudorandomness). At IBM, the author
is supported by the Josef Raviv Memorial Fellowship.



1 Introduction

To what extent can we avoid exhaustive search for generictsgmoblems? This is one of the many
offshoots of theP versusNP problem and it is the central question addressed in the &eaot algorithms
for NP-hard problem. The general message of this research has been that thé driviaeration of all
possible solutionsanbe quantitatively improved upon for many problems (andrthember is increasing
every year). The broad success of this program leads onertdexdf all NP problems allow some modest
improvement over brute-force search. More precisely}let, y) be a verifier that runs on witnessgof
length || and takesOD(|z|?) time. The runtime of exhaustive search for a witnes®&!*°|z|?). Can
we always find a witness i6(2:%7°|z(?)? What about (2/#|°~1o8” |zl |;|100d)2> Can we approximate the
fraction of witnesses that” accepts in this time? ¥ uses onlys(n) space, can we find a witness in
O(2:91#1°|z|?) time andO(|z['°% + s(n)) space? These questions are the focus of the present paper.

Here we offer the first concrete evidence that the above mimprovements will be difficult to achieve
for some problems. We do not rule out the possibility of thiaserovements; rather, we show that they
would already imply superpolynomial lower bounds in comjiietheory. (Optimists might say we have
given a new approach to proving class separations.) We diaivthie task of finding improved algorithms is
connected naturally to the task of proving superpolynotaakr bounds. Regardless of one’s complexity-
theoretic worldview, our results show that one cannot siamgously believe that “superpolynomial lower
bounds are far beyond our current techniques” and “simptkstishould suffice for improved exponential
algorithms.@

1.1 Main Results
1.1.1 Improved Algorithms Imply Circuit Lower Bounds

Let CIrRcuIT SAT be the problem of finding a satisfying assignment to a 8aokircuit (over AND, OR,
NOT gates). The ®RculT SAT problem is often the firdiP-complete problem introduced in textbooks.
Due to its applications in hardware/software verification @utomated reasoning, the problem has been
extensively studied in many areas of computer science.h@ftih CNF satisfiability gets all the fanfare,
most formulas obtained in practice start as Boolean csquitlearly, for circuits withn input variables and
poly(n) gates, the problem can be solve@ih- poly(n) time on any robust model of computation, and it is
not known how to solve the problem even slightly faster tha

On a seemingly unrelated front, progress has been neargxigt@nt on proving superpolynomial circuit
lower bounds for over a decade. It is known that the expoaktitne version of Merlin-Arthur does not
have polynomial size circuits [BFT98], but it is not knownhto improve the lower bound to evéXPNP,
the class of problems solvable in exponential time wittN&woracle. Since it appears unlikely tHélP does
not have polynomial size circuits, this is indeed a frustpstate of affairs.

These two lines of research can be related to each otheriikiagtway:

In fact, in Godel's famous letter to Von Neumann, he posetisely this question:

“It would be interesting to know... in the case of finite comdtiorial problems, how stronglyp generalthe number
of steps vis-a-visiem blossen Probierdithe “bare trying” of solutions] can be reduced.” [Har89]

2This was Mihai Patrascu’s eloguent way of putting it.
3We use the polfn) notation to denoté(n°) factors for a fixed: > 0 independent of.



Theorem 1.1 Suppose there is a superpolynomial functi¢n) such thatCiIRCuIT SAT on circuits withn
variables andn* gates can be solved 2t - poly(n*)/s(n) time by a (co-non)deterministic algorithm, for
all k. ThenNEXP < P/poly.

That is, practically any nontrivial improvement over exsiite search for RCuIT SAT (or nontrivial
proofs of unsatisfiability) would already imply superpabynial circuit lower bounds for nondeterministic
exponential time. The best known deterministic algoritom@NF satisfiability takeg” 2/ n(m/7)) poly(m),
wherem is the number of clauses ands the number of variables [DHO8, CIE06]. For more complex ci
cuits, the current state of the art is a randomized SAT algorifor ACY circuits which runs jirpr—n' o
time on circuits withn! 7°(1) gates|[CIP09]. Both time bounds are noticeably smaller tharhypothesis of
Theoren LI} Of course this does not mean that the hypothesis can be adhieut it does seem possible
at the present time.

One intuitive way of viewing Theorein 1.1 is that, if we couldderstand the structure of circuits well
enough to solve their satisfiability problem faster, thaa tinderstanding could be translated into concrete
lower bounds for those circuits. We solidify this intuitiam two ways, by extending Theorem 1.1 to re-
stricted circuit classes, and by showing that even fastaru@iSatisfiability would lead to stronger lower
bounds.

For example, if satisfiability of Boolean formulas anvariables anch® connectives can be solved in
27 . poly(n©)/s(n), thenENP does not have (non-uniform) polynomial size formiiat. satisfiability of
ACP[6] circuits (constant depth circuits with AND, OR, NOT, and M&®Bates) om variables and:.© gates
can be solved i"/2 - poly(n°)/s(n), thenENP does not have polynomial si2eC°[6] circuits.

Interestingly, it does not take a much stronger assumptiget a nearly optimal circuit lower bound for
ENP. and consequentlgXPNP:

Theorem 1.2 If CIRcuIT SAT onn variables andn gates is inO (209" poly(m)) (co-non)deterministic
time for some > 0, then there is > 0 and a language ifEN that does not haves” size circuits.

That is, an algorithm for @culT SAT with running time comparable to the best known algorgHor
k-CNF SAT would entail strong circuit lower bouns.

One may be skeptical that these small improvements aregp@é$si Circuit Satisfiability. Similar results
can also be established for problems efficiently solvabll veindomness. Th€ircuit Acceptance Prob-
ability Problem(CAPP) is to approximate (withie-1/6) the fraction of satisfying assignments of a given
Boolean circuit om variables anch® gates for some [KC99,[KRCO00/ ForQ1, Bar02, IKW02]. CAPP can
be solved inO(n°) time with a randomized algorithm. It is known that CAPP is olymomial time if and
only if Promis8PP = P [For01], so the problem is “complete” in some sense. We shaw essentially
any nontrivial derandomization for CAPP implies superpolyial circuit lower bounds.

4ACP circuits have constant depth and are comprised of AND, ORT §&es, with unbounded fan-in for each gate.

®RecallEVF is the class of languages recognized by an algorithm runinir ) time that can query ahlP oracle (with
queries of2°(™ length). To the best of our knowledge, linear size circuitdo bounds are not known for this class. However an
n®~°M lower bound orformulasize follows from work of Hastad [Hasp8].

®This should be contrasted with the case of general CNF-SA&r@no algorithm of the kind required in Theorem 1.2 is known
Recent work with Patrascu indicates that the problem offfigguch a CNF-SAT algorithm is also closely related to otheblems
in theoretical computer science [PW10].



Theorem 1.3 If there is anO(2" - poly(n°)/s(n)) nondeterministic algorithm for CAPP (for any super-
polynomials(n)), thenNEXP ¢ P /poly.

(Here, anondeterministic approximation algorithfar CAPP always has at least one accepting compu-
tation, and always outputs a good approximation when itrerae accept state.) The proof of Theofeni 1.3
holds even if we replace CAPP with the problem of distingimghetween circuits which are unsatisfiable
and circuits with at least”~! satisfying assignments. We interpret Theofem 1.3 as salyatgircuit lower
bounds are much easier than derandomizatiany weak derandomization of CAPP would already yield a
circuit lower bound that is much stronger than anything weeantly know.

Theoreni 1B also implies interesting “amplification” resul

Theorem 1.4 If CAPP has a nondeterministiO(2" - poly(n)/s(n)) time algorithm that succeeds on all
inputs, then for alk > 0, CAPP has a nondeterministig(2"") time algorithm with»* advice that succeeds
on infinitely many inputs.

Theorem 1.5 If CAPP onn variables andmn gates has a nondeterministig(2(' =% - poly(m)) time al-
gorithm that succeeds on all inputs, then CAPP has a nonaétéstic polynomial time algorithm with
O(log n) advice that succeeds on infinitely many inputs.

The prospects seem better for achieving an improved CAPR®tiddgn. (Note we do not necessarily
have to build a pseudorandom generator to achieve the giondg For CNF formulas of length, Luby
and Velikovic [LV9€] have given a deterministic’¥'**"**™ algorithm for approximating the number of
solutions. Note it was already known tHeEXP # MA iff NEXP Z P/poly [IKWO02]. However it could
still have been the case thidEXP = MA and yet Circuit SAT and CAPP have slightly better algorithms
The above results show this conjunction is impossible.

1.1.2 Improved Algorithms Imply LOGSPACE # NP and Subexponential Algorithms

One strength of the above results is that there is no spattieties needed for the improved algorithms:
our hypotheses only require SAT algorithms runningi(2"/s(n)) time andO(2"/s(n)) space for suf-
ficiently larges(n). Next we show that if exhaustive search can be improved inyathat preserves the
verifier's space bound, then very surprising consequeressgtr

Here we shall study problems witimited nondeterminisinwhich only need short witnesses (e.g., of
poly(log n) length) although verification still takes polynomial tima.particular we look at the case where
the amount of nondeterminism lisgarithmicin n (“log-nondeterminism”), and hence exhaustive search is
already inpolynomial time This case is of interest as there are many polynomial timablems which fall
in this category, and for which researchers have tried tofaster algorithms than a canonical one. The
3SUM problem is a well-known example [GO95]; satisfiabilifiyexponential size circuits is anotffer.

