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LOW COMPLEXITY DAMPED GAUSS-NEWTON ALGORITHMS FOR
CANDECOMP /PARAFAC

ANH HUY PHAN *, PETR TICHAVSKY T, AND ANDRZEJ CICHOCKI*

Abstract. The damped Gauss-Newton (dGN) algorithm for CANDECQRFRAFAC (CP) decomposition can
handle the challenges of collinearity of factors aniedent magnitudes of factors; nevertheless, for factaoizatf
anN-D tensor of sizd; x ... x Iy with rankR, the algorithm is computationally demanding due to comsiva of
large approximate Hessian of siZRT x RT) and its inversion wher& = Y, I,,. In this paper, we propose a fast
implementation of the dGN algorithm which is based on nowgressions of the inverse approximate Hessian in
block form. The new implementation has lower computati@zahplexity, besides computation of the gradient (this
part is common to both methods), requiring the inversion ofadrix of sizeNR2 x NRZ, which is much smaller
than the whole approximate HessianTif> NR In addition, the implementation has lower memory requéegts,
because neither the Hessian nor its inverse never need tmfeel $n their entirety. A variant of the algorithm
working with complex valued data is proposed as well. Comifjleand performance of the proposed algorithm is
compared with those of dGN and ALS with line search on examepfealifficult benchmark tensors.

Key words. CP, tensor factorization, canonical decomposition, cemphlued tensor factorization, low-rank
approximation, ALS, line search, Gauss-Newton, Levenidagquardt, inverse problems
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1. Introduction. Algorithms for canonical polyadic decomposition, alsonsal CAN-
DECOMRPARAFAC (CP), can work well for general data([3]14), 16]. Hoek they often
fail for data with factors of dferent magnitudes [20] or collinear factors such as bottle-
necks and swamps. Bottlenecks arise when two or more compoaee collinear [6,9], and
swamps arise when collinearity exists in all modes [6, 1 fferhating least squares (ALS)
algorithms with line searches, regularization, and rotatian improve performance, but they
do not completely solve the problems. The damped Gaussawe(@diGN) or Levenberg-
Marquardt (LM) algorithm has been confirmed to successfdégompose such fliicult
data [11,19=21, 20, 81]. However, because these methodseadhe inverse of a large-scale
approximate Hessian matrix, the dGN algorithm is not apiblie to real-world large-scale
and high-dimensional data. In this paper, we establishtarfasrse of the approximate Hes-
sian for low-rank tensor factorization by proving that thgeximate Hessian for low-rank
tensor factorization is a low-rank adjustment to a bloclgdizal matrix, and propose fast
dGN algorithms that do not need to store the approximateibdessd its inverse entirely at
one time.

The paper is organized as follows. Notation and basic nmaétir algebra are briefly
reviewed in Sectionl2. CP model and common algorithms arelghieviewed in Sectiohl3.
Sectior4 derives the fast dGN algorithm. Low-rank adjustiod approximate Hessian is
derived, and its fast inverse is deduced in this section. fakedGN algorithm with two
variants has been proposed in Secfiof 4.2. The fast dGN éneat to complex-valued
tensor factorization in Sectidd 5. In Sectidn 6 we providaregles illustrating the validity
and performance of the proposed algorithms. Finally, 8efliconcludes the paper.

2. Tensor notation and CANDECOMP/PARAFAC (CP) model. We shall denote a
tensor by bold calligraphic letters, e.gl,e R'"!2><*In ‘matrices by bold capital letters, e.g.,
A =[ay, a,...,ag] € R™R, and vectors by bold italic letters, e.gy, or | = [I1,12,...,In].
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Moden tensor unfolding ofY is denoted byY ;. Generally, we adopt notation used in
[5L[14]. The Kronecker, Khatri-Rao (column-wise Kronegkand Hadamard products and
are denoted respectively gy ©, ®, [5,[14].

Notarion 2.1. Given N matriceA™ e R'"™*R, we consider the following products

N

C@lA(n):A(N)®---®A(”)®---®A(l), lh=1,vn,

n=

E@A(k) AN ... AN gAM-D g ..o AD), I, =1,vn,
#n

OAW = AN o ... AMD G ACM-D .. 5 A0,
k#n

Derinirion 2.1. (Partitioned matrix and block matrix) A partitioned matrixU of N
matricesU™ along the mode-2 (horizontal) is denoted by

U=[u® ... u® ... ] = [U(")]::y (2.1)

and a partitioned matrix¥ of NM matricesV™™ along two modes is denoted B =
N,M . . . .
[V(”’m)]n=1 - Ablock diagonal matri of N matricesU®™ is denoted by

u®

B = = blkdiag(UY, - ,UM) = blkdiag(U™)" . (22)

uiN)

Derinirion 2.2. (CANDECOMP /PARAFAC (CP)) A CPD consists in representing a
given N-th order data tenscy e R'"™!2>Iv py a set of N matrices (factors)A®™ =
[0, al,. ., al)l e R™R, (n=1,2,...,N) [#[10/12] such that

R

Yo aloa@o.. oaM =7, (2.3)
r=1 -
where symbol 8” denotes outer product. Tenséfis an approximation of the data tensgr
We often assume unit-length compong@®|, = 1forn=1,2,...,N-1,r=12,...,R

3. CP Algorithms. The Alternating Least Squares (ALS) algorithm[[2—4,10, 88]
quentially updateA™ using the update rule given by

A® =Y (®A<k>) (™), (=12...N), (3.1)
k#n

wherel® = @,.,C®, C = AOTAM® (n=1,2,...,N) is defined as in Notatidn 2.1;*
denotes the pseudo-inverse.
Denote bya € RRT, T = 3, I,, concatenation of vectorizations&fY, n=1,2,...,N,

a = [vedA®)" - vedA®) - veda®)"| . (32)

