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DEFECT MODES AND HOMOGENIZATION OF PERIODIC

SCHRÖDINGER OPERATORS

M. A. HOEFER: AND M. I. WEINSTEIN;

Abstract. We consider the discrete eigenvalues of the operator Hε � �∆ � V pxq � ε2Qpεxq,
where V pxq is periodic and Qpyq is localized on R

d, d ¥ 1. For ε ¡ 0 and sufficiently small, discrete
eigenvalues may bifurcate (emerge) from spectral band edges of the periodic Schrödinger operator,
H0 � �∆x � V pxq, into spectral gaps. The nature of the bifurcation depends on the homogenized
Schrödinger operator LA,Q � �∇y �A∇y� Qpyq. Here, A denotes the inverse effective mass matrix,
associated with the spectral band edge, which is the site of the bifurcation.

Key words. multiple scales, Lyapunov-Schmidt reduction, eigenvalue bifurcation, spectral band
edge

AMS subject classifications. 35B27, 35B32, 35C20, 35J10

1. Introduction and Outline. Self-adjoint elliptic partial differential opera-
tors with periodic coefficients e.g. the Schrödinger operator with a periodic potential,
the time-harmonic Helmholtz equation with variable refractive index, and the time-
harmonic Maxwell equations with variable dielectric and permeability tensors, play
a central role in wave propagation problems in classical and quantum physics. The
spectrum of such operators, characterized by Floquet-Bloch theory [29, 20, 12], con-
sists of the union of closed intervals (spectral bands). The eigenstates are extended
(not localized) and form a complete set with respect to which any function in L2

pR
d
q

may be represented.
In many problems in fundamental and applied physics, periodic media are per-

turbed by spatially localized defects. These may appear as random imperfections
in a media, e.g. a defect in a crystal, or in engineering applications, they may be
introduced deliberately in order to influence wave propagation [4, 17]. Since the es-
sential spectrum is unchanged by a sufficiently localized and smooth perturbation
(Weyl’s theorem, [29]), typical localized perturbations will only introduce eigenvalues
in spectral gaps of the spectrum with associated localized defect modes.

This paper is concerned with a class of localized (defect) perturbations to a peri-
odic Schrödinger operator of the form:

Hε � �∆x � V pxq � ε2Qpεxq,

where V pxq is periodic on R
d, Qpyq decays as |y| tends to infinity and ε is a small

parameter.
Our main result, Theorem 3.1, concerns the perturbed eigenvalue problem

Hεuε � µεuε, uε P H
1
pR

d
q, (1.1)

for ε positive and sufficiently small. See section 3 for hypotheses on the periodic
potential, V , and the localized perturbation, Q.

For ε sufficiently small, we prove the bifurcation of discrete eigenvalues into the
spectral gaps, associated with the unperturbed operator, H0 � �∆ � V pxq. For
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any given spectral band edge, we give detailed expansions with error estimates for
the perturbed eigenvalues and corresponding localized eigenfunctions in terms of the
eigenstates of a homogenized Schrödinger operator

LA,Q � �

ḑ

j,l�1

B

Byj
Ajl

B

Byl
� Qpyq. (1.2)

Here, Ajl denotes the inverse effective mass matrix, associated with the particular
band edge from which the bifurcation occurs; see Theorem 3.1. Ajl, derivable by
formal multiple scale expansion (see section 4), is expressible in terms of the band
edge (Floquet-Bloch) eigenstate. It is proportional to the Hessian matrix D2Eb

�

pk
�

q

of the band dispersion function, associated with �∆ � V pxq, evaluated at the band
edge E

�

� Eb
�

pk
�

q.

Referring to the schematics of figures 1.1 and 1.2, we discuss our results.


 Suppose the inverse effective mass matrix, A, is positive definite and assume
LA,Q has an eigenvalue, eA,Q   0. This occurs if Qpyq is a “down-defect”
(sufficiently “deep” in dimensions d ¥ 3) as in figure 1.1.a. In this case,
Theorem 3.1 asserts the existence of an eigenvalue at E

�

� ε2eA,Q�Opε3q  

E
�

.

 Now suppose the inverse effective mass matrix, A, is negative definite and
LA,Q has an eigenvalue, eA,Q ¡ 0. This occurs if Qpyq is a “up-defect”
(sufficiently “high” in dimensions d ¥ 3) as in figure 1.1.b. In this case,
Theorem 3.1 asserts the existence of an eigenvalue at E

�

� ε2eA,Q�Opε3q ¡

E
�


 Fig. 1.2 shows a more general band edge bifurcation when LA,Q has three

eigenvalues e
p1q

A,Q   e
p2q

A,Q   e
p3q

A,Q, the largest of which is degenerate with mul-
tiplicity three. Theorem 3.1 asserts the existence of five ordered eigenvalues

at E
�

�ε2e
pjq
A,Q�Opε3q, j � 1, 2 and E

�

�ε2e
p3q

A,Q�ε
3µ

pkq
3 �Opε4q, k � 1, 2, 3.

1.1. Outline of the paper and overview of the proof. Section 2 summarizes
the required spectral theory for Schrödinger operators with periodic potentials and
introduces variants of the classical Sobolev space, Hs

pR
d
q, which provide a natural

functional analytic setting. Section 3 contains the hypotheses on V and Q and the
statement of our main theorem, Theorem 3.1. In section 4 we present a formal multiple
scale / homogenization expansion in which we systematically construct bifurcating
eigenstates and eigenvalues to any prescribed order. In section 5 we prove Theorem
3.1. In particular, we study the equations governing the correction, Ψε to the N�
term multiple scale expansion.

To obtain error bounds of suitably high order in ε, we use a Lyapunov-Schmidt
approach. Specifically, we decompose the error into Floquet-Bloch modes associated
with energies lying near the spectral band edge, E

�

, and those lying “far” from E
�

:
Ψε

� Ψε
near�Ψε

far. Ψ
ε
near has the character of a wave-packet, spectrally supported on

a small interval with endpoint E
�

. The next step is to solve for Ψε
far as a functional

of the “parameter” Ψε
near, with appropriate bounds. Substitution of Ψε

farrΨ
ε
nears into

the near equation implies a closed equation for Ψε
near. With strong motivation from

the structure of terms in the multiple scale expansion, we appropriately rescale, solve
via the implicit function theorem, and estimate Ψε

near. The approach we take has
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· · ·
E 0(k ) E 1(k ) E 2(k )

E ∗ + ε 2eA,Q, sgn(A) = +1 ⇒ eA,Q < 0

a)

· · ·
E 0(k ) E 1(k ) E 2(k )

E ∗ + ε 2eA,Q, sgn(A) = −1 ⇒ eA,Q > 0

b)

Fig. 1.1. a) Periodic structure with “down defect” and corresponding localized eigenstate for
the case of positive definite effective mass tensor. b) Periodic structure with “up defect” and corre-
sponding localized eigenstate for the case of negative definite effective mass tensor. Below are shown
eigenvalue bifurcations from band edges of the form Eb

�

pk
�

q � E
�

.

E b ∗(k )

O (ε 2)

O (ε 3)

Fig. 1.2. Schematic of band edge bifurcations in the case where the inverse effective mass
matrix, A, is positive definite. The homogenized operator, LA,Q, is assumed to have two simple
eigenvalues and one degenerate eigenvalue with multiplicity three.

been applied in the context of the nonlinear Schrödinger / Pitaevskii equation in
[31, 27, 10, 9, 16].

Previous work for linear Schrödinger operators: Bifurcation of eigenval-
ues from the edge of the continuous spectrum for Schrödinger operators with small
decaying potentials, corresponding to weak defects in dimensions one and two for the
case of a homogeneous medium or vacuum (V � 0), was studied in [30]. Conditions
ensuring the existence of eigenvalues in the gaps of periodic potentials were obtained
in [1] and [13, 14], using the Birman-Schwinger (integral equation) formulation of the
eigenvalue problem. Homogenization theory was applied to obtain eigenvalues in the
spectral gaps of a class of periodic divergence form elliptic operators, governing lo-
calized states in high contrast media in [18, 8]. An elementary variational argument
in spatial dimensions one and two, yielding general conditions for the existence of
discrete modes in spectral gaps of periodic potentials, was recently presented in [26].
More general, variational methods can be applied to obtain defect modes which are
obtained as infinite dimensional saddle points of strongly indefinite functionals; see,
for example, [11].

Our results concern a particular class of weak defects, slowly varying and of small
amplitude: ε2Qpεxq, which give rise to defect modes in any spatial dimension. We
note that the one- and two-term truncated multi-scale homogenization expansion of
defect modes, which we construct, are natural trial functions for a variational proof
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of existence of ground states; see the discussion in Appendix B. Note also that the
scaling of the perturbing potential, ε2Qpεxq, also arises naturally in solitary standing
wave (“soliton defect mode”) bifurcations from band edges of periodic potentials in the
nonlinear Schrödinger / Gross-Pitaevskii equation [16].

