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DEFECT MODES AND HOMOGENIZATION OF PERIODIC
SCHRODINGER OPERATORS

M. A. HOEFER! AND M. I. WEINSTEIN#

Abstract. We consider the discrete eigenvalues of the operator He = —A + V(x) + £2Q(ex),
where V(x) is periodic and Q(y) is localized on R?, d > 1. For € > 0 and sufficiently small, discrete
eigenvalues may bifurcate (emerge) from spectral band edges of the periodic Schrodinger operator,
Hy = —Ax + V(x), into spectral gaps. The nature of the bifurcation depends on the homogenized
Schrodinger operator Ly g = —Vy - AVy+ Q(y). Here, A denotes the inverse effective mass matrix,
associated with the spectral band edge, which is the site of the bifurcation.
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1. Introduction and Outline. Self-adjoint elliptic partial differential opera-
tors with periodic coefficients e.g. the Schrodinger operator with a periodic potential,
the time-harmonic Helmholtz equation with variable refractive index, and the time-
harmonic Maxwell equations with variable dielectric and permeability tensors, play
a central role in wave propagation problems in classical and quantum physics. The
spectrum of such operators, characterized by Floquet-Bloch theory [29] 20| 12], con-
sists of the union of closed intervals (spectral bands). The eigenstates are extended
(not localized) and form a complete set with respect to which any function in L?(R%)
may be represented.

In many problems in fundamental and applied physics, periodic media are per-
turbed by spatially localized defects. These may appear as random imperfections
in a media, e.g. a defect in a crystal, or in engineering applications, they may be
introduced deliberately in order to influence wave propagation [, [I7]. Since the es-
sential spectrum is unchanged by a sufficiently localized and smooth perturbation
(Weyl’s theorem, [29]), typical localized perturbations will only introduce eigenvalues
in spectral gaps of the spectrum with associated localized defect modes.

This paper is concerned with a class of localized (defect) perturbations to a peri-
odic Schrodinger operator of the form:

H. = —Ax +V(x) +£2Q(ex),

where V/(x) is periodic on R%, Q(y) decays as |y| tends to infinity and e is a small
parameter.
Our main result, Theorem B.I] concerns the perturbed eigenvalue problem

Houe = peus, U € Hl(Rd)a (1'1)

for £ positive and sufficiently small. See section [3] for hypotheses on the periodic
potential, V', and the localized perturbation, ).

For ¢ sufficiently small, we prove the bifurcation of discrete eigenvalues into the
spectral gaps, associated with the unperturbed operator, Hy = —A + V(x). For
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any given spectral band edge, we give detailed expansions with error estimates for
the perturbed eigenvalues and corresponding localized eigenfunctions in terms of the
eigenstates of a homogenized Schrédinger operator

0
= _ng 6y] " o + Qy). (1.2)

Here, Aj denotes the inverse effective mass matriz, associated with the particular
band edge from which the bifurcation occurs; see Theorem Bl Aj;, derivable by
formal multiple scale expansion (see section M), is expressible in terms of the band
edge (Floquet-Bloch) eigenstate. It is proportional to the Hessian matrix D?Ej, (k)
of the band dispersion function, associated with —A + V(x), evaluated at the band
edge Ey = Ey, (k).

Referring to the schematics of figures [[L1] and [[L2] we discuss our results.

e Suppose the inverse effective mass matrix, A, is positive definite and assume
L4 ¢ has an eigenvalue, e4 o < 0. This occurs if Q(y) is a “down-defect”
(sufficiently “deep” in dimensions d > 3) as in figure [[Tla. In this case,
Theorem B.1] asserts the existence of an eigenvalue at Fy +e%e4,o + O(e?) <
E,.

e Now suppose the inverse effective mass matrix, A, is negative definite and
L4 ¢ has an eigenvalue, eq o > 0. This occurs if Q(y) is a “up-defect”
(sufficiently “high” in dimensions d > 3) as in figure [[Ilb. In this case,
Theorem B.1] asserts the existence of an eigenvalue at Fy +e%e4,o + O(e?) >
Ey

e Fig. shows a more general band edge bifurcation when L4 o has three

eigenvalues el )Q < e;)Q < 6543)@, the largest of which is degenerate with mul-

tiplicity three. Theorem [B.I] asserts the existence of five ordered eigenvalues
at Fy+e¢ eA) +0(e?), j =1,2 and Ey +e2e); (3) o+e’u; (k) +0(Y), k=1,2,3.

1.1. Outline of the paper and overview of the proof. Section[Zsummarizes
the required spectral theory for Schrodinger operators with periodic potentials and
introduces variants of the classical Sobolev space, H*(R?), which provide a natural
functional analytic setting. Section [3] contains the hypotheses on V' and @ and the
statement of our main theorem, Theorem[BIl In section@lwe present a formal multiple
scale / homogenization expansion in which we systematically construct bifurcating
eigenstates and eigenvalues to any prescribed order. In section [f] we prove Theorem
B In particular, we study the equations governing the correction, ¥¢ to the N—
term multiple scale expansion.

To obtain error bounds of suitably high order in €, we use a Lyapunov-Schmidt
approach. Specifically, we decompose the error into Floquet-Bloch modes associated
with energies lying near the spectral band edge, F., and those lying “far” from FE,:
Ve =we 4+ . Wi .., has the character of a wave-packet, spectrally supported on
a small interval with endpoint . The next step is to solve for W¢, = as a functional
of the “parameter” Wi, ., with appropriate bounds. Substitution of UE [P, ] into
the near equation implies a closed equation for W¢ ., .. With strong motivation from
the structure of terms in the multiple scale expansion, we appropriately rescale, solve

via the implicit function theorem, and estimate W: . . The approach we take has
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a) b) M“

E,+ 826,4_’@, sgn(A) =+1=e20<0 E,+ 82€AyQ, sgn(A) =—-1=ea0>0
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Fic. 1.1. a) Periodic structure with “down defect” and corresponding localized eigenstate for
the case of positive definite effective mass tensor. b) Periodic structure with “up defect” and corre-
sponding localized eigenstate for the case of negative definite effective mass tensor. Below are shown
eigenvalue bifurcations from band edges of the form Ey,, (ky) = Ex.

— Eb*(k)

Fic. 1.2. Schematic of band edge bifurcations in the case where the inverse effective mass
matriz, A, is positive definite. The homogenized operator, L q, is assumed to have two simple
eigenvalues and one degenerate eigenvalue with multiplicity three.

been applied in the context of the nonlinear Schrodinger / Pitaevskii equation in

311, 27, 10, [, [16].

Previous work for linear Schrédinger operators: Bifurcation of eigenval-
ues from the edge of the continuous spectrum for Schrodinger operators with small
decaying potentials, corresponding to weak defects in dimensions one and two for the
case of a homogeneous medium or vacuum (V' = 0), was studied in [30]. Conditions
ensuring the existence of eigenvalues in the gaps of periodic potentials were obtained
in [I] and [13, 4], using the Birman-Schwinger (integral equation) formulation of the
eigenvalue problem. Homogenization theory was applied to obtain eigenvalues in the
spectral gaps of a class of periodic divergence form elliptic operators, governing lo-
calized states in high contrast media in [I8 [8]. An elementary variational argument
in spatial dimensions one and two, yielding general conditions for the existence of
discrete modes in spectral gaps of periodic potentials, was recently presented in [26].
More general, variational methods can be applied to obtain defect modes which are
obtained as infinite dimensional saddle points of strongly indefinite functionals; see,
for example, [11].

