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Abstract. In this paper an implicit numerical method designed for nonlinear degenerate
parabolic equations is proposed. A convergence analysis and the study of the related computa-
tional cost are provided. In fact, due to the nonlinear nature of the underlying mathematical model,
the use of a fixed point scheme is required. The chosen scheme is the Newton method and its con-
vergence is proven under mild assumptions. Every step of the Newton method implies the solution
of large, locally structured, linear systems. A special effort is devoted to the spectral analysis of
the relevant matrices and to the design of appropriate multigrid preconditioned Krylov methods.
Numerical experiments for the validation of our analysis complement this contribution.
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1. Introduction. As a prototype we first consider a single equation of the form

∂u

∂t
= ∇ · (D(u)∇u) , (1.1)

in both one and two dimensional domains. D(u) is a non-negative function and the
equation is called degenerate whenever D(u) vanishes. For the convergence analysis
of our numerical methods, we will require that D(u) is at least differentiable and
D′(u) is Lipschitz continuous, while the existence of solutions is guaranteed under the
milder assumption of continuity (see [24]).

In the literature, degenerate parabolic equations have been discretized mainly
using explicit or semi-implicit methods, thus avoiding to solve the nonlinear equations.
A remarkable class of methods arises directly from the so-called non-linear Chernoff
formula [6] for time advancement, coupling it with a spatial discretization: for finite
differences this was started in [3] and for finite elements by [15]. The schemes in
this class share a timestep restriction of the form ∆t = O(h2) for stability, but,
especially in the finite element setting, there is a mature theory that includes also error
estimators and h-adaptivity. More recently, another class related to the relaxation
approximation emerged: such numerical procedures exploit high order non-oscillatory
methods typical of the approximation of conservation laws and their convergence can
be proved making use of semigroup arguments similar to those relevant for proving the
Chernoff formula [7]. Finally, we wish to point out the paper [10], where the authors
derive conservative schemes for degenerate convection-diffusion equations with the
elliptic operator in the form ∂2

xx(K(u)), which is obviously equivalent to (1.1) in one
space dimension, setting K(u) =

∫ u

0
D(ξ)dξ.

The present investigation is part of the search for suitable numerical techniques
to integrate for long times nonlinear, possibly degenerate, parabolic equations like
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those appearing in models for monument degradation (see [2]) when chemical/micro-
biological pollutants are taken into consideration. We wish to point out that the
techniques developed here have applications that go beyond the aforementioned mod-
els. For example, again in the area of conservation of the cultural heritage, they could
be adapted to numerically investigate the more complete sulfation model described
in [1] and the consolidation model presented in [8]. Some applications in the field of
monument conservation have been presented in [18], where the mathematical tools
developed in the present paper are employed for forecasting marble deterioration.

In this paper we consider a time discretization based on the Crandall-Liggett
formula (Implicit Euler)

U(tn, x) − ∆tLD(U(tn, x)) = U(tn−1, x), (1.2)

where time has been discretized, ∆t = tn − tn−1, and −LD(·) denotes the elliptic
operator u 7→ −∇ · (D(u)∇u). We point out that using the Crank-Nicholson scheme
instead of (1.2) would give a higher order scheme, but somewhat complicate the no-
tation of this paper without affecting the line of the proofs. For such a generalization,
at least in a specific case, see [18].

The computation of the numerical solution U(tn, x) with (1.2) requires to solve a
nonlinear equation whose form is determined by the elliptic operator and the nonlinear
function D(u), but the convergence is guaranteed without restrictions on the time step
∆t [9]. Furthermore, due to the nonlinear nature of the underlying mathematical
model, the use of a fixed point scheme is required and the choice of the Newton-like
methods implies the solution at every step of large, locally structured (in the sense of
[22]) linear systems. A special effort is devoted to the spectral analysis of the relevant
matrices and to the design of appropriate iterative solvers, with special attention to
preconditioned Krylov methods and to multigrid procedures (see [12, 17, 13, 23] and
references therein for a general treatment of iterative solvers).

The paper is organized as follows. In Section 2 we couple the time discretization
(1.2) with a spatial discretization based on finite differences and set up a Newton
method for the resulting system of nonlinear equations. In Section 3 we prove the
convergence of the Newton methods under a mild restriction on ∆t. In Section 4 we
consider various iterative methods for the solution of the inner linear systems involved
in the Newton method. A spectral analysis of the related matrix structures is provided
in order to give an appropriate motivation for the good behaviour of the proposed
iterative solvers. In Section 5 we perform some numerical tests. Finally, a conclusion
section with a short plan for future investigations completes the paper.

2. Space and time discretization. In order to discretize equations like (1.1),
we will employ a time semi-discretization given by the Crandall-Liggett formula and a
space discretization based on finite differences, explained in the following subsection.
The latter numerical choice leads to a system of coupled nonlinear equations that
need to be solved at each discrete timestep in order to compute the solution of the
PDE: this is achieved using the Newton method, as detailed in Subsection 2.3, where
we also prove and comment convergence results.

2.1. One space dimension. We take into consideration a standard discretiza-
tion in space using finite differences. Denoting xξ = a+ ξh, we consider N + 2 points
with equal spacing h = (b − a)/(N + 1) in the interval [a, b] and we denote by un

k

the approximate solution at time tn and location xk, where k = 0, . . . , N + 1. When
considering Dirichlet boundary conditions, the values u0 and uN+1 are known and can
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be eliminated by the equations. Let thus un be the vector of size N containing the
collection of the values un

k . for k = 1, . . . , N . When no potential confusion arises, we
sometimes drop in both notations the superscript indicating the time level. Boundary
conditions of Neumann or Robin type can be treated in similar ways.

In the following, we denote by tridiagk[βk, αk, γk] a square tridiagonal matrix
where the kth row has entries βk on the lower diagonal, αk on the main diagonal, and
γk on the upper diagonal. We also denote with diag(αk) the square diagonal matrix
with αk on the kth row. The order of such matrices is clear from the context and
usually it is equal to N with k ranging from 1 to N .

We choose a standard 3-points second order approximation of the differential
operator (D(u)ux)x. Namely, the action of the elliptic differential operator on u is
described by − 1

h2LD(u)u, where the tridiagonal matrix

−LD(u) = tridiagk[−Dk−1/2, Dk−1/2 +Dk+1/2,−Dk+1/2] (2.1)

contains the values Dj+1/2 = (D(uj+1) +D(uj))/2, j = 0, . . . , N , and thus depends
nonlinearly on the uj’s. It should be noticed that the latter is a second order approxi-
mation of D(u(xj+1/2)) since un

k differs from u(tn, xk) by O(h2) thanks to the second
order scheme and since, by standard Taylor expansions, we have

Dj+1/2 =
D(u(xj+1)) +D(u(xj))

2
= D(u(xj+1/2)) +O(h2),

under the mild assumption that D(u)x(·) is Lipschitz continuous.

Remark 2.1. LD(u) is a symmetric real tridiagonal matrix. If D(u(·)) is a
nonnegative function, then the matrix −LD(u) is always positive semidefinite, since
the matrix is weakly diagonally dominant by row. When D(u(·)) is positive the matrix
becomes irreducible and therefore we observe also invertibility.