Homogenization theory has been used to study periodic elliptic divergence form
operators near spectral band edges in [6, 7, 2]. Homogenization results for the time-
dependent Schrödinger equation with a scaling, equivalent to the one considered here,
were obtained by two-scale convergence methods in [3]; see also [28, 5, 2]. In [3] the
contrast between the scaling we use and the semi-classical scaling is discussed. These
results establish the validity of the homogenized time-dependent Schrödinger equation
on certain finite time scales. The results of the present paper focus on a subclass of
solutions, bound states, which are controlled on infinite time scales.

Finally, we mention work on effective classical electron motion in solid state
physics, derived from the Schrödinger equation for an electron in a spatially peri-
odic Hamiltonian, perturbed by spatially slowly varying electrostatic and magnetic
potentials [22, 24, 25], in a semi-classical limit.

Acknowledgments: This research was initiated while MAH was an NSF Post-
doctoral Fellow under DMS-08-03074 in the Department of Applied Physics and Ap-
plied Mathematics at Columbia University. MIW was supported in part by NSF grant
DMS-07-07850 and DMS-10-08855. MIW would also like to acknowledge the hospi-
tality of the Courant Institute of Mathematical Sciences, where he was on sabbatical
during the preparation of this article.

1.2. Notation and conventions. We note that we may, without loss of gener-
ality, restrict to the case where the fundamental period cell is Ω � r0, 1sd. Indeed, let
B denote the fundamental period cell, spanned by the linearly independent vectors
tr1, . . . , rdu and define the constant matrix R�1 to be the matrix whose jth column
is rj . Then, under the change of coordinates x ÞÑ z � Rx,

�∇x �∇x � V pxq acting on L2
perpBq transforms to

�∇z � α ∇z � Ṽ pzq � �

ḑ

i,j�1

αij

B

2

BziBzj
� Ṽ pzq

acting on L2
per

�

r0, 1sd
�

where

α � RRT , Ṽ pzq � V
�

R�1z
�

, x � R�1z .

1. Integrals with unspecified region of integration are assumed to be taken over
R

d, i.e.
´

f �

´

Rd fpxqdx.
2. For f, g P L2, the Fourier transform and its inverse are given by:

Ftfupkq � pfpkq �

ˆ

e�2πik�xfpxq dx, (1.3)

F�1
tgupxq � qgpkq �

ˆ

e2πix�kgpkq dk.

Thus, F F�1
� Id.

3. Ω � r0, 1sd is the fundamental period cell, Ω�

� r�1{2, 1{2sd is the dual
fundamental cell or Brillouin zone
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4. 1Apxq is the indicator function of the set A; χp|k| ¤ aq � 1
tkPΩ� : |k|¤au

5. The repeated index summation convention is used throughout
6. Fourier spectral cutoff:

χp|∇|   aqGpxq �
�

F�1χp|k|   aqF
�

G �

ˆ

e2πix�kχp|k|   aq pGpkqdk

(1.4)

7. T and T �1 denote the Gelfand-Bloch transform and its inverse; see section 2.
8. Bloch spectral cutoff:

χp|∇|   aqGpxq � T �1

#

¸

b¥0

χp| � |   aδbb
�

qTb tGu p�q pbpx; �q

+

pxq,

where b
�

is the index of the spectral band under consideration,
9. Hs

� Hs
pR

d
q is the Sobolev space of order s

}f}2Hs �

¸

|α|¤s

}B

αf}2L2 � }

pf}2L2,s �

ˆ

Rd

p1� |k|
s
2
q

2
|f̂pkq|2 dk (1.5)

2. Spectral Theory for Periodic Potentials. In this section we summarize
basic results on the spectral theory of Schrödinger operators with periodic potentials;
see, for example, [29, 20, 12].

Gelfand-Bloch transform: Given f P L2
pR

d
q, we introduce the transform T and

its inverse as follows

T tfp�qupx;kq �f̃px;kq �
¸

zPZd

e2πiz�x pfpk � zq, (2.1)

T �1
tf̃px; �qupxq �

ˆ

Ω�
e2πix�kf̃px;kqdk. (2.2)

One can check that T �1T � Id.
Two important properties of the transformation T are T Bxj

f �
�

Bxj
� 2πikj

�

T f

and
�

T e2πik�f
�

px,kq � e2πik�xT fpx,kq. It follows that

�

T Φp∇qe2πik�f
�

px,kq � e2πik�xΦp∇� 2πikq pT fq px,kq (2.3)

T pvp�qfq px,kq � vpxq pT fq px,kq, if v is periodic. (2.4)

Floquet-Bloch states: We seek solutions of the eigenvalue equation

p�∆� V pxqq upxq � Eupxq (2.5)

in the form upx;kq � e2πik�xppx;kq, k P Ω� where ppx;kq is periodic in x with
fundamental period cell Ω. ppx;kq then satisfies the periodic elliptic boundary value
problem:

�

�p∇� 2πikq
2
� V pxq

	

ppx;kq � Epkqppx;kq, x P T
d. (2.6)
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For each k P Ω�, the eigenvalue problem (2.6) has a discrete set of eigenpairs
t pbpx;kq, Ebpkq ub¥0 which form a complete orthonormal set in L2

perpΩq. The spec-

trum of �∆� V pxq in L2
pR

d
q is the union of closed intervals

specp�∆� V q �
¤

b¥0, kPΩ�

Ebpkq. (2.7)

We will study the bifurcation of eigenvalues from the band edge

E
�

� Eb
�

pk
�

q, k
�,j P t0, 1{2u, j � 1, . . . , d, (2.8)

with the associated, real-valued band edge eigenfunction

wpxq � e2πik��xpb
�

px;k
�

q P L2
pΩq. (2.9)

For example, the lowest band edge is E0p0q and the associated eigenfunction is periodic
p0px�ej ; 0q � p0px; 0q, j � 1, . . . , d for the standard Cartesian basis vectors teju

d
j�1.

Remark 2.1. Since

wpx � ejq � e2πik�,jwpxq � sjwpxq, (2.10)

where sj � �1 if k
�,j � 0 and sj � �1 otherwise, the natural function space to work

in is L2
symmpΩq, i.e. f P L2

symmpΩq if f P L2
pΩq and fpx � ejq � sjfpxq. Without

loss of generality, and for ease of presentation, we focus on the case where sj � �1,
j � 1, . . . , d so that L2

symmpΩq � L2
perpΩq, the space of square integrable, periodic

functions. This implies that k
�

� 0. The more general case in eq. (2.8) can be handled
by taking kÑ pk�k

�

q and interpreting values of k reflected about the boundary of Ω�.
The simplicity of E

�

and the relation ∇Eb
�

pk
�

q � 0 (see Hypothesis H2 in Sec. 3)
implies that Epk1 � k

�

q can be extended as an even function of k1j � kj � kj,� for
j � 1, . . . , d [29].

We will make repeated use of the following self-adjoint operator

L
�

� �∆� V pxq �E
�

: H2
perpΩq Ñ L2

pΩq. (2.11)

Projections Tb and Completeness of Floquet Bloch states: Define

Tbtfupkq � xpbp�;kq, f̃ p�;kqyL2
pΩq �

ˆ

Ω

pbpx;kq f̃px;kq dx. (2.12)

By completeness of the tpbpx;kqub¥0

f̃px;kq �
¸

b¥0

Tbtfupkq pbpx;kq

Furthermore, applying T �1 we have

fpxq �
¸

b¥0

ˆ

Ω�
Tbtfupkq ubpx;kq dk (2.13)

�

¸

b¥0

ˆ

Ω�
xubp�;kq, fyL2

pRd
q

ubpx;kq dk, (2.14)
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where ubpx;kq � e2πik�xpbpx;kq. The second equality follows from an application of
the Poisson summation formula.

Sobolev spaces and the Gelfand-Bloch transform:

Recall the Sobolev space, Hs, the space of functions with square-integrable derivatives
of order ¤ s. Since E0p0q � inf specp�∆ � V q, then L0 � �∆ � V pxq � E0p0q is a
non-negative operator and Hs

pR
d
q has the equivalent norm defined by

}φ}Hs
� }pI � L0q

s
2φ}L2

Introduce the space (see, e.g. [27, 9])

X s
� L2

pΩ�, l2,sq, (2.15)

with norm

}φ̃}2
X s �

ˆ

Ω�

8

¸

b�0

�

1� |b|
2

d

	s

|Tbtφupkq|
2 dk. (2.16)

Now note that

}φ}2Hs � }pI � L0q
s
2φ}2L2

�

�

�

�

�

�

ˆ

Ω�
e2πik�

¸

b¥0

Tbtφupkq p1�Ebpkq �E0p0qq
s
2 pbp�,kq dk

�

�

�

�

�

2

L2

�

¸

b¥0

ˆ

Ω�
|Tbtφupkq|

2
|1�Ebpkq �E0p0q|

s dk

�

¸

b¥0

�

1� |b|
2

d

	s
ˆ

Ω�
|Tbtφupkq|

2 dk

� }φ̃}2
X s . (2.17)

The second to last line follows from the Weyl asymptotics Ebpkq � b
2

d [15]. Thus we
have

Proposition 2.1. Hs
pR

d
q is isomorphic to X s for s ¥ 0. Moreover, there exist

positive constants C1, C2 such that for all φ P Hs
pR

d
q

C1}φ}Hs
pRd

q

¤ }φ̃}X s
¤ C2}φ}Hs

pRd
q

. (2.18)

3. Main Results. In this section we give a precise formulation of our main
theorem, Theorem 3.1. The following are our assumptions.