Our results concern a particular class of weak defects, slowly varying and of small
amplitude: €2Q(ex), which give rise to defect modes in any spatial dimension. We
note that the one- and two-term truncated multi-scale homogenization expansion of
defect modes, which we construct, are natural trial functions for a variational proof
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of existence of ground states; see the discussion in Appendiz [B. Note also that the
scaling of the perturbing potential, €2Q(ex), also arises naturally in solitary standing
wave (“soliton defect mode”) bifurcations from band edges of periodic potentials in the
nonlinear Schrodinger / Gross-Pitaevskii equation [10].

Homogenization theory has been used to study periodic elliptic divergence form
operators near spectral band edges in [6] [} [2]. Homogenization results for the time-
dependent Schrodinger equation with a scaling, equivalent to the one considered here,
were obtained by two-scale convergence methods in [3]; see also [28 Bl 2]. In [3] the
contrast between the scaling we use and the semi-classical scaling is discussed. These
results establish the validity of the homogenized time-dependent Schrodinger equation
on certain finite time scales. The results of the present paper focus on a subclass of
solutions, bound states, which are controlled on infinite time scales.

Finally, we mention work on effective classical electron motion in solid state
physics, derived from the Schrodinger equation for an electron in a spatially peri-
odic Hamiltonian, perturbed by spatially slowly varying electrostatic and magnetic
potentials [22, 241 25], in a semi-classical limit.

Acknowledgments: This research was initiated while MAH was an NSF Post-
doctoral Fellow under DMS-08-03074 in the Department of Applied Physics and Ap-
plied Mathematics at Columbia University. MIW was supported in part by NSF grant
DMS-07-07850 and DMS-10-08855. MIW would also like to acknowledge the hospi-
tality of the Courant Institute of Mathematical Sciences, where he was on sabbatical
during the preparation of this article.

1.2. Notation and conventions. We note that we may, without loss of gener-
ality, restrict to the case where the fundamental period cell is §2 = [0, 1]d. Indeed, let
B denote the fundamental period cell, spanned by the linearly independent vectors
{r1,...,rq} and define the constant matrix R ! to be the matrix whose j™ column
is r;. Then, under the change of coordinates x — z = Rx,

—Vx-Vx + V(x) acting on L2,,(B) transforms to

per
. d o2 -
-V, aV,+V(z)= — ”-Zzll Qj 50, V(z)
acting on Licr ([0, 1]d) where

a=RRT, V(z)=V (R 'z), x=R'z.

1. Integrals with unspecified region of integration are assumed to be taken over

R e [ f = [pa f(x)dx.

2. For f,g e L?, the Fourier transform and its inverse are given by:
FU) = fo0 = [ ) dx, (13)

Flg}x) = §(k) = / 7Kg (1) k.

Thus, F F~! = Id.
3. Q = [0,1]? is the fundamental period cell, Q* = [-1/2,1/2]? is the dual
fundamental cell or Brillouin zone
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4. 14(x) is the indicator function of the set A; x(|k| < @) = Lixeq* :|k|<a}
The repeated index summation convention is used throughout
6. Fourier spectral cutoff:

ot

X(|V] <a)G(x) = (]—'71)((|k| < a)f) G = /e27rix'kx(|k| < a)@(k)dk
(1.4)

7. T and 7! denote the Gelfand-Bloch transform and its inverse; see section 21
8. Bloch spectral cutoff:

X(IV] <a)Gx) =T {Z X(| -1 < adub, ) To {G () po(x; -)} (%),

b=0

where b, is the index of the spectral band under consideration,
9. H® = H*(R?) is the Sobolev space of order s

o= X 1B ~ I = [ (RGP (1)

Rd

I /]

|a|<s

2. Spectral Theory for Periodic Potentials. In this section we summarize
basic results on the spectral theory of Schrédinger operators with periodic potentials;

see, for example, [29] 20 [12].

Gelfand-Bloch transform: Given f € L*(R?), we introduce the transform 7 and
its inverse as follows

TUONK) =f6sk) = 3 7> fc +2) 2.1)
zeZ?
T} = [ e ki (22

One can check that 717 = Id.
Two important properties of the transformation 7 are 70, f = (81 ;+ 2m’/€j) Tf
and (Te?™* f) (x,k) = e>"**T f(x,k). It follows that

(T®(V)e*™™ f) (x, k) = ™ "®(V + 2mik) (T f) (x, k) (2.3)
T (w()f) (x,k) =v(x)(Tf)(x,k), if vis periodic. (2.4)

Floquet-Bloch states: We seek solutions of the eigenvalue equation
(—A +V(x)) u(x) = Fu(x) (2.5)
in the form u(x;k) = e?™**p(x;k), k € Q* where p(x;k) is periodic in x with

fundamental period cell Q. p(x;k) then satisfies the periodic elliptic boundary value
problem:

(— (V + 2mik)? + V(x)) p(x:k) = B(k)p(x;k), xe T (2.6)
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For each k € Q*, the eigenvalue problem (Z.0) has a discrete set of eigenpairs
{ po(x;k), Ep(k) }p=0 which form a complete orthonormal set in L2, (). The spec-
trum of —A + V(x) in L?(R9) is the union of closed intervals

spec(—A+ V)= | ] Bk (2.7)
b=0, keQ*

We will study the bifurcation of eigenvalues from the band edge
E. =Ep, (ke), ke«;€{0,1/2}, j=1,...,d, (2.8)
with the associated, real-valued band edge eigenfunction
w(x) = 2R Rp, (xk,) € L3(Q). (2.9)

For example, the lowest band edge is Ey(0) and the associated eigenfunction is periodic
po(x+e€;;0) = po(x;0), j =1,...,d for the standard Cartesian basis vectors {e; }?:1.
REMARK 2.1. Since

w(x +e;) = 2™ Friy(x) = sjw(x), (2.10)

where s; = +1 if ks j = 0 and s; = —1 otherwise, the natural function space to work
in is L2y, (Q), dce. f e L2,..(Q)if feL*Q) and f(x +e;) = s;f(x). Without
loss of generality, and for ease of presentation, we focus on the case where s; = +1,
j=1,....d so that L2, (Q) = L2.(Q), the space of square integrable, periodic
functions. This implies that k. = 0. The more general case in eq. (2.8) can be handled
by taking k — (k—k) and interpreting values of k reflected about the boundary of 2*.
The simplicity of Ey and the relation VEy, (ky) = 0 (see Hypothesis H2 in Sec. [3)

implies that E(k' + k) can be evtended as an even function of k) = kj — kj« for

j=1,....d [29].

We will make repeated use of the following self-adjoint operator

Li=—-A+V(x)—FE,: H?

per

Q) = L3(Q). (2.11)

Projections 7, and Completeness of Floquet Bloch states: Define

TS} 6) = oK), F(5 1)) = /Q oK) f(xk) dx. (2.12)
By completeness of the {py(x;k)}p=0

fak) = > To{ 1K) po(x k)
b>0
Furthermore, applying 7! we have

9= [ T k) di (2.13)

b=0

=% [ 0. gy uslxik) dk (2.14)

b=0
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where up(x; k) = €2 *p; (x;k). The second equality follows from an application of

the Poisson summation formula.