It is natural to think that it may be easier to universally noye on log-nondeterminism problems. After
all, the search space is no longer exponential in the runtimg of the verifier — now they are both

In 3SUM, we are given a set of n numbers and wish to find three numbers that sum to zero. Thegunocan be easily
solved inO(n?), and it is a key bottleneck in the solution of many problemgénmetry and data structures. Finding@m'-*°)
algorithm is a major challenge. Note 3SUM (on pdtg n)-bit numbers) can be reduced taRCuUIT SAT with logn inputs
andO(n - poly(logn)) gates. The idea is to sost in increasing order, and on inpute [n] use two pointers (one starting at
the beginning ofA and one at the end) to sweepfor numbersa andb such that theth number plus: + b is zero. Thus any
improvement on exhaustive search for exponential ciraiisBability implies a 3SUM improvement.

3



polynomials inn. From this perspective it appears more likely that a clevenipng of the search space can
be done.

Consider a problem solvable with withessedagfn length, O(n¢) time, and polylog n) spac@ The
obvious deterministic simulation runs (n°*!) time and polylog n) space. We show that any universal
improvement in the runtime exponent can be amplified intarlitrary polynomialspeedup with nondeter-
ministic algorithms. Such a speedup would have dramatisemquences.

Theorem 1.6 Suppose for alt, d > 1 that every problenil solvable withlog n nondeterministic bitsp*
time, and(log n)¢ space can be solved by some deterministic algorithm(inc+-?%) time andpoly(log n)?
space. Then every suthcan also be solved by some nondeterministic algorith@ (in®) time.

Of course, the99 is not special, and can be substituted with any 1.

Corollary 1.1 The hypothesis of Theorém11.6 implig8GSPACE # NP; in fact, SC # NP, whereSC is
the class of problems solvable in (simultaneous) polynbtiniee and polylogarithmic space.

Corollary 1.2 The hypothesis of Theordm11.6 implies that the quantifiedeBodormula problem has a
proof system where every QBF of lengthas proofs 02" length for alle > 0.

That is, either the exponent in the trivial algorithm is apai for some constant, or we separate com-
plexity classes in a surprising way. Note if the trivial aligfom is optimal forc = 1, then SAT cannot be
solved in subquadratic time and polylog space, a probletrémaains open despite much effort.

Identifying an explicit natural problem in place of “everyoplem” in Theoreni 116 is nontrivial. (We
could always use a form of the “Bounded Halting Problem”, thig is undesirable.) The proof of Theo-
rem[1.6 uses a delicate inductive argument that makes ituliffio extend to lower bounds on a natural
problem.

1.1.3 Unconditional Lower Bounds

We want to understand the extent to which the exponentidlgba@xhaustive search (namely, the expo-
nential runtime in the witness length) can be reduced, witladfecting the runtime of verification. We can
prove unconditional lower bounds for improving on exhaugstearch in this manner, based on Thedrem 1.6
and its consequences. We first state a superpolynomial losterd in terms of the witness length. To our
knowledge no similar lower bounds have been reported.

Theorem 1.7 There is a problentl verifiable withk(n)-length witnesses i®(n*) time (for some constant
a and somék(n) < n) that cannot be solved ikh(n)°n® - poly(log n) time andk(n)¢ - (logn)¢ spacefor
all c.

Note if we could “only” change the “som¥n)” to “all k(n)” then we would separate from NP. The
theorem does rule out certain (daffy, but until now pos3isteategies for trying to showOGSPACE = NP.
For example, it is not possible to transform an arbitr@fy.*) time verifier with witnesses of lengthinto

8In place of polylog n) space, one may substitute any constructible funcfiGm) satisfyinglogn < f(n) < n°® for the
remaining results in this paper. We have chosen {ogyn) for concreteness.

°In fact, using the above footnote on 3SUM, one can show tt&&ifM on N numbers (expressible in pdlyg N) bits) cannot
be solved iND(N?~¢) for all ¢ > 0, then SAT cannot be solved d(n*~ ), for all ¢ > 0.
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anO(net°(M) time andO(poly(log n)) space verifier with witnesses of length'® log k. The proof uses
the framework of Theorein 1.6.

Extending this result to circuit satisfiability on generahtputational models is an interesting challenge.
We manage to show a related lower bound for@UIT SAT:

Theorem 1.8 For everye > 0, CIRCUIT SAT onk variables andn gates cannot be solved i —=m!+o(1)
time andm°(!) space.

This is already interesting, because we do not know how teeptioat SAT is not inO(n?~¢) time and
n°(!) space on general models (the case Wlhefem) It is known that SAT (and consequently|RCUIT
SAT) cannot be solved in less thah® time andn°™) space[[Wil08b]. It is also known (in a precise sense)
that current techniques will not allow us to extend this mbtmn? [Wil10]. This limitation seems related
to our inability to extend Theorem 1.8 to arbitrary polynaisiink.

1.1.4 A Nontrivial Simulation

In Appendix[B, we report a baby step towards improving braied search. We observe a nontrivial
deterministic simulation of nondeterministic multitapering machines, inspired by a nontrivial derandom-
ization of randomized multitape Turing machines of Van Mélkek and Santhanam [vMSO05].

Theorem 1.9 For every multitape Turing machin®/ running in timet that accesses a tape of nondeter-
ministic bits, there is @ > 0 and a deterministic TM that simulatég in O(2(1=9*) time.

A group led by Lipton|[Lip09a] has recently proved relateduies. Our simulation is not yet enough to
imply lower bounds, as the simulation runtime does not sedlethe amount of nondeterminism.

1.2 An Overview of Our Techniques

Our basic approach is simple: we assume the opposite of sieeddower bound (i.e., that we have
decent uniform algorithms and very good non-uniform ciiuiand construct an efficient simulation of the
hard class, so tight that any nontrivialRKeuIT SAT or CAPP algorithm contradicts a time hierarchy. This
idea can be traced back to the first papePgpoly, by Karp and Lipton[[KL80]. One of their corollaries
(credited to Meyer) is thd = NP impliesEXP ¢ P /poly. To prove this, one shows that @XP C P/poly
impliesEXP = 3sP, and (2)P = NP implies>sP = P. SinceP # EXP, it cannot be that both are true.
Our results can be seen as extreme sharpenings of this basit 1to get circuit lower bounds for classes
like NEXP, we may assumfar lessthanP = NP.

To illustrate, let us sketch the result that faster circatts§iability impliesNEXP circuit lower bounds.
It is known thatNEXP C P/poly implies a simulation oNTIME[2"] where weexistentiallyguess a poly-
nomial size circuit encoding a witness, then run an expaaletiine verifier [[KW0Z2]. We make the ob-
servation thaNEXP C P/poly implies thateveryverifier for anNEXP language has small circuits that
encode witnesses. Therefore we are free to construct aifievare need to get a contradiction. We choose
one that exploits efficient reductions froNP to SAT, translated up tdlEXP. Using a small witness cir-
cuit, we can replace the exponential time verifier with a lgingall to QrcuIT SAT onn + O(logn)
variables and polyn) gates. It follows that a® (2" - poly(n)/s(n)) algorithm for GRcuIT SAT implies

Heren is the total length of the input.



NTIME[2"] C NTIME[2" - poly(n)/s(n)], a contradiction. For the lower bound that follows from appr
imating the solutions to a circuit, we use the highly effitiBxP of Proximityverifiers of Ben-Sassoet
al. BGHSVOQE] in our GrRCUIT SAT instance.

In order to prove that stronger improved algorithms yietdrsgier consequences suchL&GSPACE #
NP, we use ideas from the existing time-space lower bounds Adt 8long with an inductive trick that
(assuming a universal speedup over exhaustive search)detpeatedly reduce any exponent in the time
bound of a complexity class until it becomes a fixed constaailing to superpolynomial lower bounds.
Further development of this trick produces unconditionaldr bounds for bounded nondeterminism.

2 Preliminaries

We assume the reader is familiar with basic concepts in cexitpland algorithms. In the following
paragraphs, we focus on a few particulars needed for thisrpap

2.1 Notation and Background

We define[n] := {1,...,n}. As usual, unless otherwise specified a function has dofNeamd co-
domainN, is assumed to be time (or space) constructible within tipeggiate bounds, and is monotone
nondecreasing. All logarithms are in base two. A circuit @Ban (with AND, OR, NOT gates), unless
indicated otherwise.

Computational Model and Complexity. In almost all our results one may assume any deterministic
computational model in whict(poly(log n)) bits of information may be processed in a single step. This
includes all flavors of Turing machines (including randoroess), random access machines with logarithmic
size registers, and so on. (The main reason for this is giedowh) We shall indicate clearly when this is
not the case.

Fix a finite alphabek. We usually assumg = {0,1}. NTIME[t(n)] (TIME[t(n)]) denote the classes
of languages recognized i@ (¢(n)) time by a nondeterministic (deterministic) algorithm, pestively.
TISP[t(n), s(n)] denotes those languages recognized by some algorithmuhstim bothO(¢(n)) time
andO(s(n)) space. RecalP = J,, TIME[n*] andNP = |J,., NTIME[r*]. Steve's Class (abbreviated

SC)islUk>1 DTISP[n*, (log n)*].

i.0. — C is the class of languagds C ¥~* such that there is a languagé € C whereLN¥" = L' N X"
holds for infinitely manyn.