H1 Regularity. V P L8perpΩq, Q P Hσ
pR

d
q for σ ¡ d, Eb

�

P C3
pΩ�

q, and
pb

�

P L2
perpΩ;C

3
pΩ�

qq.

H2 Band edge. E
�

� Eb
�

pk
�

q, where k
�

is an endpoint of the bth
�

band such
that

(a) E
�

is a simple eigenvalue with corresponding eigenfunction

wpxq � e2πik��xpb
�

px;k
�

q P H2
perpΩq

and normalization }w}L2
pΩq � 1.
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0 0

sp e c(LA , Q) , sgn (A ) = +1 sp e c(LA , Q) , sgn (A ) = −1a) b)

Fig. 3.1. Discrete and continuous spectrum of LA,Q. a) Positive definite effective mass tensor.
b) Negative definite effective mass tensor.

(b) ∇Eb
�

pk
�

q � 0.
(c) The Hessian matrix,

A �

1

8π2
D2Eb

�

pk
�

q, (3.1)

is sign definite.
H3 Existence of eigenvalue to homogenized equation.

Introduce the homogenized operator

LA,Q � �∇y � A ∇y �Qpyq � �

¸

j,l

B

Byj
Ajl

B

Byl
�Qpyq (3.2)

Set sgnpAq � �1 if A is positive definite and sgnpAq � �1 if A is negative
definite. Assume LA,Q has a simple eigenvalue eA,Q with sgnpAqeA,Q   0
and corresponding eigenfunction FA,Qpyq P H

2
pR

d
q; i.e.

LA,QFA,Q � eA,QFA,Q,

ˆ

Rd

F 2
A,Qpyqdy � 1, sgnpAq eA,Q   0; (3.3)

see figure 3.1(a).
Remark 3.1. For further details regarding the smoothness properties of Eb

�

and pb
�

with respect to k, we refer the reader to [29, 32]. It can be verified that
hypothesis H2 holds in one dimension at all band edges [12] and at the lowest band
edge in arbitrary dimensions [19]. Band edges with multiplicity greater than one exist,

e.g. for the separable potential V pxq �
°d

j�1 V1pxjq, d ¥ 2.

Theorem 3.1. (1) Positive definite effective mass tensor: Assume hypothe-
ses H1-H3, with sgnpAq � �1. Then, there exists ε0 ¡ 0 such that for all 0   ε   ε0,
(1.1) has an eigenpair µε, uεpx;µεq P H

2
pR

d
q. µε lies in the spectral gap of �∆�V pxq

at a distance Opε2q below the spectral band edge having E
�

as its left endpoint.
Moreover, to any order in ε, this solution can be approximated by the two-scale

homogenization expansion, see Eq. (4.35), (5.1), with error estimate

�

�

�

uεp�;µεq �

Ņ

n�0

εnUnp�, ε�q
�

�

�

H2
pRd

q

¤ εN�1C,

�

�

�

µε �E
�

� ε2eA,Q �

Ņ

n�3

εnµn

�

�

�

¤ εN�1C, (3.4)

for all N ¥ 4 and some constant C ¡ 0, which is independent of ε.
(2) Negative definite effective mass tensor: Assume hypotheses H1-H3, with
sgnpAq � �1. Then, the statement of part (1) applies, but now µε lies in the spectral
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gap of �∆� V pxq at a distance Opε2q above the spectral band edge having E
�

as its
right endpoint.

Theorem 3.1 extends to the case where LA,Q has multiple and/or degenerate
eigenvalues with bifurcations from band edges with k

�

� 0, as discussed in the fol-
lowing two remarks.

Remark 3.2. General band edge bifurcations: As discussed in Remark
2.1, Theorem 3.1 generalizes to band edges where k

�

� 0 satisfying eq. (2.8) so that
wpxq P L2

symmpΩq.
Remark 3.3. Multiple simple eigenvalues: Note that if LA,Q has M (finitely

many) eigenvalues, e
pjq

A,Q, j � 1, . . . ,M of multiplicity one, then Theorem 3.1 applies
directly. Specifically, there exists ε̃0 ¡ 0 such that for all 0   ε   ε̃0, there are

eigenvalue / eigenvector branches ε Ñ
�

µ
pjq
ε , uεp�;µ

pjq
ε q

	

. This behavior is shown in

Fig. 1.2 with two simple eigenvalue branches with spacings Opε2q.
Remark 3.4. Branches emanating from degenerate eigenvalues of LA,Q:

In spatial dimensions, d ¡ 1, the operator LA,Q may have degenerate eigenvalues,
e.g. if there is symmetry in Qpyq. Suppose eA,Q has multiplicity M . Then, since LA,Q

is self-adjoint, eA,Q perturbs, generically, to M distinct branches. Thus, applying the
method of proof of Theorem 3.1, each degenerate eigenvalue of LA,Q of multiplicity M
gives rise to M branches of eigenpairs of Hε. The cluster of M distinct eigenvalues
of Hε are within an interval of size Opε3q about E

�

� ε2eA,Q. The jth eigen-branch
satisfies the error estimates

�

�

�

upjqε p�;µpjqε q �

Ņ

n�0

εnU pjq
n p�, ε�q

�

�

�

H2
pRd

q

¤ εN�1C,

�

�

�

µpjqε �E
�

� ε2eA,Q �

Ņ

n�3

εnµpjqn

�

�

�

¤ εN�1C, (3.5)

for j � 1, 2, . . . ,M , all N ¥ 4 and some constant C ¡ 0, which is independent of ε.
This behavior is shown in Fig. 1.2 where an eigenvalue of multiplicity three bifurcates
from the band edge.

4. Homogenization and Multi-scale Expansion. We derive a formal asymp-
totic expansion for the bound state that bifurcates from the band edge into a gap.
The results of these calculations will be used as an ansatz in the next section 5 to
rigorously prove existence and error estimates.

We assume that uεpx;µεq satisfies eq. (1.1)

r�∆� V pxq � ε2Qpεxqsuε � µεuε, (4.1)

and expand it in an asymptotic series as follows

uεpx;µεq � Uǫpx,yq �

8

¸

n�0

εnUnpx,yq, µε � E
�

�

8

¸

n�1

εnµn, (4.2)

where y � εx is the slow variable. Treating x and y as independent variables, equation
(4.1) then takes the form

�

�p ∇x � ǫ∇y q

2
� V pxq � ε2Qpyq

�

Uεpx,yq � µεUεpx,yq . (4.3)
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We seek a solution Uεpx,yq which is periodic in the fast variable, x, and localized in
the slow variable, y. Specifically, we assume Unpx,yq P L

8

perpΩ;H
2
pR

d
qq. Inserting

(4.2) and (4.3) into Eq. (4.1) and equating like powers of ε we find

Opε0q : L
�

U0 � r�∆x � V pxq �E
�

sU0 � 0, (4.4)

Opε1q : L
�

U1 � 2∇x �∇yU0 � µ1U0, (4.5)

Opε2q : L
�

U2 � 2∇x �∇yU1 � µ1U1 � r�∆y �Qpyq � µ2sU0, (4.6)

...

Opεnq : L
�

Un � 2∇x �∇yUn�1 � µ1Un�1 � r�∆y �Qpyq � µ2sUn�2 (4.7)

�

n�1̧

j�3

µjUn�j � µnU0, n ¥ 3.

...

Viewed as a system of partial differential equations for functions of the fast vari-
able x, depending on a parameter y, each equation in this hierarchy is of the form
L
�

U � Gpxq where Gpxq has the same symmetry as wpxq, the band edge state
(see (2.9)), with period cell Ω. To solve these equations, we make repeated use
of the following two solvability criteria based on the Fredholm alternative applied
to the self-adjoint operators L

�

and LA,Q with kerpL
�

q � spantwu � L2
perpΩq and

kerpLA,Qq � spantFA,Qu � L2
pR

d
yq, respectively:

Proposition 4.1. Let G P L2
perpΩq, then L

�

U � G has an H2
perpΩq solution if

and only if

xw,GyL2
pΩq � 0. (4.8)

Remark 4.1. If k
�

� 0, then L2
perpΩq and H2

perpΩq are replaced by function
spaces with the same symmetry as wpxq, L2

symmpΩq and H
2
symmpΩq. See Remark 2.1.