All-at-once algorithms such as the OPT algorithim [1], theFByVidamped Gauss-Newton
(dGN) algorithmsl[[11, 20, 29, 31] simultaneously updatd’he dGN algorithm is given by

a—a+H+urn)t g, (3.3)
H=2J"J, g=J" ved€). (3.4)

where€ =Y -Y, J € R?RT (J = [], 1) is the Jacobian of vég) with respect taa, H
denotes the approximate Hessian, and the damping parametd). Paatero[[20] empha-
sized advantage of dGN compared with ALS when dealing withlgms regarding swamps,
different magnitudes of factors.
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The Gauss-Newton (GN) algorithm can be derived from Nevgtométhod. Hence, the
rate of convergence of the update rille(3.3) is at most gtiadridowever, these methods
face problems involving the large-scale Jacobian and {acgée inverse of the approximate
HessianH = JTJ € RR™RT |n order to eliminate the Jacobian, Paatérd [20] estaddish
explicit expressions for submatricestdf We note that inverse df is the largest workload
of the GN algorithm with a complexity of orde?(R*T3) besides the computation of the
gradientg. Paatero[[20] solved the inverse problem! by Cholesky decomposition of the
approximate Hessian and back substitution. However, teriéhm is still computationally
demanding. Tomasi [29] extended Paatero’s results [2@],dmmived a convenient method
to constructH and the gradient foN-way tensor without using the Jacobian. In order to
cope with the inverse dfl, Tomasi[30] used QR decomposition. However, tiemncy of
existing dGN algorithms are still not ficient for the large-scale problems due to the inverse
H-L,

Recently, Tichavsky and Koldovsky [24] have proposed sehaethod to invert the
approximate Hessian based d&% 3R? dimensional matrices. For low-rank approximation
R < In, YN, this method dramatically improves the running time. Hogrethe algorithm still
demands significant temporary extra-storage, and it isicesd for third-order tensors.

4. Fast damped Gauss-Newton algorithmln this section, we will derive a fast dGN
algorithm for low-rank approximation of tensors with arhity dimensions. The most impor-
tant challenge of the update rule(3.3) is to reduce the ceamipnal cost for construction of
the approximate Hessiah and its inverse.

Tueorem 4.1 (Fast dGN algorithmDefine matrice§ ™™ of size(RxR),n=1,2,..., N,
m=1,2,...,N, and a partitioned matriX of size (NR x NR?) comprising matrice& (™™

rem — [r(n,m)]T _ [r(m,n)]T =@ cW,  copAOTAD ¢ RRR (4.1)
k#n,m

"™ = (1- 6,m) Pr diag(ve g € ,n=1...,Nm=1,....N, (4.
KOM = (1= 6y m) Pr di r(m RRXF 1,...,Nm=1,...,N, (4.2)

whered,m is the Kronecker deltal, ; is a permutation matrix for any x J matrix X such
thatP, ; vec(XT) = veqX), Pg = Prg andl’® = rn,
For NR< T, the fast dGN algorithm is written for each factf” as follows

A®  AD £ A (1= (Fa+ TO)T,Y) . n=12...N, (4.3)

WhereAf,”) is a variant of the ALS update rule(8.1) with a damping paramg > 0, F, of
size (Rx R) are frontal slices o whosevedF) = B, w,, and

AD =Y (OAW| T (4.4)
H k#n K
T = (0 4 ug)™ 4.5
= (0O +ulr) (4.5)
-1
K1l+y , for invertibleK,
B, = ( ) » _ B, € RNFXNF (4.6)
K (lNRz + ‘I‘HK) , otherwise
- N
¥, = blkdiag (rfl”) ® c‘”>)n_1 € RNRXNR, 4.7)

—mN N
w, = vec([A‘“)TAg*) -1y ) eR'F, T-@co. (4.8)
n=1 n=
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Fic. 4.1. lllustration of the approximate Hessian for a 5-D tensor grhican be expressed as a low rank
adjustment = G+ ZKZ T as in Theorerfi4]2. Green dots indicate nonzero elements.

In order to prove Theorein 4.1, we derive a low rank adjustrfmmii and employ the
binomial inverse theorer [13] to invert a smaller matrixiageNR® x NR? instead oH .

4.1. Fastinverse of the approximate Hessian H.
Tueorem 4.2 (Low rank adjustment for the approximate Hesdign With K defined in
Theoreni 4]1, the approximate Hesskrtan be decomposed into

H=G+zZKZzZT, (4.9)
G =blkdiag(F” ®1,)" ~ eRRVRT, (4.10)
Z = blkdiag(1r@A®)" € RRTNF (4.11)

Proof of Theoreri 412 is given in Appendix B, whereas an exarnpH for a 5-D tensor of
size 3x 4 x 5x 6 x 7 composed by 5 factors each of which has 3 components igdted in
Fig.[41. In the left hand side of Fig._4.H, consists of (N - 1))R? rank-one matrices and
NR diagonal matrices which are located along its main diagonal

Tueorem 4.3 (Fast inverse of the damped approximate Hesslamgrse of the damped
approximate HessiaH, = H + u I gt can be computed through
H'=G,-L,B,L, (4.12)

uo

whereB, is an NR x NR2 matrix defined in[{416) and

— | N

G, = blkdiag (ri”) I '“)n-1 € RRTRT, (4.13)
Q) o) N RTxNR

L, = blkdiag (rﬂ ®A )Wl € RRTNR (4.14)

The matrixK can also be expressed as a partitioned matrix of matf¢&® = (1 —
Snm) diag(vec(l‘(”’m))) € RR>F

K = (In® PR) [D‘“vm)]nm . (4.15)

If all the entrieSyﬁ?gm) of '™ are non-zeros, the matrR is invertible, and its inverse is
also a partitioned matrix comprising diagonal matricesietse ofK is briefly described in
AppendiXE.

An alternative expressidﬁ;l can be written in block form.

Tueorem 4.4 (Fast inversion dfl, in the block form).Inverse ofH, can be written as
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r (11 @, O (@WN)
H;(l ) L. H,(lm) H;(l )
a_g | ey gem . Fow
Hi=H,=| A®Y ... AOm . {ON | (4.16)
’H’fj\l,l) 3 ﬁg\l,m) 3 ’H'}(ll.\l,N)
where
AC™ = Gan(T, @ 1) - (1R A®)FP™ (10 ACT) (4.17)

andSM™ = (fl(ln) ® IR) B (fflm) ® |R) are matrices of size R« R2.
Proof. From [4.12), denote bB™™ the (m, n)—th block ofB,, we have

HO™ = 5o (ffln) ® I|n) - (ffln) ® I|n)(IR®A<”))BfI”’m) (IR®A<m)T)(fLm) ® I|n)
= un ([ ® 11, ) - (Ire A) (T © 1) BO™ (T ® 1) (1r@ A™T).