2.2. Two space dimensions. We now describe a straightforward generaliza-
tion to a two-dimensional case. To this end, we consider a rectangular domain
Ω = [a0, a1]× [b0, b1] ⊂ R2 and the grid points xi,j = (a0 + ih, b0 + jk). For simplicity
and without loss of generality, we also assume that the region Ω is square and choose
identical discretization steps in the two directions (i.e. h = k), so that using N + 2
points per direction we have h = k = (a1 − a0)/(N + 1) = (b1 − b0)/(N + 1). The
grid is thus composed of the (N + 2)2 points xi,j for i and j ranging from 0 to N +1.
We denote with ui,j the numerical value approximating u(xi,j). Of course, as in the
one-dimensional case the use of Dirichlet boundary conditions reduces the gridding to
the N2 internal points; also in this case other boundary conditions can be considered
in a similar way.

In order to write in matrix form the approximated differential operator above, we
must choose an ordering of the unknowns ui,j, arranging them into a vector u and
approximate

(∇ · (D(u)∇u)(xj))
N
i,j=1 ≃ 1

h2
LD(u) u.

The positions of the nonzero entries of the matrix LD(u) of course depend on the
chosen ordering, so here we keep a double-index notation for the elements of u and
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of the matrix entries. Therefore, LD(u) has entries

[
LD(u)

]l,m
i,j

= δi,lδj,m
(
−Di+1/2,j −Di−1/2,j −Di,j+1/2 −Di,j−1/2

)

+ δl,i+1δm,jDi+1/2,j + δl,i−1δm,jDi−1/2,j

+ δl,iδm,j+1Di,j+1/2 + δl,iδm,j−1Di,j−1/2 (2.2)

on the (i, j)th row and (l,m)th column, where we denoted Di+1/2,j = (Di+1,j +Di,j)/2
and Di,j+1/2 = (Di,j+1 +Di,j)/2.

Remark 2.2. Remark 2.1 has a natural counterpart in this two-dimensional
setting, where the word tridiagonal is replaced by block tridiagonal with tridiagonal
blocks.

2.3. The nonlinear system and the Newton iteration. Following the Crandall-
Liggett formula (1.2), in order to compute un from un−1, we need to solve the non-
linear vector equation

un = un−1 +
∆t

h2
LD(un)u

n.

Thus we set up Newton iterations for the vector function

F (u) = u− ∆t

h2
LD(u)u− un−1. (2.3)

In the following, we denote un,s the sth Newton iterate for the computation of un.
In the one-dimensional case, the generic partial derivative of F (u) is

∂Fk

∂uj
= δjk − ∆t

h2
LD(u)

∣∣
j,k

− ∆t

2h2



δk−1,jD

′
k−1(uk−1 − uk)+

+ δk,jD
′
k(uk−1 − 2uk + uk+1)+

+ δk+1,jD
′
k+1(uk+1 − uk).


 , (2.4)

so that the Jacobian is

F ′(u) = XN (u) + YN (u), (2.5a)

XN (u) = IN − ∆t

h2
LD(u), (2.5b)

YN (u) = − ∆t

2h2
TN(u) diagk[D′

k], (2.5c)

TN (u) = tridiagk[uk−1 − uk, uk−1 − 2uk + uk+1, uk+1 − uk]. (2.5d)

According to Remark 2.1, the matrix XN (u) is a symmetric positive definite having
minimum eigenvalue λmin(XN (u)) ≥ 1.

In the two-dimensional case, the Jacobian of F (u) has again a form similar to
(2.5):

F ′(u) = IN2 − ∆t

h2
LD(u) −

1

2

∆t

h2
Y (u) (2.6a)

where LD(u) is defined in (2.2) and

Y l,m
i,j (u) =

∑

l,m

∂
[
LD((u))

]l,m
i,j

∂ul,m
ul,m
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with the double-index notation used in the previous section. A tedious but straight-
forward computation yields

Y l,m
i,j (u) = D′

i,jδi,lδj,m (−4ui,j + ui+1,j + ui−1,j + ui,j+1 + ui,j−1)

+D′
i+1,jδl,i+1δm,j (ui+1,j − ui,j) +D′

i−1,jδl,i−1δm,j (ui−1,j − ui,j)

+D′
i,j+1δl,iδm,j+1 (ui,j+1 − ui,j) +D′

i,j−1δl,iδm,j−1 (ui,j−1 − ui,j) . (2.6b)

3. Convergence of the Newton method. We denote by ‖ · ‖2 the Euclidean
norm for vectors and the induced spectral norm for matrices. For a square matrix A
we denote the real and the imaginary part of A with

Re(A) =
A+AT

2
and Im(A) =

A−AT

2i
, i2 = −1.

Moreover, Σ(A) will be the set of the eigenvalues of A and if A is also symmetric,
λmin(A) and λmax(A) will denote the minimum and the maximum eigenvalue of A,
respectively.

In order to prove the convergence of the Newton method, we first consider some
auxiliary results.

Lemma 3.1 ([14]). For a real N ×N matrix A, the minimum singular value is

σN (A) ≥ λmin (Re(A)) . (3.1)

In general it can be proved that for any complex-valued matrix A the minimal
singular value is not less than the distance dr of any straight line r separating the
numerical range of A from the complex zero. Therefore a better estimate can be
obtained by making the sup that we call d of dr, for all straight lines that induce
the separation. In our case we used the fact that Re(A) is positive definite and
so our straight line becomes the set of all complex numbers having real part equal
to λmin(Re(A)). The estimate could be poor since the latter straight line is not
necessarily tangent to the numerical range (a convex set by the Toeplitz-Hausdorff
theorem, see [4]): thus d could be much larger than dr. However in our setting such
an estimate is already very satisfactory, as also stressed by the numerical experiments.

Proposition 3.2. Consider F (u) as defined in (2.3) and let F ′ be assigned by
equations (2.5) (one space dimension). Assuming that u is a sampling of a solution
u of (1.1) with D differentiable and having Lipschitz continuous first derivative. If,
in addition, u is differentiable with Lipschitz continuous first derivative, then

∥∥F ′(u)−1
∥∥

2
≤ 1 +O(∆t). (3.2)

When using the induced l∞ norm, we have a positive constant C1 independent of h
such that

∥∥F ′(u)−1
∥∥
∞

≤ C1 (3.3)

for h sufficiently small and under the additional assumption that ∆t ≤ C∞h for some
C∞ > 0.

