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Abstract. We consider an agent who invests in a stock and a money market account with the
goal of maximizing the utility of his investment at the final time T in the presence of a proportional
transaction cost λ > 0. The utility function is of the form Up(c) = cp/p for p < 1, p 6= 0. We provide
a heuristic and a rigorous derivation of the asymptotic expansion of the value function in powers of
λ1/3. We also obtain a “nearly optimal” strategy, whose utility asymptotically matches the leading
terms in the value function.
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1. Introduction. We consider the problem of an agent seeking to optimally
invest in the presence of proportional transaction costs. The agent can invest in a
stock, modeled as a geometric Brownian motion with drift µ and volatility σ, and in a
money market with constant interest rate r. The agent pays proportional transaction
cost λ > 0 for trading stocks, with the goal of optimizing the total utility of wealth at
the final time T , when she would be required to close out her stock position and pay

the resulting transaction costs. The utility function is given by Up(c)
△
= cp

p , where
p < 1, p 6= 0. We refer to this optimized utility of wealth as the value function. In
this paper, we compute the asymptotic expansion of the value function up to and
including the order λ

2
3 . We also find a simple “nearly-optimal” trading policy that, if

followed, produces an expected utility of the final wealth that asymptotically matches
the value function at the order of λ

2
3 .

In Section 2 of this paper we define our model, state the HJB equation, and state
Merton’s result for the case of zero transaction costs. Under the smoothness assump-
tion of the value function, in Section 3 we provide a heuristic expansion of the value
function in powers of λ1/3. In the next section we use this heuristic expansion in order
to build smooth functions w±, which we later prove to be upper and lower bounds
on the value function u. These functions also turn out to be sub- and supersolutions
for the Hamilton-Jacobi-Bellman (HJB) equation. It is then possible to apply the
Comparison Principle for viscosity solutions to conclude that the value function u,
which is a viscosity solution for the HJB equation, has to be between the super- and
subsolutions. However, this method is only applicable for 0 < p < 1. Therefore we
use a verification argument from stochastic calculus. In the final section we construct
a simple policy and in Theorem 5.3 prove that w± are indeed upper and lower bounds
on the value function u. As a corollary we also get that the expected utility of the
final wealth from the constructed policy is order λ close to the value function, which
makes this policy a “nearly-optimal” policy.

∗THE AUTHOR WOULD LIKE TO THANK STEVEN SHREVE AND DMITRY
KRAMKOV FOR USEFUL COMMENTS AND DISCUSSIONS.
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2 M. Bichuch

In the case of zero transaction cost, the agent’s optimal policy is to keep a constant
proportion of wealth θ, which we call the Merton proportion, invested in stock. See
Pham [29], or alternately the original paper of Merton [28] where a solution to a
similar investment and consumption problem with infinite time horizon appears.

When λ > 0, the optimal policy is to trade as soon as the position is sufficiently
far away from the Merton proportion. More specifically, the agent’s optimal policy is
to maintain her position inside a region that we refer to as the “no-trade” (NT) region.
If the agent’s position is initially outside the NT region, she should immediately sell
or buy stock in order to move to its boundary. The agent then will trade only when
her position is on the boundary of the NT region, and only as much as necessary
to keep it from exiting the NT region, while no trading occurs in the interior of the
region; see Davis, Panas, & Zariphopoulou [15]. Not surprisingly, the width of the
NT region depends on time, which makes it difficult to pinpoint exactly the optimal
policy. Moreover, the NT region degenerates when the Merton proportion θ = 1, i.e.
it is optimally to be fully invested in stock, since in this case, the agent only needs to
trade at the initial time to buy stock, and the final time to liquidate his position. We
will not consider this case. The approach of this paper, is to expand the value function
into a power series in powers of λ

1
3 . This approach, which leads to explicit results,

was pioneered by Janeček & Shreve [22] in solving the infinite horizon investment
and consumption problem. Many other papers have used asymptotical expansion
including Goodman & Ostrov [20], who showed how the first term in asymptotical
expansion of the value function relates to a free boundary problem that minimizes a
cost function. They also showed that the quasi-steady state density of the portfolio
is constant in the NT region. Janeček & Shreve [23] used it to solve a problem
of optimal investment and consumption with one futures contract, and Bichuch [2]
applied it to the case of two correlated futures contracts. Dewynne, Howison, Law
& Lee [17] heuristsically found a time independent policy in a finite horizon problem
with multiple correlated stocks. Under the assumption that the principle of smooth fit
holds and that the boundaries are symmetrical around the Merton proportion, they
heuristically computed the asymptotic location of the boundaries of the NT region.
We prove this result rigorously for a problem with one risky asset, and quantify the
optimality of the proposed policy. Numerical results provided by Gennotte & Jung
[19] and Liu & Loewenstein [26] show that the optimal boundaries are not symmetrical
around the Merton proportion and that they are complicated functions of time. For
instance, Dai & Yi [13] find a time, of order λ close to final time T , after which
the agent would no longer buy stock. The intuitive explanation is that it is wasteful
spending to buy extra stocks, standing very close to final time, only to sell them all
a moment later, without realizing virtually any profit, since the agent held them for
very little time. Our goal instead is to find a simple “nearly-optimal” policy. We rely
on the results obtained by Dai & Yi [13], who use a PDE approach to problem to show
a connection between the optimal investment problem and a double obstacle problem.
Using the theory of the obstacle problem, they show that the value function is smooth
(see Theorem 5.1 for exact formulation). They also characterize the behaviors of the
free boundaries.

Transaction costs were introduced into Merton’s model by Magill & Constan-
tinides [27]. Their analysis of the infinite time horizon investment and consumption
problem, despite being heuristic, gives an insight into the optimal strategy and the
existence of the NT region. A more rigorous analysis of the same infinite time horizon
problem was given by Davis & Norman [14], who under certain assumptions showed
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that the value function is smooth. The viscosity solution approach to that infinite time
horizon problem was pioneered by Shreve & Soner [30], who significantly weakened
the assumptions of Davis & Norman [14].

An alternative to the dynamic programming approach above is to use the martin-
gale duality approach. Cvitanič & Karatzas [10] in a finite time horizon investment
problem using duality proved the existence of an optimal strategy, under the assump-
tion that a dual minimization problem admits a solution. Later Cvitanič & Wang [12]
proved the existence of a solution to the dual problem. In a more general framework
with multiple assets Kabanov [24] proved the existence of an optimal strategy, also
assuming the existence of a minimizer to the dual problem. Subsequent existence
results under more relaxed assumptions were proved in Deelstra, Pham & Touzi [16]
and Campi & Owen [4].

While the problem of optimal investment in the presence of transaction costs
is important in its own right, it has further value in the study of contingent claim
pricing. Hodges and Neuberger [21] proposed to price an option so that a utility
maximizer is indifferent between either having a certain initial capital for investment
or else holding the option but having initial capital reduced by the price of the option.
This produces both a price and a hedge, the latter being the difference in the optimal
trading strategies in the problem without the option and the problem with the option.
This utility-based option pricing is examined in [3], [5], [6], [15]. A formal asymptotic
analysis of such an approach appears in Whalley & Wilmott [31]. They assume a
power expansion for the value function and compute the leading terms of it for both
the case of holding the option liability and the case without it. Their proof corresponds
to the heuristic derivation section in this paper. We believe this paper is a step in the
direction of providing a rigorous proof to a corresponding result with power utility.

2. Model set-up and known results. The set-up of the model is similar to
Shreve & Soner [30], only with finite time horizon T > 0. An agent is given an initial
position of x dollars in the money market and y dollars in stock. The stock price is
given by

dSt = µStdt+ σStdWt, S0 = 1, (2.1)

where µ and σ are positive constants and {Wt, t ≥ 0} is a standard Brownian motion
on a filtered probability space

(

Ω,F , {Ft}0≤t≤T ,P
)

. We assume a constant positive
interest rate 0 < r < µ. The agent must choose a policy consisting of two adapted
processes L and M that are nondecreasing and right-continuous with left limits, and
L0− = M0− = 0. Lt represents the cumulative dollar value of stock purchased up to
time t, while Mt is the cumulative dollar value of stock sold.

Let Xt denote the wealth invested in the money market and Yt the wealth invested
in stock, with X0− = x, Y0− = y. The agent’s position evolves as

dXt = rXt dt− (1 + λ) dLt + (1− λ) dMt, (2.2)

dYt = µYt dt+ σYt dWt + dLt − dMt. (2.3)

The constant λ ∈ (0, 1) appearing in these equations accounts for proportional
transaction costs, which are paid from the money market account.