Please note that the inversiontaf in the block form saves memory. It requires to save only
the matriceffln) andS,. While the full matrixH or its inverse haB?T2 elements, the memory
saving format only requires to stoNR2 elements of matriceﬁfln) andN?R* elements oﬁ,l.

d

4.2. Proof of Theoren{4.1L.We replaceH;l in (3.3) by those in[{4.12) in Theordm 4.3
or Theorenh 44 and formulate the fast dGN algorithm

a—a+G,g-L,B,L} 0. (4.18)
The Jacobian, which may demand high computational cobgsists in the gradiengy in the
update rule[(4.18). We also note thatis a block diagonal matrix dil Kronecker products
(ffln) ® A(”)) e RR"® given in [Z.14). Construction af, has a computational complexity of
orderO(T Rg), and requires an extra-storage@(T R3). In order to completely bypass the
Jacobian] in (4.18) and avoid building up the matrlx,, we seek convenient methods for
computingG, g, w, = L, g, and product.,, B,, w,.

Lemma 4.5 (Optimize the update rule{4]118))Vith Afl”), I' and the tensof defined in
Theoreni 411,

_ TN
G, 9T = [veo(Agv _ A® O pg") ] . (4.19)
n=
1T g=ved[aOTA® _ PFO]" 4.20
w,=L,g=ve i e (4.20)

[ ved AR TY) |

LuBuw, =| vedA® R, T) |, (4.21)

Ve({A(N) Fn ’l:l(lN))
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Algorithm 1: Fast Algorithm for Low-Rank Approximation
Input: Y: input data of sizé; x 1, x --- x Iy,

R: number of basis components

Output: N factorsA®™ e RI™R,

begin
1 Random or SVD initialization foA®™, vn
repeat

2 w, =]

forn=1to Ndo

form=n+1toNdo % K in Eq.
3 K (nhm — g (mn) _ PRdiag(vec(I‘(”’m))) % TOm @ c® cm — AT AM
k#n,m ’
- -1
4 I = (0 + u1g)
5 Afln) —Ym (@A(k)) ffln) % damped ALS factor
ke
n —m\T]"
6 W, = [w; ved AOT AP - T ] % Eq. (02D
7 ¥ =T g % W, =blkdiag (¥") in Eq. @D
1 -1 -1 .

8 f=(K +‘I’”) W, %orf:K(I+‘I’,1K) w, in Eq.

forn=1to Ndo % Update AM™ using Eq. (3D
o L AO  AD 1 A0 (IR ~ (Fa+T®) flﬁ”)) % vedF) = f
10 NormalizeA™ n=1,2...,N
11 Updateu

| until a stopping criterion is met

Proof of Lemmd 45 is given in Appendix D. By replacia‘g o} LZ g, andL,B,w, in
(4.18) by those in{4.19)[_(4.20) arild (4.21), we obtain a cachppdate rule for each factor
AW n=1,2 ... Nasgivenin Theore4.1.

We note that linear systeni, w, in (4.6) have a computational complexity of order
O(N® R®) which is much lower tha®(R®T?) for (H + u 1)~ for NR < T. Pseudo code of the
proposed algorithm based on the update fuld (4.3) is givéigarithm[d. If components of
A® are mutually non-orthogond, is invertible, and its inverse can be explicitly computed
as in AppendiX’E. In this case, Step 3 is replaced[byl(E.1). @ctpral normalization in
Sted 10 is that the energy of the components is equally biiged in all modes. The method
often enhances the convergence speed of the LM iteratigi3€3}2

4.3. Two variants of the fast dGN algorithm. From [4.6), we present two variants of
the fast dGN algorithm which solve the corresponding im@mblemflwﬂ.
(@) fLM 5. @ =2 @1 = Iy + ¥,K compriseN diagonal matricesg, andN (N — 1) block
matrices(F(”)_1®C(”)) PrD™M forn # m. Note that®; is not symmetric, and its
density is given by

_ N(N-1)R'+NR  (N-1R?+1
- N2 R4 - NR2 ‘

do, (4.22)
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O =1 +¥,K D, =K1+,

. .
0 10 20 30 40 0 10 20 30 40
nz = 1665 nz = 585

(@) do, = (DR (b) da, = E1,

Fic. 4.2. lllustration of structure of NRx NRZ sparse matrice®; and ®@; for a 3x 4 x 5x 6 x 7 dimensional
tensor composed by R 3 rank-one tensors. The matriR; is less sparse than the matrk,. Blue dots denote
nonzero entries.

For 3-D tensor factorizations, the fast dGN algorithm in ethBtep 8 solves;w,
simplifies into the LM-1 algorithm in[24].

(b) fLlMp. ® 2= @, = K1 + ¥, is a symmetric matrix of siz&l R x NR? derived from
(@.2) and[(417). Theorem B.1 presents an explicit forniKot which is a partitioned
matrix of (R> x R?) diagonal matrices. Hence, it has oMl R?> non-zero entries. The
block diagonal matrix¥, (4.1) is constructed fronN (R? x R?) sub-matrices. As a

consequence, the density of the sparse maigix RNRXNR g

 N’R+NR-NR R+N-1
B N2 R4 - NR

do, (4.23)

Becausab; is not symmetric and less sparse thg solving the linear systemql W,
could be more time consuming than solvibg* w,. Inverse oK is not expensive and has the
explicit expression given in Theordm E.1. However, whenfélogor matrices have mutually
orthogonal columns is singular because it has collinear columns and rows. IH&ER) we
illustrate the structures and properties of the two masnBeand®, fora3x4x5x6x 7
dimensional tensor composed By= 3 rank-one tensors.

4.4. Comparison of complexity between dGN and fast dGNIn general, the dGN al-
gorithm [20/29] constructs the whole approximate Hessfaize RTxRT from its submatri-
cesH™M (see AppendikB) which are deduced fr@f’ andI'™. Computation ofc™ and
'™ are with of complexityO(RzT) and O(N RZ), respectively. According to Theordm B.2,
each df-diagonal submatrix has a complexity @f(RZInIm), it follows that computation of
the wholeH has the complexity oD(RZTZ). Note thatH hasR?*T? elements. Inversel—*
can be computed with a complexity GI(R3T3). The gradientg is computed at a cost of

O(NRJ). Thus dGN has a complexity per iteration@(N RJ+ R3T3).
Complexity of the fLM algorithm is analyzed for each step ilyérithm[1 as follows
Step[3 computesN matricesC® andr'® with complexityO(R?T) andO(NR) as in dGN.