Proof. We write

Re(F ′(u)) = XN(u) + VN (u) ,
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where

VN (u) = − ∆t

4h2
tridiagk




(D′
k−1 −D′

k)(uk−1 − uk)

2D′
k(uk−1 − 2uk + uk+1)

(D′
k+1 −D′

k)(uk+1 − uk)


 . (3.4)

By the regularity of D and u, we deduce that every entry of VN (u) is of order ∆t
h2 h

2

that is O(∆t) and hence ‖VN (u)‖2 = O(∆t). Thus, recalling that λmin(XN ) ≥ 1, it
holds

λmin (Re(F ′(u))) ≥ 1 − C̃∆t (3.5)

for some C̃ > 0, that contains the infinity norms of the first derivatives of u and D
and their Lipschitz constants. Using Lemma 3.1

‖F ′(u)−1‖2 =
1

σmin(F ′(u))
≤ λmin (Re(F ′(u)))

−1
. (3.6)

Inequality (3.2) now follows, combining (3.6) and (3.5).
For the proof of the estimate in l∞ norm, we note that

F ′(u) = XN (u) − ∆t

2h
tridiagk

[
u′(ξ̂k), O(h), u′(ξ̃k)

]
diagk [D′

k] ,

where ξ̂k ∈ [xk−1xk], ξ̃k ∈ [xk, xk+1] and the constant in the O(h) contains the
Lipschitz constant of u′. We split F ′(u) as

F ′(u) =
∆t

h2
(Z −W ) , (3.7)

where

Z = diagk[zk] = diagk

[
h2

∆t
+Dk−1/2 +Dk+1/2 +O(h2)D′

k

]
,

W = tridiagk

[
Dk−1/2 +

h

2
u′(ξ̂k)D′

k−1, 0 , Dk+1/2 +
h

2
u′(ξ̃k)D′

k+1

]
.

From (3.7), we have

[F ′(u)]
−1

=
h2

∆t

(
I − Z−1W

)−1
Z−1. (3.8)

For the factor Z−1, recalling that D(·) ≥ 0, it holds

‖Z−1‖∞ = max
k

1

|Dk−1/2 +Dk+1/2 + h2

∆t (1 +O(∆t)D′
k) |

≤ c
∆t

h2
(3.9)

with c independent of h, for h sufficiently small, and assuming that ∆t ≤ C∞h.
For the factor (I − Z−1W )−1, we note that

Z−1W = tridiagk

[
Dk−1/2 + h

2u
′
kD

′
k +O(h2)

zk
, 0,

Dk+1/2 + h
2u

′
kD

′
k +O(h2)

zk

]
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and hence

‖Z−1W‖∞ ≤ max
k

Dk−1/2 +Dk+1/2 + rh

|Dk−1/2 +Dk+1/2 + 1
C∞

h (1 +O(∆t)D′
k) | ≤ α < 1, (3.10)

for C∞ > 0 sufficiently small, since rh = O(h) with constant hidden in the big O not
depending on C∞. Thus the spectral radius of Z−1W is ρ(Z−1W ) < 1 and we have

(
I − Z−1W

)−1
=

∞∑

j=0

(
Z−1W

)j ⇒ ‖
(
I − Z−1W

)−1 ‖∞ ≤ 1

1 − α
. (3.11)

Finally, combining (3.11) and (3.9) with (3.8), estimate (3.3) holds with C1 = c
1−α .

Proposition 3.3. The estimates of Proposition 3.2 can be extended to the two-
dimensional setting, where F (u) is assigned by (2.3) and (2.2), while F ′ is given by
equations (2.6).

Proof. For the spectral norm, an analysis similar to the one made for VN (u) in
the first part of the proof of Proposition 3.2, shows that ‖Re(Y (u))‖2 = O(h2). From
equation (2.3), recalling that λmin(IN2 − ∆t

h2 LD(u)) ≥ 1 (see Remark 2.2), we infer

that λmin(Re(F ′(u))) ≥ 1 − C̃∆t and hence ‖F ′(u)‖2 ≤ 1 +O(∆t).
For the proof of the estimate in l∞ norm, we use again a splitting of the form

(3.7) where Z is the diagonal part of F ′(u) up to the scaling factor ∆t/h2. Without
reporting all details, we note that similarly to (3.9) it holds that ‖Z−1‖∞ ≤ c∆t/h2.
In (3.10) the only term that is not of order h both in numerator and denominator is
Di+1/2,j +Di−1/2,j +Di,j+1/2 +Di,j−1/2 instead of Dk−1/2 +Dk+1/2, but the same
estimate is satisfied. Therefore inequality (3.11) can be obtained also here.

Both Propositions 3.2 and 3.3 can be proved with minor changes, under weaker
assumptions. Indeed if both u(·) and D(·) are continuously differentiable, then every
entry of VN (u) in (3.4) is of order

O

(
max

{
∆t

h
ωu′(h),

∆t

h
ωD′(h)‖u′‖∞

})
,

with ωv(·) denoting the modulus of continuity of a given function v. Therefore with
the choice of ∆t proportional to h and setting α(h) = max{ωu′(h), ωD′(h)} = o(1),
we find

λmin (Re(F ′(u))) ≥ 1 − C̃α(h)

and by Lemma 3.1 ‖F ′(u)−1‖2 ≤ 1 + Cα(h). Furthermore, if we require that u is
only Lipschitz continuous then the inequality regarding the norm of F ′(u)−1 reads as
‖F ′(u)−1‖2 ≤ C, where C linearly depends on the Lipschitz constant of u. Finally,
the same results can be obtained with minor changes, when using the induced l∞

norm.
In general, the solution u of (1.1) is not smooth, but only piecewise smooth with

a finite number of cusps. For instance with D(u) = um and continuous data with
piecewise continuous derivative, the derivative of u is not defined in a finite number
of points in one space dimension and in a finite number of smooth curves in two
space dimensions; see [24]. The latter implies that the related matrices have the same
features up to low rank correction terms whose cumulative rank is O(Nd−1) if the
equation is in d dimensions.
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Since the Crandall-Liggett formula does not induce any restriction on the timestep
∆t [9], we have only to prove the convergence of the Newton method. We are interested
in the choice ∆t = Ch for a constant C independent of h, which gives a method
which is overall first order convergent. This is no restriction due to the presence of
singularities at degenerate points: higher order methods would be computationally
more intensive, without reaching their convergence rate, even if in practice a certain
reduction of the error is expected.

The following result is a classical tool (see [16]) for handling the global convergence
of the Newton procedure.

Theorem 3.4 (Kantorovich). Consider the Newton method for approximating
the zero of a vector function F (u), starting from the initial approximation u(0). Under
the assumptions that

‖
[
F ′(u(0))

]−1

‖ ≤ β , (3.12a)

‖
[
F ′(u(0))

]−1

F (u(0))‖ ≤ η , (3.12b)

‖F ′(u) − F ′(v)‖ ≤ γ‖u− v‖ , (3.12c)

and that

βηγ <
1

2
, (3.13)

the method is convergent and, in addition, the stationary point of the iterations lies
in the ball with centre u(0) and radius

1 −
√

1 − 2βηγ

βγ
.

For the choice ∆t = Ch we can prove the following result.
Theorem 3.5. The Newton method for F (u) defined in (2.3) for computing

un is convergent, both in the one-dimensional and in the two-dimensional setting,
when initialized with the solution at the previous timestep (i.e. un,0 = un−1) and for
∆t ≤ Ch, for a positive constant C independent of h.

Proof. We will make use of the Kantorovich Theorem 3.4, so we need the estimates
(3.12) and to show that the relation in (3.13) is satisfied. We will use the l∞ vector
norm and the induced matrix norm.