Remark 2.1. From (2.2) and (2.3) it follows that X·(ω) + Y·(ω)− λ |Y·(ω)| is a
lower semi-continuous function.

Define the solvency region

Sv , {(x, y); x+ (1 + λ) y > 0, x+ (1− λ) y > 0} .
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The policy (Ls,Ms)
∣

∣

s∈[t,T ]
is admissible for the initial position (t, x, y), if (Xs, Ys)

starting from (Xt− , Yt−) = (x, y) and given by (2.2), (2.3) is in Sv for all s ∈ [t, T ].
Since the agent may choose to immediately rebalance his position, we agree the initial
time to be t−. We denote by A(t, x, y) the set of all such policies. We note that
A(t, x, y) 6= ∅ if and only if (x, y) ∈ Sv.

We introduce the agent’s utility function Up defined for all c ≥ 0 by Up(c) , cp/p
for p < 1, p 6= 0. (An analysis along the lines of this paper is also possible for
U0(c) = log c, but we omit that in the interest of brevity.) For convenience we agree
to treat Up(0) = 0p

p , −∞ when p < 0 here and in the rest of this paper. Define
the value function as the supremum of the utility of the final cash position, after the
agent liquidates her stock holdings

v0(t, x, y) , sup
(L,M)∈A(t,x,y)

E
[

Up(XT + YT − λ|YT |)
∣

∣Ft

]

, (t, x, y) ∈ [0, T ]× Sv.

(2.4)
For (t, x, y) ∈ [0, T ]× Sv and β ≥ 0 we also define an auxiliary value function

vβ(t, x, y) , sup
(L,M)∈A(t,x,y)

E

[

e−β(T−t)Up(XT + YT − λ|YT |)
∣

∣Ft

]

. (2.5)

Clearly

v0(t, x, y) = eβ(T−t)vβ(t, x, y), β ≥ 0, (t, x, y) ∈ [0, T ]× Sv. (2.6)

For the rest of this paper we will concentrate on finding vβ .
Lemma 2.2. For β ≥ 0, t ∈ [0, T ] and (x, y) ∈ ∂Sv, the only admissible policy

is to jump immediately to the origin and remain there. In particular, XT = YT = 0,
and vβ(t, x, y) = 0 when 0 < p < 1 and vβ(t, x, y) = −∞ when p < 0.

Proof: The proof of this Lemma is a modification of Remark 2.1 in Shreve &
Soner [30].

�

The problem with λ = 0 is similar to the problem solved by Merton [28]. It can
be easily seen that the optimal policy always keeps a wealth proportion

θ =
µ− r

(1 − p)σ2
, (2.7)

in the stock, see Pham [29]. We call θ the Merton proportion. For λ = 0,

vβ(t, x, y) =
1

p
epA(T−t)(x+ y)p, β ≥ 0, (t, x, y) ∈ [0, T ]× Sv, (2.8)

where A , r − β
p + (µ− r)θ − 1

2 (1− p)σ2θ2 = r − β
p + 1

2
(µ−r)2

(1−p)σ2 .

Note, that vβ |[0,T ]×Sv
< ∞, β ≥ 0. This is clear in case of λ = 0, and vβ cannot

increase as λ increases. This is not the case in the infinite time horizon case, when a
condition on the parameters is required to assure the finiteness of the value function.

Remark 2.3. Fix any β ≥ 0 such that pA < 0. For the rest of this paper we will
deal with that fixed β and for convenience we will drop the subscript and refer to the
value function vβ simply as v. It turns out that this v = vβ is easier to find than v0,
but because of (2.6) there is no loss of generality in doing so. When p < 0 the choice
β = 0 is suitable, however, the case when 0 < p < 1 requires a strictly positive β. The
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term pA can be understood as the optimal growth rate in the sense of Akian, Menaldi
& Sulem [1], and β as the investor impatience.

The following theorem is parallel to the one proved by Davis, Panas, & Za-
riphopoulou [15] and Shreve & Soner [30].

Theorem 2.4. The value function v(t, x, y) defined by (2.5) is a viscosity solution
of the following HJB equation (2.9) on [0, T ]× Sv:

min {−vt + Lv, −(1− λ)vx + vy, (1 + λ)vx − vy} = 0, (2.9)

where the second-order differential operator L is given by

(Lv)(t, x, y) , −
1

2
σ2y2 vyy(t, x, y)− µy vy(t, x, y)− rx vx(t, x, y) + βv(t, x, y), (2.10)

together with the terminal condition

v(T, x, y) = Up(x + y − λ|y|), (x, y) ∈ Sv. (2.11)

Power utility functions lead to homotheticity of the value function: for γ > 0,

v(t, γx, γy) = γp v(t, x, y), (t, x, y) ∈ [0, T ]× Sv. (2.12)

This is because (Ls,Ms)
∣

∣

s∈[t,T ]
∈ A(t, x, y) ⇔ (γLs, γMs)

∣

∣

s∈[t,T ]
∈ A(t, γx, γy). Con-

sequently, the problem reduces to that of two variables. With Su , (−1/λ, 1/λ), we
define

u(t, z) , v(t, 1− z, z), (t, z) ∈ [0, T ]× Su. (2.13)

In other words, we make the change of variables z = y/(x + y), 1 − z = x/(x + y),
which maps the solvency region Sv onto the interval Su. Then

v(t, x, y) = (x+ y)p u

(

t,
y

x+ y

)

, (t, x, y) ∈ [0, T ]× Sv. (2.14)

The counterpart to Theorem 2.4 for the reduced-variable function u is the follow-
ing lemma. It is parallel to Proposition 8.1 from Shreve & Soner [30].

Lemma 2.5. On [0, T ]×Su, u is a viscosity solution of the HJB equation H(u) =
0, where

H(u) , min
{

−ut(t, z) +Du(t, z), λpu(t, z) + (1− λz)uz(t, z) (2.15)

λpu(t, z)− (1 + λz)uz(t, z)
}

,

(Du)(t, z) , − p
(

A−
1

2
σ2(1− p)(z − θ)2

)

u(t, z)

+ (1 − p)σ2z(1− z)(z − θ)uz(t, z)−
1

2
σ2z2(1 − z)2uzz(t, z),

(2.16)

with the terminal condition u(T, z) = Up(1− λ|z|), z ∈ Su.
For future convenience for (t, z) ∈ [0, T ]× Su we also define two first-order differ-

ential operators

(Bu)(t, z) , λpu(t, z)− (1 + λz)uz(t, z), (2.17)

(Su)(t, z) , λpu(t, z) + (1 − λz)uz(t, z). (2.18)
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Dai & Yi [13] show that the optimal policy can be described in terms of two
functions 0 ≤ z1(t) < z2(t) ≤ ∞ which define the “no-trade” region as a function of t

{

(t, x, y)
∣

∣

∣
t ∈ [0, T ], (x, y) ∈ Sv, z1(t) <

y

x+ y
< z2(t)

}

.

In this region −vt + Lv is zero. Here and in the rest of this paper, the derivative
with respect to t at t = 0 or t = T should be understood as the right-sided or left-
sided derivative respectively. Moreover, if the second derivative with respect to z does
not exist, then the desired property should be satisfied with both one-sided second
derivatives. If Yt/(Xt+Yt) < z1(t) one should buy stock in order to bring this ratio to
the boundary y/(x+ y) = z1(t) of the “no-trade” region. In this region (1+λ)vx− vy
is zero. If Yt/(Xt+Yt) > z2(t) one should sell stock in order to bring this ratio to the
other boundary y/(x+y) = z2(t) of the “no-trade” region. In this region vy−(1−λ)vx
is zero; see Davis, Panas, & Zariphopoulou [15] and Shreve & Soner [30].

3. Heuristic derivation by Taylor series. In this section we derive several
terms of a power series expansion of the value function by a heuristic method. Similar
to Shreve & Soner [30] and Janeček & Shreve [22], we will assume that the “no-trade”
region in the reduced variable form is

NT =
{

(t, z)
∣

∣

∣
t ∈ [0, T ], z ∈ (z1(t), z2(t))

}

, (3.1)

and that |zi(t)− θ| = O(λ
1
3 ), i = 1, 2.

Remark 3.1. In the line above and for the rest of this paper, we have used the
following standard notation:

For a function f defined on D×D1 ⊂ R+×R2 we say that f(λ, t, z) = O(λq), q > 0
if there exist a constant C independent of (t, z) such that

|f(λ, t, z)| ≤ Cλq , ∀(t, z) ∈ D1 (3.2)

for all λ > 0 small enough.