(3 f(n))C is the class of languages which are recognized by machirtbgtve following behavior: first,
the machine nondeterministically guesgés) bits, then it runs a subroutine recognizing a language in
C. The clasqV f(n))C is defined similarly. For example, a language in the cl@s)TISP[n?,logn] is
recognized by some machine that on inpujuesses somje|-bit string y then runs a computation taking
O(|x|?) time andO(log |z|) space on the inputr, y). (We assume the machine has a tape alphabet large
enough to accommodate an efficient pairing function.)

We shall use the following translation lemmas, whose prémfew by standard “padding arguments.”.

Lemma 2.1 (Translation Lemma) For all constructiblef(n), t1(n), t2(n), ands(n),
If NTIME[t1(n)] C TISP[ta(n), s(n)] thenNTIME[t1(f(n))] C TISP[t2(f(n)), s(f(n))].
If TISP[ta(n), s(n)] € NTIME[t;(n)] thenTISP[t2(f(n)), s(f(n))] € NTIME[t;(f(n))].
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We say thatl is aunary languagdf L C {1}*. We use the following nondeterministic time hierarchy
theorem.

Theorem 2.1 ([Zak83]) Lett; andt, be time constructible functions such thatn+1) < o(t2(n)). There
is a unary language ilNTIME[t2(n)] that is not iNNTIME[t (n)].

Inspecting our proofs, one observes that we do not need thstifength of Theorerh 211 but merely
that there is a unary language NTIME[t;(n)log®¢1(n))] that isn't in NTIME[¢;(n)], for somec > 0.
This particular time hierarchy is model-independent beedbe clas8I TIME[n - poly(log n)] is very robust
with respect to the computational model. This is a familyesfults due to Gurevich and Shelah [GS89]. For
example, leNTIME g7/ [t(n)] be the languages recognized with nondeterminisii¢ time random-access
Turing machines, and I&TIME7,,[t(n)] denote the same class for multitape Turing machines.

Theorem 2.2 (Gurevich and Shelah [GS89]) J,.. o NTIMEgr[nlog® n] = ..o NTIMEra[n log® n].

The random-access Turing machine can be replaced by anyl mbaéich has programs ab(1) size
and processe®(poly(logn)) bits of information in a single step. Let us sketch the prdofleeoreni 2.2
under this generic requirement. The idea is that a multifdyean simulate ad/-computation running in
time O(n -poly(log n)) by guessing a computation history and verifying the comess of the history. More
precisely, the length of such a history(¥n - poly(logn)) bits: we useD(poly(logn)) bits for each step,
giving a “snapshot” which describes the timestep, bits sradiwritten, the memory locations of these bits,
and the state or program counter during that step. Theselsogpare guessed in temporal order: dine
snapshot corresponds to ttih step. In this ordering, a multitape TM can verify that,uamsig that all the
reads are correct, the program counter and writes are aictoA multitape TM can (ifO(n - poly(log n))
time) sort these snapshots spatial order as well, ordering the snapshots primarily by the indeihe
register/cell being read in that time step, and using thepteal order as a secondary key. In this ordering,
a multitape TM can verify that the reads are correct by varifithat the previous snapshetotethe same
information.

2.2 Related Work

Subexponential Complexity and Parameterized Complexity. A theory of (sub)exponential time com-
plexity for NP-hard problems has been developing. Much work has gonexttoding reducibility notions
to subexponential time algorithms (e.q., [IPO1, IPZ01, ;I0G07] CIPOE, Tra08]). The theory has found
interesting evidence for thexponential time hypothes{ETH) that3-SAT is not in2°(™) time, wherem is
the number of clauses. If ETH is false, then many other probleave subexponential algorithms as well.

In the field of parameterized complexity initiated by Dowrayd Fellows[[DF99], one studies paired
problems with an input and an additional numerical parametét is often convenient to define a param-
eterized problem when the computational problem of intdselsard, but only for certain inputs where the
difficulty can be measured by the parameter. For examplel. theGEST PATH problem isNP-complete,
but if one wants to find a longest path in a graph with treewédtimostk, there is 22°(*1°2¥)poly(n) algo-
rithm [EL89]. Parameterized complexity is closely relatedhe study of exact algorithms f&P (although
note that parameterized complexity can be used for othgroges as well, such as distinguishing between
the efficiencies of approximation schemes,|cf. [FGO06]). dlgbem isfixed-parameter tractabl@=PT) when
it has an algorithm withy (k)n¢ runtime for some functiorf and a universat.



If a problem does not seem to be FPT, one tries to find evidemdhi§, using reducibility notions similar
to NP-completeness. There is a hierarchy of problems, all tealigisolvable in polynomial time when the
parameterk is constant, which do not seem to be FPT. (In fact many hibreschave been proposed; cf.
the texts of Downey and Fellowis [DF99] and Flum and Grohe [Bj30 he most basic is thé/-hierarchy,
where the lowest level is the claB®T of problems which are FPT. The next lew#|1] already contains
problems which are not iRPT, assuming ETH. There is a rough analogy betweerhkierarchy and
the polynomial time hierarchy: in thé/-hierarchy, f (k) log n bits are guessed in each alternation (instead
of poly(n)), and the deterministic verifier only reads sorifig:) bits of the input. FPT equals the entire
W-hierarchy if and only if Circuit SAT (withn variables andn gates) is in‘Z”/s(”)pon(m) time for some
unboundeds(n) [ADF95]. (Note this runtime is faster than those in our hymstes.) Indeed, there is a
sense in which the aforementioned subexponential timeytieésomorphic to questions in parameterized
complexity [CGOT].

Limited Nondeterminism. Kintala and Fisher [KE77] initiated the study of classeshitnited nonde-
terminism. Buss and Goldsmith [BG93] and Bloch, Buss, anlti§oith [BBG98] considered classes with
only logarithmic nondeterminism, as we study here. A reldmat more refined model (the guess-and-check
model) was introduced by Cai and Chén [CC97]. Flum, Grohd, \&yer [FGWO0B] gave a framework
connecting limited nondeterminism with parameterized jglexity.

Better Algorithms And Better Lower Bounds. The idea that better algorithms can lead to better lower
bounds is a recurring theme in theoretical computer scidideee we cite a few examples which seem to be
most relevant to our work.

e Work of Francis Zane and his co-authors from the late 90’84 alternated between finding faster
SAT algorithms and proving new exponential lower boundsdepth-three circuits, both accom-
plished using new structure theorems for CNF formulas.

e Inthe DFA INTERSECTIONpProblem, one is giveik DFAs with at most: states each, and the task is
to decide if all DFAs accept a common string. Karakostastdripand Viglas[[KLV03] prove if DFA
INTERSECTIONIs solvable inn°*) time thenLOGSPACE # NP. However DFA NTERSECTION
is PSPACE-complete[[Koz77], while the problems we consider are eithé3PP or NP, and we do
not need to assume subexponential algorithms. Lipton lsasaalvocated this type of approach for
proving lower bounds in his popular bldg [Lip09b].

e Impagliazzo, Kabanets, and Wigderson [IKWO02] showed th@iPP is solvable in nondeterministic
97°Y time infinitely often, therNEXP ¢ P/poly. Kabanets and Impagliazzo [KI04] showed that a
nondeterministi”’"’ time algorithm forPolynomial Identity Testingmplies that eitheNEXP ¢
P/poly or the Permanent does not have arithmetic circuits tfrmanial size. Our results appear to
be incomparable: while identity testing looks easier thHangroblems we study (even CAPP), our
running time assumptions are much weaker and there is narfautr conclusion.

e Mike Fellows (personal communication) has observed thatsgparations between complexity classes
in parameterized complexity would follow from improvingh@ustive search. In particular, if there
is ann°®) time algorithm fork-Clique thenM[1] # XP, and if there is am°*) algorithm for k-
Dominating Set thewV[1] C M[2] # XP. (Very roughly speaking, theW[1] vs XP” and “M[1] vs
XP” problems are parameterized complexity versions of e ¥s EXP” problem: see [DF99, FG06]



for definitions.) These observations follow from theorentsol show that if the desired above al-
gorithms exist, then the respectilé-class is equal t6PT [CHKX06, [CCFHJKX06]; however it is
known thatFPT # XP [DE99].

If improved algorithms of the kind needed in this paper extstir discovery probably will not be hin-
dered by the known barriers in complexity theory (but peshapother unforseen one). In Appendix C we
briefly discuss this.

3 Improved Algorithms Imply Circuit Lower Bounds

We start by proving consequences of better€uiT SAT algorithms. The notion of “universal withess
circuits” shall be useful. A languagk has universal witness circuits if every correct verifier fohas
circuits that encode a witness accepted by the verifier, eryéaput in L.

Definition 3.1 Let L € NTIMEJt(n)]. A polynomial time algorithn¥” is a verifier for L if x € L <«
Fy =yl <tV (z,y) = 1.

Definition 3.2 A languageL € NTIME[t(n)] hasS(n)-size universal witness circuitsfor all polynomial
time verifiersV for L, there is ak and anO(S(n))-size Boolean circuit familyC,, } with the property:

x € L < V(z,w(x)) = 1, wherew(x) is the concatenation of the outputs@f((z, z)) evaluated
over all z € {0, 1}ee2t(")1+1 jn |exicographical order, and > n is an integer of appropriate length.