Concerning (3.12a), Proposition 3.2 in the one-dimensional case and Proposi-
tion 3.3 in the two-dimensional case imply that

β ≤ C1 (3.14)

under the assumption ∆t ≤ C∞h.
Regarding (3.12b), we find

∥∥∥
[
F ′(un−1)

]−1
F (un−1)

∥∥∥
∞

≤ β
∥∥F (un−1)

∥∥
∞

= β

∥∥∥∥
∆t

h2
LD(un−1)u

n−1

∥∥∥∥
∞

=

β
∥∥un−2 − un−1

∥∥
∞

≤ βC2∆t (3.15)

for a constant C2 independent of h. The first equality in the previous calculation
follows from (2.3), while the second one is a consequence of the fact that un−1 is
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the stationary point of the Newton iteration for the previous time step and thus it
satisfies

un−1 +
∆t

h2
LD(un−1)u

n−1 = un−2. (3.16)

Therefore we obtain

η = C2β∆t. (3.17)

For the Lipschitz constant of F ′, i.e., for estimating (3.12c), first we study in detail
the one-dimensional case and then we give few hints concerning the two-dimensional
case. Observe that in the one-dimensional case F ′(u)− F ′(v) is a tridiagonal matrix
with two contributions:

F ′(u) − F ′(v) =
∆t

h2
(LD(u) − LD(v)) + (YN (u) − YN (v)), (3.18)

with LD(·) and YN (·) as in (2.1) and (2.5c), respectively. The first term can be
estimated as follows:

‖LD(u) − LD(v)‖∞ ≤ 4‖D′‖∞‖u− v‖∞. (3.19)

In order to check that the last inequality is satisfied, one observes that the sum of the
absolute values of the entries in each row of LD(u) −LD(v) is smaller than the sum of
4 terms of the form

∣∣Dk±1/2(u) −Dk±1/2(v)
∣∣ =

∣∣∣∣D
(
uk±1 + uk

2

)
−D

(
vk±1 + vk

2

)∣∣∣∣

= |D′(ζ)| |uk±1 + uk − vk±1 − vk|
2

≤ ‖D′‖∞‖u− v‖∞.

For the second term in (3.18), we have

‖YN(u) − YN (v)‖∞ ≤ ∆t

2h2
‖D′‖∞‖M‖∞, (3.20)

where

M = tridiagk




(uk−1 − uk) − (vk−1 − vk)

(uk−1 − 2uk + uk+1) − (vk−1 − 2vk + vk+1)

(uk+1 − uk) − (vk+1 − vk)




and hence

‖M‖∞ ≤ 8‖u− v‖∞. (3.21)

Replacing equation (3.21) in (3.20) and combining (3.20) and (3.19) with (3.18), we
obtain

γ ≤ 8‖D′‖∞
∆t

h2
. (3.22)

For the two-dimensional case, LD(·) is defined in (2.2) and

‖LD(u) − LD(v)‖∞ ≤ 8‖D′‖∞‖u− v‖∞.
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Moreover, the matrix M is replaced by a pentadiagonal matrix M̃ such that ‖M̃‖∞ ≤
16‖u − v‖∞. As a conclusion, in the two-dimensional case when estimating γ, we
have a further factor two, i.e., relation (3.22) is replaced by

γ ≤ 8 d ‖D′‖∞
∆t

h2
, (3.23)

where d = 1 in the one-dimensional case and d = 2 in two dimensions.
Finally, putting together equations (3.14), (3.17), and (3.23), Theorem 3.4 implies

that the Newton method converges, provided that

1

2
≥ C2

1C28 d ‖D′‖∞
(∆t)2

h2
≥ βηγ,

i.e., ∆t ≤ Ch, for h sufficiently small and for C = min{C∞, 1/(4C1

√
C2 d ‖D′‖∞ )}

(essentially) independent on h.
Remark 3.6. If one considers the stopping criterion for the Newton iterations,

equation (3.16) has an extra ε on the right-hand-side and consequently (3.15) changes
into

∥∥∥
[
F ′(un−1)

]−1
F (un−1)

∥∥∥
2
≤ β

∥∥un−2 − un−1 + ε
∥∥

2
≤ β (C2∆t+ ε)

Thus if one chooses ε = c · ∆t where c is a moderately small constant independent
of ∆t, estimate (3.17) is satisfied, only with a slightly higher constant and the above
result is still true. Note also that more precision will be useless in practice and would
make the Newton process more expensive, by increasing the iteration count.

4. Algorithms for the resulting linear systems. At each Newton iteration,
we need to solve a linear system whose coefficient matrix is represented by the Ja-
cobian F ′(u) defined by equations (2.5) or (2.6) in one and two space dimensions,
respectively. In principle, the Jacobian is recomputed at each Newton iteration, so
we are interested in efficient iterative methods for solving the related linear system.
In order to choose appropriate iterative methods for solving the Jacobian linear sys-
tem, we first analyse the spectral properties of the matrix F ′(u). This will lead us to
consider preconditioned Krylov methods, multigrid methods and their combination.

4.1. Spectral analysis for the resulting matrix-sequences and precon-
ditioning. In this subsection we give a detailed spectral analysis of the matrices
involved in the definition of the Jacobian. This study will lead us to define an optimal
preconditioner and to motivate the use of multigrid preconditioners.

Like in the previous section, we give all the details in the one-dimensional case
and we extend the results to the two-dimensional case at the end. First, we study the
term YN (u) in the definition of F ′(u) in equation (2.5a) showing that it is negligible
with respect to XN (u).

Remark 4.1. If u is a sampling of a solution u(·) of (1.1), if we assume that
u(·) is at least continuous, and if ωu(·) denotes its modulus of continuity, then

‖YN (u)‖2 ≤ eu(∆t, h)

with

eu(∆t, h) = 4
∆t

h2
‖D′(u)‖∞ωu(h).
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If we are interested in evaluating ‖YN (ũ)‖2 where ũ is an approximation to the true
solution u (this happens naturally in the numerical process discussed in the present
section), then

‖YN (ũ)‖2 ≤ eũ(∆t, h) ≤ eu(∆t, h) + 4
∆t

h2
‖D′(u)‖∞‖u− ũ‖∞

= 4
∆t

h2
‖D′(u)‖∞ (ωu(h) + ‖u− ũ‖∞) .

Hence, since we are using second order formulae, the error ‖u − ũ‖∞ = O(h2) and
therefore ‖YN (ũ)‖2 is dominated by ωu(h), which is of order h if the solution is Lip-
schitz continuous, that is

‖YN(ũ)‖2 ≤ 4M
∆t

h
‖D′(u)‖∞ +O(∆t).

In conclusion, we can safely claim that the global spectrum of the Jacobian F ′(ũ) is
decided, up to small perturbations, by the matrix XN(ũ). For making more explicit
the latter statement, if we assume that ∆t = Ch, where C > 0 is independent of
h, then λmin(XN (ũ)) ≥ 1, ‖XN(ũ)‖2 = O(h−1) while ‖YN(ũ)‖2 = O(1). A similar
estimate holds in the two-dimensional case as well, working in the same manner as
in the first part of the proof reported in Proposition 3.3.