Hence, building ug is of complexityO(N(N ~1)(N - 2)R2) = O(N3R2).
Stepld invertsT’ ,n=1,2,...,N at a cost 0lO(NF).
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Stepld computes the damped factax&) at a cost 0O (NRJ), and is one of the most expen-
sive steps in the fast dGN algorithm. We note that the largélead Y () EDA('() is
#N
used for evaluation of gradient, and exists in all CP algang& such as ALS, OPT.
Stepl7 builds up the block diagonal matrt¥, with a complexityO(N R“).
Step[d solves the inverse probleclrlw,l with a cost 0fO(N3R6). This step is much faster

than inverse of the approximate Hess'(a(R3T3 duetoR < I, orNR< T.
Instead of construction of the approximate Hessian, the iliybrithm builds up the
much smaller matrixb of size NR x NR. Hence, besides the cost of computation of the
gradient or the damped ALS factors, fLM compu@sind® ! at a cost ofO(RZT + N3R6)

which is much smaller than the cost for constructiotdadind forH=* in dGN.

The total expense of fLM per one iteration is approxima@(yxl RJ+ N3R®). ForN > 7,
the proposed algorithm has the same order of complexityasoffALS. However, fLM is
much faster than ALS because it requires less iteratiomsAh&.

4.5. Damping parameter in the LM algorithm. The choice of damping parameter
in the fast dGN algorithmg (4.3)facts the direction and the step sixe = H;l g in the
update rule[(313)a « a + Aa [18]. In this paper, the damping parametes updated using
the dficient strategy proposed by Nielsén|[[18]:

2max{%,1— (20 - 1)3}, p>0,
2u, otherwise

el - lledi3
P = AaT (g+uAa)’

vec(Y(l) (@ A(k)) -A@ F(l))
kel
g=J"(y-9= : eRRT, (4.26)
vec(Y(N) (@ A(k)) -AN F(N))
N

[ (4.24)

(4.25)

ke

wheree, = vedY - H:), the gradientg can be straightforwardly derived as [{D.1) or in
[29,31]. The factorAA™ will be updated unless the new approximate is lower than the
previous onejle|l> < |le1ll2. The algorithm should stop whenincreases to a sliciently
large value (e.g., £8). In practice, the factorA®™ are often initialized using the mode-
singular vectors of the data tensbi[[5, 7, 14], then run ove® A3.1) after few iterations.
According to the CP model(2.3), all the componeﬂf@(n # N) except ones of the last
factor are unit-length vectors. The initial value of the gémg parameter is chosen as the
maximum diagonal entry dfl as

po = Tmax{diag(H)} = r max{diag(r®) - - - diag(r®) - - diag(r™)}
= rmax{1, diag(C™)} , (4.27)

wherer is typically in the range of [1F, 1].

5. Complex-valued tensor factorization. This section aims to extend the dGN algo-
rithms to complex-valued tensors. Although a real-val@eor is considered as a complex-
valued tensor with zero imaginary part, for simplicity aligoms for real- and complex-valued
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tensors are introduced in two separate sections. For th@legmase, CP model is to find
complex-valued factora™ e C'"<R,

The damped Gauss-Newton-like update rllel(3.3) is rewrttiaipdate complex-valued
factors [8 23]

ac—a+(Maeu)” M (y-9). (5.1)

where symbol H” denotes the Hermitian transpose, and the Jacabisgiven in [B.1). The
approximate Hessiad = J" J slightly changes from that for the real-valued tensors. ¢ fa
and dficient computation method for the complex-valued approxériessiaH will be pre-
sented so that the final update rule does not employ both gittabian and the approximate
Hessian. We considéd as a partitioned matrix ofN x N) sub-matricedH(™™ e CRh<Rim
n,m=1,2,...,N. Each sub-matrisd™™ is a partitioned matrix ofR x R) subsub matrices
Hﬁf‘gm) eCIm nm=12,....N,r,s=1,2,...,R The explicit expression of the approx-
imate Hessiamd is deduced from the following theorems which can be derived similar
manner as for real valued tensors.

Tueorem 5.1 (Subsub-matriced™™). H™™ are diagonal or rank-one matrices given

by
HO™ = 60my 21, + (1= 6nm) Y™ & alWH (5.2)

wherey) are the(r, s) entries of the Hermitian matricd&™™ = @ AOHA®
k#n,m

Tueorem 5.2 (Sub-matriceBl ™). WithK defined as in{4]2H™™ are expressed in an
explicit form as

HOM = 5T ®15,) + (Ir@ A®) K™ (1g @ AMH) (5.3)

Tueorem 5.3 (Low-Rank Adjustment)or NR < T, the approximate Hessiath = JH J
can be expressed as a low-rank adjustment given by

H=G+zZKz", (5.4)

where sparse matriceS, Z andK are defined as il (4.10), (4.111) and (4.2).

The damped Gauss-Newton algorithms for complex-valuesbiefactorization are stated
in following theorems:

Tueorem 5.4 (damped GN algorithm for complex-valued tensor fagadions).The fac-
tors A®™ are updated using the rule given by

a—a+H+ul)tg, (5.5)

where the approximate Hessiahis defined in Theoreris5.1[orb.2, an Levenberg-Marquardt
regularization parameteg > 0 and the gradienty € CRT is computed as
N T

;
g= [ve((Y(n) (@ A<k>*) —A® r<">T) } : (5.6)

k# n=1

where symbol **' denotes the complex conjugate.
Tueorem 5.5 (fast dGN for low rank approximationffor NR < T, the factorsA®™ are
updated using the fast update rule given by
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AD AP 4 A (l R— (Fn + r‘“)T) fL”)) : (5.7)

whereF, are frontal slices of a 3-D tenscf whoseved) = B,w,, B, = (K™ + ‘I’,J)fl if K

is invertible, orB, = K (I +¥, K)_l, andw, is computed from the damped ALS fact/af;@

—=(n) -1
L, =" +ulg) ", (5.8)
' N

¥, = blkdiag (rfl”) ®A(”)HA(”))n_l , (5.9)

w, = ved[A®H A® _ T 5.10
= I N (5.10)

=0
AP =Y, (E?nA(k) )r# : (5.11)

6. Experiments - Computer simulations. The CP algorithms were verified forflicult
data with collinear factors in all modes (swamp). Collingategree of factors was controlled
by mutual angles between their components. Collinear faci§) were generated from
random orthonormal factotg™

a®=ul +vu®,  ve(0.1Vnvr#1. (6.1)

Mutual angle®,, betweers(” anda™, q # r were in a range of (B0] for v € (0, 1]

_w q=1,
tan@ar) = yVv2+2, g#1r.