The universal witness property may look strong, but alN&XP has universal witness circuits of poly-
nomial size, in the case th&lEXP C P/poly. The key to this observation is that if a language dods no
have such circuits, thesomecorrect verifier foNEXP accepts witnesses thednnotbe encoded with small
circuits, infinitely often. This verifier can be used to tdsings for high circuit complexity, which is enough
to obtain pseudorandom generators, leading to a conti@alicthe following can be easily obtained from
Impagliazzo, Kabanets, and Wigdersbn [IKWO02]; we incluge@of for completeness in AppendiX A.

Lemma 3.1 (Follows from [IKWO02]) If NEXP C P/poly then every language iNEXP has universal
witness circuits of polynomial size.

We also need a strong completeness result for satisfiability

Theorem 3.1 (Tourlakis [Tou01], Fortnowet al. [ELVMVO5]) There is a fixed! such that for every.
NTIME[n], L reduces to 3SAT i®(n(log n)?) time. Moreover there is an algorithm (with random access
to its input) that, given an instance éfand an integeti € [cn(logn)?] in binary (for some: depending on
L), outputs theth clause of the resulting 3SAT formulad¥{(log n)¢) time.

The value ofi depends on the particular computational model chosen. Bstmodels one can takido
be small, e.gd = 4. Theoreni 3.1 holds under any computational model that aesag ta) (poly(logn))
bits per step. Most proofs of it essentially rely the fact thandeterministic Turing machines can simulate
most other nondeterministic models with polylog overhesslwell as the Hennie-Stearns two-tape simu-
lation of multitape Turing machines (cf. [ABD9], SectioryLwhich introduces another log overhead. The
Hennie-Stearns simulation can be converted (with constegrthead) into a circuii [PEY9], which can then
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be efficiently converted to 3-CNF using the Tseitin transfation [Tse68]. See Van Melkebeek ([vM07],
Lemma 2.2) for an alternative proof based on sorting netsioBy standard translation/padding arguments
(substituting2™ in place ofn in the above), the theorem can be scaled up to exponentialdounds:

Corollary 3.1 Every languagd. in NTIME[2"] can be reduced to 3SAT instances2f-n* size. Moreover
there is an algorithm that, given an instancelofand an integeri € [c2" - n*] in binary, outputs theth
clause of the resulting 3SAT formuladnn?) time.

We are now ready to prove the main result of this section: &getheorem relating the solvability of
CIRCUIT SAT to lower bounds on universal witness circuits REEXP.

Theorem 3.2 (Faster Circuit SAT Implies Circuit Lower Bounds) Letc > 1. Leta(n) be a monotone
increasing and unbounded function. L%t) and 7T (n) be functions such that

e T(n)/(S(n) +n®)° > Q(n* a(n)) and
e n<S(n) <0O(2"/n-1/a(n)).

SupposeCIRCUIT SAT onn variables andn gates can be solved i (2"m¢/T'(n)) co-nondeterministic
time. TherNTIME[2"] does not havé(n)-size universal witness circuits.

Proof. Suppos&TIME[2"] hasS(n) universal witness circuits. We show that a faster (co-netgninistic
algorithm for Circuit Satisfiability implies a contradioti to the nondeterministic time hierarchy.

Let L € NTIME[2"] be arbitrary. By Corollarf 3117, can be reduced to 3SAT instances:?f - n* size,
for somec. LetV (z,y) be a verifier forL that reduces: to a 3-CNF formulap,. of c2" - n? size, substitutes
theith bit of y for theith variable of¢g,., then returnd if and only if the resulting formula evaluates 1o

SinceL has universal witness circuits, it is the case that for:adl L, there is some of length at most
c2" - n* such that/ (z,y) = 1, andy can be encoded with §(|x|) size circuit. That is, for alk-, there is a
circuit C,, that takes inputs of length= log(c2!*l|z|*) and has size at mos(|z|), such that the witnesg
equals the concatenation 6f;(z) over allz € {0, 1}* in lexicographical order.

Consider the following nondeterministic algorithivi for L. On inputz, existentially guess the circuit
Cy, usingO(S(|z|)log S(|z])) < O(2™/a(n)) bits. Then construct a circuid with ¢ input variablesX,
as follows. Given an integer € [c2" - n?], the ith clause ofp, can be computed iD(n*) time (via
Corollary[3.1). By the standard translation of algorithm®icircuits, it follows that theéth clause can be
computed with ar (n®) size circuit; call itE. Lead the input variableX of D into the inputs off, whose
3n + O(log n) output wires encode th&th clause ofp,. These output wires encode the indices of three
variables ing,, along with three “negation bits” indicating for variables which are negated, if any. For
convenience, call the variable indiceg 22, z3. Evaluatea; = Cy(21), a2 = Cy(22), andas = Cy(23).
Letting b1, b2, b3 be the negation bits af;, 29, z3 (respectively), output[(a; ® b1) V (aa D be) V (as ® bs)].
That is, D(X) outputsl if and only if the Xth clause is not satisfied, i.€) is unsatisfiable if and only if
C, encodes a satisfying assignment dgr The circuitD hasO(n® + S(|z|)) size and/ input variables.

Finally, NV calls a fast algorithm for circuit satisfiability aR, andacceptsf and only if D is unsatisfi-
able. N runs in time

02" /a(n) +2° - (n® + S(n))¢/T(n)) < O(2"/a(n) + 2"n* - (n® + S(n))¢/T(n)).
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By assumption off’(n) and.S(n), this time bound is at mog? (2" /a(n)).

Recall thatZ was an arbitrary language froNTIME[2"], so we now have
NTIME[2"] C NTIME[2" /a(n)].

Since2"*!/a(n + 1) = o(2"), we have a contradiction to the strong nondeterministicetimferarchy
theorem|[[SEM78, Zak83]. d

It is now easy to show that faster Circuit Satisfiability imegINEXP ¢ P/poly. We say that a function
f is superpolynomial im if for all k, n* = o(f(n)).

Reminder of Theorem[1.1 Suppose there is a superpolynomial functign) such thatCIRCUIT SAT on
circuits withn variables and”* gates can be solved 2 - poly(n*)/s(n) time by a (co-non)deterministic
algorithm, for allk. ThenNEXP ¢ P /poly.

Proof. Let S(n) = n* andT(n) = s(n) in Theoren:32. Then & - poly(n*)/s(n) time algorithm for
Circuit Satisfiability implies thaNTIME[2"] does not have* universal witness circuits. Sindecan be
arbitrary, NTIME[2"] does not have polynomial size universal witness circugsceNEXP also does not.
By the contrapositive of Lemma 3.1, we conclude ti&XP ¢ P /poly. O

3.1 Extensions

It is also possible to extend Theorém]1.1 to larger circuitdobounds, and to weaker problems such
as FORMULA SAT, the problem of satisfying Boolean formulas. Unfortunatile derandomization results
do not seem to apply to restricted circuit classes. Alsoaas$ we know, Lemmia 3.1 does not extend
to superpolynomial circuit sizes [Imp10], so we need anoiteey to obtain universal witness circuits for
NEXP. This can be accomplished with the following lemma:

Lemma 3.2 (Folklore) LetC be any class of circuits. ENP has (non-uniform) circuits of siz&(n) from
classC, thenNTIME[2"] has universal witness circuits of sién) from classC.

Proof. Let L be a language iNTIME[2"]. Let V (z,y) be a nondeterministic verifier fat running in
d2!*! time. Consider the followingNP machine:

N(x,1): Binary search for the lexicographically smallessuch thaf’(x, ) accepts, by queryinggiven
(z,y) where|y| = d2/*l, is therez < y such thatl/(z, z) accepts?'hen output théth bit of z.

Note the queries can be computedNiR, and N needs at mosi2™ queries to the oracle. Since every
suchN has sizeS(n) circuits from clas€, NTIME[2"] hasS(n)-size universal witness circuits froth [

Reminder of Theorem[L.2 If CIRCUIT SAT onn variables andn gates is in0(2(=9"m¢) time for some
§ > 0andc > 1, then there is > 0 and a language ifENP that does not havee™ size circuits.

Proof. LetT(n) = 2™ andS(n) = 2°"/¢/n>. Note the constraints of Theordm 3.2 are satisfied, hence
we have:if Circuit SAT onn variables andm gates is inO(2(:=9"m¢) time, thenNEXP does not have
20n/¢ Inb-size universal witness circuit¥he result follows from Lemmia3.2 and setting: J/c. O

To get lower bound consequences fromRMULA SAT algorithms, we need another complete problem.
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Theorem 3.3 (IBGHSVO05], Section 4)There is a constraint graph probleih such that every language in
NTIME[2"] can be reduced to graph instancHsof size/ = O(2"poly(n)), such that the graph can be
succinctly represented bypoly(n) size formula om + O(log n) variables. In particular, on an inputthe
formula outputs théth edge of the graph along with the relevant constraints let edge.

The proof goes through nearly the same process as the cemgdsttheorem for SAT (Theorﬂ).
First use the fact that evefyTIME[2"] language can be accepted by a nondeterministic multitapedgru
machine inO(2"poly(n)) time. (The polynomial factor depends on the computatiornadeh) Then make
this TM “oblivious” in that its head movements have extreynmelgular structure, running i@ (2" poly(n)?)
time. Now [BGHSV05] show this TM computation can be représeiy a (deBruijn) graph @ (2" poly(n)?)
size, where the edge function can be described by apblsize formula. The latter step uses the regular
structure of the simulation. Carrying out the same argurasritheorerh 312, and applying Lemmal 3.2:

Theorem 3.4 Let s(n) be superpolynomial. [IFORMULA SAT onn variables andr® connectives can be
solved in2™ - poly(n°)/s(n) time, thenENP does not have (non-uniform) polynomial size formulas.