We say that f(λ, t, z) = o(λq), q > 0 if (3.2) is true for any C > 0. Similar
definition can be made if f is just a function of λ and one additional variable.

To be even more precise, in either case, we will allow C to depend only on the
constants µ, r, σ, T, p, β, unless noted otherwise.

We believe that NT has the form (3.1) for all times t except those “very close” to
T . Intuitively a change in strategy for times O(λ) close to T will affect the expected
utility of the final wealth only at order O(λ), since buying an extra stock and holding
it O(λ) time only affect wealth at O(λ). However we can neglect this effect, since we

are only looking to find the value function up to the order of O(λ
2
3 ). It is not hard to

see that v is continuous on [0, T ]× Sv and in this paragraph we will also assume that
v ∈ C1,2,2([0, T ]× Sv). It follows that u ∈ C1,2([0, T ]× Su). Moreover, for t ∈ [0, T ]
we will assume that

λpu(t, z)− (1 + λz)uz(t, z) = 0, −
1

λ
< z ≤ z1(t), (3.3)

−ut(t, z) +Du(t, z) = 0, z1(t) ≤ z ≤ z2(t), (3.4)

λpu(t, z) + (1 − λz)uz(t, z) = 0, z2(t) ≤ z <
1

λ
. (3.5)
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Equations (3.3) and (3.5) are consequences of the directional derivative of v(t, x, y)
being zero in the directions of transaction in the regions in which it is optimal to buy
stock and to sell stock, respectively. These equations imply for t ∈ [0, T ] that

u(t, z) = u(t, z1(t))

(

1 + λz

1 + λz1(t)

)p

, −
1

λ
< z ≤ z1(t), (3.6)

u(t, z) = u(t, z2(t))

(

1− λz

1− λz2(t)

)p

, z2(t) ≤ z <
1

λ
. (3.7)

There is no explicit solution to the free boundary problem (3.3) - (3.5). We thus
assume that in the NT region u(t, z) has an expansion around the value function with
zero transaction costs in powers of λ1/3, and we expect the coefficient of λ1/3 to be
zero. In order to work with this expansion, we need to also include the variable z,
and we do that using powers of z − θ. For (t, z) ∈ NT we assume

u(t, z) = γ0(t)− γ1(t)λ
1
3 − γ2(t)λ

2
3 − γ3(t)λ− γ40(t)λ

4
3 − γ41(t) (z − θ)λ

− γ42(t) (z − θ)2λ
2
3 − γ43(t) (z − θ)3λ

1
3 − γ44(t) (z − θ)4 +O

(

λ
5
3

)

.
(3.8)

We can now compute and equate the derivatives of u with respect to z across
the boundaries of the NT region, similar to what is done in Janeček & Shreve [22],
Section 3, Heuristic derivation by Taylor series . For sake of brevity this computation
is omitted. The result is that for (t, z) ∈ NT

u(t, z) =
1

p
epA(T−t) − γ2(t)λ

2
3 − γ3(t)λ (3.9)

−
epA(T−t)

ν

[

3

2
(z − θ)2λ

2
3 −

(z − θ)4

ν2

]

+O(λ
5
3 ),

where the coefficient γ3(t) is irrelevant for the rest of this paper and

γ2(t) ,

(

9

32
(1− p)θ4(1− θ)4

)
1
3

(T − t)epA(T−t)σ2, t ∈ [0, T ], (3.10)

ν ,

(

12

1− p
θ2(1 − θ)2

)
1
3

. (3.11)

For convenience we also define the constant

γ2 ,

(

9

32
(1− p)θ4(1 − θ)4

)
1
3

σ2 (3.12)

so that we can write γ2(t) = γ2e
pA(T−t)(T − t).

Remark 3.2. The heuristic method and the results above are very similar to the
ones in Janeček & Shreve [22], and the method is essentially similar to the one in
Whalley & Wilmott [31]. It should not come as a surprise that even though γ3(t) is not
important, but, for example, γ42(t) is, since the later term would add a contribution

of order λ
2
3 in uzz. Also notice that in case θ = 0 (µ = r) or θ = 1, i.e. the agent is

not invested in stock at all, or is fully invested, there is no loss of the value function
at the order of λ

2
3 , because these positions do not require trading except possibly at

the initial and final times, so the loss will only be at the order of λ and γ2 = 0. As
previously stated, we exclude these two cases.
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4. Rigorous asymptotic expansion. In this section we build the functions
w± and prove in Theorem 5.3 that they are tight lower and upper bounds on the
value function u. They also turn out to be sub- and supersolutions of the HJB
equation; see [9], [7], [8]. We have already stated the first classical Theorem 2.4 and
its corollary Lemma 2.5, asserting that the value function is a viscosity solution of the
HJB equation. One way to proceed to establish that supersolutions and subsolutions
are indeed upper and lower bounds on the value function is to use a comparison
theorem. Theorem 8.2 from Crandall, Ishii & Lions [8] asserts that any supersolution
dominates any subsolution. Since the value function is both a viscosity sub- and super
solution, the desired result would follow. However, a standard comparison theorem
requires finite boundary values. In our case, that means that it can be applied only
when 0 < p < 1 and the value function is zero on [0, T ]× ∂Su. In the case p < 0 it
cannot be applied since the value function is −∞ on the boundary of the solvency
region. Therefore, similar to Janeček & Shreve [22], we instead choose to use a version
of the verification lemma from stochastic calculus that can be applied to both cases;
see Theorem 5.3.

The main theorem of this paper is:
Theorem 4.1. Assume p < 1, p 6= 0, pA < 0 , θ > 0, θ 6= 1 and λ > 0. Fix

K1 ⊂ R a compact. For λ > 0 small enough such that K1 ⊂ Su, and for (t, z) ∈
[0, T ]×K1, the value function satisfies

u(t, z) =
1

p
epA(T−t) −

( 9

32
(1 − p) θ4(1− θ)4

)
1
3

(T − t)epA(T−t) σ2 λ
2
3 +O(λ), (4.1)

where the remainder O(λ) holds independently of (t, z), but depends on the compact
K1. Moreover, there exist a simple strategy (L̃, M̃), constructed in Lemma 5.1, which
is “nearly optimal”. That is, for (t, z) ∈ [0, T ]×K1, the expectation of the discounted
utility of the final wealth for this strategy satisfies

E

[

e−β(T−t)Up

(

X̃T + ỸT − λ
∣

∣

∣
ỸT

∣

∣

∣

)

∣

∣Ft

]

=
1

p
epA(T−t) −

( 9

32
(1− p) θ4(1 − θ)4

)
1
3

(T − t)epA(T−t) σ2 λ
2
3 +O(λ),

where (X̃s, Ỹs)
∣

∣

s∈[t,T ]
, is the diffusion associated with this trading strategy. In other

words, it matches the value function u at the order of λ
2
3 . Here again the term O(λ)

holds independently of (t, z), but depends on the compact K1.
However, first we need to prove an auxiliary theorem:
Theorem 4.2. Assume p < 1, p 6= 0, pA < 0 , θ > 0, θ 6= 1 and λ > 0. Then

there exist four smooth functions δ±i ∈ C2([0, T ]), i = 1, 2, defined in Lemma 4.3,
additionally, there exist two continuous functions w±(t, z) ∈ C1,1([0, T ] × Su) with
the following properties. The functions w± are twice continuously differentiable with
respect to z in [0, T ]× Su except on the curves (t, θ + δ±i (t)), t ∈ [0, T ], i = 1, 2. On
these curves w± have one-sided limits of their second derivatives. Moreover, they sat-
isfy ±(H)(w±) ≥ 0 on [0, T ]× Su, where on curves (t, θ + δ±i (t)), t ∈ [0, T ], i = 1, 2,
the second derivative with respect to z can be either one of the one-sided deriva-
tives. In addition, w± satisfy the boundary condition w±(t, z) = 0 if 0 < p < 1
and w±(t, z) = −∞ if p < 0 for (t, z) ∈ [0, T ] × ∂Su, and the final time condi-
tion inequality ±w±(T, z) ≥ Up(1 − λ |z|), z ∈ Su. In addition, we have w±(t, θ) =
1
pe

pA(T−t) − γ2(t)λ
2
3 +O(λ), t ∈ [0, T ].
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The plan is then to rigorously argue that for (t, x, y) ∈ [0, T ] × Sv and for
any admissible trading strategy (Ls,Ms)

∣

∣

s∈[t,T ]
∈ A(t, x, y) with the corresponding

diffusion (Xs, Ys)
∣

∣

s∈[t,T ]
starting from (Xt−, Yt−) = (x, y) and given by (2.2) and

(2.3) that (Xs + Ys)
pw+(s, Ys/(Xs + Ys)) is a supermartingale. Using the fact that

w+(T, z) ≥ Up(1− λ |z|), z ∈ Su, it follows that

(x+ y)pw+(t, y/(x+ y)) ≥ E
[

(XT + YT )
pw+(T, YT /(XT + YT ))

∣

∣Ft

]

(4.2)

≥ E
[

Up(XT + YT − λ |YT |)
∣

∣Ft

]

.