Definition 4.2. Let C0(R
+
0 ) be the set of continuous functions with bounded sup-

port defined over the nonnegative real numbers, d a positive integer, and θ a complex-
valued measurable function defined on a set G ⊂ Rd of finite and positive Lebesgue

measure µ(G). Here G will be often equal to (0, 2π)d so that eiG = Td with i2 = −1
and T denoting the complex unit circle. A matrix sequence {AN} is said to be dis-
tributed (in the sense of the eigenvalues) as the pair (θ,G), or to have the eigenvalue
distribution function θ ({AN} ∼λ (θ,G)), if, ∀F ∈ C0(C), the following limit relation
holds

lim
N→∞

1

N

N∑

j=1

F (λj(AN )) =
1

µ(G)

∫

G

F (θ(t)) dt, t = (t1, . . . , td). (4.1)

Along with the distribution in the sense of eigenvalues (weak*-convergence), for
the practical convergence analysis of iterative solvers we are also interested in a further
asymptotic property called here clustering.

Definition 4.3. A matrix sequence {AN} is strongly clustered at s ∈ C (in the
eigenvalue sense), if for any ε > 0 the number of the eigenvalues of AN off the disk

D(s, ε) := {z : |z − s| < ε}

can be bounded by a pure constant qε possibly depending on ε, but not on n. In other
words

qε(n, s) := #{λj(AN ) : λj /∈ D(s, ε)} = O(1), n→ ∞.

If every AN has only real eigenvalues (at least for all n large enough), then s is real
and the disk D(s, ε) reduces to the interval (s− ε, s+ ε). Finally, the term “strongly”
is replaced by “weakly”, if

qε(n, s) = o(n), n→ ∞.
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Remark 4.4. It is clear that {AN} ∼λ (θ,G) with θ ≡ s a constant function is
equivalent to {AN} being weakly clustered at s ∈ C.

Now we briefly use the above concepts in our specific setting. Given the linear
restriction on ∆t imposed by the convergence of the Newton method (Theorem 3.5),
we are interested in the choice ∆t = Ch for C > 0 independent of h. However, for
notational simplicity, here we assume ∆t = h and note that analogous results can
be stated and obtained for a generic positive constant C. Moreover, we scale the
Jacobian as AN = hF ′(u) and we thus consider the sequence {AN}. More in detail
AN is

AN = −LD(u) +RN (u) (4.2)

where in the one-dimensional case

RN (u) = hIN − 1

2
TN (u) diagk(D′

k) (4.3)

with TN (u) defined as in (2.5d), while in the two-dimensional case

RN (u) = hIN2 − 1

2
Y (u) (4.4)

with Y (u) defined as in (2.6b).
We have the following results, which are of crucial interest in the choice, design,

and analysis of efficient solvers for the involved linear systems. Since we consider the
case where the Newton method is convergent, in the following results we implicitly
assume that u and D have the regularity required in Proposition 3.2.

Proposition 4.5. Given the sequence {AN} with AN defined in (4.2), we obtain
that

{AN} ∼λ (θ,G),

where in the one-dimensional case

θ(x, s) = D(u(x))(2 − 2 cos(s)) and G = [a, b] × [0, 2π],

while in the two-dimensional case

θ(x, y, s, t) = D(u(x, y))(4 − 2 cos(s) − 2 cos(t)) and G = [a0, b0] × [a1, b1] × [0, 2π]2.

Proof. If we assume that u is a sampling of a given function over a uniform grid,
then {LD(u)} ∼λ (−θ,G) (see [22] for one-dimensional problems and [19] for two-
dimensional problems). In our case the entries of u represent an approximation in
infinity norm of the true solution, the latter being implied by the convergence of the
method, and therefore by standard perturbation arguments we deduce {LD(u)} ∼λ

(−θ,G). The remaining term RN (u) has trace norm (sum of all singular values i.e.
Schatten p norm with p = 1; see [4]) bounded by a pure constant C independent of
N , when assuming that D′ is bounded and u is at least Lipschitz continuous. The
latter implies that the distribution of {AN} is decided only by that of {−LD(u)}; see
Theorem 3.4 in [11].

The Proposition 4.5 gives the distribution of the zero order main term. Con-
cerning the negligible term, we have {RN (u)} ∼λ (0, G) and {RN(u)/h} ∼λ (ψ,G)
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with ψ(x, s) = 1 − D′(u(x))2i sin(s)) in the one-dimensional case and ψ(x, y, s, t) =
1 −D′(u(x, y))2i(sin(s) + sin(t))) (distribution of the first order term).

Proposition 4.6. Let AN be defined in (4.2), then

κ2(AN ) = ‖AN‖2‖A−1
N ‖2 = O(N). (4.5)

Moreover, for the spectrum of AN it holds

Σ(AN ) ⊂ [ ch, C ] × i [−dh, dh ], (4.6)

for some positive constants c, d, and C independent of N .
Proof. From Propositions 3.2 and 3.3 we deduce ‖A−1

N ‖2 = O(h−1). Moreover
‖AN‖2 = O(1) since ‖LD(u)‖2 = O(1), while ‖RN (u)‖2 = O(h) according to Re-
mark 4.1. Therefore, combining the previous results, it follows that κ2(AN ) = O(N)
and Σ(Re(AN )) ⊂ [ch, C]. The estimate (4.6) follows from Bendixson Theorem (see
Theorem 3.6.1 of [21]) proving that Σ(Im(AN )) ⊂ i [−dh, dh ]. We note that in the
one-dimensional case

Im(AN ) = −1

2
Im
(
T̃N(u) diagk[D′

k]
)
,

where T̃N(u) = tridiagk [uk−1 − uk , 0 , uk+1 − uk], while in the two-dimensional case

T̃N(u) is replaced by a matrix that has only 4 non zero entries of order h in each row.
Therefore, Im(AN ) ⊂ i [−dh, dh], where d depends on ‖D′(u)‖∞ and on the Lipschitz
constant of the solution.

From Proposition 4.5, AN and −LD(u) have the same eigenvalue distribution, but
they differ in the first order term in h. From Proposition 4.6, κ2(AN ) = O(N) while
κ2(−LD(u)) = O(N2). This happens because a perturbation of the spectrum of O(h)
does not affect the eigenvalue distribution as stated in Definition 4.2. Therefore, for
instance a shift of the spectrum of O(h) does not change the eigenvalue distribution,
but it can change the spectral condition number from o(N) to O(N) (assuming that
the largest eigenvalue is bounded).

Remark 4.7. Since F ′(u) = AN/h, the previous proposition can be rewritten as

κ2(F
′(u)) = O(N) and Σ(F ′(u)) ⊂ [ c, CN ] × i [−d, d ].

Proposition 4.8. Let AN be defined in (4.2), then setting

PN = −LD(u) + hI,

where I = IN in one space dimension and I = IN2 in two dimensions, it holds

Σ(P−1
N AN ) ⊂ [ 1 − c1h, 1 + c2h ] × i [−d, d ].

for some positive constants c1, c2, and d independent of N .
Proof.