Similarly, letC be any non-uniform class of circuits that contaik@ and is closed under composition
of circuits. That is, if{C,,} and{D,,} are families inC, then those circuit families consisting of circuits
which taken bits of input, feed them to at most pdly) copies of circuits fromC,,, and feed those outputs
to the inputs ofDpqy(,), are also circuit families ii€. (Note that all well-studied classes of circuits have
this property.)

Theorem 3.5 If satisfiability ofC-circuits onn variables andh® gates can be solved 2#/3 - poly(n°)/s(n)
time, therENP does not have polynomial siZecircuits.

Proof.  (Sketch) By Theorem 2.2, we may assume (with only peJyextra multiplicative factors in
computation time) that our machine model for nondeterminis the multitape Turing machine. Let
L € NTIME[2"] and letN be a nondeterministic multitape TM recognizing it. By a st simulation,
there is a single-tape maching that is equivalent t&V and runs inD(22") time andO(2") space.

Now consider a reduction froth(N") to 3SAT which uses the standard tableau reduction (orilyiciaile
to Savage, cf. Theorem 7.30 in Sip<er [Sip05]). Here thetabhag)(22") rows andO(2") columns, due
to the time and space usage, respectively. This reductiestes a 3SAT instance @n(2?") clauses and
O(23") variables, such that if we are given an indeof 3n + O(1) bits, we can compute thgh clause of
this formula with anAC® circuit of poly(n) size. In particular, we can make ag° circuit D that given the
pair (i, j) € [O(2%)] x [O(2™)] outputs a group oD (1) clauses which represent the circuitry for computing
cell (¢, 7) in an accepting tableau. The only dependence that thisittirhas on: andj is thati andj are
addedto certain variable indices. Since addition isAf°, the circuits have constant depth and polynomial
size.

If ENP has polysizeC circuits, then there are universal witngssircuits for NTIME[23"] of polynomial
size, by Lemma@a3]2. So lét/ be a nondeterministic machine which on inpugjuesses a witness circuit
of |z|* size, constructs a circulf which feeds its input to D, obtainsO(|z|) output bits specifying)(1)
clauses, feeds afd(1) variable indices from these clauses to copie§’pthen evaluates these outpufs.
outputs0 iff C encodes a satisfying assignment for itieclause of the reduction. Providétland D areC-
circuits, E is aC-circuit also, since€ is closed under composition. Finally/ runs a satisfiability algorithm

n fact, the reduction of Theorelm 3.3 can probably be cawigdvith SAT, although we have not verified this.
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on E and accepts iffY is unsatisfiable. By arguments similar to those of Thedre®h\8e conclude that
L(M)=L.

If satisfiability ofC circuits with N variables and polV) gates can be determined2f/3poly(N)/s(N)
time, the machiné/ runs in2"/s(n) time, contradicting the nondeterministic time hierarchy. O

The general approach also has the potential of proving inea4l circuit lower bounds for much smaller
classes such &\P. In this setting, we would need faster SAT algorithms focwits with very few inputs.
Here is an example theorem:

Theorem 3.6 Let s(n) be superpolynomial. If there is@a> 1 such thatCIRCcuIT SAT on instances with
cn inputs andO (2" - poly(n)) gates can be solved @(2¢" /s(n)) time, thenPNP does not have linear size
circuits.

Proof. If PNP has linear size circuits, then there are linear size urévevitness circuits folNP. (The
proof is analogous to Lemnia 8.2.) Applying the succinct Séduction of Theorerm 3.1 and arguing sim-
ilarly to Theoren{ 3.2, we can simulate &TIME[n¢] computation by guessing a linear size circuit, then
solving a GRCUIT SAT instance withelog n 4+ O(log log n) inputs andD(n) gates. (Note that almost all of
this circuit’'s size comes from the three copies of the winggcuit; the remaining components have only
O(poly(log n)) size.) The presumed circuit satisfiability algorithm woirtbly an o(n¢) time nondeter-
ministic simulation, contradicting the nondeterminidtroe hierarchy. O

Extending our approach to concluXP lower bounds is an interesting open problem. In order to get a
lower bound folEXP, it seems we need much stronger hypotheses. The followim@peaasily shown.

Proposition 1 If CIRCUIT SAT onn inputs andm gates is irQ”’)(l)pon(m) time, therEXP ¢ P /poly.

Proposition 2 Let f : N — N satisfy f(f(n*)*) < o(2"/n?) for all constantsk. If 3SAT is inO(f(n))
time thenEXP Z P /poly.

3.2 Extremely Weak Derandomization Implies Circuit Lower Bounds

We now turn to theCircuit Acceptance Probability ProblefCAPP): given a Boolean circu@ with n
input variables and poly:) gates, the goal is to compute an approximation to the numb&ssignments
satisfyingC, within a factor of1 /6. More precisely, we wish to output a numhesuch that

U—2in' Z C(z)| < 1/6.

xe€{0,1}"
CAPP has been studied extensively [KC99, KRCO0O0, For01, BAKON02]. We prove:

Reminder of Theorem[1.3 If there is anO (2" - poly(n)/s(n)) nondeterministic algorithm for CAPP (for
any superpolynomiad(n)), thenNEXP Z P/poly.

In the previous section, we saw that strong reductions toT38#ly an efficientNEXP verifier. The
verifier universally tries all possible clauses in an expiadly long 3-CNF formula, and checks the values
of three variables in each trial. This universal quantifeeréplaced with a poly:) size circuit which (on
a variable assignment) checks the clause indexed by the faghe circuit. Our idea is to replace this
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universal quantifier with a random choice, so that insteagsifng satisfiability of the circuit, it suffices to
approximate the number of solutions. Naturally, this sgtgthe use gbrobabilistically checkable proofs
(PCPs). We use thHeCPs of Proximityof Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan, \ivhji
PCPs folNEXP with nice propertie

Theorem 3.7 ((BGHSVO05]) LetT : ZT — Z* be a non-decreasing function. Then for every 0 and
every languagd. € NTIME[T'(n)] there exists a PCP verifidr (z, y) with soundness, perfect complete-
ness, randomness complexity= log, 7'(|x|) + O(loglog T'(|x|)), query complexity, = poly(log T'(|z|)),
and verification time = poly(|x|,log T'). More precisely:

¢ V has random access toandy, uses at most random bits in any execution, makggueries to the
candidate proof. and runs in at most steps.

e If x € L then there is g of lengthT'(|z|)poly(log T'(|z|)) such thatPr[V (z,y) accept = 1.

e If x ¢ L then for ally, Pr[V(x,y) accept$ < s.

We shall be interested in the cafén) = 2". Then the above PCP verifier uses- O(log n) bits of
randomness, poly.) verification time, and polr) query complexity.

Proof of Theorem[1.3. The proof proceeds similarly to Theoréml1.1. We start by masy NEXP C
P/poly, so that all languages MEXP have universal witness circuits. LBtbe a language iNTIME[2"] —
NTIME[2™ - poly(n)/s(n)].

Let V(z,y) be the PCP verifier of Theorem 8.7 fbrwhereT'(n) = 2™ ands = 1/2. For somek > 0,
V tossesn + klog n coins, queries th@(2") length stringy in O(n*) places, and runs i@ (n*) time. Let
¢ > 0 be such that the circuit complexity of any function encodaj’»*-bit withess ofV on inputs of
lengthn is at mostn® + c.

We now describe an alternative nondeterministic algoritfiior L. On inputx of lengthn, existentially
guess a circuit” with n¢ + ¢ size. Construct a circuiD that simulated” as follows. The circuitD has
n + klogn input wiresr, corresponding to the random bits Bt Oncer is fixed, the verifierl” runs in
O(n*) time and querieg in O(n*) positions. By the standard translation of oracle machioesrtuits, V
can be simulated by a circuit of siz&n2*) with oracle gategor the stringy. These oracle gates each have
n + O(1) input wires and output the bit af indexed by the input wires. Replace each oracle gate with a
copy of C. The resulting circuitD hasO(n?**¢) size. Run the presumed nondeterministic algorithm for
CAPP on theD, andacceptif and only if the fraction returned is greater tha.

Let y be the string obtained by evaluatirig on all inputs in lexicographical order. By construction,
D(z) = 1ifand only if V(z, y) outputsl on the string of coin tosses

If there is a witnesg for the inputx, then there is &' of size O(n®) which encodeg. On such &,
the fraction of inputs accepted ly is 1. On the other hand, if there is no witneg$or z, then certainly no
circuit C' encodes a witness far, and hence on every circuit, the fraction of inputs accepted ly is at
most1/2. Hence the algorithnd is correct.

Assuming CAPP can be solved 1 - poly(n)/s(n) time for some superpolynomialn), the running
time of the entire simulation i&" - poly(n)/s(n). This contradicts the choice @f. O

12Note that Or Meir has recently found a more combinatoriaraaph to these results, of. [Mei09].
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The above proof can be generalized along the lines of TheBt@nn a straightforward way. A com-
pletely analogous argument to Theoreni 1.2 shows the faligwi

Theorem 3.8 If there is anO(2(1=9)"m?) nondeterministic algorithm for CAPP on circuits efvariables
andm gates, therNEXP does not hav@®"-size universal witness circuits for some> 0. Consequently,
ENP does not have°(™ size circuits.