Taking supremum over all admissible strategies and dividing by (x + y)p, it follows
that w+(t, y/(x+ y)) ≥ u(t, y/(x+ y)).

For the other direction, we would need to find a “nearly-optimal” policy
(L̃s, M̃s)

∣

∣

s∈[t,T ]
∈ A(t, x, y) with the corresponding diffusion (X̃s, Ỹs) for s ∈ [t, T ]

starting from (X̃t−, Ỹt−) = (x, y), such that (X̃s + Ỹs)
pw−(s, Ỹs/(X̃s + Ỹs)) is a sub-

martingale. Using the fact that w−(T, z) ≤ Up(1− λ |z|), z ∈ Su, it follows that

(x+ y)pw−(t, y/(x+ y)) ≤ E

[

(X̃s + Ỹs)
pw−(T, ỸT /(X̃T + ỸT ))

∣

∣Ft

]

(4.3)

≤ E

[

Up

(

X̃T + ỸT − λ
∣

∣

∣
ỸT

∣

∣

∣

)

∣

∣Ft

]

≤ v(t, x, y).

Dividing by (x + y)p we conclude that w−(t, y/(x + y)) ≤ u(t, y/(x + y)). Hence
w− ≤ u ≤ w+ on [0, T ]×K1.

Finally, because w±(t, z) = w±(t, θ) + O(λ) and because w+(t, z) = w−(t, z) +
O(λ) for (t, z) ∈ [0, T ] × K1, we will conclude that u(t, z) = w±(t, θ) + O(λ) =
u(t, θ) + O(λ). In Theorem 5.3 it will also be shown that the expected utility of the
“nearly-optimal” policy, which is defined in Section 5 is bounded below by w−. We
make the above heuristic arguments precise in Theorem 5.3.

Proof: The proof of Theorem 4.2 is divided into five steps:

4.1. Step 1: The NT region and other sub-regions of Su. We recall γ2(t), γ2

and ν of (3.10), (3.11) and (3.12) respectively. Set ξ(t) ,

√

2
3p(T − t)γ2 + B, t ∈

[0, T ], where we set B , 2
3 |p|Tγ2 + 1, chosen to make ξ well defined. We next define

h(δ) ,
3

2
δ2λ

2
3 −

δ4

ν2
+

3

2
Bδ2λ

4
3 , δ ∈ R. (4.4)

Recall that θ > 0 because of our assumption that µ > r. Set

M = θ + 1 +
2

−pA
max

{

6
σ2

ν
(2νθ |(1− θ)(1 − 2θ)|+ 1) + 1, (4.5)

1

2
σ2(1− p)ν2 max

t∈[0,T ]
{ξ(t)}+ 1, 1

}

.

Additionally, for (t, δ) ∈ [0, T ]× R, we define functions

f±
1 (t, δ) , νλ− pνγ2(t)e

−pA(T−t)λ
5
3 ± pνMe−pA(T−t)λ2 − ph(δ)λ

+
(

1 + (θ + δ)λ
)

h′(δ), (4.6)

f±
2 (t, δ) , νλ− pνγ2(t)e

−pA(T−t)λ
5
3 ± pνMe−pA(T−t)λ2 − ph(δ)λ

+
(

−1 + (θ + δ)λ
)

h′(δ). (4.7)
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Lemma 4.3. For t ∈ [0, T ], there are continuous functions

δ±1 (t) , −
1

2
νλ

1
3 (1− ξ(t)λ

1
3 ) + o

(

λ
2
3

)

, δ±2 (t) ,
1

2
νλ

1
3 (1− ξ(t)λ

1
3 ) + o

(

λ
2
3

)

(4.8)

satisfying f±
i (t, δ±i (t)) = 0, i = 1, 2. For t ∈ [0, T ], δ±1 and δ±2 are also twice differ-

entiable. In (4.8) the terms o
(

λ
2
3

)

are uniform in t ∈ [0, T ] consistent with Remark
3.1.

Proof: The proof is given in the appendix.
Definition 4.4. Choose λ > 0 small enough that ζ±1 (t) , θ + δ±1 (t) and

ζ±2 (t) , θ + δ±2 (t) all lie in (0, 1/λ). (We have θ > 0 since µ > r.) Define

the “no-trade” region NT± ,

{

(t, z)
∣

∣

∣
, t ∈ [0, T ], z ∈ (ζ±1 (t), ζ±2 (t))

}

, the buy region

B
± ,

{

(t, z)
∣

∣

∣
, t ∈ [0, T ], − 1

λ < z < ζ±1 (t)
}

, and analogously the sell region S
± ,

{

(t, z)
∣

∣

∣
, t ∈ [0, T ], 1

λ > z > ζ±2 (t)
}

.

Remark 4.5. For λ small enough, it follows from Definition 4.4 and Lemma 4.3
that for (t, z) ∈ NT±

|z − θ| ≤ νλ
1
3 , (4.9)

and we conclude that for (t, z) ∈ NT±

|h(z − θ)| ≤ hmaxλ
4
3 , |h′(z − θ)| ≤ h̃maxλ, |h′′(z − θ)| ≤ ˜̃hmaxλ

2
3 . (4.10)

4.2. Step 2: Construction of the functions w±. Define

w±(t, z) ,















































(

1
pe

pA(T−t) − γ2(t)λ
2
3 ±Mλ− epA(T−t)

ν h(ζ±1 (t)− θ)
)(

1+λz
1+λζ±

1 (t)

)p

,

t ∈ [0, T ], − 1/λ ≤ z < ζ±1 (t)
1
pe

pA(T−t) − γ2(t)λ
2
3 ±Mλ− epA(T−t)

ν h(z − θ),

t ∈ [0, T ], ζ±1 (t) ≤ z ≤ ζ±2 (t)
(

1
pe

pA(T−t) − γ2(t)λ
2
3 ±Mλ− epA(T−t)

ν h(ζ±2 (t)− θ)
)(

1−λz
1−λζ±

2 (t)

)p

,

t ∈ [0, T ], ζ±2 (t) < z ≤ 1/λ.

(4.11)
As a reminder, we have agreed to treat w±(t,± 1

λ) , −∞, t ∈ [0, T ], when p < 0.
Also note that if M and B were zero and γ3(t) were ignored, then in the NT± region
the formula for w±(t, z) agrees with the power series expansion (3.9). The term ±Mλ
in the definition of w± will be used to create the inequalities ±Hw± ≥ 0. Outside of
the NT± region, we extend this definition so that w± would satisfy

w±(t, z) = w±(t, ζ±1 (t))

(

1 + λz

1 + λζ±1 (t)

)p

, t ∈ [0, T ], −
1

λ
≤ z ≤ ζ±1 (t), (4.12)

w±(t, z) = w±(t, ζ±2 (t))

(

1− λz

1− λζ±2 (t)

)p

, t ∈ [0, T ], ζ±2 (t) ≤ z ≤
1

λ
. (4.13)

We then have the derivative formula for t ∈ [0, T ],

w±
z (t, z) =











λp
1+λzw

±(t, z), − 1
λ < z < ζ±1 (t),

− epA(T−t)

ν h′(z − θ), ζ±1 (t) < z < ζ±2 (t),

− λp
1−λzw

±(t, z), ζ±2 (t) < z < 1
λ .

(4.14)
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Remark 4.6. The extensions (4.12) and (4.13) ensure that the operators B,S
from (2.17) and (2.18) satisfy B(w±) = 0 and S(w±) = 0 for (t, z) ∈ B± and (t, z) ∈
S±, respectively. Moreover, the equations f±

1 (t, δ±1 (t)) = 0 and f±
2 (t, δ±2 (t)) = 0

guarantee that w±
z is defined and continuous at (t, ζ±1 (t)) and (t, ζ±2 (t)) for t ∈ [0, T ].

We also have for t ∈ [0, T ]

w±
zz(t, z) =















−λ2p(1−p)
(1+λz)2 w

±(t, z), − 1
λ < z < ζ±1 (t),

− epA(T−t)

ν h′′(z − θ), ζ±1 (t) < z < ζ±2 (t),

−λ2p(1−p)
(1−λz)2 w

±(z), ζ±2 (t) < z < 1
λ .