Note that Σ(P−1
N AN ) belongs to the field of value of P

−1/2
N ANP

−1/2
N . Fix α =

xHP
−1/2
N ANP

−1/2
N x, for all x ∈ Cn, ‖x‖2 = 1. In order to apply the Bendixson

Theorem, note that Re(α) = xHP
−1/2
N Re(AN )P

−1/2
N x which belongs to [1− c1h, 1 +

c2h] by the analysis provided in Propositions 3.2 and 3.3. A similar analysis stands

for Im(α) = xHP
−1/2
N Im(AN )P

−1/2
N x as in Proposition 4.6. In fact

|Im(α)| ≤ ‖P−1/2
N Im(AN )P

−1/2
N ‖2 = ρ(P−1

N Im(AN )) ≤ ‖P−1
N ‖2‖Im(AN )‖2
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and the thesis follows from ‖P−1
N ‖2 = 1/λmin(PN ) ≤ 1/h, since −LD(u) is positive

semidefinite, and ‖Im(AN )‖2 ≤ dh due to Proposition 4.6.
From Proposition 4.8 the preconditioned sequence {P−1

N AN} has eigenvalues with
real part strongly clustered at 1. Furthermore, a weak eigenvalue value clustering

{P−1
N AN} ∼λ (1, G), (4.7)

follows from the property of algebra of the Generalised Locally Toeplitz (GLT) se-
quences; see [19]. Therefore, the eigenvalues of {P−1

N AN} have imaginary part weakly
clustered at 1.

Remark 4.9. Proposition 4.8 holds unchanged replacing PN and AN with XN(u)
and F ′(u), respectively, because XN (u)−1F ′(u) = P−1

N AN . In practice, Proposi-
tion 4.8 implies that XN (u) is an optimal preconditioner for F ′(u), i.e., a precondi-
tioned Krylov method applied to F ′(u) with XN (u) as preconditioner converges in a
number of iterations bounded by a constant depending on the precision, but not on the
mesh that is on h (optimality of the method).

4.2. Iterative methods for the linear system. In this section we consider
some iterative methods for solving the linear system at each Newton step and study
their convergence properties on the matrix sequence {AN}. The same analysis holds
for {F ′(u)} since the scaling factor h does not affect the convergence behaviour. A
classical reference for the results quoted below is [17].

4.2.1. GMRES. We first consider the GMRES algorithm, since the antisym-
metric part of AN is negligible but not zero.

Assume that AN is diagonalisable and let AN = WΛW−1, where Λ = diagk(λk)
is the diagonal matrix of the eigenvalues. Define

ǫ(m) = min
p∈Pm:p(0)=1

max
k=1,...,N

|p(λk)|.

Denoting with r(m) the residual at the mth step of GMRES, it is a classical result
that

‖r(m)‖2 ≤ κ2(W )ǫ(m)‖r(0)‖2.

Thanks to Proposition 4.6, κ2(W ) ≈ 1 since Im(AN ) = O(h). Thus the GMRES
convergence is determined by the factor ǫ(m).

Thanks to Proposition 4.6, it is possible to construct an ellipse properly containing
the spectrum of AN and avoiding the complex 0, so that when one applies GMRES
to the matrix AN , it holds that

ǫ(m) ≤
(
1 − C

√
h
)m

(4.8)

for a positive constant C that is independent of the problem size N . This means that
the number of iterations required to reach a preassigned tolerance could grow as

√
N .

Similarly, using PN as preconditioner, Proposition 4.8 implies that

ǫ(m) ≤ C̃m (4.9)

for some C̃ ∈ (0, 1), independent of the problem size N . Even if the solution u is not
enough regular to assure that the spectrum of P−1

N AN belongs to [1− c1h, 1 + c2h]×
i[−d, d], the strong cluster at 1 leads in practice to the superlinear convergence.
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4.2.2. Conjugate gradient (CG). Let SN be a symmetric definite matrix
and define ‖x‖SN

= ‖(SN )1/2x‖2. We recall the following classical result about the
convergence of the CG applied to a linear system with coefficient matrix SN :

‖xm − x∗‖SN
≤ 2

(√
κ2(SN ) − 1√
κ2(SN ) + 1

)m

‖x0 − x∗‖SN
, (4.10)

where xm is the approximate solution obtained at the mth step of the CG algorithm
and x∗ the exact solution.

Combining (4.10) with Proposition 4.6, we expect the CG algorithm to converge
in O(

√
N) iterations when applied to Re(AN ). On the other hand, using PN as

preconditioner, similarly to Proposition 4.8 implies that the eigenvalues of P−1
N Re(AN )

are localised in the interval [1−c1h, 1+c2h] and thus that CG converges in a constant
number of iterations, independently on the size N of the problem.

Finally, according to Proposition 4.6 and 4.5, Im(AN ) is negligible. Thus in prac-
tice one may apply the CG algorithm to the matrix AN , expecting a convergence
behaviour similar to that for Re(AN ), in both the unpreconditioned and precondi-
tioned cases.

4.2.3. Multigrid method (MGM). Proposition 4.8 and equation (4.7) implies
that AN has the same spectral behaviour as PN . Hence, if an iterative method is
effective for PN and robust, it should be effective also for AN . This is the case of
MGM largely used when dealing with elliptic PDEs ([23]). The matrix PN can be
viewed, after re-scaling, as a regularized weighted Laplacian since in the coefficient
matrix one adds h times the identity to −LD(u). In this way the conditioning is not
growing as N2 as in the standard Laplacian but grows only linearly with N . Therefore
the standard V-cycle that is already optimal for −LD(u), i.e., the number of iterations
is independent of the system size, continues to be optimal also for PN .

MGM has essentially two degrees of indetermination: the choice of the grid trans-
fer operators and the choice of the smoother (pre- and post-smoother, if necessary).
In particular, let P i

i+1 be the prolongation operator from a coarse grid i+ 1 to a finer
grid i. We consider a Galerkin strategy: the restriction operator is (P i

i+1)
T and the

coefficient matrix of the coarse problem is Ai+1 = (P i
i+1)

TAiP
i
i+1, where Ai is the

coefficient matrix on the ith grid.
For the prolongation we consider the classical linear interpolation in one space

dimension and the bilinear interpolation in two dimensions that are enough to ob-
tain an optimal convergence for −LD(u). Therefore, since AN has the same spectral
distribution (Proposition 4.5) and is better conditioned (Proposition 4.6), it is not
necessary to resort to more sophisticated grid transfer operators. The restriction is
the full-weight since, according to the Galerkin approach, it is the transpose of the
linear (bilinear) interpolation. Regarding the choice of the smoother, damped Jacobi
and red-black Gauss-Seidel are considered.

Finally, we stress that a robust and effective strategy is to use a multigrid iteration
as preconditioner for Krylov methods as confirmed in the numerical experiments. In
fact we showed that PN is an optimal preconditioner for AN and the MGM is an
optimal solver for a linear system with coefficient matrix PN . However, the numerical
experimentation in Section 5 confirms that the MGM can be efficiently applied also
as a stand-alone solver.

5. Numerical tests. First, we consider in detail a one-dimensional problem.
The two-dimensional setting is analysed at the end of the section.
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Fig. 5.1. l2 error at final time for N = 32, 64, . . . , 2048, final time t = 20/32, ∆t = h.

The one-dimensional problem is a test case, the porous medium equation written
in the form

∂u

∂t
=

∂

∂x

(
mum−1∂u

∂x

)
(5.1)

with homogeneous Dirichlet boundary conditions. Here m ≥ 1, with m = 1 corre-
sponding to the heat equation. In particular we consider the exact self-similar solution

u(t, x) = t−α
[
1 − αm−1

2m

(
|x|(t+ 1)−α

)2] 1

m−1

+
, α = 1

m+1 (5.2)

due to Barenblatt and Pattle [24]. (The subscript + denotes the positive part). The
experiments are carried out in Matlab 7.0.