Impagliazzo, Kabanets, Wigderson [IKWO02] showed partisiverses to Theoreim 1.3 and Theoten 3.8:

e If NEXP Z P/poly, then CAPP has a nondeterministic algorithm that worksfinitely many inputs
in O(2"™") time with n® advice, for every > 0.

e (Implicitly shown) If NTIME[2"] does not have°(™)-size universal witness circuits, then CAPP has
a nondeterministic polytime algorithm that works on inftytmany inputs withO(log n) advicd3

Combining these results with Theorém]1.3 and Thedrerm 3.8have the following “amplifications” of
CAPP algorithms:

Reminder of Theorem[1.4 If CAPP has a nondeterministi©(2" - poly(n)/s(n)) time algorithm that
succeeds on all inputs, then for all> 0, CAPP (in fact, all ofMA) has a nondeterministi® (2"") time
algorithm withn® advice that succeeds on infinitely many inputs.

Reminder of Theorem[L5 If CAPP onn variables andm gates has a nondeterministi@(2(*~m .
poly(m)) time algorithm that succeeds on all inputs, then CAPP hasraleterministic polynomial time
algorithm withO(log n) advice that succeeds on infinitely many inputs.

The above two results can also be viewed as gap theorems:RPGan't be solved infinitely often in
NP with logarithmic advice, then CAPP can’t be3" - poly(m) nondeterministic time.

Evidence for Derandomization of CAPP(?) The hypothesis of Theorem 1.3 looks potentially provable to
us. Van Melkebeek and Santhanam [vMS05] have shown thatéoy @robabilistick-tape Turing machine
running in timet, there is & > 0 such that the machine can be simulated deterministically (izi* =)
time. Unfortunately this is not quite enough to achieve thieu@ lower bound forNEXP. To do that,
we would need (for example) that every probabiligtitape Turing machine with(n) bits of randomness
running in timet(n) can be simulated deterministically in p&ty - 2°/s(b) time, for a superpolynomial
function s. In our desired applicatiort(n) is a polynomial factor larger thalin).

3This follows because, KN TIME[2"] did not have such circuits, then there issan- 0 and a poly2™) time algorithm withn
bits of advice that, on infinitely many inputs, nondeterrsiicially generates 2 -bit truth table of a Boolean functiofy, which has
circuit complexity at leas2*™ for sufficiently largen. (This is essentially the negation of what it means to haveeusal witness
circuits: there is a verifier for somg which on infinitely many inputs:; € L, only accepts witnesses whiclo nothave small
circuits. Hardcoding these; as advice, we get that any witness accepted by the verifier das high circuit complexity.) But it
is known (even from [KvM90]) that this assumption implieepdorandom generators for polynomial size circuits, stremough
to proveMA C i.0. — NP/O(log n). Hence CAPP has the desired type of algorithm.
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4 Further Improvements Imply LOGSPACE # NP and Subexponential proofs
for QBF

We now show that improving the runtime of exhaustive seascpifoblems with limited nondeterminism
would have surprising consequences. Our results use atooldrior work on time-space lower bounds for
satisfiability. Namely, we use a lemma to “speed up” arbjtsgrace-bounded computations with alternating
machines. (The notation below is discussed in the Prelimaiﬁ)

Lemma 4.1 (Speedup Lemma [Kan84, FLYMVO05])Leta > 2 andlogn < s(n) < o(n). Then
TISP[n?, s(n)] C (3 n) (VY logn —log s(n))TISP[n*™! - s(n), s(n)].

Moreover, theT ISP part of the RHS only reads + O(s(n)) bits of its input, and erases the rest.

Proof. Let M be an algorithm using® time ands(n) space. Note that a configuration &f on an input of
lengthn (a description of the entire state of the algorithm at any maihm time) can be represented within
¢ = dS(n) bits, for somed > 1.

To simulateM in (3 n)(V logn — log s(n))TISP[n®~! - s(n), s(n)], the machineV (z) existentially
guesses a sequence of configuratiohs. .., C,, , of M (x), usingn bits. ThenN (z) appends the initial
configurationCy to the beginning of the sequence and the (unique) acceptiniigarationC’,, /¢4 to the
end of the sequence. ThéAx) universally guessese {0, ...,n/l} usinglog(n/¢)+1 < logn—log s(n)
bits, erases all configurations exc€gtandC;;, then simulates\/ (z) starting fromC;, accepting if and
only if the C;,; is reached withim®~! . ¢ steps. It is easy to see the simulation is correct. d

The key idea behind our results is to exploit the fact thatthigersal quantifier in the Speedup Lemma
is only logarithmic Any improvement over exhaustive search oflag n — log s(n) bit strings gives us a
very slight advantage, which can be amplified by repeateticapipns of the assumed algorithm. We arrive
at the main theorem of this section.

Reminder of Theorem[1.6 Suppose there i& > 0 such that for allc,d > 1, every problenil solvable
with log n nondeterministic bitsp¢ time, and(log n)? space can be solved by a deterministic algorithm in
O(n°t(1-9) time andpoly(log n)? space. Then every suéhcan also be solved with a nondeterministic
algorithm inO(n?) time, i.e.,.SC C NTIME[n3].

In fact, the proof shows thd8 n)TISP[n*, poly(logn)] C (3 O(n))TISP[n3, poly(logn)], given the
hypothesis. (Interestingly, this containment of classe®t known to be false, but as we shall see, it would
be surprising if it were true.) The containment is proven pplging the Speedup Lemma along with the
hypothesis for a constant number of times, with differetiies ofc in each application.

Proof of Theorem[1.6. Written in our complexity class notation, the hypothesis is
Ve,d > 1, 3k > 1 (3logn)TISP[n¢, (log n)?] C TISP[nc*19, (log n)®]. (1)

By taking the complement of both sides, we also hateg n) TISP[n¢, (log n)?] C TISP[n¢+1=9, (log n)%].
That is, there is always a deterministic algorithm which datermine if there is a witness iff there is always
one that can determine if every string is a witness.

MReaders familiar with the notation of our prior wofk [WilG3B/[10] should beware that the notation in this paper hag ver
slightly different meaning. In this work, we must pay attentto the constant factors in alternations, whereas irr pvivk we did
not bother even witm°™) factors. Our notation here reflects these differences.

16



Assumel(l). First we prove the following containment by ictitn on/, for all integers? > 0, k& > 2,
andd > 0 satisfyingk — 6¢ > 2:

(3 n)TISP[nk, (log n)d] c (3 Kn)TISP[nk_‘% - poly(log n), poly(log n)], 2

(Note the poly factors depend only énd, and/.)

When{ = 1, we have
(3n)TISP[RF, (logn)?) C (3 n)(Ylogn — dloglogn)TISP[nF~1(logn)?, (log n)] (3)
by the Speedup Lemma (Leminal4.1). Consider the ¢takg; n—d log log n) TISP[n*~!(log n)?, (log n)9]
on the RHS of[(B). An algorithm from the class receives antimfuength2n (the original input and the

n bits guessed). Applyind{1) with = & — 1 and taking the complement, the universal quantifier can be
removed, concluding that

(Vlogn — dloglog n)TISP[n* 1 (logn)?, (log n)? C TISP[nF~1+(1=9) . poly(log n), poly(log n)],
provided that > 2. Substituting the RHS of the above inid (3), we obtain
(3n)TISP[R®, (log n)?] C (3n)TISP[n*~? - poly(logn), poly(log n)].

This completes the base caseldf (2). For the inductive steysiader the following chain of containments.
First, the induction hypothesis says

(3n)TISP[n*, (logn)?] C (3 £n)TISP[n*~°¢ . poly(log n), poly(log n)].

Note theTISP[n*~%.poly(log ), poly(log n)] part on the RHS receives an input of length-1)n < O(n).
Applying the Speedup Lemma to this part, the above clas®istbntained in

(3n)(3 n)(V logn — loglogn)TISP[n*~%~1poly(log n), poly(log n)].
Observe thall quantifiers can be merged, resulting in the class
(3 (€ + 1)n)(¥ logn — log log n) TISP[n*~%*~'poly(log n), poly(log n)].
Applying (@) withc = k£ — §¢ — 1 (this is possible whek — §¢ — 1 > 1), the above is in
(3 (¢ + 1)n) TISP[n*——1+(1=9noly(log n), poly(log n)).

Finally, note that the exponekt— 6/ — 1 + (1 — ) = k — §(¢ + 1). This completes the proof dfl(2).

Now letk > 3 be arbitrary. Sincé > 0, the quantityd/ is positive and can be made as large as desired,
provided thatk — §¢ > 2.

Setl = |(k —2)/0]. We havek — o¢ > k — 6(k — 2)/6 =2, and
k—ol=k—90|(k—2)/(0)] <k—0((k—2)/(0) —1)=2+5<3.

That is,
(3n)TISP[n*, (logn)?] C (3 £n)TISP[n*~°¢ . poly(log n), poly(log n)]
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by (@), and
(3 n)TISP[*~%¢ . poly(log n), poly(log )] € (3 ¢n)TISP[n?, poly(log n)] € NTIME[n?],
by our choice of. O

Reminder of Corollary .1 The hypothesis of Theorém11.6 impligdGSPACE # NP.