(4.15)

The function w±(t, z) is twice differentiable with respect to z except on the curves
(t, ζ±1 (t)) and (t, ζ±2 (t)), t ∈ [0, T ], where one-sided second derivatives with respect to
z exist and equal the respective one-sided limits of the second derivatives.

For (t, z) ∈ B
± we use (4.12) to calculate the derivatives with respect to time to

be

w±
t (t, z) =

(

1 + λz

1 + λζ±1 (t)

)p

(4.16)

×

(

w±
t (t, ζ

±
1 (t)) +

[

w±
z (t, ζ

±
1 (t)) − w±(t, ζ±1 (t))

λp

1 + λζ±1 (t)

]

dζ±1 (t)

dt

)

=

(

1 + λz

1 + λζ±1 (t)

)p

w±
t (t, ζ

±
1 (t)),

where in the last equality we have used the fact that (Bw±)(t, ζ±1 (t)) = 0. Indeed B
defined in (2.17) satisfies B(w±) = 0 on B±. The desired result follows because of
continuous differentiability of w±(t, z) with respect to z. Similarly for (t, z) ∈ S±, the
derivatives with respect to time is

w±
t (t, z) =

(

1− λz

1− λζ±2 (t)

)p

w±
t (t, ζ

±
2 (t)). (4.17)

Finally for (t, z) ∈ NT± we have that

w±
t (t, z) = −pA(w±(t, z)∓Mλ) + γ2e

pA(T−t)λ
2
3 . (4.18)

Remark 4.7. As before, we see that w±(t, z) is differentiable with respect to t
except on the curves (t, ζ±1 (t)) and (t, ζ±2 (t)), t ∈ [0, T ], where one-sided derivatives
exists and equal the respective one-sided limit of the derivatives. Together with Remark
4.6 we conclude that w± ∈ C1,1([0, T ]× Su).

4.3. Step 3: Verification that Hw− ≤ 0. Recall the operatorsH,D,B,S from
(2.15), (2.16), (2.17) and (2.18) respectively. It suffices to verify

− w−
t (t, z) +Dw−(t, z) ≤ 0, t ∈ [0, T ], ζ−1 (t) < z < ζ−2 (t). (4.19)
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We, thereby, simultaneously also develop an analogous inequality for w+ needed in
the subsequent section. Therefore,

−w±
t (t, z) +Dw±(t, z)

= pA
(

w±(t, z)∓Mλ
)

− γ2e
pA(T−t)λ

2
3 − p

(

A−
1

2
σ2(1 − p)(z − θ)2

)

w±(t, z)

−(1− p)σ2z(1− z)(z − θ)
epA(T−t)

ν
h′(z − θ) +

1

2
σ2z2(1 − z)2

epA(T−t)

ν
h′′(z − θ)

= ∓pAMλ− γ2e
pA(T−t)λ

2
3 +

p

2
σ2(1 − p)(z − θ)2w±(t, z)

−(1− p)σ2z(1− z)(z − θ)
epA(T−t)

ν
h′(z − θ)

+
1

2
σ2z2(1− z)2

epA(T−t)

ν

[

3λ2/3 −
12(z − θ)2

ν2
+ 3Bλ4/3

]

.

Writing z = θ + (z − θ) and 1− z = 1− θ − (z − θ), and using (4.9) we compute

z2(1− z)2 = θ2(1 − θ)2 +O
(

λ
1
3

)

, (4.20)
∣

∣z2(1 − z)2 − θ2(1 − θ)2
∣

∣ = 2 |(z − θ)θ(1 − θ)(1 − 2θ)|+O(λ
2
3 )

≤ [2νθ |(1− θ)(1 − 2θ)|+ 1]λ
1
3 , (4.21)

where the last inequality holds for λ small enough. From Remark 4.5 we obtain

−w±
t (t, z) +Dw±(t, z) (4.22)

=

[

−γ2 +
3

2

θ2(1− θ)2σ2

ν

]

epA(T−t)λ
2
3

+
1

2

[

(1 − p)−
12θ2(1− θ)2

ν3

]

(z − θ)2σ2epA(T−t)

∓pAMλ

(

1−
1

2A
σ2(1− p)(z − θ)2

)

+O(λ).

The definitions of γ2 and ν imply that the first two terms on the right-hand side are
zero. For λ small enough using (4.9), we have that 1− 1

2Aσ
2(1− p)(z − θ)2 ≥ 1

2 . We
conclude that by the definition (4.5) of M equation (4.22) can be made positive
(negative), since using (4.21) it can be shown that the O(λ) term above can be

bounded by
[

6σ2

ν (2νθ |(1− θ)(1 − 2θ)|+ 1) + 1
]

λ. Here we have used our assumption

that pA < 0, see also Remark 2.3. We conclude that in NT− we have 0 ≥ −w−
t (t, z)+

Dw−(t, z) ≥ H(w−)(t, z).
This completes the verification that H(w−) ≤ 0 in [0, T ] × Su, since w− ∈

C1,1([0, T ] × Su), and in the buy B− region we have by Remark 4.6 that H(w−) ≤
B(w−) = 0, and a similar inequality holds in the sell region S−.

�

4.4. Step 4: Verification that H(w+) ≥ 0.

4.4.1. Step 4a: Verification that H(w+) ≥ 0 in B+. By construction we have
that (Bw+)(t, z) = 0 for (t, z) ∈ B+. Since pw+(t, z) ≥ 0, it follows that w+

z (t, z) ≥ 0,
and we conclude that (Sw+)(t, z) ≥ 0 there. It remains to verify that for sufficiently
small λ

− w+
t (t, z) + (Dw+)(t, z) ≥ 0, (t, z) ∈ B

+. (4.23)
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Using (4.12), (4.14), (4.15) and (4.16), we conclude that

−w+
t (t, z) + (Dw+)(t, z) =

(

1 + λz

1 + λζ±1 (t)

)p

(4.24)

×

[

−w+
t (t, ζ

±
1 (t))− p

(

A−
1

2
σ2(1 − p)(z − θ)2

)

w+(t, ζ+1 (t))

+(1− p)σ2z(1− z)(z − θ)
λp

1 + λz
w+(t, ζ+1 (t))

+
1

2
σ2z2(1− z)2

λ2p(1− p)

(1 + λz)2
w+(t, ζ+1 (t))

]

.

For a fixed t, it is easy to verify that for λ > 0 sufficiently small, the function
k(z) , (z − θ) + λz(1− z)/(1 + λz) attains its maximum over (−1/λ, ζ+1 (t)] at ζ+1 (t)
and k(ζ+1 (t)) < 0. Therefore for (t, z) such that − 1

λ < z ≤ ζ+1 (t)

k2(z) ≥ k2(ζ+1 (t)) = (δ+1 (t))
2 +O(λ) =

ν2

4
λ

2
3 −

ν2

2
ξ(t)λ+ o

(

λ
)

,

and we conclude that for λ small enough

k2(z) ≥
ν2

4
λ

2
3 − ν2ξ(t)λ. (4.25)

It follows from (4.24) and (4.25) that for sufficiently small λ > 0
(

1 + λz

1 + λζ+1 (t)

)−p
[

−w+
t (t, z) + (Dw+)(t, z)

]

=

pA(w+(t, ζ+1 (t))−Mλ)− γ2e
pA(T−t)λ

2
3 − pAw+(t, ζ+1 (t))

+
1

2
σ2p(1− p)k2(z)w+(t, ζ+1 (t))

≥ −pAMλ− γ2e
pA(T−t)λ

2
3 +

1

2
σ2p(1− p)

[

1

4
ν2λ

2
3 − ν2ξ(t)λ

]

×

[

1

p
epA(T−t) − γ2(t)λ

2
3 +Mλ−

epA(T−t)

ν
h(ζ+1 (t)− θ)

]

= +epA(T−t)

[

−γ2 +
1

8
σ2(1− p)ν2

]

λ
2
3 −

1

2
σ2(1− p)ν2ξ(t)epA(T−t)λ

−pAMλ

(

1−
ν2

2A
σ2(1− p)

[

1

4
λ

2
3 − ξ(t)λ

])

+O(λ
4
3 ),

where the term O(λ
4
3 ) can be shown to be − 1

2σ
2p(1 − p)ν

[

1
4λ

2
3 − ξ(t)λ

] [

νγ2(t)λ
2
3

+epA(T−t)h(ζ+1 (t)− θ)
]

and hence can be bounded by λ, for λ small enough. By

definitions of ν and γ2 the λ
2
3 term is zero. Moreover, for λ small enough, we have

that 1− ν2

2Aσ
2(1−p)

[

1
4λ

2
3 − ξ(t)λ

]

≥ 1
2 . We conclude that (4.23) holds forM satisfying

(4.5).
Remark 4.8. A similar calculation shows that for any t ∈ [0, T ]

lim
(s, z) → (t, ζ−1 (t))

(s, z) ∈ B
+, s ∈ [0, T ]

−w−
t (s, z) + (Dw−)(s, z) ≤ 0.