In this section we do not use the rescaling by h that was useful to lighten the
notation of the previous section. Obviously, the analysis in Section 4 is not affected
by any positive rescaling.

5.1. Convergence of the global method and of Newton’s method. First
we check the convergence of the method. We perform test for m ranging from 2 to
5, observing no appreciable difference in the convergence properties of the algorithm.
In all tests we choose ∆t = h.

Figure 5.1 plots the l2 errors between the numerical solution at time t = 20/32
and the exact solution (5.2) and shows that the method is first order convergent, as
expected for this choice of time stepping procedure and also due to the presence of the
singularity in the first derivative of the exact solution. The dashed line is a reference
slope for first order schemes. We observe that the convergence is not significantly
affected by the parameter m.

Figure 5.2 plots the number of Newton iterations employed by the algorithm dur-
ing the integration from t = 0 to t = 20/32. We plot the average (circles), minimum
and maximum (solid lines) number of Newton iterations per timestep. Taking ∆t = h
(Figure 5.2a), we observe that the number of Newton iterations slowly decreases when
N increases and that, for any given N it increases only very moderately when m in-
creases. In the case m = 2 we also tried to vary the step size from ∆t = h/10 to
∆t = 5h. The results are reported in Figure 5.2b, showing that the number of Newton
iterations grows when taking larger ∆t in (1.2). The larger variability (for fixed N)
and the irregular behaviour of the mean value when increasing N in the case ∆t = 5h
preludes to the loss of convergence that we observe if ∆t is taken even larger.
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Fig. 5.2. Average, minimum and maximum number of Newton iterations performed during the
integration until final time. The horizontal axis represents the number of points in the discretization.
In (a) ∆t was kept fixed and m varied, in (b) m = 2 was kept fixed and ∆t varied.
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Fig. 5.3. History of the convergence of the Newton iterations during the first timestep. Black
solid lines correspond to m = 2 and red dashed ones to m = 3. We show the results for N ranging
from 32 to 4096, with ∆t = h: the behaviour under grid refinement is indicated by the thin arrow.

Next we verify the convergence of the Newton’s method. In Figure 5.3 we plot
the Newton’s error estimate ‖u1,k+1 − u1,k‖2/‖u1,k‖2 obtained when computing the
first timestep u1. We compare different number of grid points (N = 32, 64, . . . , 4096)
as indicated by the thin arrow and two values for the exponent m appearing in (5.1).

We emphasise that as prescribed in Proposition 3.5 the choice of ∆t = h is accept-
able for the convergence both of the global numerical scheme and for the convergence
of the Newton procedure.

5.2. Solution of the linear system. This section is devoted to computational
proposals for the solution of a linear system where the coefficient matrix is the Ja-
cobian in (2.5a), which is required at every step of the Newton procedure. For all
the tests, we set m = 2, final time t = 20/32, ∆t = h, and we let N be equal to
32, 64, . . . , 1024 for checking the optimality of the proposed best solvers.

As already stressed in Proposition 4.6, the matrix is (weakly) non-symmetric so
we start by considering the use of preconditioned GMRES (PGMRES).

5.2.1. GMRES. In Figure 5.4a we plot the average (circles), minimum and
maximum (vertical lines) number of GMRES iterations performed during the inte-
gration until final time, at different spatial resolutions. A least square fit (dashed
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Fig. 5.4. Average, minimum and maximum number of GMRES iterations (a) and precondi-
tioned GMRES iterations (b) performed during the integration until final time. The dashed line in
panel (a) is the least square fit.
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Fig. 5.5. Average, minimum and maximum number of CG iterations (a) and PCG iterations
(b), performed during the integration until final time. The dashed line in panel (a) is the least square
fit.

line) shows that the number of iterations grows as N0.5320. This fact is in complete
accordance with the analysis of Subsection 4.2 and in particular with equation (4.8).

In Proposition 4.8 and Remark 4.9 the use of XN(u) as preconditioner for F ′(u)
was analysed and a strong spectral clustering of the preconditioned matrix at 1 was
shown. As a consequence we expect a number of iterations not depending on the size
N of the matrix as in (4.9): this fact is observed in practice and indeed the iteration
count of the PGMRES is almost constant, with average value equal to 6 iterations
(see Figure 5.4b).

The previous tests were conducted with a direct solver for the preconditioning
step, in order to confirm the theoretical results of Section 4. According to the discus-
sion in Section 4.2.3, the linear system with XN(u) can be solve by multigrid methods
without change the GMRES iteration count (not shown). Later on we will test pre-
conditioning with a single V-cycle for the whole matrix F ′(u) (instead of XN(u)).

5.2.2. CG. Since the non-symmetric part of F ′(u) is negligible, we can try di-
rectly the solution of the whole system by using techniques such as the preconditioned
CG (PCG) or the multigrid method which in theory should suffer from the loss of
symmetry in the linear system.

In Figure 5.5a we plot the average (circles), minimum and maximum (vertical
lines) number of CG iterations performed during the integration until final time, at
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Fig. 5.6. Average, minimum and maximum number of MGM iterations performed during the
integration until final time.

different spatial resolutions. A least square fit shows that the number of iterations
grows as N0.5491, which agrees with the discussion in Subsection 4.2. However, the
number of iterations for fine grids is higher that the ones with GMRES (up to 950
instead of 160 with a grid of 1024 points). On the other hand, PCG does not need to
memorize any further vector at each iteration.

In a similar way, we consider XN(u) as preconditioner in the PCG method. Re-
sults are shown in Figure 5.5b. The number of iteration is again essentially constant
with respect to N , but it requires a slightly higher number of iterations to converge
with respect to PGMRES. Furthermore we have a higher variance in the number of
iterations, due to the weak non-symmetry of whole matrix.

5.2.3. MGM. We test the optimality of MGM, as discussed in Section 4.2. We
apply a single recursive call, that is the classical V-cycle procedure. As smoother,
we use a single Jacobi step with damping factor equal to 2/3. We observe mesh
independent behaviour with 10 or 11 iterations (see Figure 5.6).

We also tried other more sophisticated approaches by adding one step of post-
smoother with Gauss-Seidel, CG or GMRES but without any substantial reduction
of the number of iterations.

5.2.4. Krylov methods with MGM as preconditioner. The previous ex-
periments confirm that the MGM is an excellent solver for our linear system. Often
this method is also applied as preconditioner in a Krylov method instead of employing
it as a solver. In other words, as preconditioning step, we perform a single V-cycle
iteration, with the coefficient matrix F ′(u) and where the datum is the residual vector
at the current iteration.

With the use of such very cheap MGM preconditioning, the PGMRES converges
within about 7 iterations, independently of the size of the involved matrices (see Figure
5.7a). Comparing with the GMRES method preconditioned withXN (u) considered in
5.2.1 and Figure 5.4b, the present preconditioning strategy computationally cheaper
since the solution of the preconditioned system is replaced by a V-cycle iteration
without increasing the number of GMRES iterations. This must be partly ascribed
to the fact that the preconditioner now uses the full matrix F ′(u) = XN (u) + YN (u)
and not only XN (u).