Sobolev spaces and the Gelfand-Bloch transform:

Recall the Sobolev space, H®, the space of functions with square-integrable derivatives
of order < s. Since Ey(0) = inf spec(—A + V), then Ly = —A + V(x) — Ey(0) is a
non-negative operator and H*(R?) has the equivalent norm defined by

léllee ~ (I +Lo)2 ¢ e

Introduce the space (see, e.g. [27,[9])

X = L2(Q*,1%9), (2.15)

with norm

ol = [ 3% (14 ) 7ot} 00 dk (2.16)

b=0

Now note that

163 ~ | + Lo)t 0|
2

- W/ 27 ST O} ) (14 Fy(k) — Fo(0)F pu(-, k) dk

Q b0 1o
=2/’mW}Fu+&®—%@P&
b=0
N 2\° 2

3 (1+1a) | miekr ax

I (2.17)

The second to last line follows from the Weyl asymptotics Ejp(k) ~ b [15]. Thus we
have

PROPOSITION 2.1. H*(RY) is isomorphic to X for s = 0. Moreover, there exist
positive constants Oy, Cy such that for all ¢ € H*(R?)

C1)| 8] s rey < |Bll2es < Col| @]l aro (e - (2.18)

3. Main Results. In this section we give a precise formulation of our main
theorem, Theorem Bl The following are our assumptions.
H1 Regularity. V e L7.(Q), Q € H7(R?) for 0 > d, E;, € C*(Q*), and
Poy € Lgcr(Qa 03(9*))
H2 Band edge. E, = E, (ks), where k, is an endpoint of the b{" band such
that
(a) Ey is a simple eigenvalue with corresponding eigenfunction
w(x) = XXy, (xky) € H2,(Q)

per

and normalization |wlz2q) = 1.
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a) spec(La,g), sgn(d)=+1 b) spec(La,q), sgn(4)=-1

FiG. 3.1. Discrete and continuous spectrum of L s q. a) Positive definite effective mass tensor.
b) Negative definite effective mass tensor.

(b) VE,, (ks) = 0.
(¢) The Hessian matrix,

1
= WDQEb*(k*), (3.1)
is sign definite.
H3 Existence of eigenvalue to homogenized equation.
Introduce the homogenized operator

0 0
Lig =-Vy-AVy+Q(y) = =) —A;— +Q(y) (3.2)
Q y y ;ayj "oy

Set sgn(A) = +1 if A is positive definite and sgn(A) = —1 if A is negative
definite. Assume L4 ¢ has a simple eigenvalue es ¢ with sgn(A)eaqg < 0
and corresponding eigenfunction Fa o(y) € H?(R%); i.e.

LaqgFaq=eaqFaq, /d Fioly)dy =1, sgn(A)eaq <0; (3.3)
R

see figure BI|(a).

REMARK 3.1. For further details regarding the smoothness properties of Ky,
and py, with respect to k, we refer the reader to [29, [32]. It can be verified that
hypothesis H2 holds in one dimension at all band edges [12] and at the lowest band
edge in arbitrary dimensions [19]. Band edges with multiplicity greater than one exist,
e.g. for the separable potential V (x) = Z;l:l Vi(z;), d = 2.

THEOREM 3.1. (1) Positive definite effective mass tensor: Assume hypothe-
ses H1-H3, with sgn(A) = +1. Then, there exists eg > 0 such that for all 0 < e < &,
(@CI) has an eigenpair e, ue(x; pue) € H2(RY). e lies in the spectral gap of —A+V (x)
at a distance O(e?) below the spectral band edge having Ey as its left endpoint.

Moreover, to any order in €, this solution can be approximated by the two-scale
homogenization expansion, see Eq. [A33), (51), with error estimate

N
g _ (- e H <Nle,
< a0) PICCACLY
N
e — By —%en g — Z a"un‘ <N, (3.4)
n=3

for all N = 4 and some constant C' > 0, which is independent of .
(2) Negative definite effective mass tensor: Assume hypotheses HI1-H3, with
sgn(A) = —1. Then, the statement of part (1) applies, but now p. lies in the spectral
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gap of —A +V(x) at a distance O(g?) above the spectral band edge having Ey as its
right endpoint.

Theorem B] extends to the case where L4 ¢ has multiple and/or degenerate
eigenvalues with bifurcations from band edges with k, # 0, as discussed in the fol-
lowing two remarks.

REMARK 3.2. General band edge bifurcations: As discussed in Remark
(21l Theorem [Zl generalizes to band edges where ky # 0 satisfying eq. (2.8) so that

REMARK 3.3. Multiple simple eigenvalues: Note that if La,g has M (finitely
many) eigenvalues, eg?Q, j=1,..., M of multiplicity one, then Theorem [31] applies
directly. Specifically, there exists €y > 0 such that for all 0 < & < &y, there are
eigenvalue / eigenvector branches ¢ — (ugj),ua(-;ugj))). This behavior is shown in
Fig. [L3 with two simple eigenvalue branches with spacings O(g?).

REMARK 3.4. Branches emanating from degenerate eigenvalues of L 4 ¢:
In spatial dimensions, d > 1, the operator La g may have degenerate eigenvalues,
e.g. if there is symmetry in Q(y). Suppose ea,q has multiplicity M. Then, since L a,g
is self-adjoint, e g perturbs, generically, to M distinct branches. Thus, applying the
method of proof of Theorem[31, each degenerate eigenvalue of La g of multiplicity M
giwes rise to M branches of eigenpairs of He.. The cluster of M distinct eigenvalues
of He are within an interval of size O(3) about Ey + €%ea,qo. The j™ eigen-branch
satisfies the error estimates

N
@0y _ nirG (. e -
HUEJ (huaj ) nZ::OE UnJ (’E )HH2(]Rd) s - 10,
N
pI) — By —%enq — )| E”H,(zj)‘ <N, (3.5)
n=3

forj=1,2,...,M, all N = 4 and some constant C > 0, which is independent of €.
This behavior is shown in Fig. [ where an eigenvalue of multiplicity three bifurcates
from the band edge.

4. Homogenization and Multi-scale Expansion. We derive a formal asymp-
totic expansion for the bound state that bifurcates from the band edge into a gap.
The results of these calculations will be used as an ansatz in the next section [ to
rigorously prove existence and error estimates.