�
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4.4.2. Step 4b: Verification that H(w+) ≥ 0 in S+. This is analogous to
Step 4a.

4.4.3. Step 4c: Verification that H(w+) ≥ 0 in NT+. In Step 3 we have
shown that for (t, z) ∈ NT+

−w+
t (t, z) + (Dw+)(t, z) ≥ 0.

We must also show that for (t, z) ∈ NT
+
,

g(t, z) , λpw+(t, z)− (1 + λz)w+
z (t, z) ≥ 0. (4.26)

Fix t ∈ [0, T ]. For z ∈ [ζ+1 (t), ζ+2 (t)], we have z − θ = O
(

λ1/3
)

. Using this fact, we
compute

gz(t, z) = −w+
zz(t, z) +O(λ

5
3 ) =

epA(T−t)

ν
h′′(z − θ) +O(λ

5
3 )

=
12

ν
epA(T−t)λ

2
3

[

1

4
−

(

z − θ

νλ
1
3

)2

+O(λ)

]

.

We know that g(t, ζ+1 (t)) = 0 and thus, to prove (4.26), it suffices to show for our fixed
t that gz(t, ·) is positive on [ζ+1 (t), ζ+2 (t)]. Because −(z − θ)2 is a concave function of
z, it suffices to check the endpoints. We have for i = 1, 2 that

(

ζ+i (t)− θ

νλ
1
3

)2

=

(

±
1

2
(1− ξ(t)λ

1
3 ) + o

(

λ
1
3

)

)2

=
1

4
−

1

2
ξ(t)λ

1
3 + o

(

λ
1
3

)

.

Therefore,

gz(t, ζ
+
i (t)) =

12

ν
epA(T−t)λ

2
3

[

1

2
ξ(t)λ

1
3 + o

(

λ
1
3

)

]

> 0

for sufficiently small λ > 0 independently of t. The proof that

h(t, z) , λpw+(t, z) + (1− λz)w+
z (t, z), (t, z) ∈ NT

+

is positive for z ∈ [ζ+1 (t), ζ+2 (t)] is analogous. This completes the verification that
H(w+) ≥ 0 on [0, T ]× Su.

So far we have constructed two continuous differentiable functions w±(t, z) ∈
C1,1([0, T ] × Su) and showed that they satisfy ±(H)(w±) ≥ 0 on [0, T ] × Su. By
definition w± satisfy the boundary condition w±(t, z) = 0 if 0 < p < 1 and w±(t, z) =
−∞ if p < 0 for (t, z) ∈ [0, T ] × ∂Su, and we have that w±(t, θ) = 1

pe
pA(T−t) −

γ2(t)λ
2
3 + O(λ), t ∈ [0, T ]. To conclude the proof of Theorem 4.2 we are left only to

verify the final time conditions.
�

4.5. Step 5: Final time conditions. For (T, z) such that ζ+1 (T ) ≤ z ≤ ζ+2 (T ),
from (4.11) for λ small enough we have

w+(T, z) =
1

p
+Mλ−

h(z − θ)

ν
>

(1− λz)p

p
= u(T, z),
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since (1−λz)p

p = 1
p − λz +O(λ2) and because of Remark 4.5.

When 1
λ > z > ζ+2 (T ) from (4.13) we see that

w+(T, z) = w+(T, ζ+2 (T ))

(

1− λz

1− λζ+2 (T )

)p

> u(T, ζ+2 (T ))

(

1− λz

1− λζ+2 (T )

)p

= u(T, z).

Next, consider the case when 0 ≤ z < ζ+1 (T ). For λ small enough, from (4.12) we
have

w+(T, z) = w+(T, ζ+1 (T ))

(

1 + λz

1 + λζ+1 (T )

)p

=

(

1 + λz

1 + λζ+1 (T )

)p (
1

p
+Mλ

)

+O(λ
4
3 )

=
(

1− λp(ζ+1 (T )− z) +O(λ2)
)

(

1

p
+Mλ

)

+O(λ
4
3 ) >

(1− λz)p

p
= u(T, z),

where the inequality follows because for λ small enough (1−λp(ζ+1 (T )−z)+O(λ2)) ≥
1
2 , M satisfies (4.5) and all the O(λ

4
3 ) are uniform in z ∈ [0, ζ+1 (T )) consistent with

Remark 3.1.
We now see that when − 1

λ < z < 0, from (4.12) it follows that

w+(T, z) = w+(T, ζ+1 (T ))

(

1 + λz

1 + λζ+1 (T )

)p

= w+(T, 0) (1 + λz)
p

> u(T, 0) (1 + λz)
p
= u(T, z).

Analogously, we see that w−(T, z) < u(T, z).
This completes the proof of Theorem 4.2.

�

5. “Nearly-Optimal” Strategy. In this section we will show that the “no-
trade”, buy and sell regions NT−,B− and S− from Definition 4.4 and the strategy
associated with these regions is a “nearly-optimal” strategy; see Theorem 4.1. For
(t, x, y) ∈ [0, T ]×Sv, define the “no-trade” region in the original variables as (t, x, y) ∈

NT
−
v ⇔

(

t, y
x+y

)

∈ NT−. Similarly we define the buy and sell regions B−
v , S

−
v in the

original variables.
Lemma 5.1. Let t ∈ [0, T ] and (x, y) ∈ Sv, and let (L̃, M̃) be the strategy associ-

ated with the “no-trade”, buy and sell regions NT−,B− and S−. Then there exists a
strong solution (X̃s, Ỹs)

∣

∣

s∈[t,T ]
to (2.2) and (2.3), such that (X̃t−, Ỹt−) = (x, y).

Proof: We define the strategy (L̃, M̃) to be the trading strategy associated with
with the “no-trade”, buy and sell regions NT−,B− and S−. This strategy requires
trading anytime the position is inside the buy or sell regions until the position reaches
the boundary of the “no-trade” region. Then the strategy calls for buying (respectively
selling) stock whenever the position is on the boundary of B− (respectively S−), so
that agent’s position does not leave NT−. On the boundaries of the “no-trade” region
these trades increase L̃ or M̃ and push the diffusion (s, X̃s, Ỹs) in direction pointing
to the inside of NT−. We refer to these directions as (oblique) directions of reflection.

Note that this strategy is not optimal. It requires the agent to buy stocks, if she
has a positive number of stocks but is still in the buy region, even at time t = T ,
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regardless of the fact that to compute the final utility she would have to convert her
stock position into cash. However, this causes loss of O(λ), and we are able to prove
that this is a “nearly-optimal” strategy.

Define Gn , NT
−
v ∩

{

(s, x, y)| 1n < |x|+ |y| < n
}

, and assume for convenience that

t = 0. The directions of reflection on ∂Gn ∩ ∂NT−
v are the same as on ∂NT−

v , as long
as we stop the process at

τn , T ∧ inf
{

0 < s ≤ T :
∣

∣

∣
X̃s

∣

∣

∣
+
∣

∣

∣
Ỹs

∣

∣

∣
≤ 1

n or
∣

∣

∣
X̃s

∣

∣

∣
+
∣

∣

∣
Ỹs

∣

∣

∣
≥ n

}

, so we treat the other

two boundaries {(s, x, y) : |x|+ |y| = n} and
{

(s, x, y) : |x|+ |y| = 1
n

}

as absorbing.
The reader can verify that Case 1 conditions of Theorem 4.8 of Dupuis & Ishii [18]
are satisfied on [0, τn), which gives us the existence of the processes X̃s, Ỹs and the
local time process L̃s, M̃s on [0, τn). Indeed there are two condition for Case 1. The
first condition requires that there is a unique direction of reflection r(s, x, y) on the
boundary and that it changes smoothly as a function of a point of the boundary
(s, x, y). In our case, the directions of reflection are (0,−(1+ λ), 1) and (0, 1− λ,−1)
on the buy and sell boundaries ∂B−

v ∩ ∂Gn, ∂S
−
v ∩ ∂Gn respectively. The second

condition requires that ∃b ∈ (0, 1) such that ∪0≤t≤bBalltb((s, x, y) − tr(s, x, y)) ⊂ Gc
n

for (s, x, y) ∈ ∂Gn ∩ ∂NT−
v , where Ballr(z) is a ball of radius r centered at z. In our

case, it is easy to see that both conditions are satisfied.
Letting n → ∞ we get X̃s, Ỹs, L̃s and M̃s on [0, τ), for τ , lim

n→∞
τn. Define

L̃τ , lim
s→τ

L̃s, and analogously M̃τ . Note that L̃τ , M̃τ exist. The only thing left to

verify is that X̃s, Ỹs are semi-martingales, that is, L̃τ , M̃τ are finite a.s. Assume the
opposite, that is that on some set A of positive probability at least one of them, say
L̃τ = ∞. Consider the processes

dX̂t = rX̂t dt− dL̃t + dM̃t, X0− = x,

dŶt = µŶt dt+ σŶt dWt + dL̃t − dM̃t, Y0− = y.

that correspond to the wealth invested in the money market and in stock respectively
using the same strategy (L̃, M̃), but in a market without transaction costs. It follows
that Ŷτn = Ỹτn , and

X̂τn = erτn x0 −

∫ τn

0

er(τn−s) dL̃s +

∫ τn

0

er(τn−s) dM̃s.