Proposition 4.2. Let H P L2
pR

d
q, then LA,QF � H has a solution F P H2

pR
d
yq

if and only if

xFA,Q,HyL2
pRd

q

� 0. (4.9)

4.1. Opε0q Equation. From H2, there exists a unique, real, bounded eigenfunc-
tion w P H2

perpΩq and a simple eigenvalue E
�

that satisfy

L
�

w � r�∆x � V pxq �E
�

sw � 0, }w}L2
pΩq � 1, (4.10)

so that the general solution to Eq. (4.4) has the multiscale representation

U0px,yq � wpxqF0pyq, (4.11)

for some F0pyq P H
2
pR

d
q that will be determined at higher order.
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4.2. Opε1q Equation. Applying Prop. 4.1 to eq. (4.5) gives the solvability con-
dition

2Byj
F0

�

w, Bxj
w
D

L2
pΩq

� µ1F0 � 0. (4.12)

Since the integrand in the first term, being the derivative of the symmetric function
w2
{2, integrates to zero,

µ1 � 0. (4.13)

Therefore, the general solution for U1 consists of a homogeneous and particular solu-
tion

U1px,yq � wpxqF1pyq � 2Byj
F0pyqL

�1
�

tBxj
wupxq. (4.14)

where F1 P H
2
pR

d
q is to be determined at higher order.

Remark 4.2. For d � 1, the general solution is

U1px, yq � wpxqF1pyq � ByF0pyqwpxq

�

�

�x�

´ x

0
dx1

wpx1q2

´ 1

0
dx1

wpx1q2

�


. (4.15)

4.3. Opε2q Equation. Inserting the expressions (4.13) and (4.14) into Eq. (4.6)
yields

L
�

U2 � 2Byj
F1Bxj

w � LrF0s, (4.16)

where the linear operator LrGs for G P H2
pR

d
q is

LrGspx,yq � � 4Bxj
L�1
�

tBxl
wupxqByj

Byl
Gpyq

� wpxqr�∆y �Qpyq � µ2sGpyq.
(4.17)

Definition 4.3. Define the operator LA,Q : H2
pR

d
q Ñ L2

pR
d
q by

LA,QGpyq � xwp�q,LrGsp�,yqyL2
pΩq � r�∇y � A∇y �Qpyq � eA,QsGpyq, (4.18)

where eA,Q is the simple eigenvalue associated with the eigenfunction FA,Qpyq in hy-
pothesis H3 and

Ajl � δjl � 4
�

Bxj
w,L�1

�

tBxl
wu

D

L2
pΩq

. (4.19)

Proposition 4.4.

Ajl �
1

8π2
Bkj

Bkl
Eb

�

pk
�

q. (4.20)

We give the proof in appendix A; see also [4].
Applying Prop. 4.1 to Eq. (4.16) gives

xwp�q,LrF0sp�,yqyL2
pΩq � 0 � LA,QF0 � 0, µ2 � eA,Q, (4.21)

is the effective, homogenized equation for Eq. (1.1) with the effective mass tensor A.
We have assumed in H3 the existence of the eigenpair FA,Q P H2

pR
d
q and eA,Q P

Rzt0u. Thus, F0pyq � FA,Qpyq.
The general solution for U2 consists of a homogeneous and particular solution

U2px,yq � wpxqF2pyq � 2Byj
F1pyqL

�1
�

tBxj
wupxq � L�1

�

tLrFA,Qsp�,yqupxq. (4.22)
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4.4. Opε3q Equation. Inserting Eqs. (4.13), (4.14), and (4.22) into equation
(4.7) with n � 3 gives

L
�

U3 � 2Byj
F2Bxj

w � LrF1s �H3 � µ3wFA,Q, (4.23)

where H3 is known

H3px,yq � � 2Bxj
Byj

L�1
�

tLrFA,Qsp�,yqupxq�

2L�1
�

tBxj
wupxqr�∆y �Qpyq � eA,QsByj

F pyq.
(4.24)

By Prop. 4.1, Eq. (4.23) is solvable if and only if

LA,QF1 � �xwp�q,H3p�,yqyL2
pΩq � µ3FA,Q. (4.25)

By Prop. 4.2, Eq. (4.25) has a solution if and only if

µ3 �

A

FA,Qp�q, xwp�q,H3p�, �qyL2
pΩq

E

L2
pRd

q

. (4.26)

We can now write F1 in terms of FA,Q as

F1pyq � L�1
A,Q

!

�xwp�q,H3p�, �qyL2
pΩq � µ3FA,Qp�q

)

pyq. (4.27)

With this choice of F1, eq. (4.23) is solvable and its general solution is

U3px,yq � wpxqF3pyq � 2Byj
F2pyqL

�1
�

tBxj
wupxq�

L�1
�

!

LrF1sp�,yq �H3p�,yq � µ3wp�qFA,Qpyq
)

pxq,
(4.28)

where F3pyq is to be determined. Note also that F2pyq, introduced at Opε2q, is to be
determined.

4.5.
�

εnq Order Equation. Continuing the expansion to arbitrary n ¥ 4 from
Eq. (4.7) we have

L
�

Un � 2Byj
Fn�1Bxj

w � LrFn�2s �Hn � µnwFA,Q, (4.29)

where Hn is completely determined by all the lower order solutions Ul, l ¤ n� 3

Hnpx,yq � 2Bxj
Byj

L�1
�

!

LrFn�3sp�,yq �Hn�1p�,yq � µn�1wp�qFA,Qpyq
)

pxq

�

n�1̧

l�3

µlUn�l.
(4.30)

By Prop. 4.1, eq. (4.29) is solvable if and only if

LA,QFn�2 � �xwp�q,Hnp�,yqyL2
pΩq � µnFA,Q. (4.31)

Furthermore, by Prop. 4.2, eq. (4.31) is solvable if and only if

µn �

A

FA,Qp�q, xwp�q,Hnp�, �qyL2
pΩq

E

L2
pRd

q

, (4.32)
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With this choice of µn, Fn�2 is given by

Fn�2pyq � L�1
A,Q

!

�xwp�q,Hnp�, �qyL2
pΩq � µnFA,Qp�q

)

pyq. (4.33)

Finally, with this choice of Fn�2, Unpx,yq is given by

Unpx,yq � wpxqFnpyq � 2Byj
Fn�1pyqL

�1
�

tBxj
wupxq�

L�1
�

!

LrFn�2sp�,yq �Hnp�,yq � µnwp�qFA,Qpyq
)

pxq.
(4.34)

Thus we have:
Proposition 4.5. The first N equations (4.4), (4.5), (4.6), . . ., (4.7) are solvable

with solutions Unpx,yq P H
2
perpΩ;H

2
pR

d
qq, n � 0, 1, . . . , N uniquely determined up

to the two arbitrary slowly varying functions FN pyq, FN�1pyq P H
2
pR

d
q for N ¥ 1.

These functions are the slowly varying envelopes of the homogeneous solutions to the
N � 1th and N th order equations. Moreover,

U pNq

ε px,yq �

Ņ

n�0

εnUnpx,yq, µpNq

ε � E
�

� ε2eA,Q �

Ņ

n�3

εnµn, (4.35)

with the particular choice Fn�1 � Fn � 0, is an approximate solution for the eigen-
value problem (4.1) (equivalently (1.1)) with error formally of order εN�1.

Remark 4.3. The multi-scale form of the approximate eigenfunction given in
Prop. 4.5 is used as a “trial function” in Appendix B to give a “quick” variational
existence proof for defect modes bifurcating from the lowest band edge. We also show
that a two term approximation (leading order homogenized solution plus first nontrivial
correction) yields a better estimate for the energy than the one-term approximation
(leading order homogenized solution).

5. Proof of Theorem 3.1, Bounds on up�, µq � U
pNq

ε , µ � µ
pNq

ε . To prove
Theorem 3.1, we introduce the corrections Ψε

pxq and Υε to the approximate solution
displayed in eq. (4.35) through

upx;µq � U pNq

ε px, εxq � εN�1Ψε
pxq, µ � µpNq

ε � εN�1Υε, (5.1)

Then the error Ψε satisfies the equation:

rL
�

� ε2eA,Q � ε2QpεxqsΨε
pxq � ε2Rε

rΨε,Υε
spxq, (5.2)

where

Rε
rΨε,Υε

s � ΥεU0 � 2∇x �∇yUN �QUN�1 �

Ņ

n�1

µn�1UN�n � εQUN

�Ψε

�

N�2̧

n�1

εnµn�2 � εN�1Υε

�

�Υε
Ņ

n�1

εnUn

�

N�1̧

n�1

εn
Ņ

m�n

µm�1UN�n�m

� ΥεU0 � 2∇x �∇yUN �QUN�1 �

Ņ

n�1

µn�1UN�n �Opεq

� ΥεwFA,Q � U#
�Opεq,

U#
� 2∇x �∇yUN � QUN�1 �

Ņ

n�1

µn�1UN�n.