We assume that u.(x; p.) satisfies eq. (1))

[—A + V(%) +£2Q(ex) |ue = pete, (4.1)

and expand it in an asymptotic series as follows

o0 o0
ue(x;pie) = Ue(x,y) = D e"Un(x,y),  pte = Ba + ), " i, (42)
n=0

n=1

where y = ex is the slow variable. Treating x and y as independent variables, equation
(@) then takes the form

[~ (Vat ey PV +22Q0) | Uelxy) = pelie(xy) . (43)
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We seek a solution U.(x,y) which is periodic in the fast variable, x, and localized in
the slow variable, y. Specifically, we assume U, (x,y) € L7 (€ H*(R?)). Inserting
[#2) and [E3) into Eq. [{I)) and equating like powers of € we find

0% LyUp= [-Ax +V(x) — Ex] Uy = 0, (4.4)
O(e"): LUy = 2V - VyUo + 1 U,
O(e?):  LyUs = 2V - VyUs + 11Uy — [—Ay + Q(y) — p2]Uo,

O(En) : LU, =2Vy- VyUn_l + ,lLlUn_l — [—Ay + Q(y) — ,LLQ]Un_Q (47)
n—1
+ Z wiUn—j + pnUy, n = 3.
=3

Viewed as a system of partial differential equations for functions of the fast vari-
able x, depending on a parameter y, each equation in this hierarchy is of the form
L.U = G(x) where G(x) has the same symmetry as w(x), the band edge state
(see ([Z3)), with period cell . To solve these equations, we make repeated use
of the following two solvability criteria based on the Fredholm alternative applied
to the self-adjoint operators Ly and La q with ker(Ly) = span{w} < L2, () and
ker(La,q) = span{Fa g} c L*(R%), respectively:

PROPOSITION 4.1. Let G € L2, (Q), then LyU = G has an H2,,(Q) solution if

per per
and only if

(w,G)r2(q) = 0. (4.8)

REMARK 4.1. If ky # 0, then L?,(Q) and H2,.(Q) are replaced by function

per per

spaces with the same symmetry as w(x), L? Q) and HZ,,,.(Q). See Remark[Z1l

symm( symm

PROPOSITION 4.2. Let H € L*(R?), then La,oF = has a solution F € H?*(R%)
if and only if

<FA7Q, H>L2(Rd) == 0 (49)

4.1. O(e") Equation. From H2, there exists a unique, real, bounded eigenfunc-
tion w € H2, () and a simple eigenvalue F, that satisfy

per
Liw = [-Ax +V(X) = Ex]Jw =0, |w|r2@) =1, (4.10)
so that the general solution to Eq. (£4) has the multiscale representation
Up(x,y) = w(x)Fo(y), (4.11)

for some Fy(y) € H?(R?) that will be determined at higher order.
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4.2. O(e') Equation. Applying Prop. Bl to eq. [@3]) gives the solvability con-
dition

20y, Fo (w, 0z, w) 5 )y + 1 Fo = 0. (4.12)

Since the integrand in the first term, being the derivative of the symmetric function
w?/2, integrates to zero,

p1 = 0. (4.13)

Therefore, the general solution for U; consists of a homogeneous and particular solu-
tion

Ur(x,y) = wx)F1(y) + 20y, Fo(y) Ly {0, w}H(x). (4.14)

where Fy € H?(R?) is to be determined at higher order.
REMARK 4.2. For d =1, the general solution is

fm wdf’l 2
Us(z,y) = w(@)Fi(y) + 0,Fo (y)w(x) | -2 + 2 ). (4.15)
fO w(z')?
4.3. O(g?) Equation. Inserting the expressions ([I3) and ([EI4) into Eq. (8]
yields
LUy = 20,,F10,,w — L[Fy], (4.16)
where the linear operator £[G] for G € H?(R?) is
LIG)(x,y) = — 404, Ly, {0z,w}(x)9y, 0, G (y)

J

Fw()[=Ay + Q) — p]G(Y). (4.17)

DEFINITION 4.3. Define the operator La g : H?(RY) — L2(R%) by

LaoG(y) = w(). LIG1(~9)) 120y = [~y - AVy + Q) — ca0lG(y),  (4.18)

where ea,q is the simple eigenvalue associated with the eigenfunction Fa o(y) in hy-
pothesis H3 and

Ajt = 8jt = 4 {00, w, Ly {00 w}) 2 g - (4.19)
PROPOSITION 4.4.
1
Aj = Wakj Ok Epy (K )- (4.20)

We give the proof in appendix [A} see also [4].
Applying Prop. L1l to Eq. (10) gives

<w(')u‘c[F0]('7y)>L2(Q) =0 & Lagko=0, p2=ecaq, (4.21)

is the effective, homogenized equation for Eq. (ILI)) with the effective mass tensor A.
We have assumed in H3 the existence of the eigenpair Fla g € H?(R?) and eaqQ €
R\{0}. Thus, Fy(y) = Fao(y).

The general solution for Us consists of a homogeneous and particular solution

Ua(x,y) = w(x)Fa(y) + 20y, Fi (y) Ly {0, wh(x) + LT HL[FaQl(,¥)}(x).  (4.22)
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4.4. O(e%) Equation. Inserting Eqs. [EI3), (@I4), and @2Z2) into equation
(@) with n = 3 gives

LyUs = 20y, Fo0y,w — L[Fy] — Hz + pzwFa g, (4.23)
where Hs is known

Hs(x,y) = — 200,05, L3 H{L[FaQl(y)}(x)+

- (4.24)
2L 10, w} ()~ Ay + Qy) — ea.010,, Fy).
By Prop. [A1] Eq. ([@23)) is solvable if and only if
LagFt = —(w(), Hs(,¥))12(q) + 13Fa0- (4.25)
By Prop. [£2] Eq. ([@23]) has a solution if and only if
ps = (Fa.g(), i), Hso Doy ), (1.26)
We can now write F in terms of Fs g as
Fi(y) = Lo { = w(©), Hs(0, )2y + 13Fae()} (v): (4.27)
With this choice of Fy, eq. [@23)) is solvable and its general solution is
Us(x,y) = w(x)F3(y) + 20y, Fa(y) Ly {00, w}(x)~ (4.28)

LM LIRNY) +Haloy) = waw() Pao(v) ().

where F3(y) is to be determined. Note also that Fy(y), introduced at O(g?), is to be
determined.

4.5. (5") Order Equation. Continuing the expansion to arbitrary n > 4 from
Eq. (@) we have

LU, = 26ijn_16m].w — E[Fn_Q] —H, + ,Uzn’LUFA)Q, (429)

where H,, is completely determined by all the lower order solutions U;, [ <n —3

Hoa(%,5) = 202,03, L { £ Fums] (53) + Hao1 (43) = in-1w() Fao(y) | ()

n—1 (430)
- Z /LlUn—l-
1=3
By Prop. 41l eq. (£29) is solvable if and only if
LagFn—2=—w(), Hn(,¥))12(0) + #nFaq- (4.31)

Furthermore, by Prop. L2 eq. (£31)) is solvable if and only if

pin = (Pa () (o), Hulo: iaiey ) (432)
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With this choice of uy,, F,—2 is given by

Fua(y) = Lilg {=@(©), Hu(o, Voo + 1nFae()} (v).  (433)
Finally, with this choice of F,,_o, U, (x,y) is given by
Un(x,y) = w(X)F,(y) + 20y, Fr1(y) Ly {0, w}(x)—

4.34
L;l{‘c[anﬂ('vy) +Hn('7y) _an(')FA;Q(y)}(x)' ( )

Thus we have:

PROPOSITION 4.5. The first N equations ([@4)), (£3), @G, ..., (@) are solvable
with solutions U, (x,y) € ngT(Q;HQ(Rd)), n = 0,1,..., N uniquely determined up
to the two arbitrary slowly varying functions Fx(y), Fn_1(y) € H*(RY) for N > 1
These functions are the slowly varying envelopes of the homogeneous solutions to the
N — 1% and N order equations. Moreover,

N
Z U (x,y), pY) =B, +c%eao+ Z €™ i, (4.35)
n=3
with the particular choice F,,_1 = F,, = 0, is an approzimate solution for the eigen-
value problem @) (equivalently (L)) with error formally of order e™¥*1.