Analogously

X̃τn = erτn x0 − (1 + λ)

∫ τn

0

er(τn−s) dL̃s + (1− λ)

∫ τn

0

er(τn−s) dM̃s.

It follows that because X̃s + Ỹs ≥ 0 for all s ∈ [0, T ] and L̃, M̃ are increasing

X̂τn + Ŷτn = X̃τn + Ỹτn + λ

∫ τn

0

er(τn−s)
(

dL̃s + dM̃s

)

≥ λ
(

L̃τn + M̃τn

)

. (5.1)

Fix N ∈ N a big integer. Then, there exists n such that L̃τn > N on a set Ã, such

that Ã ⊂ A and P

(

Ã
)

> P(A) − 1
N . For that n consider the strategy L̂, M̂ in the

zero-transaction cost model that is identical to L̃, M̃ on the set [0, τn) and sells all
the stock at time τn, that is, L̂s , L̂τn and M̂s , M̂τn + Ŷτn for s ∈ [τn, T ]. We have
from (5.1)

E

[

Up

(

λ
(

L̂τn + M̂τn

)

)

I
Ã

]

≤ E

[

Up

(

X̂τn + Ŷτn

)

I
Ã

]

≤ E

[

Up

(

X̂T + ŶT

)

I
Ã

]

.
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In the case of 0 < p < 1, this leads to a contradiction since the left hand side is at

least Up(λN)P
(

Ã
)

, whereas the right hand side is bounded by 1
pe

pA(T−t)(x + y)p,

the value function for the case of zero transaction costs. If p < 0 then we can apply
the above argument with p̃ = 1

2 , since the admissibility of the strategy (L̃s, M̃s)
∣

∣

s∈[t,T ]

is independent of p.

We finish the construction by defining X̃τ = lim
s→τ

X̃s and analogously Ỹτ . On the

set {τ < T } note that X̃τ = Ỹτ = 0 a.s. because of the following Remark 5.2. For
s ∈ (τ, T ] we define X̃s , Ỹs , X̃τ = Ỹτ = 0, and L̃s , L̃τ , M̃s , M̃τ .

�

Remark 5.2. Similar to the argument above, it is easily shown that for any
(t, x, y) ∈ [0, T ]× Sv and any admissible strategy (Ls,Ms)

∣

∣

s∈[t,T ]
∈ A(t, x, y) and for

any stopping time τ satisfying τ ∈ [t, T ], we have that P ({Xτ + Yτ <∞}) = 1.

Theorem 5.3. Assume p < 1, p 6= 0, pA < 0 , θ > 0, θ 6= 1 and λ > 0.
Let w± be the functions constructed in Theorem 4.2. Then w+(t, z) ≥ u(t, z) and
w−(t, z) ≤ u(t, z) for (t, z) ∈ [0, T ]× Su.

Proof: If t = T or z ∈ ∂Su then the claim follows from Theorem 4.2 and Lemma
2.2. For (t, z) ∈ [0, T ) × Su, let ψ±(t, x, y) , (x + y)pw±

(

t, y/(x + y)
)

, (x, y) ∈
Sv. Consider the upper bound case first. In light of (2.14), it suffices to prove
that ψ+(t, x0, y0) ≥ v(t, x0, y0) for fixed but arbitrary (t, x0, y0) ∈ [0, T ) × Sv. Let
(Ls,Ms)

∣

∣

s∈[t,T ]
∈ A(t, x0, y0) be an admissible policy for this initial position (t, x0, y0).

The function ψ+ is of class C1,2,2 in [0, T ]×Sv except possibly on the curves (s, x, y),
where (s, y/(x+ y)) = (s, ζ+i (s)), s ∈ [t, T ], i = 1, 2, where ψ+ is C1,1,1.

Define τn , T ∧ inf{t ≤ s ≤ T ; |Xs + Ys − λ|Ys|| ≤ 1/n, |Xs|+ |Ys| ≥ n}, and let
τ , lim

n→∞
τn. We can mollify ψ+ to obtain ψ+

ε , ψ+ ∗ ϕε a C1,2,2 function, where ϕε

is a standard mollifier. Apply Itô’s rule to ψ+
ε to get

e−βτnψ+
ε (τn, Xτn , Yτn)− e−βtψ+

ε (t,Xt, Yt) = −

∫ τn

t

e−βs
[

−(ψ+
ε )t(s,Xs, Ys) ds

+Lψ+
ε (s,Xs, Ys) ds+

(

(1 + λ)(ψ+
ε )x(s,Xs, Ys)− (ψ+

ε )y(s,Xs, Ys)
)

dLs

+
(

− (1 − λ)(ψ+
ε )x(s,Xs, Ys) + (ψ+

ε )y(s,Xs, Ys)
)

dMs

]

+σ

∫ τn

t

e−βsYs(ψ
+
ε )y(s,Xs, Ys) dWs. (5.2)

Since ψ+ is C1,1,1, then the limits as ε ↓ 0 of ψ+
ε and of the first derivatives of

ψ+
ε are respectively ψ+ and the appropriate first derivatives of ψ+. Then the limit as
ε ց 0 of

∫ τn
t e−βsY 2

s (ψ
+
ε )yy(s,Xs, Ys)ds exists, since from (5.2) it can be expressed

using ψ+ and its first derivatives. By the dominated convergence theorem we have

∫ τn

t

e−βsY 2
s ψ

+
yy(s,Xs, Ys)ds ≤ lim

εց0

∫ τn

t

e−βsY 2
s (ψ

+
ε )yy(s,Xs, Ys)ds (5.3)

≤

∫ τn

t

e−βsY 2
s ψ

+
yy(s,Xs, Ys)ds,

where ψ+
yy(t1, x1, y1) = lim sup

(s,x,y)→(t1,x1,y1)

ψ+
yy(s, x, y), and

ψ+
yy(t1, x1, y1) = lim inf

(s,x,y)→(t1,x1,y1)
ψ+
yy(s, x, y).
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From Theorem 4.2, the dominated convergence theorem and (5.3) it follows that

lim
εց0

−
∫ τn
t e−βs

[

−(ψ+
ε )t(s,Xs, Ys) + Lψ+

ε (s,Xs, Ys)
]

ds ≤ 0. Passing to the limit as

εց 0 in (5.2) we conclude that

e−βτnψ+(τn, Xτn , Yτn) ≤ e−βtψ+(t, x0, y0) + σ

∫ τn

t

e−βsYsψ
+
y (s,Xs, Ys) dWs. (5.4)

Consider first the case 0 < p < 1. In this case

e−βTUp(XT + YT − λ|YT |) ≤ e−βτψ+(τ,Xτ , Yτ ), (5.5)

because it holds on the set {τ = T }, and on the set {τ < T } Xτ + Yτ − λ|Yτ | = 0 a.s.
It follows from Lemma 2.2 that XT + YT −λ|YT | = 0 a.s. there too and both sides of
(5.5) are zero. Take expectation of both sides of (5.4). Then by Fatou’s Lemma and
using (5.5) we conclude that

E
[

e−βTUp(XT + YT − λ|YT |)
]

≤ e−βtψ+(t, x0, y0). (5.6)

Taking the supremum over all admissible policies, we conclude that ψ+(t, x0, y0) ≥
v(t, x0, y0).