(5.3)
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The leading order multi-scale approximation U0px, εxq � FA,Qpεxqwpxq in the
ansatz Eq. (5.1) with wpxq � e2πik��xpb

�

px;k
�

q the band edge eigenfunction sug-
gests that the dominant contribution to the frequency content of Ψε will be near
the band edge E

�

� Eb
�

pk
�

q. Therefore, it is natural to decompose Ψε into Bloch
eigenfunctions

Ψε
pxq �

8

¸

b�0

ˆ

Ω�
pbpx;kqe

2πik�xTbtΨ
ε
upkq dk, (5.4)

with associated energies or frequencies Ebpkq where k varies in the Brillouin zone Ω�.
Moreover, we introduce a spectral localization of Ψε into frequencies “near” the band
edge and “far” from the band edge

Ψε
pxq � Ψε

nearpxq �Ψε
farpxq � T

�1Ψ̃ε
nearpx; �q � T

�1Ψ̃ε
farpx; �q,

Ψ̃ε
nearpx;kq � ΠnearΨ

ε
pxq � χp|k� k

�

|   εrq Tb
�

tΨε
upkq pb

�

px;kq,

Ψ̃ε
farpx;kq � ΠfarΨ

ε
pxq �

8

¸

b�0

χp|k� k
�

| ¥ εrδb
�

,bq TbtΨ
ε
upkq pbpx;kq,

(5.5)

where δn,m is the Kronecker delta function and the indicator functions are defined as

χp|k� k
�

|   εrq � 1
tkPΩ�:|k�k

�

| εrupkq, χp|k� k
�

| ¥ εrq � 1
tkPΩ�:|k�k

�

|¥εrupkq.

(5.6)

Remark 5.1. For our analysis near the band edge, we will use Taylor expansions
of various quantities about k � k

�

. Without loss of generality, we will assume that
k
�

� 0 which enables a notationally cleaner presentation. See Remark 2.1.

We will use the conventions

Ψ̃ε
nearpkq �

A

pb
�

p�;kq, Ψ̃ε
nearp�;kq

E

L2
pΩq

,

Ψ̃ε
farpkq �

�

A

pbp�;kq, Ψ̃
ε
farp�;kq

E

L2
pΩq




b¥0

,

(5.7)

where Ψ̃ε
nearpkq is a scalar and Ψ̃ε

farpkq is an infinite vector. This decomposition was
used in [10, 9, 16]. The parameter r is assumed to lie in the interval

r P p2{3, 1q, (5.8)

the choice of which will be made clear later.

We now apply the Bloch transform to Eq. (5.2), project onto the Bloch modes
pbp�;kq and use the properties (2.3) and (2.4) to find

rEbpkq �E
�

� ε2eA,Qs Tb tΨ
ε
u pkq � ε2Tb tQpε�qΨ

ε
p�qu pkq

� ε2Tb tR
ε
rΨε,Υε

su pkq, b � 0, 1, . . . .
(5.9)

We view this as a coupled system of equations for the near and far frequency compo-
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nents Ψ̃ε
nearpkq and Ψ̃ε

farpkq, k P Ω�

near:

$

'

'

'

'

'

'

&

'

'

'

'

'

'

%

pEb
�

pkq �E
�

� ε2eA,QqΨ̃
ε
nearpkq�

ε2χp|k|   εrqTb
�

tQpε�qΨε
nearp�qu pkq

� ε2χp|k|   εrq
�

� Tb
�

tQpε�qΨε
farp�qu pkq

�Tb
�

tRε
rΨε

near �Ψε
far,Υ

ε
su pkq

�

,

(5.10)

far:

$

'

'

'

'

'

'

'

'

&

'

'

'

'

'

'

'

'

%

pEbpkq �E
�

� ε2eA,Qqχp|k| ¥ εrδb
�

,bqΨ̃
ε
far,bpkq

�ε2χp|k| ¥ εrδb
�

,bqTb tQpε�qΨ
ε
farp�qu pkq

� ε2χp|k| ¥ εrδb
�

,bq

�

� Tb tQpε�qΨ
ε
nearp�qu pkq�

Tb tR
ε
rΨε

near �Ψε
far,Υ

ε
su pkq

�

, b � 0, 1, 2, . . . .

(5.11)

5.1. Lyapunov-Schmidt Reduction. In this section, we derive a functional
representation of the far frequency components in terms of the near frequency com-
ponents with an associated estimate. After insertion into the near frequency equation,
a closed system is obtained.

We use the implicit function theorem to solve the far frequency equations. To
this end, we observe the following inequalities due to the definiteness of the matrix
Ajl �

1
8π2 Bkj

Bkl
Eb

�

p0q (see hypothesis H2):

|Eb
�

pkq �E
�

� ε2eA,Q| � |Ajlkjkl �Op|k|3q| ¥ Cε2r ¡ 0, ε2r ¤ |k|, k P Ω�,

|Ebpkq � E
�

� ε2eA,Q| ¥ C ¡ 0, |b� b
�

| ¥ 1.

(5.12)

We now have the following existence result

Proposition 5.1. There exists ε0 ¡ 0 such that for 0   ε   ε0, there is a map-
ping pψ, υ, εq Ñ Ψ̃ε

farrψ, υs, Ψ̃
ε
far : L

2
pR

d
q � Rυ � Rε Ñ X 2 such that Ψ̃ε

farrΨ
ε
near,Υ

ε
s

is the unique solution to the far frequency Eqs. (5.11). The mapping Ψ̃ε
far is C1 with

respect to ψ and υ. The solution of Eqs. (5.11) satisfies the estimate

�

�Ψε
farrΨ

ε
near,Υ

ε
s

�

�

H2
pRd

q

¤ C
�

�

�

Ψ̃ε
farrΨ

ε
near,Υ

ε
s

�

�

�

X 2

¤ Cε2�2r
�

1�Υε
� p1� εN�1Υε

q}Ψε
near}L2

pRd
q

�

,
(5.13)

for 0   r   1.

Proof. Since Eq. (5.11) is supported on frequencies away from E
�

, we can divide
it by Ebpkq � E

�

� ε2eA,Q. This suggests studying the equivalent equation G̃ � 0

where G̃ has components

G̃b

�

φ̃, ε, ψ, υ
�

pkq � χp|k| ¥ εrδb
�

,bq

"

φ̃bpkq � ε2rEbpkq �E
�

� ε2eA,Qs
�1

�

�

Tb tQpε�qφp�qu pkq � Tb tQpε�qψp�qu pkq � Tb tRrψ � φ, υsu pkq
�

*

, b ¥ 0.

(5.14)
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Any function φ̃ P X 2 satisfying G̃rφ̃, ε, ψ, υs � 0 is a solution of the far equations
(5.11) with ψ � Ψε

near, υ � Υε. G̃ is a continuous map X 2
� R � R Ñ X 0 and C1

with respect to ψ and υ satisfying the estimate

}G̃rφ̃, ε, ψ, υs}X 0
¤ Cr1�υ�p1�εN�1�2rυq}φ̃}X 0

�ε2�2r
p1�εN�1υq}ψ}L2

pRd
q

s   8.

(5.15)
Note that

G̃r0, 0, ψ, υs � 0. (5.16)

The Proposition follows from the implicit function theorem [23] if we can show that
Dφ̃Gr0, 0, ψ, υs is invertible. We have

�

Dφ̃G̃rφ̃, ε, ψ, υsf̃
	

b
pkq � χp|k| ¥ εrδb

�

,bqf̃bpkq

�ε2χp|k| ¥ εrδb
�

,bq

Tb tQpε�qfp�qu pkq � f̃bpkq
�

°N�2

l�1 εlµl�2 � εN�1υ
	

Ebpkq �E
�

� ε2eA,Q

.

(5.17)

Therefore, Dφ̃G̃r0, 0, ψ, υs � I is invertible. Note that we use the fact that 0   r   1

to conclude that limεÑ0 ε
2χp|k| ¥ εrδb

�

,bq{rEbpkq � E
�

� ε2eA,Qs � 0. The implicit

function theorem implies that there exists ε0 ¡ 0 and a unique Ψ̃ε
farrΨ

ε
near,Υ

ε
s P X 2

satisfying

G̃
�

Ψ̃ε
farrΨ

ε
near,Υ

ε
s, ε,Ψε

near,Υ
ε
�

� 0, (5.18)

for 0   ε   ε0.
Equation (5.18) is equivalent to

�

Ψ̃ε
far

	

b
pkq � �ε2

Tb

!

Πfar

�

Qpε�qΨε
farp�q �Rε

rΨε
near �Ψε

far,Υ
ε
sp�q

�)

pkq

Ebpkq �E
�

� ε2eA,Q

. (5.19)

We now demonstrate the inequality in Eq. (5.13). Using (2.18), (5.11) and the invert-
ibility of L

�

� ε2eA,Q to obtain

}Ψε
far}H2

pRd
q

¤ C
�

�

�

Ψ̃ε
far

�

�

�

X 2

� ε2C

�

�

�

�

χp| � | ¥ εrδb
�

,bqTb tQpε�qΨ
ε
farp�q �Rε

rΨε,Υε
sp�qu p�q

Ebp�q �E
�

� ε2eA,Q

�

�

�

�

X 2

¤ ε2�2rC

�

�

�

�

p1� b2{dqTb tQpε�qΨ
ε
farp�q �Rε

rΨε,Υε
sp�qu p�q

1� b2{d

�

�

�

�

X 0

¤ ε2�2rC }Qpε�qΨε
farp�q �Rε

rΨε,Υε
sp�q}L2

pRd
q

¤ ε2�2rC
�

p1� εN�1Υε
q

�

}Ψε
farp�q}L2

pRd
q

� }Ψε
nearp�q}L2

pRd
q

�

� 1�Υε
�

,

(5.20)

where the constants C are independent of ε. The third inequality results from the
Weyl eigenvalue asymptotics [15] and the bound (5.12). The last inequality results
from direct estimation of the error terms (5.3). With ε small enough so that ε2�2rC ¤

1{2, we can subtract the term involving ε2�2rC}Ψε
far}H2

pRd
q

from both sides of the
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inequality and then divide by 1� ε2�2rCp1� εN�1Υε
q to obtain the desired estimate

(5.13).
Remark 5.2. Note that we do not obtain smoothness of Ψε

far in ε. When applying
the implicit function theorem in the above proof, we did not use any smoothness of the
map G̃ in ε. This is because of the sharp, ε dependent cutoff function χp|k| ¥ εrq.