For exampley = 0.1,0.2,...,1 yield6;, = 6°,11°,17°,22°,27°,31°,35°, 39,42°,45°, and

Oqr = 8°2,16°,23°,30°, 37,43, 48, 52°,56° 60°, q # 1,q # r, respectively. For high such
asv = 2,601, ~ 63 anddy, ~ 78°, tensor can be quickly factorized by CP algorithms. The
higher the parametert, the lower the collinearity of factors. It is morefidcult to factorize
tensors with lower (e.g.,v = 0.1, 0.2). However, when> 3, another issue arises from large
difference in magnitude between components. The tensorsladéfitult to factorize even
thought collinearity of factors is lowd(, > 71°). CP tensors, as i (2.3), can equivalently be
constrained to be of the form

(6.2)

R
H=Z/lra§1)° @ o5... 0 (N), (6.3)
r=1

where||a§“)||2 = 1,Vr, and eachl;, encodes the magnitude. For this experimgnt 1, and
A = (A +v?)V2,vr > 1. Therefore, fow = 3,4,5andN = 3, 1, = 31.6,70.1,1326,Vr # 1,
respectively. That means the componea{ff%, r = 2,...,R are relatively larger than the
first component. We analyze synthetic tensors for two caseer-free and noisy data with

additive white Gaussian noise at SNR {10 log,, (r”;dr‘ﬁn) = 30 dB or 40 dB added to the

data tensod = Y + o'N, whereN denotes a normally-distributed random tensor of zero
mean and unit variance whoeg, i, ~ N(0, 1).
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In order to evaluate the factorizations for collinear datameasured the Median Squared
Angular Error (MedSAE) over multiple runs between the orgiand estimated components
a™ 3" after matching their orders defined as

MedSAEE", ") = 10 logy, (mediar(a(??)) (dB), 6.4)
Whereaﬁn) = arccosl%. Cramér-Rao Induced Bound (CRIB) afﬁ’)z was computed
2 2

from the Cramér—Rao lower bound (CRLB) for estimating thmponenaﬁn) [15/25+27]

tr((11, - a""a” /l1af”I")CRLB(a("))
(BRI
For our simulations, due to the same collinearity degrée all the components, we have

CRIB(@{"?) = 10log,, (dB). (6.5)

CRIB(@"?) = CRIB(Y?), vr,Vn,
CRIB(@{?) = CRIB({), vnr=2...,R

The average MedSAEs for the estimated components were cethapgainst the average
CRIB. It is important to note that an MedSAE lower than -30 €B5 dB or -20 dB means
two components are filerent by a mutual angle less thah 2 and &, respectively. Practical
simulations show that it is flicult for MedSAE to reach a CRIB -30 dB, since collinearity
of factors has been destroyed by noise. Discussionfl@ets of noise on collinear data in
Appendi{F gives us insight into when CP algorithms are rattlst and when they succeed
in retrieving collinear factors from noisy tensors.

6.1. Comparison between dGN and fLM for 3-D tensor factorizéions. This sec-
tion compares performance of fLM and the standard dGN algorin the Matlab routines
PARAFAC3W developed by Tomasi[28,132]. The dGN algorithi8][@omputes the approx-
imate Hessian and gradient, and employs Cholesky decotigpoand back substitution to
solve the inverse problems=1g. Unfortunately, this toolkit supports only 3-D data. The
fLM 4 algorithm was verified, and shortly denoted by fLM.

In the first set of experiments, random synthetic tensorggenerated from 3 collinear
factor matrices of sizé x Rwherel = 100 andR = 5, 10, 20, 30, 40, 60 andy = 0.5. From
each noise-free CP tensdrcomposed fromA™ e R*R, twenty noisy tensory of 30 dB
SNR were generated. There are in total 200 rRiknsorsy. MedSAE for each component
was deduced from 200 runs for each test case.

Both algorithms were initialized by the same factors whictrevthe modex singular
vectors of the data tensar [7]. Algorithms stop when 1fBedénces of successive relative er-

1Y -Yie
o8 = Tl

was achieved. Execution time for each algorithm was medsusing the stopwatch com-
mand: “tic” “toc” of MATLAB release 2009a on a computer whibad 2 quadcore 3.33 GHz
processors and 64 GB memory. Tucker compression was notiuised simulations. The

dGN in [28] was adapted to follow the same stopping criterid the same computational
time measurements, while its other parameters were sefdaltealues.

Fig.[6.1(a) visualizes the overall execution times in selsoand the average execution
times per iteration for both algorithms. The speed-up sattw the overall decomposition
between dGN and fLM were approximately 6.4, 14.6, 35.1, 16&and 2.8 times fdR = 5,
10, 20, 30, 40, 60 respectively, while the speed-up ratiostpeation were respectively 5.6,
14.7, 20,7, 11.3, 6.5 and 2.7. We note that the numbers atiitexs of dGN and fLM were
slightly different because of fierences between them in controlling the damping parameters

were lower than 1, or until the maximum number of iterations (1000)
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— :
EEdGN | (... Overall
fLM

4 - | | == Per Iteration 3 : -10

-30

-35

) A _.]-W-MedSAEQ™) || _ . :
% 3 - P~ MedSAEQS) | |-t CRIB|!

10 20 30 40 50 60
R R
(a) Overall execution time and average execution time per (b) MedSAE and CRIB
iteration.

Execution time (secs)

Square Angular Error (dB)
L

Fic. 6.1. Comparison between the dGN (green lines) and fLM (magemés)ialgorithms for factorization of
100x 100x 100dimensional tensors composed by collinear factors forawsiR at SNR 30 dB:[(a] the overall
execution times in second (dashed lines) and the averagetéxe times per iteration (solid lined); (b) the average
MedSAE values (dB) of the first componaﬂlfg (square marker) and of other componeaﬁ@ (triangular marker),
..... R,n=123.