REMARK 4.3. The multi-scale form of the approximate eigenfunction given in
Prop. [-3 is used as a “trial function” in Appendiz [B to give a “quick” variational
existence proof for defect modes bifurcating from the lowest band edge. We also show
that a two term approzimation (leading order homogenized solution plus first nontrivial
correction) yields a better estimate for the energy than the one-term approximation
(leading order homogenized solution,).

5. Proof of Theorem [B.1], Bounds on u(-,u) — E(N), w— uéN). To prove
Theorem Bl we introduce the corrections U¢(x) and T to the approximate solution

displayed in eq. ([@35]) through
u(x; p) = UM (x,ex) + V7105 (x),  p=pY) 4 eNFITE, (5.1)
Then the error U¢ satisfies the equation:
[Ly —eeaq +2Q(ex) ¥ (x) = 2 R°[VF, T¢](x), (5.2)
where

N
RE[U5,T°] = YUy +2Vy - Vy Uy — QUNn_1 + Z tni1Un_ —eQUnN

n=1

N-2
<Z €y + N 1T€> +7T° Z e"U,

n=1 n=1

/Lm+1UN+n—m

uMz

(5.3)

5

=TUy+2Vx-VyUn —QUn_1 + Z tnt1UN—n + O(e)

n=1
= Y wFa o+ U* + O(e),
N
U# =2V, -V,Ux =QUyx 1+ Z Hnt1UN —n-

n=1
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The leading order multi-scale approximation Up(x,ex) = Fa,g(ex)w(x) in the
ansatz Eq. (BI) with w(x) = e?™**>p, (x;k,) the band edge eigenfunction sug-
gests that the dominant contribution to the frequency content of W¢ will be near
the band edge E, = Ey, (k). Therefore, it is natural to decompose V¢ into Bloch
eigenfunctions

Z/ po(x; k)e? ™ E*T, {0} (k) dk, (5.4)

with associated energies or frequencies Ej(k) where k varies in the Brillouin zone Q*.
Moreover, we introduce a spectral localization of W€ into frequencies “near” the band
edge and “far” from the band edge

V(%) = Whonr (%) + i (%) = T 0500 (60) + TG, (x5,
Ufear (X3 k) = Hnear V(%) = x(|k — k| <€) To, {07} (k) p, (x: ),

near

: (5.5)
U5, (x: k) = Ig, 0 EZ (Jk — ky| = "0, 5) To{ U }(K) po(x; k),

where 6, ,, is the Kronecker delta function and the indicator functions are defined as

X([k —ki| <€) = Lkeos kky|<er} (K), X1k —ki| = ") = Lixeas:|k—iy|zer} (K)-
(5.6

REMARK 5.1. For our analysis near the band edge, we will use Taylor expansions
of various quantities about k = ky. Without loss of generality, we will assume that
k, = 0 which enables a notationally cleaner presentation. See Remark[21]

We will use the conventions

W) = (P (510, T (1))

far <<pb \ijar ’ k)>L2 (Q))
where U¢

¢ ar(k) is a scalar and W5, (k) is an infinite vector. This decomposition was
used in [I0, [0} [I6]. The parameter r is assumed to lie in the interval

(5.7)

)
b=0

€ (2/3,1), (5.8)

the choice of which will be made clear later.
We now apply the Bloch transform to Eq. (&.2]), project onto the Bloch modes
pp(+; k) and use the properties (23) and (24 to find

[Eo(k) — Ex — e%ea,q] To (¥} (k) + T, {Q(e) U2 ()} (k)
(5.9)
= 2Ty {R°[WE, Y°]} (k), b=0,1,....

We view this as a coupled system of equations for the near and far frequency compo-
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nents W¢,_, (k) and W¢

far(k)5 ke QF

( (Eb* (k) - E* - 826A,Q)\ijf1car(k)+

e2x (k| < ") To, {Q(e) Uiear ()} (k)

near: (5.10)
= ex([k| <e")[ = Tou {Q(e) W, (1)} (K)

Ty AR [Phear + T, T°1} (K],

(Ep(k) = Ex — e%ea,)X(|k| = €700, ,5) V5, , (k)
+e?x([k| = €700, ) To {Q() U5, ()} (k)

= XKl > &0y )| = To {Q(E) Wiens ()} () +

To AR (W + Vi TI ()|, b =0,1,2,0..

far: (5.11)

far?

\

5.1. Lyapunov-Schmidt Reduction. In this section, we derive a functional
representation of the far frequency components in terms of the near frequency com-
ponents with an associated estimate. After insertion into the near frequency equation,
a closed system is obtained.

We use the implicit function theorem to solve the far frequency equations. To
this end, we observe the following inequalities due to the definiteness of the matrix
Aji = g5 0k, 0k, B, (0) (see hypothesis H2):

|Ep, (k) — By — 2enq| = |Ajkjki + O(k]*)| = C=*" >0, " < k|, ke Q¥

|Ey(k) — By —c%eaq|=C >0, |b—by|>1.
(5.12)

We now have the following existence result

PROPOSITION 5.1. There exists g > 0 such that for 0 < e < eq, there is a map-
ping (¢,v,e) = V7, [¢, 0], V5, L?(RY) x R, x R, — X2 such that N | L
is the unique solution to the far frequency Eqs. (5I1)). The mapping \if?ar is C1 with
respect to 1 and v. The solution of Egqs. (LI1l) satisfies the estimate

||\I/?ar[\1]fzem"7 Ta] HH2 (R?) S ¢ H\ilja"ar[\l/ieara TS] X2 (513)
SO (1477 + (14N 10905, o)

for0<r<1.

Proof. Since Eq. (5I1)) is supported on frequencies away from Fy, we can divide
it by Ey(k) — Fx — %ea,o. This suggests studying the equivalent equation G=0
where G has components

G e, 0] ) = x(I] > 700, )] 300 + L0 ~ B = el
(5.14)
<[ THQEI0H I + T (QEN00} (0 - TR + 6,01 (0]} b0



16 M. A. Hoefer and M. I. Weinstein

Any function ¢ € X2 satisfying C?[d;,a,d),v] = 0 is a solution of the far equations
GIO) with ¢ = ¥E,., v = T¢. G is a continuous map X2 x R x R — X% and C*

near?

with respect to 1 and v satisfying the estimate
IGd,,9, v]|xo < C[L+v+(1+eNT17270) 6] xo +7 (1 + N 0) 9] 2 ey ] < 0.
(5.15)
Note that
G[0,0,%,v] = 0. (5.16)

The Proposition follows from the implicit function theorem [23] if we can show that
Dd;G[O7 0,1, v] is invertible. We have

(D3C1d. 2w 01F) (k) = x(IK| > £761,.0) k)

TAQ()F ()} () = folko) (U152 g 42V 10)  (B47)
Ey(k) — Ex —c%ea.0 :

+e?X (k| = "0, 0)