Remark 5.3. The estimate for Ψε
far P H

2
pR

d
q and Ψε

near P L
2
pR

d
q in (5.13) can

also be proved for Ψε
far P H

s
pR

d
q and Ψε

near P H
s�2

pR
d
q for s ¥ 2. The proof for

the case s ¥ 3 involves application of the operator pI �L
�

q

s{2�1, which can be shown
to be equivalent to the Hs�2 norm, to Eq. (5.2) and necessitates further regularity
conditions on the functions V pxq, Qpεxq, and Unpx, εxq, n � 0, 1, . . . , N .

5.2. Near Frequency Equation and its Scaling. We now study the near
frequency equation (5.10) with the aid of certain Taylor expansions for |k|   εr,
where we invoke our regularity hypothesis H1

Eb
�

pkq � E
�

�

1

2
Bkj

Bkl
Eb

�

p0qkjkl �
1

6
Bkj

Bkl
Bkm

Eb
�

pk1qkjklkm,

� E
�

�Ajlkjkl �
1

6
Bkj

Bkl
Bkm

Eb
�

pk1qkjklkm, (5.21)

pb
�

px;kq � pb
�

px; 0q � Bkj
pb

�

px;k2qkj

� wpxq � Bkj
pb

�

px;k2qkj , (5.22)

for some |k1pkq|, |k2pkq|   εr. Inserting these expansions into the near frequency
equation (5.10), we have

rAjlkjkl � ε2eA,QsΨ̃
ε
nearpkq

� ε2χp|k|   εrqTb
�

tQpε�qΨε
nearp�qu pkq � ε2R̃ε

nearrΨ
ε
near,Υ

ε
spkq,

(5.23)

where

R̃ε
nearrΨ

ε
near,Υ

ε
spkq � χp|k|   εrq

�

Tb
�

tRε
rΨε

near �Ψε
farrΨ

ε
near,Υ

ε
s,Υε

su pkq

� Tb
�

tQpε�qΨε
farrΨ

ε
near,Υ

ε
sp�qu pkq

�

1

6ε2
kjklkmBkj

Bkl
Bkm

eb
�

pk1qΨ̃ε
nearpkq

�

,

� χp|k|   εrqTb
�

 

Υεwp�qFA,Qpε�q � U#
p�, ε�q

(

pkq

�OX 2

�

pε� ε2�2r
� ε3r�2

q}Ψ̃ε
near}X 2

�

,

(5.24)

where the leading order behavior comes from the definition of Rε in Eq. (5.3). Recall
that U# is defined in Eq. (5.3). The terms proportional to ε3r�2 put a further
restriction on the exponent r. In order to keep R̃ε

near order one, we require

2{3   r   1. (5.25)

In this case, the error term satisfies the estimate
�

�

�

R̃ε
nearrΨ

ε
near,Υ

ε
s

�

�

�

X 2

¤ C
�

1�Υε
� pε� ε2�2r

� ε3r�2
q}Ψ̃ε

near}X 2

�

.
(5.26)
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Equation (5.23) can be rewritten suggestively as:

rAjl

kj

ε

kl

ε
� eA,QsΨ̃

ε
nearpkq

� χ

�

�

�

�

�

k

ε

�

�

�

�

  εr�1




Tb
�

tQpε�qΨε
nearp�qu pkq � R̃ε

nearrΨ
ε
near,Υ

ε
spkq,

(5.27)

Thus, we seek a solution of Eqs. (5.23), (5.24) in the form

Ψ̃ε
nearpkq � χp|k|   εrq

1

εd
pΦ

�

k

ε




� χ

�

|k|

ε
  εr�1




1

εd
pΦ

�

k

ε




, (5.28)

Ψε
nearpxq � T �1

"

χp| � |   εrq
1

εd
pΦ
�

�

ε

	

pb
�

px; �q

*

pxq

� T
�1

"

χ

�

| � |

ε
  εr�1




1

εd
pΦ
�

�

ε

	

pb
�

px; �q

*

pxq

In the next two Lemmata, Lemma 5.2 and 5.3, we express the terms of (5.27),
which involve the Gelfand-Bloch transform, in terms of the classical Fourier transform
plus a remainder, estimated to be small in ε.

Lemma 5.2.

(A) Assume Ψ̃ε
nearpkq is given by (5.28). Then,

rAjl

kj

ε

kl

ε
� eA,QsΨ̃

ε
nearpkq

� Fy

 �

AjlByj
Byl

� eA,Q

�

χp|∇|   εr�1
q Φ

(

�

k

ε




(B)

Tb
�

tQpε�qΨε
nearp�qu pkq �

1

εd
Fy

 

Q χp|∇| ¤ εr�1
qΦ

(

�

k

ε




� Epkq

(5.29)

where

}E}L2
pRd

q

¤ Cεs }Q}Hs
pRd

q

}Φ}L2
pRd

q

, (5.30)

with s ¡ d and 0   r   1.
Proof of Lemma 5.2: Recall the notation Ff � pf for the Fourier transform given
by (1.3). By (5.28) since k is localized near 0 we have, Taylor expanding pb

�

px;kq
about k � 0,

Ψε
nearpxq � pb

�

px; 0q F�1

"

χ p|�|   εrq
1

εd
pΦ
�

�

ε

	

*

pxq � E1pxq

� pb
�

px; 0qχ
�

|∇y|   εr�1
�

Φpyq|y�εx � E1pxq,

}E1}L2
pRd

q

¤ Cεr}Φ}L2
pRd

q

, C � C
�

}∇kpb
�

}L8pΩ�Ω�qd

�

.
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Since T commutes with multiplication by a periodic function (see (2.4)) and since
pb

�

px; 0q is periodic

T tQpε�qΨε
nearp�qu px,kq

� pb
�

px; 0q T
 

Qpε�q χ
�

|∇ε�|   εr�1
�

Φpε�q
(

px,kq � T tQpε�qE1p�qu px,kq.
(5.31)

By the definition of T , (2.1), we have

T
 

Qpε�q χ
�

|∇ε�|   εr�1
�

Φpε�q
(

px,kq (5.32)

� Fx

 

Qpε�q χ
�

|∇ε�|   εr�1
�

Φpε�q
(

pkq

�

¸

m�0

Fx

"

Qpε�q F�1
k

"

χ p|�|   εrq
1

εd
pΦ
�

�

ε

	

*

p�q

*

pk�mq e2πim�x

�

1

εd
Fy

 

Qp�q χ
�

|∇|   εr�1
�

Φp�q
(

�

k

ε




�

¸

|m|¥1

ˆ

pQ

�

l

ε




1

εd
pΦ

�

k�m� l

ε




χp|k�m� l|   εrq dl e2πim�x . (5.33)

To prove (5.30) we need to estimate the sum in (5.33) for |k|   εr. For such k

the sum can be estimated as follows:
¸

|m|¥1

ˆ

�

�

�

�

pQ

�

l

ε




�

�

�

�

1

εd

�

�

�

�

pΦ

�

k�m� l

ε




�

�

�

�

χp|k�m� l|   εrq dl

¤

¸

|m|¥1

�

ˆ

|m�l|¤2εr

�

�

�

�

pQ

�

l

ε




�

�

�

�

2
1

εd
dl

�

1

2

�

ˆ

|m�l|¤2εr

�

�

�

�

pΦ

�

l

ε




�

�

�

�

2
1

εd
dl

�

1

2

¤ C
¸

|m|¥1

�

1�
�

�

�

m

ε

�

�

�

2



�

s
2

�

ˆ

|m�l|¤2εr

�

�

�

�

pQ

�

l

ε




�

�

�

�

2
�

1�

�

�

�

�

l

ε

�

�

�

�

2
�s

1

εd
dl

�

1

2

}Φ}L2
pRd

q

¤ C εs
¸

|m|¥1

|m|

�s
}Q}Hs

pRd
q

}Φ}L2
pRd

q

¤ C εs }Q}Hs
pRd

q

}Φ}L2
pRd

q

, s ¡ d.