In Fig.[6.1(b), we illustrate the average MedSAE values aNd&8] and fLM. The mean
MedSAEs for the first componerd§’, n = 1,..., N were calculated ovex MedSAE@"?);

whereas the mean MedSAEs for the other componeEP?tsr =23....Rn=1...,N
were calculated ovelN x (R - 1)) MedSAE("?). Fig[6.1(b) shows that the average values

r>2
of MedSAE@ﬁ“)Z), r > 2,V¥n, asymptotically attained the CRIB. It means that both dGHN an
fLM well reconstructed componené"), r=2,...,R V¥neven forR = 60. To be accurate,
CRIB is a theoretical lower bound on the mean of the squaralangrror, not on the median.
In these simulations, the median and mean SAEs appearecesbly identical so that only
the former one is shown.

For the first componenEél”), performances of dGN and fLM were equivalentin the sense
of collinearity reconstruction for sma = 5, 10. ForR = 20, 30, fLM still reconstructed the
first components. Note that although MedSAEs welféedint, the relative approximation
errorse of two algorithms were almost the same but they were not ptedehere. The
difference in component reconstruction was caused by impleti@mbf the control strategy
for damping parameter. F& > 40, the average MedSAEs of the two algorithms were much
worse than the CRIB, and they were not able to reconstrudirgsicomponents. Indeed, we
cannot recover the first components due to noise for Righ

In order to analyze complexity of the two algorithms for héghanksR — |, we decom-
posed tensors of the same dimensions whose entries weremgngenerated. The rarR
varied from 5 tol = 100. The amount of allocated memory and average executienger
iteration were measured on the computer (PC1) in the prevdouulations and on a com-
puter (PC2) which had 2.67 GHz i7 CPU and 4 GB of memory. Thelt®s/ere summarized
in Fig.[6.2. For high raniR > 50, dGN required more than 4 GB of memory and could
consume 20 GB of memory fd&® = 100 whereas fLM need less than 4 GB of memory. On
PC1 which had 64 GB of memory, fLM was slightly more time cangug for R > 90 than
dGN because the advantage of the fast inversiohin (4.6) @ss However, dGN became
dramatically time consuming on PC2 whirx 40.
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(a) Allocated memory. (b) Execution time per iteration.

Fic. 6.2. Memory requirements and execution time per iteration of didN fLM in approximation 0100 x
100x 100dimensional tensors by rank-R tensors where R 10, 20, .. ., 100

6.2. Factorization of higher-order real-valued tensors.The proposed algorithms have
been extensively verified and compared with the ALS algorius line seach in the N-way
toolbox [2], for 4-D tensors of siz&, = 50, various rank® = 5,10, 15, and with dffer-
ent collinearity degree = 0.1,0.3,0.5,0.7,0.9. The 4-D tensors were corrupted by additive
Gaussian noise at SNR 40 dB. For each pair/( R) MedSAE was computed from 400
runs. Execution times (seconds) were measured on a contpatdrad 6-core i7 3.33 GHz
processor and 24 GB memory.

Algorithms were analyzed under the same experimental tiondias in the previous
simulations. They iterated until successive relative rsreowere lower than 16, or the
maximum number of iterations (5000) was achieved. The Aldgdrithm plus line seach
(ALSIs) was adapted to have the same stopping criteria.

At SNR =40 dB and rank& = 5, 10, 15, CRIBs are relatively high-(40 dB) for most
(see Fig[ 6.3(d))). Hence, CPD algorithms easily estimavithear factors and obtained high
MedSAE comparable to the CRIB. Fjg. 6.3(d) shows that MedSAEALSIs and fLM were
almost similar and approached CRIB except thosdifer15 andv = 0.1. It should be noted
that factorization became morefitiult in the case of higher rarfRand lowery. Execution
times of algorithms for dferentR andv are illustrated in Figq. 6.3(&)-6.3(c). The results
indicate that the higher the collinearity degree (i.e., lfgna) the more time-consuming the
algorithms. For example, ALSIs on average ran 2083 itematin 957 seconds to factorize
4-D noisy tensors wheR = 10 andv = 0.1. However, when keeping the tensor size and
rank R and changing = 0.9, this algorithm ran 34 iterations in 14 seconds. For theesam
tensors withy = 0.1, fLM took only 48.6 seconds on average to execute 384 itersitand
took 6 seconds for 21 iterations with= 0.9. That means fLM was 21 times faster than ALS
with v = 0.1. For 4-D tensors oR = 15 and withy = 0.1, ALSIs ran 4225 iterations in
2255 seconds on average, while fLM took only 103 secondsdoigr 494 iterations. Hence,
fLM was 24.7 times faster than ALSlIs for thefiGult test case. More execution times and
speed ratios are given in Talple]6.1. Speed ratio betweenstar®i fLM was high for highly
collinear data (e.g.y = 0,1). For example, fLM was at least 17.1 times and up to 24.8
times faster than ALSIs for collinear data with= 0.1. For lower collinearity degree, ALSIs
quickly factorized the tensor after few iterations. Altlghuthe speed ratio decreased, fLM
was still approximately 3 times faster than ALSIs.
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(c) 4-D tensorsA®™ ¢ R5%15 SNR= 40 dB. (d) 4-D tensorsR = 5,10, 15, SNR= 40 dB.

Fic. 6.3. Comparison between ALSIs and fLM for factorizations of 4fsbrs of siz&0 x 50 x 50 x 50 at
SNR= 40 dB[(@)F(c) execution times (seconds) were measured algerithms factorized tensors of various ranks
R = 5,10, 15.[(d) the average MedSAE (dB) for all components compardd@RIB.

6.3. Factorization of complex-valued tensorsin the next set of simulations, we con-
sidered factorization of complex-valued tensors. Facdtse C’%R were generated in the
same manner as for experiments in the previous section. Wowtey had random real
and imaginary parts. In addition to collinearity degrees 0.1,0.2,...,0.5, we considered
v = 3,4,5. We note that although collinearity of factors is low foghi = 3,4,5 (91, > 71°),
the tensors are still flicult to factorize.