Therefore, DQ;G[O, 0,%,v] = I is invertible. Note that we use the fact that 0 <r <1
to conclude that lim._,0 e?x(|k| = "8y, )/[Eb(k) — Ex — %e4,0] = 0. The implicit
function theorem implies that there exists 9 > 0 and a unique \ilfar [, Y] € X2
satisfying

é[”f [U. . T]e, U¢ TE] —0, (5.18)

far near’

for 0 < e < gy.
Equation (BI8) is equivalent to

T e [ Q)WL) = RE WG + W5, 1) |} ()

I € _ 5.19
( far)b (k) = —¢€ Eb(k) . E* _ 526A,Q ( )

We now demonstrate the inequality in Eq. (513]). Using (2.18), (511) and the invert-
ibility of Ly —e%e4 g to obtain

12y < C | ¥,

(I 1= €"0b4,0) Ty {Q(e0) WE,, (0) — RE[WE, T€](0)} (1)
Eb() — E* — 826A7Q
(1 + 0% T, {Q(e0) ¥, (0) — RE[¥°, T¥](0)} ()
1+ b2/
<e7TCNQ(e) Ui () — B[P, Y1)l o re
<O +M%) (195 Ol e gy + [ ¥hear (Ol 2ray) +1+T°]
(5.20)

=520HX

X2

2.2
<et7C

X0

where the constants C' are independent of . The third inequality results from the
Weyl eigenvalue asymptotics [I5] and the bound (5I2). The last inequality results
from direct estimation of the error terms (5.3). With £ small enough so that £272"C <

1/2, we can subtract the term involving &2~ " C| U5, | y2(re) from both sides of the
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inequality and then divide by 1 —&2727C(1 + eV ~17%) to obtain the desired estimate
EI3). 0
REMARK 5.2. Note that we do not obtain smoothness of Ve, ine. When applying
the implicit function theorem in the above proof, we did not use any smoothness of the
map G in e. This is because of the sharp, € dependent cutoff function x(k| =¢€").
REMARK 5.3. The estimate for U5, € H2(R?) and V¢ € L*(RY) in (B13) can

near

also be proved for W5, € H*(R?) and V5, € H"2(RY) for s = 2. The proof for

the case s = 3 involves application of the operator (I + L*)S/Q’l, which can be shown

to be equivalent to the H*=2 norm, to Eq. ([5.2) and necessitates further regularity
conditions on the functions V(x), Q(ex), and U, (x,ex), n =0,1,...,N.

)

5.2. Near Frequency Equation and its Scaling. We now study the near
frequency equation (GI0) with the aid of certain Taylor expansions for |k| < &,
where we invoke our regularity hypothesis H1

1 1
Eb* (k) = F, + gak] aklEb* (O)kjkl + gak] 6kl6kmEb* (kl)kjklkm,

1
= F, + Ajlkjkl + Eakj 0kl 6kmEb* (k,)kjklkm, (5.21)
Py (X k) = po, (%30) + O, po, (x: K" )
= w(x) + Ok, Po, (x; K" )Kj, (5.22)

for some |k'(k)|, |k”(k)] < ¢". Inserting these expansions into the near frequency
equation (B.I0), we have

[Ajikjk — £2ea,0] Vi car (k)
, L (5.23)
+e X(|k| < Er)%* {Q(E')\pf}car(')} (k) =€ Rrglcar[\l/icarv Ta](k)v

where
B Wi T106) = XK < )| T (R (W + W[V YL, YT} ()
= Tou {Q(E) Vi [Vhicars Y1) (K)
- ékjklkmakj Ot O €0 () Ve () |, (5.24)
= x(lk| < ) Tou {T W) Fa(e) + UP (-, e)} (k)
+ O (e + 7%+ ) [ Wiurll 2
where the leading order behavior comes from the definition of R® in Eq. (&3]). Recall

that U# is defined in Eq. (53). The terms proportional to £ =2 put a further

restriction on the exponent r. In order to keep RS

® ear Order one, we require

2/3 <r<1. (5.25)
In this case, the error term satisfies the estimate

HRS [UE.. . T¢]

near near?’

X2 ) (5.26)
SO[1+T% 4 (e 4272 + 65 Wz |
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Equation (23] can be rewritten suggestively as:

ki k ~
(437 = —eaq]¥iear(®)
y ) (5.27)
([ <) T QW) 80 = B T1R
Thus, we seek a solution of Eqs. (£.23), (5:24)) in the form
T e _ r 1 = k _ |k| r—1 1 z k
) =2kl <) 58 (3) = (B <o) 53(3). 629)
1 ~ /.
£ o —1 A ry _ ..
W) =T {11 <) 55 8 () ) 0

In the next two Lemmata, Lemma and B3] we express the terms of (0.27),
which involve the Gelfand-Bloch transform, in terms of the classical Fourier transform
plus a remainder, estimated to be small in €.

LEMMA 5.2.
(A) Assume Ve _ (k) is given by (B28). Then,
ki ki ~
AL = — e (k
[ Jjl c & eAvQ] near( )
_ k
= Fy {( Aji0y; 0y, —eaQ ) (V| <& <I>} <g>
(B)
€ L r—1 k
777* {Q(E')\Ijnecw(')} (k) = E]:)’{ Q X(|V| Se€ )(I) } ; + g(k)
(5.29)
where
€] L2ray < C® Qs me) 1P L2 (R1), (5.30)

with s >d and 0 <7 < 1. R
Proof of Lemma Recall the notation Ff = f for the Fourier transform given
by ([L3). By ([B.28) since k is localized near 0 we have, Taylor expanding ps, (x; k)
about k =0,

W) =50 7 { (<) 58 (2) | 09 + 10

= Dby (%3 0)X (|Vy| < Er_l) P(y)ly=ex + &1(x),
|€1]l 2y < Ce™|®]2@ay, C = C (|Vipoy | @xaw)s ) -
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Since T commutes with multiplication by a periodic function (see (Z-4])) and since
Db, (x;0) is periodic
TAQ(e) ¥hear ()} (%, k)
= po, (:0) T{Q(e7) x (V=] <€) ()} (%, k) + T{Q(e)E1 ()} (x, k).
By the definition of 7, [2.1J), we have
T{Q(s-) X (|V€.| < 5“1) @(5-)} (x, k) (5.32)
= Fx {Q(e) x (Ve <"1 @(e) } (k)

DI { Fie {X(IO|<€T) Eid%(g)}c)}(km) (2mimex

m#0

(5.31)

- 2R (a0 (V1< e} ()
+ > /@ (é) Eid o (%) X(Jk +m —1] <) dl ™™ | (5.33)

To prove (B30) we need to estimate the sum in (B33) for |k| < &”. For such k
the sum can be estimated as follows:

Z/ () @(w>‘x(|k+m—l|<a’”)dl

|m|>1 €

1 1

< Y / @(1>2id1 2 / $<1>2id1 :
h |m|>1 |m—1|<2e” € g? |m—1|<2e” 3 ed
1
-3 R 2 2\ * 2

<c ¥ (+2]) "/ () (1+H ) S ) 1@l
m>1 m-lj<2er | \€ el ) et

< Ce® ), m Qlas gy |P]L2@ey <C e [Q

|jm|>1

mera) |2 rey, s> d.