(5.34)

A similar calculation shows

}T tQpε�qE1p�qu }L2
pRd,Ω�q ¤ Cεs�r

}Q}Hs
pRd

q

}Φ}L2
pRd

q

, s ¡ d, 0   r   1. (5.35)

Since Tb
�

tfupkq � xpb
�

p�,kq, T tfup�,kqyL2
pΩq, we have by (5.31), (5.32), (5.33),

(5.34), and (5.35) that

Tb
�

tQpε�qΨε
nearp�qu pkq �

1

εd
Fy

 

Q χp|∇| ¤ εr�1
qΦ

(

�

k

ε




� Epkq,

}E}L2
pRd

q

¤ Cεs}Q}Hs
pRd

q

}Φ}L2
pRd

q

, s ¡ d, 0   r   1, (5.36)

which is the assertion of Lemma 5.2.

Lemma 5.3. The right hand side of eq. (5.23), defined in eq. (5.24), satisfies

R̃ε
nearrΨ

ε
near,Υ

ε
s pkq (5.37)

�

1

εd
χ

�

�

�

�

�

k

ε

�

�

�

�

  εr�1




�

Υε
pFA,Q

�

k

ε




�

B

wp�q, pU#

�

�,
k

ε


F

L2
pΩq

�

� Spkq,



20 M. A. Hoefer and M. I. Weinstein

where

}S}L2
pRd

q

¤ C
�

ε� ε2�2r
� ε3r�2

}

�

}Φ}L2
pRd

q

. (5.38)

Proof. The proof follows in a similar manner as to Lemma 5.2 by use of eqs. (5.3)
and (5.26) along with the estimates in Prop. 5.1 and eq. (5.24).

5.3. Solution of the Near Frequency Equation for Small ε. The results
from the previous section enable us to complete the proof of Theorem 3.1.

Substitution of the expansions of Lemmata 5.2 and 5.3 into (5.27) and defining

κ �

k

ε
(5.39)

results in
Proposition 5.4. The near frequency component Φ satisfies the equation

Fy t

�

AjlByj
Byl

� eA,Q

�

χp|∇|   εr�1
q Φu pκq

� FytQχp|∇|   εr�1
qΦupκq � FyHrΦ,Υ

ε, εs. (5.40)

The right hand side has the following form

FHrΦ,Υε, εs � χp|κ|   εr�1
qpεdR̃ε

nearrχp|∇|   εr�1
qΦ{εd,Υε

s � R̃crΦsq

� χp|κ|   εr�1
qrΥε

pFA,Qpκq �

A

wp�q, pU#
p�,κq

E

L2
pΩq

�Opεr � ε2�2r
� ε3r�2

qs.

(5.41)

We define the following operators χε, χε where

χε � χp|∇y|   εr�1
q, χε � 1� χε � χp|∇y| ¥ εr�1

q. (5.42)

In physical space we can write (5.40) as

χεLA,QχεΦ � χεHrΦ,Υ
ε, εs. (5.43)

where

HrΦ,Υε, εspyq � ΥεFA,Qpyq �
�

wp�q, U#
p�,yq

D

L2
pΩq

� hrΦ,Υε, εs,

}χεhrΦ,Υ
ε, εs}H2

pRd
q

¤ Cpεr � ε2�2r
� ε3r�2

qp1� }Φ}H2
pRd

q

q.
(5.44)

In order to solve Eq. (5.43), we require a regularization that guarantees the in-
vertibility of the operator χεLA,Qχε. Since zero is an isolated eigenvalue of LA,Q,
there is a small disc of radius ρ � ρε about zero, with boundary Cρ such that for
ε sufficiently small, Cρ encircles m eigenvalues of χεLA,Qχε, counting multiplicity,
where m is the multiplicity of zero as an eigenvalue of LA,Q.

Introduce the projection onto the spectral subspace associated with eigenvalues
of χεLA,Qχε, encircled by Cρ:

Πε �
1

2πi

ˆ

Cρ

pχεLA,Qχε � λIq�1 dλ, (5.45)
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Note that

Π0 � xFA,Q, �yL2
pRd

q

, (5.46)

projects onto the kernel of LA,Q.
We now rewrite (5.43) as the following system for Φ and Υε:

χεLA,QχεΦ � χεpI �ΠεqχεHrΦ,Υ
ε, εs (5.47)

χεΠεχεHrΦ,Υ
ε, εs � 0. (5.48)

Any solution pΦε,Υε
q of (5.47), (5.48) is a solution of (5.43)

We claim that for ε small (5.47) can be solved for Φ � Φε
rΥε

s via the equivalent
nonlocal “integral” equation:

Φε
� pχεLA,Qχεq

�1
pI �Πεq

�

ΥεFA,Q �

�

wp�q, U#
p�,yq

D

L2
pRd

q

� hrΦε,Υε, εs
	

.

(5.49)
Indeed, the solution may be constructed using the iteration:

Φε
j�1 � pχεLA,Qχεq

�1χεpI �ΠεqχεpΥ
εFA,Q �

�

wp�q, U#
p�,yq

D

L2
pRd

q

� hrΦε
j ,Υ

ε, εsq,

Φε
0 � pχεLA,Qχεq

�1χεpI �ΠεqpΥ
εFA,Q �

�

wp�q, U#
p�,yq

D

L2
pRd

q

q.

(5.50)

By use of (5.45) and (5.44), we have

}Φj�1 � Φj} ¤

�

�

pχεLA,Qχεq
�1χεpI �ΠεqχεphrΦj,Υ

ε, εs � hrΦj�1,Υ
ε, εsq

�

�

¤ τpεq }Φj � Φj�1} , τpεq � ρ�1Cpεr � ε2�2r
� ε3r�2

q,
2

3
  r   1.

Therefore, }Φj�1 � Φj} ¤ τpεqj }Φ1 � Φ0} and if ε satisfies the smallness condition
τpεq   1, the sequence tΦε

juj¥0 is Cauchy in H2
pR

d
q. It therefore contains a subse-

quence, which is convergent to a limit Φε
�

P H2
pR

d
q. By H2

pR
d
q continuity of the

terms in the iteration (5.50), one can pass to the limit in (5.50) to obtain a solution
Φε
�

which satisfies Eq. (5.49).
This solution Φε

�

is a functional of Υε, and appears in equation (5.48), which we
view as an equation for Υε. We write (5.48) in the form

grυ, εs � υχεΠεFA,Qpyq � χεΠε

�

wp�q, U#
p�,yq

D

L2
pΩq

� χεΠεhrΦrυs, υ, εs � 0.
(5.51)

For ε � 0, this equation has the solution grυ0, 0s � 0 with

υ0 � �

A

FA,Qp�q,
�

wp�q, U#
p�, �q

D

L2
pΩq

E

L2
pRd

q

. (5.52)

The Jacobian,Dυgrυ0, 0s � 1. By the implicit function theorem [23], for |ε| sufficiently
small there exists a unique solution ε ÞÑ Υε satisfying grΥε, εs � 0. This completes
the proof of Theorem 3.1.

Appendix A. Effective Mass Tensor.

In this appendix we prove Proposition 4.4, relating the Hessian matrix of the
band dispersion function Eb

�

pkq to the matrix A resulting from the multiple-scale
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analysis. In addition, we prove hypothesis H2(b) under certain conditions and the
positive definiteness of I �A.

The solutions to the eigenvalue equation (2.5) are sought in the form ubpx;kq �
e2πik�xpbpx;kq, k P Ω

�

. Then, pb
�

and Eb
�

satisfy

L
pkq
�

pb
�

�

�

�∆� 4πik �∇� 4π2
|k|2 � V pxq �Eb

�

pkq
�

pb
�

px,kq � 0, x P T
d,

(A.1)
with periodic boundary conditions pb

�

px � ej;kq � pb
�

px;kq. Taking the derivative
of eq. (A.1) with respect to kj gives

L
pkq
�

Bkj
pb

�

px;kq �
�

4πiBxj
� 8π2kj � Bkj

Eb
�

pkq
�

pb
�

px;kq. (A.2)

Evaluating eq. (A.2) at k � k
�

and using the fact that the kernel of L
pk
�

q

�

is spanned
by pb

�

px;k
�

q, we arrive at the solvability condition

Bkj
Eb

�

pk
�

q � �4πi
��

Bxj
� 2πik

�,j

�

pb
�

p�;k
�

q, pb
�

p�;k
�

q

D

L2
pΩq

, (A.3)

for j � 1, 2, . . . , d. When k
�

� 0, pb
�

px;k
�

q is real valued so that eq. (A.3) simplifies
to

Bkj
Eb

�

pk
�

q � 0, j � 1, 2, . . . , d. (A.4)

For the case d � 1, we also have

E1

b
�

pk
�

q � 0, k
�

P t0,�1{2u, d � 1. (A.5)

This result follows from properties of the Floquet discriminant ∆pEq [12]. Briefly, for
each E, one constructs a 2� 2 fundamental matrix of solutions MpEq and considers
the values of E for whichMpEq has an eigenvalue 1 or �1 corresponding to a periodic
or antiperiodic eigenvalue, respectively. This is equivalent to ∆pEq � �2 where

tracepMpEbpkqqq � ∆pEbpkqq � 2 cosp2πkpEbqq. (A.6)

Differentiating this expression with respect to k and evaluating at k � k
�

gives

d∆

dE

�

Eb
�

pkq
�

E1

b
�

pkq � �4π sinp2πkq. (A.7)

Since d∆{dEpEq � 0 if and only if E is a double eigenvalue (Theorem 2.3.1, [12]) and
Eb

�

pk
�

q is assumed simple (hypothesis H2(a)), eq. (A.5) follows.
The above discussion proves hypothesis H2(b) at the left band edge k

�

� 0 for
arbitrary d and both left and right band edges k

�

P t0,�1{2u when d � 1. It is
possible for ∇Eb

�

pk
�

q � 0 in other cases, e.g. separable potentials, and we continue
the discussion assuming this to be true.