Proof. If LOGSPACE = NP then there is a such thatNTIME[n] C TISP[n¢ logn]. We have
NTIME[n*] C TISP[n*, log n] by the translation lemma (LemrhaR.1). By Theofem TISP[n*, log n] C
NTIME[n3]. This is a contradiction to the nondeterministic time hieins. O

Reminder of Corollary The hypothesis of Theorédm 1.6 implies that the quantifiedeBodormula
problem has a proof system where every QBF of lemgtlas proofs oR*” length for alle > 0.

Proof. TheoreniLb says that for a@ll TISP[n*, O(logn)] € NTIME[n?].

Lete > 0, and letf(n) = 2/3. By the translation lemma (Lemria2.MISP[f(n)*, O(log f(n))] C
NTIME[f(n)?], which isTISP[25#"/3 O (n)] € NTIME[2"]. Sincek can be arbitrarily large, it follows that
SPACE[O(n)] € NTIME[2°"]. A quantified Boolean formula of length can be easily solved usir@(n)
space. Therefore quantified Boolean formulas of lemgthan be solved iR time with a nondeterministic
algorithm. The conclusion follows. d

5 Unconditional Lower Bounds

The ideas of the previous section lead tauaconditionallower bound.

Reminder of Theorem[1.7 For somea and somek(n) < n, there is a probleniI solvable withk(n)
nondeterminism an@(n) time that cannot be solved k{n)n® - poly(log n) time andk(n)¢ - poly(log n)
spacefor all constants:.

Proof. Assume the opposite: for all> 1 and for every problenil solvable withk(n) nondeterminism and
O(n®) time, there is a, such thafll can be solved it(n)“n® - poly(log n) time andk(n ) - poly(logn)
space. For each > 1, define

I, = {(¢,2) | Iy € {0, 1}°81#I*1 machinelM;(z, y) accepts withirjz|* + a steps.
Settingk(n) = log n, we have by assumption that
I1, € TISP[n®(log n)“poly(log n), (log n)°poly(log n)poly(log n)].
By efficiently reducing all languages & logn) TIME[n?] to I1,, we have for alk: > 1 that

(3 logn)TIME[n?] C TISP[n® - poly(log ), poly(log n)] 4
(V logn) TIME[n?] C TISP[n® - poly(logn), poly(log n)]. “)

Settingk(n) = n anda = 2, we have a polynomial time algorithm for SAT. Lébe an integer such that
SAT is inO(n') time. By Theoreni 311, we have

NTIME[n] C TIME[npoly(log n)]. (5)
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Similar to the proof of Theorein 1.6, we derive

TIME[R‘TY] € TISP[‘™ . poly(log n), poly(logn)] (applying @) witha = ¢ + 1)

C  (An)(V logn)TISP[n’ - poly(log n), poly(logn)] (Speedup Lemma)
C (3n)TISP[n’ - poly(logn), poly(log n)] (applying [3))
C (32n)(Y logn)TISP[n*~t . poly(log n), poly(logn)] (Speedup Lemma)
C (32n)TISP[n"" - poly(log n), poly(log n)] (applying [3))
c ..
C (3 n)TISP[n - poly(log n), poly(log n)]
C NTIME[n - poly(logn)] (trivial)
C TIME[n" - poly(logn)], (applying (5))

contradicting the deterministic time hierarchy. O

In fact, a stronger statement holds: either polynomial eteraninism cannot be simulated in polytime,
or we have strong time lower bounds on simulating log-nasrgeinism with polylog space.

Theorem 5.1 Either P # NP or there is a problem solvable witlvg » bits of nondeterminism i) (n¢)
time that isnot solvable inO(n<*-%9) time andpoly(log n) space, for some > 1.

Proof. Assume the opposite, so tiat= NP and
(log n) TIME[n°] € TISP[n°*t, poly(logn)]. (6)

for all c. Note that[() implies the hypothesis of Theoreml 1.6S§€0C NTIME[n?] by Theoreni1J6.
Moreover, [6) implies thaP C SC. ThereforeNP C NTIME[»?], a contradiction. O

We cannot yet extend these lower bounds to problems likeu€BAT on general computational models,
due to the inefficiency of reductions from arbitrary langemgo Circuit SAT. We could extend them to
Circuit SAT on multitape Turing machines, but those loweurnds are easy: the opposite of the lower
bound implies that Circuit Evaluation (the case where tlee®o input variables) is im - poly(log n) time
and polylog n) space, which is already known to be false. (In fact, on nag8tTuring machines the set of
palindromes requires nearly quadratic time in the polylogce setting.)

However we can extend the lower bound slightly to generic puotational models, using the strong
nondeterministic time hierarchy [Zak83] (Theoreml 2.1).

Theorem 5.2 For all e > 0, CIRCUIT SAT on circuits withk input gates andn total gates cannot be
solved inm!t°Mk1=< time andm(!) space.

Recall we do not know how to prove that SAT can’t be solvediflV>—¢) time and N°(!) space on
general models (the particular case whiere m).

Proof. Lete > 0 be arbitrarily small. By Theorein 2.1, there is a unary lamggua that is inNTIME[n?
but not iNNTIME[n2~¢*<'] forall 0 < ¢’ < e.

Assume that GRcuIT SAT can always be solved it —m!+°() time andm°) space. Letting: =
m = n?, we have that, € NTIME[n?] implies L € DTISP[n*=2¢,n°()] by Theoren{ 311 (the strong
completeness theorem for SAT).
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We now describe a nondeterministic algorithm fothat runs inn2-¢t°(!) time (a contradiction). Let
A be an algorithm for running inn?~% time andn®!) space. Start by rejecting if the input is not unary.
Suppose the input is".

Similar to the Speedup Lemma (Lemmal4.1), nondetermiai$figuess a list oh>~¢ configurations
of A(1™) where the first configuration is the initial configuration @hd last configuration is an accepting
configuration. Build a circuit with{2 — ¢) log n input variables, which “selects” an adjacent pair out of the
n?~¢ configurations. This pair is then fed to another circuit, ebhgiven a pair of configurations of(17),
outputsl iff the first configuration does not lead to the second confition within»?~¢ steps of running
A. To simulateA on the inputl™, store the length of the inpuit in a batch ofO(log n) wiresW. Then on
any simulated step, the circuit just needs to check if theectiposition of the input head (or, the current
input register being read) is greater than the valuB/inlif it is, the input symbol islank otherwise it is
1. The circuit only has to carry the current configuration amese wiredV throughout the simulation of
n?~¢ steps. Without loss of generality, we may assume thaimply iterates through its working storage
cell by cell in a predictive way, adding a multiplicative®) to the runtime. The upshot is that each step of
A(1™) can be simulated by a circuit aP(!) size. The circuit size overall is>=t°(1) and hag2 — ¢) log n
inputs. Observe that the circuitismisatisfiabléf and only if the configuration list is part of a valid acceygi
computation history forA(1™).

Applying the assumed Circuit SAT algorithm to this circuite obtain a nondeterministic algorithm for
L which guesses?—=*+°(1) pits then runs deterministically in>~¢t°() . O(log n)¢ time andn°?) space.
That is, the nondeterministic algorithm férruns inn?—¢ time. This contradicts our choice @f O

6 Discussion

We have seen that universal improvements over exhaustrelgeeven marginal ones, would have sur-
prising consequences in complexity theory. This connadbietween improved exponential algorithms and
superpolynomial lower bounds shows that two communities leeen implicitly working towards similar
goals. Let us point to a few open problems that should proflutieer connections.

1. It seems possible that we may be able to prove interestinguniform lower bounds assuming only a
2:9% . poly(m) algorithm for CNF SAT om variables andn clauses. Using the reduction from Theoien 3.5,
one can show that if 3SAT is i2F” time for alle > 0, then we obtain mild circuit lower bounds.

Theorem 6.1 If the Exponential Time Hypothesis is false, {7 does not have linear size circuits.

Proof. (Sketch) IfENP hasO(n) size circuits, theNTIME[2"] hasO(n)-size universal witness circuits.
We can convert our nondeterministic machine into a singtetone that use®(2%") time andO(2")
space. Consider the verifier that on inputonstructs an accepting tableau®f23") size for the single-
tape machine, turns that into a 3CNF formulg then treats the witness as a satisfying assignmegy, to
We can therefore simulate evefye NTIME[2"] on inputz by guessing a circuif’ on cn gates (for some
¢) that encodes a satisfying assignmentdor then calling GRCuUIT SAT on a circuitD with O(cn) wires
and3n + O(1) inputs, whereD(i) determines if theth clause ofp,, is satisfied by the variable assignment
encoded by In more detail, the set @P(1) clauses corresponding to the ;) cell of anO(2%") x O(2")
tableau can be computed wif(n) size circuits which are given the indicésindj as input. This set of
clauses is nearly identical for each cell, except in somegslavheré and; are added to the indices of some
variables. However note that addition can be done with tis&ae circuits.
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If 3SAT is in 2¢™ time for alle > 0, then the @RcuIT SAT call can be simulated i2F™ time for alle > 0,
regardless of the value of This would implyNTIME[2"] C NTIME[2"] for all € > 0, a contradiction..]