The application of the V-cycle preconditioned to PCG requires a further post-
smoothing step (again damped Jacobi) to obtain a robust enough convergence. With
one step of pre- and post-smoother the PCG method leads to a convergence within 7
or 8 iterations, again independently of the system sizes (see Figure 5.7b).
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Fig. 5.7. Average, minimum and maximum number of PGMRES (a) and PCG (b) iterations
performed during the integration until final time, when using one MGM V-cycle as preconditioner.

N MGM(1,0) MGM(1,1) PGMRES(1,0) PGMRES(1,1) PCG(1,1)
32 0.07 0.05 0.11 0.09 0.08
64 0.17 0.11 0.25 0.20 0.22

128 0.45 0.31 0.60 0.49 0.53
256 1.23 0.84 1.50 1.27 1.34
512 3.46 2.39 3.95 3.40 3.56

1024 8.95 6.35 10.20 8.80 9.22
Table 5.1

Average CPU time for solving the inner linear system for the one-dimensional example. The
preconditioner is one multigrid iteration where between bracket are denoted the steps of pre- and
post-smoother.

In conclusion, V-cycle preconditioning in connection with GMRES has to be pre-
ferred, in terms of the robustness (less variance in the iteration count) and the number
of iterations. Indeed, due to the small iteration count, also the memory requirement
does not pose any difficulty, since the number of vectors that have to be stored in
the GMRES process is very reasonable. However, since the computational cost for
iteration is different for each solver, we compare also the CPU time. Table 5.1 shows
the CPU time for the V-cycle method used as stand-alone solver and as precondi-
tioner for GMRES and CG. All the different strategies give comparable results and
the minimum CPU time is obtained using the multigrid as stand-alone solver with
one iteration of pre- and post-smoother.

5.3. Two space dimensions. We performed our tests with the two-dimensional
Barenblatt solution [24] with exponent m = 4 on grids of size N ×N for N ranging
from 32 to 1024. First of all we note that the number of Newton iterations required
at each timestep is almost independent of N and is (on average) 4 when ∆t = 0.5h,
4.5 when ∆t = h and 6.5 when ∆t = 2h (see Figure 5.8).

Here, for brevity, we discuss in detail only the PGMRES with the multigrid
preconditioner since similar considerations hold for PCG like in the 1D case.

For the multigrid preconditioner, we employ a single V-cycle iteration, with a
Galerkin approach using the bilinear interpolation as prolongation operator and one
step of red-black Gauss-Seidel as pre-smoother. In Figure 5.9 we plot the mean
(symbols) and minimum-maximum (solid lines) number of GMRES iterations needed
at different spatial resolutions. Different colors correspond to different choices of ∆t,
namely ∆t = h/2 (blue crosses), ∆t = h (black circles) and ∆t = 2h (red diamonds).
The left panel shows that, without preconditioning, the number of GMRES iterations
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Fig. 5.9. Number of GMRES iterations at different grid sizes, in two dimensions. (a) without
preconditioning. (b) with V-cycle preconditioner. On the right, the 3 data series for each N have
been slightly shifted for clarity.

grows with the grid size: least square fits yield the approximations N0.5165, N0.5435

and N0.5702 respectively for the number of GMRES iterations on an N ×N grid with
the three choices of ∆t mentioned above. For homogeneity, the results for N = 1024
are not reported in the graph, since they require the restarted GMRES method or a
parallel implementation, due to memory limitations when run on a PC with 8Mb of
RAM.

Figure 5.9b clearly demonstrates the optimality of the preconditioning strategy
adopted, with the number of iterations being in the narrow range 5–10, when N
ranges from 32 to 1024, with all the three choices of the time step, and with the
average number of iterations being always between 5 and 7. As a side observation, we
note that we also employed damped Jacobi as a smoother with analogous results on
the optimality, but observing a slightly higher number of iterations (8–11 on average).

Finally, like in the one-dimensional case, Table 5.2 shows a comparison in terms of
CPU time for the V-cycle method used as stand-alone solver and as preconditioner for
GMRES and CG. We consider the two-dimensional Barenblatt solution with exponent
m = 2, ∆t = h, and red-black Gauss-Seidel as smoother. All the different strategies
give comparable results and the minimum CPU time is again obtained using the
multigrid as stand-alone solver with one iteration of pre- and post-smoother. We
observe that even if the PGMRES converges in fewer iterations than PCG, when the
size of the problem becomes large the PCG becomes faster than PGMRES since the



22 M. DONATELLI, M. SEMPLICE AND S. SERRA-CAPIZZANO

N × N MGM(1,0) MGM(1,1) PGMRES(1,0) PGMRES(1,1) PCG(1,1)
32 × 32 0.37 0.31 0.48 0.41 0.58
64 × 64 2.03 1.57 2.63 2.32 1.81

128 × 128 13.80 10.20 17.30 15.36 11.90
256 × 256 118.00 85.20 157.00 125.00 104.00
512 × 512 986,00 734.00 1278.00 1072.00 1001.00

Table 5.2
Average CPU time for solving the inner linear system for the two-dimensional example (m = 2).

The preconditioner is one multigrid iteration where between bracket are denoted the steps of pre-
and post-smoother.

vectors that PGMRES requires to memorize at each iteration are large. For PCG
a multigrid preconditioner with a larger number of smoothing iterations could be
usefull to improve the robustness of the method and to reduce the variance in the
PCG iterations.

6. Conclusions and future developments. The novel contribution of this
paper relies in the proposal of a fully implicit numerical method for dealing with
nonlinear degenerate parabolic equations, in its convergence and stability analysis,
and in the study of the related computational cost. Indeed the nonlinear nature of
the underlying mathematical model requires the application of a fixed point scheme.
We identified the classical Newton method in which, at every step, the solution of a
large, locally structured, linear system has been handled by using specialised itera-
tive solvers. In particular, we provided a spectral analysis of the relevant matrices
which has been crucial for identifying appropriate preconditioned Krylov methods
with efficient V-cycle preconditioners. Numerical experiments for the validation of
our analysis complement this contribution.

The research related in this paper was prompted by the applications described
in [18], whose natural evolution leads to consider more complicated geometries, in
two and three spatial dimensions, and finite element techniques. We observe that the
methods considered here can be to some extent generalised to finite elements approxi-
mations. In particular, when considering real two-dimensional and three-dimensional
cases, the structure of the relevant matrices will depend heavily on the geometry of
the domain, on the triangulation/gridding (often generated automatically), and on
the type of finite elements (higher order or non Lagrangian etc.). In any case there
exists a kind of information depending only on the continuous operator and which is
inherited virtually unchanged in both finite differences and finite elements, provided
that the grids are quasi-uniform in finite differences and the angles are not degenerat-
ing in finite elements. Such information consists in the locally Toeplitz structure (see
[22, 19]) used in Section 4 and in the related spectral features (conditioning, subspaces
related to small eigenvalues, global spectral behaviour etc.).

Concerning multigrid methods for nonlinear problems in a more general setting
and in particular for finite elements approximations, the ideas in [20] and related
works should be considered. Moreover, the FAS methods in [5] could be useful when
the Jacobian is not easily computable. These nonlinear multigrid strategies will be
investigated in the future in particular in connection with the applications in [18].
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