We compared fLM with ALS plus line search (ALSIs). Algoritlsratopped when tfer-
ences between successive relative errors were lower thdn diothe maximum number of
iterations (2000) was achieved. In Fifs. 6./(a)-(b), westllate the average MedSAE of all
factors for 70x 70 x 70 x 70 dimensional tensors with ranks= 5 and 15 over 200 runs.
ALSIs achieved good performance with= 0.2, and excellent MedSAE with = 0.3, 0.4
and 0.5. However, for high collinearity degree= 4 and 5, ALSIs did not obtain perfect
reconstruction. The fLM algorithm outperformed ALSIs fdt st cases. Fig§. 6.4{E)-[d)
indicate that the number of iterations of ALSIs tended tordase gradually asincreased
from 0.1to 5. Fow = 3,4,5, ALSIs stopped after tens of iterations because there whs n
any significant change in the relative error. Fjgs. 6]A€)also reveal that fLM required less
iterations for highev. Difference in magnitude between components did fietafLM.
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TaBLE 6.1
Comparison of average execution times (seconds) betwdémrfid ALSIs for factorizations of 4-D and 5-D
tensors of size,l = 50 at SNR= 40 dB composed by collinear factors with various= 0.1,0.3,0.5,0.9 and for
various R. For each pair (Nm, R, v), speed-up ratio and execution times are given as indicatede subtable at
the bottom.

Tensor’s size Collinear degree
(N-D, Inx R) 0.1 0.3 0.5 0.7 0.9
347 65 28 15 11
4-D, 50x 5 171 20 111 6 6 a4 3.9 3.9 2.8 3.8
957 90 34 40 11
4-D, 50x 10 21.2 49 9.6 9 4.9 7 6 6 25 6
2,201 263 48 29 29
4-D, 50x 15 24.8 99 154 16 4.2 11 3 10 29 9
17,245 2,747 1,240 821 730
5-D, 50x 5 22 790 8.1 346 4.6 453 4.2 205 3.4 251
ratio Execution timg sis (seconds)
Execution time v (seconds)
AR
o0
@ =80~ @
% ~100---------o - %
=
e
,140'!',1\:;:,,,,,
"B,
0.1 0.1 0.2 0.3 0405
4 v
(a) 4-D tensorsA™ ¢ C7%5, SNR= +c0 dB. (b) 4-D tensorsA(M ¢ C7%%15 SNR= +c0 dB.
2 2
S S
© <
2 2
S S
=z P
B LM e ; ! s
R : [ @ P T
0.1 0.2 0.3 0405 3 0.1 0‘.2 0.3 0405 3 4"
4 4
(c) 4-D tensorsA™ e 705, (d) 4-D tensorsA(™ ¢ C70x15,

Fic. 6.4. lllustration for MSAE for factorization of 4-D complex-u&d tensors with sizg, I= 70 and ranks
R = 5,15. Algorithms stopped as they reached a derivative of sub@esslative errors ofl0~8 or 2000 iterations.

7. Conclusions. Simulations for real- and complex-valued tensors confirthedLM
algorithm was faster than dGN and ALS, and outperformed AL®é sense of approxima-



16 PHAN AND TICHAVSKY AND CICHOCKI

tion accuracy (MedSAE) for dlicult test cases. Moreover, MedSAE of fLM was comparable
to CRIB for most test cases even for noisy tensors. For thaneality modification used in
the simulations, we also show that for the same tensor sizedallinearity degree, the higher
rankR the data tensor has, the mor&idult the factorization is to retrieve the factor. For the
same sizé,, rankR, and collinearity degree, the higher the dimensions of #ia tensor, the
higher the performance of factorization can be achieved.

Most CP algorithms incorporated with line-search techagwork well for general data,
but often fail for highly collinear data with bottlenecksswamps. The dGNLM algorithms
[20,[29] can deal with such data, but demand extreme conipnghtcost associated with
large-scale inverse of approximate Hessians. In this page&mploying the special structure
of the approximate Hessian, a fast inverse for the appraeitdassian has been derived, and
low complexity damped Gauss Newton algorithms have beeposex for factorization of
low rank real- and complex-valued tensors. The proposeatigtgn avoids building up the
whole approximate Hessian and its inverse by working wittcimsmaller matrices of size
NR x NR instead of(RT x RT). Extensive experiments for tensor factorizations showed
that our algorithms outperformed “state-of-the-art” altfons for dificult benchmarks for
both real and complex-valued tensors. The proposed/dMMIgorithms can be extended to
the nonnegative CPD in which factors are nonnegative negtridloreover, our algorithms
can be simplified to estimate only one factor for supersymmtgnsor factorization which
can be found in multiway clustering, or to the INDSCAL decasition [5[15].

Acknowledgments. The authors wish to thank the referees for the very constrict
and detailed comments and suggestions which led to majaoiements in the manuscript.
They also thank for Dr. Benedikt Losch and Mr. Austin Broakar for their suggestions that
helped improving the manuscript.

Appendix A. Commutation Matrices. A commutation matrixQ, expresses connection
between vectorizations of tensor unfoldings, and oftestexn construction of the Jacobian
J and the approximate Hessighin dGN algorithms for CP and Tucker decompositions [22].

Lemma A.1. (moden to mode-1 unfolding) Commutation matriQ, which mapsedAy)) =

vedA) = QuvedA() is given byQn = 1., ® Piy, i, With lizj = T ke
Appendix B. Proof of Theorem[4.2.
In order to prove Theorein 4.2, we seek explicit expressionshfe Jacobian and the

approximate Hessian in the next section.
Lemma B.1. The Jacobian matrid has a form of[[20, 31]

N

oo,

n=1

J=

We express the approximate Hessias anN x N block matrixH = [H(”’m)]nm, HO.m
of sizeRly X R, ’
Tueorem B.2. (see alsol[20, 29]) A submatrid™™ has an explicit expression given by

HOM = 50 (T 1) + (1r@ AD) KM (1rg AT, vn, vm (B.2)

By establishing expressions for submatrieé™, we can prove Theorem 4.2.
Proof. (Theoreni4.R) Froni(Bl2), we construct a sparse m&riconsisting all block
matricesH® n=1,2,...,N, thatis
. N .
G = blkdiag (H(”))n:l =blkdiag(T @1, (B.3)

N
n=1"
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From Theoreri BI2, and by using the product of block matrites,straightforward to
decomposél — G into three matrices defined in Theoreml4.2 as

H-G=2zZKZzT". (B.4)

Appendix C. Proof of Theorem[4.3.
Proof. The damped approximate Hessidlp = G + ulgr + ZKZ T is adjusted from
G, = G + ulgrr by a low-rank matrixZKZ ™. Hence, its inverse can be quickly computed by
applying the binomial inverse theorem (see page 18 [13])
{Gﬂl -Gz (K1+27GZ)  ZTG;Y,  if Kisinvertible,

-1 _
H, =

-1 -1 T~_1 -1 T ~-1 i (Cl)
Gl -G'ZK (Ine +Z7G;'ZK) " ZT G, otherwise.