2. A very interesting open question (asked by Russell Imigzzh [Imp10]) is if any converses to
our results hold. For example, NEXP < P/poly, could this lower bound be used to obtain faster SAT
algorithms? Note it is known how to partially derandomizeRFAassuminlEXP ¢ P /poly [IKW02].

3. It would be nice to weaken the algorithmic hypotheses dugher. Can we replace CAPP with a
form of Polynomial Identity Testin¢PIT) in our results? The known proofs that “subexponertigbrithms
for PIT imply circuit lower bounds” go through Toda’s thenorgTod91], which prevents us from getting a
tight simulation.

4. We were able to show that some problems wkithit withesses verifiable i®(n) time cannot be
solved inO(poly(k) - n) time and polyk, log n) space. However we do not knowNfP problems such as
SAT havelinear time algorithms when the space bound is relaxed. Such loaands are not even known
for the PSPACE-complete QBF problem_ [Wil08a]. Perhaps progress can beemadhese old questions
by considering parameterized versions. Is it possible degunconditionally that QBFs with quantifier
blocks cannot be solved if(kn) time? The existence of such an algorithm would imply that $&m be
solved in linear time, and that QBF can be solved in quadtimtie. It seems plausible that the conjunction
of these two propositions can be more easily refuted.

5. Finally, can we prove unconditionally that thereseanek > 3 satisfying
(3 n)TISP[n*, n°M] (3 O(n))TISP[n?, noM]?

Given our results, this separation would imply strong unlittonal lower bounds for improving on ex-
haustive search with space-bounded verifiers. (Integigtisuch lower bounds may be achievailighout
proving class separations likd GSPACE # NP.)
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A Appendix: Proof of Lemma

Here we show that iINEXP C P/poly, then every language MEXP has universal witness circuits. The
argument is analogous to that used in the proof BM&XP C P/poly = NEXP = MA [IKW02].

Proof. First we show that the absence of witness-producing cgdaitNEXP implies a faster nondeter-
ministic simulation ofMA. This is combined with the fact th&tEXP C P /poly implies anMA-simulation
of NEXP, to yield a contradiction with a time hierarchy theorem.

Suppose there is ah € NEXP which does not have universal witness circuits. &£et 0 be such that
L € NTIME[2"]. Then there isomecorrect verifierV for L such that for all constant$ > 1, there is an
infinite sequence of inputS = {x;, } with the properties:

o forall k, z;, € L and

o for all sufficiently largek and ally of length2/#!°, V(z;, , y) = 1 implies that the circuit complexity
of the functionf (z;,,i) = y; is greater thamu;, |°.

Work of Babaiet al. BENW93] and Klivans-Van Melkebeek [KvM99] shows the falling hardness-
randomness connectioffor everye > 0 there is & < e and integef such that, given random access to
a Boolean function om? variables with circuit complexity at least®, there is a pseudorandom generator
G :{0,1}" — {0,1}" computable ir2°™*) time which fools circuits of size.

We can simulat®/A infinitely often in nondeterministic timé@(2™) with n bits of advice, as follows. Let
P be anMA protocol, and suppose the computation of ArthuPiifgiven Merlin’s string) can be simulated
by a circuit of sizen®. For each input length, we set the advice fot-bit inputs to be the string;, € S,
wherez;, has lengthn*?; if there is no such string, we set the adviceé)to

On an inputz of lengthn with advicez;, , theMA simulation first nondeterministically guesses a witness
y of length 21| for the verifierV/, and checks thal’ (z;,,y) = 1 (if this is not the case, the simulation
rejects). Note by our choice of advice, this step taikég8” ") time. Next, we nondeterministically guess
Merlin’s polynomial length string in th&1A simulation. Finally, we simulate Arthur by evaluatingon all
nf® possible seeds (treating the stripgs a hard function), evaluating the circuit for Arthur on tgputs
of G, and taking the majority answer.

We claim the generatafr fools Arthur. On then®® length inputz;,, the stringy can be treated as a
Boolean function om=“¢ variables with circuit complexity at leasf®®. We can make:c%¢ > n%¢ since
we can setl to be arbitrarily large. Henc€ armed withy can fool circuits of size:=®¥/(%¢) > na by the
hardness-randomness connection. Thafifols circuits of sizex?, and therefore Arthur as well.

cea

The total running time of the simulation (27" + 2"™). Settinge > 0 to be arbitrarily small (note

it is independent of anda), we have establishelA C i.o. — NT|ME[2”E/]/TL€/ for all ¢ > 0. Since
NEXP C P/poly, there is a fixed constantsuch thaNTIME[2"]/n has circuits of siz&(n?). SOMA has
infinitely many input lengths that can be computed by a cirfamily of O(n?) size. (In the language of
complexity classes, we haWA C i.o. — SIZE[O(n?)].)

Now, EXP C P/poly implies thatEXP = MA, by Babai, Fortnow, Nisan, and Wigderson [BENW93].
Hence there is & > 0 such that

EXP = MA C i.o. — NTIME[2"]/n C i.0. — SIZE[O(n9)].

However, the above is false, by a simple diagonalizationraent. O
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B Appendix: Proof of Theorem[1.9

Reminder of Theorem[1.9 For every multitape Turing machin&/ running in timet and accessing a
tape of nondeterministic bits, there isfa> 0 and a deterministic Turing machine that can simulatein
0291 time.

The idea is to perform a brute-force simulation/df up to (1 — §)t, for an appropriatéd > 0. This
generateg1 9 different configuration states aff. Observe that for &-tape machine, there are orlizst
different tape cells that could possibly be accesseit steps. Hence we can “compress” these configura-
tions so that only:>*% configurations remain for some> 0, and the necessary information to complete
the simulation is still preserved. Then we simulate the iamg@ configurations fobt steps to see if any
accept. We can chooseso that these procedures all take less ttfaime.

Proof. Letd > 0 be a parameter. Let be the cardinality of the tape alphabetdf, and letk be the
number of tapes of/. For all possible stringg of (1 — §)t bits, simulateM for its first (1 — 0)¢ steps,
assuming the nondeterministic tape hasritten on it. For eachy, save theconfigurationC, of M after
(1—9)t steps, where a configuration consists of all tape cells tieatvéhin ¢ cells of some tape head. For
each of thek tapes, there argjt + 1 such cells. Note that for the nondeterministic tap€’jn some tape
cells may baundeterminegdas they refer to bits of the nondeterministic tape that mebteyet been read by
M. We denote those cells with a fresh symbdhat is not already in the alphabet f .

Note the total number of such configurationgdst+ 1)*(2%*+1), Hence in order to remember all possible
configurations of\/, it suffices to store a bit arrayl of only (o + 1)’“(25”1) size.

Now for every configuratiorC' marked in arrayA, and for all22* ways to fill in the undetermined
symbols of the nondeterministic tapedhwith 26t bits, simulateM for 6t steps. If any simulation of/
results in acceptance, then accept.

To optimize the running time, we want to seto minimize 2(1-9* 4 220t (5 4 1)k(29t+1)  (Note that
polynomial factors int do not matter in the optimization, as they can be subsumedhigyl\sadding are
factor to the exponents.) Routine calculation showsdhatl /(3 + 2k log(o + 1)) suffices. O

C A Remark About Barriers

Certainly, a slightly faster Circuit SAT or CAPP algorithmilMneed significantly new ideas. Let us
remark why this strategy may be viable for proving lower agin Any potential approach to proving
strong lower bounds must pass certain litmus tests that lexitytheory has developed. The three primary
barriers are relativization, natural proofs, and algetiien. We believe our work may provide a path that
circumvents all three (provided the appropriate algorghaxist, of course!). The natural proofs barrier does
not apply due to our use of diagonalization, which avoids‘iwgeness” of natural proofs. We believe the
relativization and algebrization barriers would be avdideecausell nontrivial SAT algorithms that we
know do not relativize or algebrizélhat is, the interesting SAT algorithms in the literatuagicot be used
to solve SAT' when the algorithm is given oracle access to an arbitrargl@r (or its algebraic extension

b

Recall that SAT is the problem of satisfying CNF formulas with clauses offibven (¢; V - V £, V A(lki1, -+ Lrgrr)),s
where the/; are literals, and the predicat®({y 41, . . ., £x1x/) IS true if and only iy 41 - - - €1 € A. Itis the natural variant on
SAT obtained by applying the Cook-Levin theorem to a languad\P*.
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We invite the reader to examine their favorite (nontrivi@BT algorithm to understand why it does not
extend to SAT'. As a simple example, consider the branching algorithm whioks for clauses of length
one, and sets the variable in that clause accordingly. €ifetis no length-one clause, say it branches on
an arbitrary variable.) In an instance of SATa length-one clause may have the fa#t?;, 1, ..., lsii),
with possibly some 0-1 values substituted for some of tleedis. Determining a correct assignment for
the variables in this predicate requires at least an oracltShtisfiability of A.” More precisely, we would
need to efficiently solve the problengiven a pattern string € {0, 1, x}", determine if there is a binary
assignment to th€'s in p which yields a string ird. This would requiranondeterministi@ccess to the oracle
A. Furthermore, if thed-predicate has more than one satisfying assignment, tleecotinect assignment to
A may simply beunderdetermined Access to the algebraic extensidnwould not suffice for simulating
such queries tal.

Given the above, we believe it is not outrageous to think dimat might design slightly betteri€cuit
SAT or CAPP algorithms that circumvent all the known loweubd barriers in complexity theory.
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