It follows that

Bkj
pb

�

px;k
�

q � 4πi
�

L
pk
�

q

�

�

�1  

pBxj
� 2πik

�,jqpb
�

p�;k
�

q

(

pxq. (A.8)

Differentiating eq. (A.2) with respect to kl and setting k � k
�

gives

L
pk
�

q

�

Bkj
Bkl
pb

�

px;k
�

q �

� 16π2
pBxl

� 2πik
�,lq

�

L
pk
�

q

�

�

�1  

pBxj
� 2πik

�,jqpb
�

p�;k
�

q

(

pxq

� 16π2
�

Bxj
� 2πik

�,j

� �

L
pk
�

q

�

�

�1  

pBxl
� 2πik

�,lqpb
�

p�;k
�

q

(

pxq

�

�

Bkjkl
Eb

�

pk
�

q � 8π2δjl
�

pb
�

px;k
�

q.

(A.9)
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Invoking the solvability condition and using }pb
�

}L2
pΩq � 1, eq. (A.4) gives

Bkjkl
Eb

�

pk
�

q � 8π2δjl

� 16π2
A

pBxl
� 2πik

�,lq

�

L
pk
�

q

�

�

�1  

pBxj
� 2πik

�,jqpb
�

p�;k
�

q

(

p�q, pb
�

p�;k
�

q

E

L2
pΩq

� 16π2
A

pBxj
� 2πik

�,jq

�

L
pk
�

q

�

�

�1  

pBxl
� 2πik

�,lqpb
�

p�;k
�

q

(

p�q, pb
�

p�;k
�

q

E

L2
pΩq

.

(A.10)

Integrating by parts and using the fact that
�

L
pk
�

q

�

�

�1
is self-adjoint, the last two

terms are equal giving

Bkjkl
Eb

�

pk
�

q � 8π2δjl

� 32π2
A

pBxj
� 2πik

�,jqpb
�

p�;k
�

q,
�

L
pk
�

q

�

�

�1  

pBxl
� 2πik

�,lqpb
�

p�;k
�

q

(

p�q

E

L2
pΩq

.

(A.11)

In order to identify eq. (A.11) with the final result, eq. (4.20) in Prop. 4.4, we use the
definition of wpxq in eq. (2.9) to compute

Bxj
wpxq � e2πik��x

�

Bxj
� 2πik

�,j

�

pb
�

px;k
�

q, (A.12)

which is the first term in the inner product of eq. (A.12). In addition, the identity

L
�

e2πik��xfpxq � e2πik��xL
pk
�

q

�

fpxq, (A.13)

implies

e2πik��x
�

L
pk
�

q

�

�

�1  

pBxl
� 2πik

�,lqpb
�

p�;k
�

q

(

pxq � L�1
�

tBxl
wp�qu pxq, (A.14)

and the result follows.

Appendix B. Homogenization and Variational Analysis.

The existence of a bound state for eq. (1.1) bifurcating from the lowest band edge
E0p0q can be proved by showing that the Rayleigh quotient

Erus �

´

Rd

 

|∇upxq|2 � rV pxq � ε2Qpεxq �E0p0qs|upxq|
2dx

(

´

Rd |upxq|2dx
, (B.1)

is negative for some choice of u P H1
pR

d
q [21]. A natural choice for u is the multi-

scale expansion in eq. (4.2) with ε sufficiently small. Furthermore, a higher order,
two-term trial function gives a better approximation of the energy than the one-term
trial function.

Proposition B.1.

1. Negative energy trial function: with assumptions H1-H3 in section 3 and
setting E

�

� E0p0q, the lowest band edge, then there exists ε0 ¡ 0 such that
for all 0   ε   ε0,

E
�

FA,Qpε�qwp�q � 2∇
�

FA,Qpε�q � L
�1
�

t∇wu p�q
�

  0. (B.2)

It follows that there exists a ground state.
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2. Estimates of the ground state energy: if LI,Q � �∆y�Qpyq has a sim-
ple eigenvalue eI,Q   0 and corresponding eigenfunction FI,Qpyq P H

2
pR

d
q,

then there exists ε0 ¡ 0 such that for all 0   ε   ε0,

E
�

FA,Qpε�qwp�q � 2∇
�

FA,Qpε�q � L
�1
�

t∇wu p�q
�

  E rFI,Qpε�qwp�qs   0.
(B.3)

For the proof of Prop. B.1, we will make repeated use of the following averaging
lemma.

Lemma B.2. Let ppxq � ppx � zq be periodic with fundamental period cell Ω
and

°

zPZd |ppz|   8 where ppz are the Fourier series coefficients of ppxq. If G P

L1
pR

d
q X Cn

pR
d
q, then

�

�

�

�

ˆ

Rd

ppxqGpεxqdx �
1

εd

 

Ω

ppxqdx

ˆ

Rd

Gpyqdy

�

�

�

�

¤ Cεn. (B.4)

Proof. Expand p in the Fourier series ppxq �
°

zPZd ppze
2πiz�x. Then

ˆ

Rd

ppxqGpεxq dx �

1

εd

¸

zPZd

ppz

ˆ

Rd

Gpyqe2πiz�y{ε dy

�

pp0

εd

ˆ

Rd

Gpyq dy �
1

εd

¸

z�0

ppz

ˆ

Rd

Gpyqe2πiz�y{εdy

�

1

εd

 

Ω

ppxq dx

ˆ

Rd

Gpyq dy �Opεnq,

(B.5)

where the first line is justified by the assumed absolute convergence of the Fourier
coefficients and the second line results from integration by parts n times.

First we consider the ansatz upxq � FI,Qpεxqwpxq for eq. (B.3). A computation
and several applications of the averaging lemma B.2 give

E rFI,Qpε�qwp�qs � ε2
´

Rd

 

|∇FI,Qpyq|
2
�Qpyq|FI,Qpyq|

2
(

dy
´

Rd |FI,Qpyq|2dy
� opε2q

� ε2eI,Q � opε2q   0,

(B.6)

for ε sufficiently small.
A similar, more involved computation for the ansatz upxq � FA,Qpεxqwpxq �

2∇FA,Qpεxq � L
�1
�

t∇wu pxq leads to

E
�

FA,Qpε�qwp�q � 2∇FA,Qpε�q � L
�1
�

t∇wu p�q
�

� ε2
´

Rd

 

∇FA,Qpyq � A∇FA,Qpyq �Qpyq|FA,Qpyq|
2
(

dy
´

Rd |FA,Qpyq|2dy
� opε2q

� ε2eA,Q � opε2q   0,

(B.7)

for ε sufficiently small. For a bifurcation from the lowest band edge, the effective mass
tensor A is positive definite [19] hence the eigenvalue eA,Q is negative.

The proof of Prop. B.1 is completed if we can show that eA,Q   eI,Q. For this,
we use the following proposition.

Proposition B.3. The operator I�A �

�

4
�

Bxj
w,L�1

�

tBxl
wu

D

L2
pΩq

	

is positive

definite at the lowest band edge pb
�

� 0, k
�

� 0q.
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Proof. Recall that L
�

¥ 0 with one-dimensional L2
pT

d
q kernel spanned by w. Let

v � pv1, . . . , vdq P R
d be arbitrary. Then

v � pI �Aqv �

�

v �∇w,L�1
�

v �∇w
D

L2
pΩq

¥

1

E1p0q �E
�

}v �∇w}2 ¥ C}v}2, C ¡ 0,

(B.8)
where E1p0q �E

�

¡ 0 is the second eigenvalue of L
�

acting on L2
pT

d
q.

Introducing the energy functional

JA,Qrgs �

´

Rd

�

∇gpyq � A∇gpyq �Qpyqg2pyq
�

dy
´

Rd g2pyq dy
, g P L2

pΩq, (B.9)

we observe

JA,Qrgs � JI,Qrgs �

´

Rd r∇gpyq � pA� Iq∇gpyqs dy
´

Rd g2pyq dy
  0, g P L2

pΩq, (B.10)

by the negative definiteness of A � I from Prop. B.3. Using eqs. (B.6), (B.7), and
(B.10) we find

eA,Q � JA,QrFA,Qs � inf
gPL2

pΩq
JA,Qrgs ¤ JA,QrFI,Qs   JI,QrFI,Qs � eI,Q, (B.11)

and the proof is complete.
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