Denote byf—fH inverse of the block diagonal matr@, which is also a block diagonal matrix

! 0 N
= blkdiag (Fu ®I |n)
n

6, = butiaa (10 +uti)o 1)) .

Similarly, we denote, = G,'Z and¥, = Z" G,* Z. From [4.11) and by taking into ac-
count(ffln) ® | .n) (I R® A(n)) = ffln) ® AM we have

N

— N
L, = G;1Z = blkdiag (FL”) ®l |n)  blkdiag(lr@ A®)"

n= 1

. =(n) o) N
=blkdiag|I," ® A
n=1
. =(n) ) N
¥, =blkdiag|I',"®C E (C.2)
n=

Finally, we defineB as in [4.6), and easily dedu¢e{4.12) frdm (C[L).

Appendix D. Proof of Lemmal4.5.
Proof. From [B.1), [(ELIB), and note that (&) = Q, ved Ey)), whereQ,, is defined in
LemmdA.l, the produds, g can be expressed in a block form as

(6,1 g7 veo(S))T= ;ve a&)T Oy (((g A(k)) fl(ln) ) ®l .n)]:j:l = [ve((E(n) (g A(k,:) ff,n))T]ril
wefon (@22 ] 012

k#n k#n k#n
n=1

- . T N
ve(fAl(I“) _AM O™ ri”)) ] ) (D.1)
L n=1

Similarly, a convenient formula to compun)%r gis given by

—on TN T
W/.l — L/I‘]T VeC(S) — |:Ve((A(n)T (A/Sn) _ A(n) r(n) Iﬂl(ln))) ] l
n=

_ ve<([A<”>TA<“> - rf(”’]N ) (D.2)
1 By .
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Finally, for each frontal slic&, of the tensoF € RPN whose ve¢¥F) = B,w,, we have
(ffl”’ ® A(n)) veqF,) = veo(Am) F, ”ffl”’) . (D.3)

From [Z13), we obtai[{Z21). Each product ins[@eD.3)diasmplexity ofO(1, R? + R?).
Hence,L, f in (#21) has a complexity o@(TR2 + NR3) ~ O(T RZ) which is lower than

O(T R3) by a factorR for building upL, and direct computatioh,, f. Furthermore, this fast
computation does not use any significant temporary extnage [

Appendix E. Inverse of The Kernel Matrix K. _
__ Tueorem E.1.Inverse oK defined in[(4.R) is a partitioned matrik = K -1 whose blocks
KOm forn=1,...,N,m=1,...,N are given by

KOm = (Ni—l - 6n,m) diag(veC™ © C™ o T)) Pg. (E.1)

Appendix F. Effects of noise on collinear data.
This section discusses briefl§ffects of noise on factorization of collinear tensor gener-
ated by the modificatiof (6.1). Consider matrix factoriaatof the modea tensor unfolding

Yy =A® (9 AR 4 Eg. (F.1)
#n

Analysis of singular values of ;) or eigenvalues oY Y(Tn) allow predicting whether fac-
torization succeeds in retrieving collinear factors froaisy tensors. This also gives insight
into when CP algorithms are not stable, and yield non-unsmphetion.
T
The modification[{6]1) can be expressed\ds = UM Q, whereQ = [ 01 VllR—l } €
R-1 R-1
RR*R_In theory, for noisy tensofd with I, = |, Vn, we have

Yo Yy =AOTOAOT L Eq EQ =UOZUOT 4+ 02 N (F.2)
whereZ = Q (QT Q)’lel] QT, [A]’[F! denotes element-wise power, and
Y112 RP+(R-1)xy-1
2 _ F _ _ 2 _ yN-1
07 = JENRIOIN = T {ENRION X=1+v,y=x" " (F.3)
R+(R-1)(y-1) v(R+y-1)1% ;

It is straightforward to prove that =

v(R+y-1)1r1 (x=1)(lr1lfy+ (Y- Dr1)
has R — 2) identical eigenvalues, = (x — 1)(y— 1),r = 2,...,R-1, and its largest and
smallest eigenvaluel > A; > Ag are solutions of a quadratic equation

A1+ AR =xy+(R-2)(R+x+Yy) +3, (F.4)
AAr=(XX-1Dy-1)= 2, 2<r<R-1. (F.5)

Fig.[FI(@) illustrated, (r = 1,..., R) for 3-D noiseless tensors with= 100 andR = 15
compared with the noise levetg IN-! at SNR= 20 dB and 30 dB. The higher the collinearity
degree of factor, the smaller the eigenvalaedf eigenvalues!; are considerably lower than
the noise levetr? IN-1, the factorization becomes infeasible, e.g.y as0.1.

Becaus&J™ are orthonormalY ) Y(Tn) hasR leading eigenvalueg = A, + c2I(N-D) r =
1,...,R and ( - R) eigenvaluesl, = o?IN-Di = R+ 1,...,1. In Fig.[FI(b), we plot
eigenvaluesl; for noisy tensors having the same dimension as that of ten#wstrated in
Fig.[FI{@). The largest eigenvalue significantly exceeds the noise levels, whergass
quite close to the noise level at SNR20 dB forv < 0.3, or at SNR= 30 dB forv < 0.1.
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R=15,1=100,N=3 R=15,1=100,N=3

------ SNR=20dB |
------ SNR=30dB |

0.1 0.2 0.3 0.4 0;.5 0;.6 0‘.7 0‘.8 0:9 1 0.1 0‘.2 0‘.3 0:4 0.5 0:6 0:7 0.8 0‘.9 1
v 4
(a) Eigenvalues,;,r = 1,...,R(= 15), 1, = 100,N = 3. (b) Eigenvalueslj,i = 1,..., I, (= 100),R= 15N = 3.

Fic. F.1.Analysis of eigenvalues ¥, YE]) for 3-D tensors of size,|= 100and rank R= 15. R leading eigen-

valuesa; for noiseless tensors ani(r = 1,.. ., R) for noisy tensors are compared with noise levels (greeniskgd
at SNR= 20 dB and 30 dB. The more the eigenvalues are in the noise #tenejore dficult the factorization of
noisy tensors to retrieve collinear factors become.
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