(5.34)

A similar calculation shows
IT{Q(E)E)} 2,0y < C Q) e (re) 1Pl 2Ry, $>d, 0 <7 <1. (535)

Since Ty, {f}(k) = <pb*('7k)7T{f}('vk)>L2(Q)u we have by (5.31), (5:32), E33),
E34), and (&38) that

T QM) 0 = 7 { @x(¥] <= Mo} (5) + €0,
€l L2y < C®|Q|psray [Plr2@a), s>d, 0<r <1, (5.36)
which is the assertion of Lemma
LEMMA 5.3. The right hand side of eq. (2.23), defined in eq. [5.29), satisfies
R; ar[Wcar Y1 (k) (5.37)

= Eidx ( K < 5T1> TeFa 0 (g) + <w('),ﬁ# (-, g) >L2(Q)] +S(k),

€
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where

HS||L2(Rd) <C (E + g2 + 837“72”) H(I)||L2(Rd)' (538)

Proof. The proof follows in a similar manner as to Lemma[5.2] by use of eqs. (&3]
and (£.20) along with the estimates in Prop. Bl and eq. (5:24). O

5.3. Solution of the Near Frequency Equation for Small €. The results
from the previous section enable us to complete the proof of Theorem [B.11
Substitution of the expansions of Lemmata and into (B.27) and defining

P (5.39)

results in
PROPOSITION 5.4. The near frequency component ® satisfies the equation

Fy {( A0y, 0y —eaq ) x(IVI <) @} (x)
+ FQx(IV| <& Hd}(k) = FyH[®,T%,c]. (5.40)
The right hand side has the following form

FH[®, Y% ¢] = x(|&| < &™) (e4Re

near

(V] < "™ H)@/e, 7] + Re[®])

= (|| < &[T Pao(k) + <w(.), o* (., n)>L2(Q) (5.41)
+O(e" + 272 44772,
We define the following operators x-, X. where
Xe =x(IVyl <€), Xo=1-xe=x(Vy|=e"). (5.42)
In physical space we can write (5.40) as
XeLagxe® = x-H[®, T ¢]. (5.43)
where
HEP Y1) = Y Fa o) + GO UH ) gy 00T

Ixh[®, Y%, €]l ey < C(e" + 272" + ¥ 72) (1 + | ®|| r2(ray)-

In order to solve Eq. (B43), we require a regularization that guarantees the in-
vertibility of the operator x.L4 gXxe. Since zero is an isolated eigenvalue of L4 g,
there is a small disc of radius p = p. about zero, with boundary C, such that for
¢ sufficiently small, C, encircles m eigenvalues of x.L 4 gx., counting multiplicity,
where m is the multiplicity of zero as an eigenvalue of L4 .

Introduce the projection onto the spectral subspace associated with eigenvalues
of xeL a,QXe, encircled by C):

_ 1 —1
I, = i /cp (XeLa,gxe — M) dA, (5.45)
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Note that
My = (Fags Dy (5.46)
projects onto the kernel of L4 g.
We now rewrite (5.43]) as the following system for ® and Y©:
XeLaox® = XE(I - HE)XEH[@7 e, 5] (5'47)
XEHEXEH[(I),TE,E] = 0. (5.48)

Any solution (®°, T¢) of (L4T), (B-A]) is a solution of (5A3)
We claim that for ¢ small (5.47) can be solved for ® = ®°[Y*¢] via the equivalent

nonlocal “integral” equation:

O = (xeLaoxe)™! (I —1L) (TEFA,Q 0L U)oy +HO° Tivg]) .
(5.49)
Indeed, the solution may be constructed using the iteration:

(I)§+1 = (XELA,QXE)_1X€(I - HE)X€(TEFA,Q + <w(')7 U#('v y)>L2(Rd) + h[@;, Tsv E])v
@5 = (xeLaxe) " Xe (I = TL)(T*Fa g + (0. U7 (,3)) 1o )

(5.50)
By use of (543) and (544), we have
@41 — @5l < [(xeLa,oxe) " xe(I — o) xe (h[®;, Y2, 6] — h[®;_1, Y% €])|
2
<7(e) @ — @5 1, T(e)=p tC(E" +> +£5772), 3 <r< 1.

Therefore, ||®;11 — P;| < 7()7 |®1 — P and if € satisfies the smallness condition
7(g) < 1, the sequence {®};>¢ is Cauchy in H?(R?). It therefore contains a subse-
quence, which is convergent to a limit ®5 € H?(RY). By H?(R?) continuity of the
terms in the iteration (L.50), one can pass to the limit in (B.50) to obtain a solution
®% which satisfies Eq. (&49).

This solution @ is a functional of Y¢, and appears in equation (5:48]), which we
view as an equation for T¢. We write (048] in the form

g[Uu E] = UXEHEFA,Q(Y) + X€H€ <w()7 U#(7 y)>L2(Q)

(5.51)
+ XL h[®[v],v,e] = 0.
For € = 0, this equation has the solution g[vg,0] = 0 with
o= <FA’Q(')’ <w(o), U#(o= ')>L2(Q)>L2(Rd) ' (5:52)

The Jacobian, D, g[vg, 0] = 1. By the implicit function theorem [23], for || sufficiently
small there exists a unique solution € — Y¢ satisfying ¢g[Y*,e] = 0. This completes
the proof of Theorem [B.11

Appendix A. Effective Mass Tensor.
In this appendix we prove Proposition 4] relating the Hessian matrix of the
band dispersion function FEp, (k) to the matrix A resulting from the multiple-scale
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analysis. In addition, we prove hypothesis H2(b) under certain conditions and the
positive definiteness of I — A.

The solutions to the eigenvalue equation (2.1) are sought in the form wu,(x;k) =
e2mik Xy, (x; k), k € Q4. Then, Db, and Ey, satisfy

Ly, = (A —47ik - V + 472|k[? + V(x) = Ep, (K)) Doy (5, k) =0, x¢€T?,
(A1)
with periodic boundary conditions ps, (x + €;; k) = pp, (x;k). Taking the derivative
of eq. (AJ]) with respect to k; gives

A O, Doy (X3 k) = (47i0,, — 87k + Ok, By, (k) Do, (x: k). (A.2)

Evaluating eq. (A2) at k = k, and using the fact that the kernel of L,(kk*) is spanned
by pp, (%;ky), we arrive at the solvability condition

akj Eb* (k*) = —4m <(6I] + 27'”]{:*,]) Doy (7 k*)7 Doy (7 k*)>L2(Q) ) (A?))

for j =1,2,...,d. When ky =0, ps,, (x; ky) is real valued so that eq. (A3) simplifies
to

Or; Bv, (ky) =0, j=1,2,...,d (A4)
For the case d = 1, we also have
E{)*(k:*) =0, kye{0,£1/2}, d=1. (A.5)

This result follows from properties of the Floquet discriminant A(F) [12]. Briefly, for
each F, one constructs a 2 x 2 fundamental matrix of solutions M (E) and considers
the values of F for which M (F) has an eigenvalue 1 or —1 corresponding to a periodic
or antiperiodic eigenvalue, respectively. This is equivalent to A(FE) = 2 where

trace(M (Ep(k))) = A(Ep(k)) = 2 cos(2mk(Ey)). (A.6)
Differentiating this expression with respect to k and evaluating at k = k, gives
dA , )
5 (Ev, (K)) By, (k) = =47 sin(2nk). (A.7)

Since dA/dE(E) = 0 if and only if E is a double eigenvalue (Theorem 2.3.1, [12]) and
Ey, (k) is assumed simple (hypothesis H2(a)), eq. (A%) follows.

The above discussion proves hypothesis H2(b) at the left band edge ky = 0 for
arbitrary d and both left and right band edges ky € {0,4+1/2} when d = 1. It is
possible for VEy, (ki) = 0 in other cases, e.g. separable potentials, and we continue
the discussion assuming this to be true.

It follows that

Ok, Py (X3 Kye) = 47Ti(LE,<k*))_l {(0n, + 2miky j)po, (1 ki) } (). (A.8)
Differentiating eq. (A.2)) with respect to k; and setting k = k, gives
Lgx:k*)akjaklpb*(x;k*) =
— 1672 (0, + 2miky ) (Lik*))fl {(awj + 27tk ) Dby (-5 k*)} (x)
—167° (0a, + 2miky ;) (Lfkk*))—l {(0z, + 2miks 1)ppy (5 ki) } (%)
+ (Onhy B (ki) — 87°651) Py (%5 K )

(A.9)
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Invoking the solvability condition and using ||ps, [22(0) = 1, eq. (A gives
Ok ky B (ki) = 87205
. —1 .
1672 (00, + 2k (L)) T (02, + 2k )b, (03 Ka)} (-),pb*(-;k*)>L2(Q)

1672 (0, + 2mikn ) (L) ™ {0y + 2k )P, (03K} (), oy (5 k*)>L2(sz> .
(A.10)

Integrating by parts and using the fact that (L;“*))’l is self-adjoint, the last two

terms are equal giving
Ok By (ki) = 8726

= 3272 ( (0, + 2mikn ), (), (LE) T (80, + 2miken)po, (05K )} (-)>L2(m .

(A.11)

In order to identify eq. (A1) with the final result, eq. ({20) in Prop. 4l we use the
definition of w(x) in eq. (2] to compute

0z, w(x) = 2™ X5 (0, + 2miky ;) po, (X k), (A.12)
which is the first term in the inner product of eq. (A-I2). In addition, the identity
Ly XX f(x) = TR XLEH f(x), (A.13)
implies
2k X (LY T (0, + 2k )Py (1K)} (%) = Lt {0nw()} (%), (A14)

and the result follows.

Appendix B. Homogenization and Variational Analysis.
The existence of a bound state for eq. (ILT]) bifurcating from the lowest band edge
Ey(0) can be proved by showing that the Rayleigh quotient

_ Jaa {IVu®)]? + [V(x) +£2Q(ex) — Eo(0)]|u(x)[*dx}
f]Rd |u(x)[2dx ’

is negative for some choice of u € H'(R?) [2I]. A natural choice for u is the multi-
scale expansion in eq. (£2) with e sufficiently small. Furthermore, a higher order,
two-term trial function gives a better approximation of the energy than the one-term
trial function.
ProrosiTION B.1.
1. Negative energy trial function: with assumptions H1-H3 in section[3d and
setting E, = Ey(0), the lowest band edge, then there exists g > 0 such that
for all0 < e < g,

Elu] (B.1)

E[Faq(eo)w(o) +2VoFa g(eo) - L,,' {Vw} (0)] < 0. (B.2)

It follows that there exists a ground state.
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2. Estimates of the ground state energy: if L; g = —Ay +Q(y) has a sim-
ple eigenvalue e; g < 0 and corresponding eigenfunction Fr o(y) € H*(R?),
then there exists €9 > 0 such that for all 0 < e < g,

E[Fa,qleo)w(o) +2VoFag(e0) - Ly {Vw} (0)] < € [Frq(e0)w(o)] < 0.
(B.3)
For the proof of Prop. [B.I] we will make repeated use of the following averaging
lemma.
LEMMA B.2. Let p(x) = p(x + z) be periodic with fundamental period cell §)
and Y,y |Pz| < 00 where p, are the Fourier series coefficients of p(x). If G €
LY(RY) n C"(R?), then

/ p(x)G(ex)dx — id p(x)dx/ G(y)dy‘ < Ce™. (B.4)
R4 € Rd

Q

Proof. Expand p in the Fourier series p(x) = 3, 74 Pze*™**. Then

1 ~ 2miz-y /e
[ pGEeix = 3 b [ Gl ay

z€Z4 Rd
= p_g/ G(y)dy + Z Dz 27”‘z'y/gdy (B.5)
g Rd 720
1
= — d Gly)d (@)
- x [ G)dy +0E)

where the first line is justified by the assumed absolute convergence of the Fourier
coefficients and the second line results from integration by parts n times. O

First we consider the ansatz u(x) = Fr g(ex)w(x) for eq. (B3). A computation
and several applications of the averaging lemma give

2 Je (IVFra®)P + QWIFr o)} dy | oy
Jra |F1o(y)[2dy (B-6)
= 5261@ +o(?) <0,

E[Frq(eo)w(o)] =

for e sufficiently small.
A similar, more involved computation for the ansatz u(x) = Fa g(ex)w(x) +

2VFE4 q(ex) - Lyt {Vw} (x) leads to
E[Fa,q(e0)w(o) +2VFa g(e0) - L,,' {Vw} (0)]
_ 2 Joa {VFAQ(Y) - AVFA o(y) + Q(¥)|Fa(y)I*} dy

Jra 1Faq(y)[*dy
=ceaq +o(e?) <0,

+ o(e?) (B.7)

for € sufficiently small. For a bifurcation from the lowest band edge, the effective mass
tensor A is positive definite [I9] hence the eigenvalue e 4 ¢ is negative.

The proof of Prop. Bl is completed if we can show that e4 ¢ < ey . For this,
we use the following proposition.

ProPoOSITION B.3. The operator I — A = (4 <6ij, L;l{awlw}>L2(Q)) is positive
definite at the lowest band edge (b, =0, ky = 0).
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Proof. Recall that L, > 0 with one-dimensional L?(T?) kernel spanned by w. Let

v = (v1,...,v4) € R? be arbitrary. Then
1

(I =Ayv ={v- L.'v- > v 2= CvI?, C>0
v ( )V <V Vw, % vV vw>L2(Q) El (O) _ E* HV vw” ”V” ) > U,
(B.8)

where F;(0) — E, > 0 is the second eigenvalue of L, acting on L?(T?). O

Introducing the energy functional
Va(y) - AVg(y) + 2 d

Tnoldl = Jra [Va(y) - AVg(y) + Q(y)g*(v)] dy JeIXQ).  (BY)

Jra 6*(y) dy ’
we observe

_ Jpae[Vo(y) - (A= DVg(y)] dy
Jra g*(y) dy

by the negative definiteness of A — I from Prop. Using egs. (BX6), (B.7), and

(BIQ) we find

eaq =JaglFaql= inf Jaolgl <JaolFrel <JrelFiel=ere, (B.11)
geL?(Q)

Jaelgl = Jrqldl <0, gelL*Q), (B.10)

and the proof is complete.
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