We now consider the case p < 0. For this case, we need further to assume
that (Ls,Ms)

∣

∣

s∈[t,T ]
is not just any admissible strategy, but the optimal strategy,

the existence of which is shown, for example, in Dai & Yi [13]. We then have that
v(t, x0, y0) = E

[

e−β(T−t)Up(XT + YT − λ|YT |)
]

.
If E [Up(XT + YT − λ|YT |)] = −∞ then (5.6) is trivially true, and ψ+(t, x0, y0) ≥

v(t, x0, y0). Otherwise, P ({XT + YT − λ|YT | > 0}) = 1. Under this assumption, we
show that

{

τ = T
}

=

∞
⋃

n=1

{

τn = T
}

a.s. (5.7)

It is clear that {τ = T } contains the union. For the reverse containment, assume
that ω 6∈

⋃∞
n=1

{

τn = T
}

. From Remark 2.1 X·(ω) + Y·(ω) − λ |Y·(ω)| is lower
semi-continuous function on [t, T ], it then follows from Remark 5.2 that Xτ (ω) +
Yτ (ω) − λ |Yτ (ω)| = 0 a.s. and by Lemma 2.2 we have that XT (ω) + YT (ω) −
λ|YT (ω)| = 0 and we are on a set of measure zero, and (5.7) follows. We conclude
that lim

n→∞
P
({

τn = T
})

= 1. Take expectation of both sides of (5.4) to get

E
[

e−βτnψ+(τn, Xτn , Yτn)
(

I{τn=T} + I{τn<T}

)]

≤ e−βtψ+(t, x0, y0), (5.8)

where we have used that τn ≤ T by definition. We also have

E
[

e−βTUp(XT + YT − λ|YT |)I{τn=T}

]

≤ E
[

e−βτnψ+(τn, Xτn , Yτn)I{τn=T}

]

. (5.9)

The left hand side of (5.9) converge by the monotone convergence theorem to
e−βTE [Up(XT + YT − λ|YT |)]. To conclude that (5.6) holds, it is enough to show that

lim
n→∞

E
[

ψ+(τn, Xτn , Yτn)I{τn<T}

]

= 0.

Dai & Yi [13] show that the ratio Ys

Xs+Ys
is in some compact set K ⊂ R, when

(Xs, Ys) 6= (0, 0). Indeed, Dai & Yi [13] show that Ys ≥ 0, i.e. that it is never
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optimal to short stock, due to our assumption that µ > r. In addition in case of
(µ− r)− (1− p)σ2 ≤ 0, in Remark 4.6, they also show that Xs

Ys
≥ 0, when (Xs, Ys) 6=

(0, 0). It follows that 0 ≤ Ys

Xs+Ys
≤ 1 then. Additionally, in case (µ−r)−(1−p)σ2 > 0,

in Remark 6.2, they also show that Xs

Ys
≥

(

(1−p)σ2

2(µ−r)−(1−p)σ2 − 1
)

(1 − λ). Then for

λ ∈ (0, 1)

0 ≤
Ys

Xs + Ys
≤

1
(1−p)σ2

2(µ−r)−(1−p)σ2 (1− λ) + λ
≤

2(µ− r)

(1− p)σ2
− 1.

Assume λ is small enough, so that K ⊂ Su. From the boundedness of u and w+

on [0, T ]×K and the definitions of v and ψ+, we conclude that there exists a constant
c > 0, such that ψ+(s, x, y) ≥ cv(s, x, y), whenever y/(x+ y) is in K or (x, y) = (0, 0).
It follows that

0 ≥ E
[

ψ+(τn, Xτn , Yτn)I{τn<T}

]

≥ cE
[

v(τn, Xτn , Yτn)I{τn<T}

]

≥

cE
[

E
[

e−β(T−τn)Up(XT + YT − λ|YT |)
∣

∣Fτn

]

I{τn<T}

]

→ 0,

because lim
n→∞

P
({

τn < T
})

= 0, and Up(XT +YT −λ|YT |) is integrable. We conclude

that

v(t, x0, y0) = E

[

e−β(T−t)Up(XT + YT − λ|YT |)
]

≤ ψ+(t, x0, y0). (5.10)

Now we treat the lower bound case. We show for fixed but arbitrary (t, x0, y0) ∈
[0, T )× Sv that ψ−(t, x0, y0) ≤ v(t, x0, y0). This time consider the admissible policy
(L̃, M̃) that was constructed in Lemma 5.1. The diffusion (X̃s, Ỹs)

∣

∣

s∈[t,T ]
spends

Lebesgue-measure zero time on the boundaries of NT−
v .

Consider first the case when p < 0. Applying Itô’s formula to mollifications of
ψ− we get an equality similar to (5.2). Note that the integrals with respect to dL̃s

and dM̃s are zero by construction of the subsolution w−. From Theorem 4.2 passing
to the limit as εց 0 we get the reverse inequality in (5.4). We also have the reverse
inequality in (5.5). Take expectation, and again use Fatou’s Lemma to conclude that

e−βtv(t, x0, y0) ≥ E

[

e−βTUp(X̃T + ỸT − λ|ỸT |)
]

(5.11)

≥ E

[

e−βτψ−(τ, X̃τ , Ỹτ )
]

≥ e−βtψ−(t, x0, y0).

In case 0 < p < 1, let τn , T ∧ inf{t ≤ s ≤ T ;ψ−(s, X̃s, Ỹs) ≤ 1/n, |Xs| + |Ys| ≥
n}, νn , T ∧ inf{t ≤ s ≤ T ; |Xs|+ |Ys| ≥ n} and τ , lim

n→∞
τn. We repeat the above

argument and get a reverse inequality in (5.4), and taking expectation we conclude
that

E

[

e−βτnψ−(τn, X̃τn , Ỹτn)
(

I{τn=T} + I{τn<T}

)

]

≥ e−βtψ−(t, x0, y0).

We have that

E

[

e−βτnψ−(τn, X̃τn , Ỹτn)I{τn=T}

]

≤ E

[

e−βTUp(X̃T + ỸT − λ|ỸT |)I{τn=T}

]

≤ E

[

e−βTUp(X̃T + ỸT − λ|ỸT |)
]

.
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Since Ỹs

X̃s+Ỹs
is in some compact set K ⊂ R, when (X̃s, Ỹs) 6= (0, 0), and assume that

λ is small enough so that K ⊂ Su. Then from the boundedness of u and w− on
[0, T ] × K and the definitions of v and ψ− we conclude that there exists a constant
c > 0, such that ψ−(s, x, y) ≤ cv(s, x, y), whenever y/(x+ y) is in K or (x, y) = (0, 0).
From Remark 5.2 P (τn = νn < T ) → 0. Similar to the argument above we con-

clude that E

[

e−βτnψ−(τn, X̃τn , Ỹτn)I{τn=νn<T}

]

converges to zero. Moreover, since

ψ−(τn, X̃τn , Ỹτn)I{τn<T∧νn} ≤ 1
n then

E

[

e−βτnψ−(τn, X̃τn , Ỹτn)I{τn<T∧νn}

]

→ 0.

It follows that

E

[

e−βτnψ−(τn, X̃τn , Ỹτn)I{τn<T}

]

→ 0.

We conclude that

E

[

e−βTUp(X̃T + ỸT − λ|ỸT |)
]

≥ e−βtψ−(t, x0, y0). (5.12)

�

Remark 5.4. Define the expected discounted utility of the final wealth associated
with the “nearly-optimal” strategy,

ṽ(t, x, y) , E

[

e−β(T−t)Up

(

X̃T + ỸT − λ
∣

∣

∣
ỸT

∣

∣

∣

)]

, (t, x, y) ∈ [0, T ]× Sv, (5.13)

ũ(t, z) , v̄(t, 1− z, z), (t, z) ∈ [0, T ]× Su. (5.14)

It follows from (5.11) and (5.12) that for (t, x, y) ∈ [0, T ]×Sv we have that ψ−(t, x, y) ≤
ṽ(t, x, y) or equivalently w−(t, z) ≤ ũ(t, z) for (t, z) ∈ [0, T ]× Su.

We can now finally prove Theorem 4.1.

Proof of Theorem 4.1: From Theorem 5.3 we see that w−(t, z) ≤ u(t, z) ≤
w+(t, z). Moreover, w+(t, z) − w−(t, z) = O(λ), and w±(t, z) = w±(t, θ) + O(λ) for
fixed (t, z) ∈ [0, T ]×K1. It follows that u(t, z) = w±(t, z)+O(λ) = w±(t, θ)+O(λ) =
u(t, θ) +O(λ).

Moreover, from Remark 5.4 we have that w−(t, z) ≤ ũ(t, z) for (t, z) ∈ [0, T ]×Su.
We conclude that the strategy (L̃, M̃) from Lemma 5.1 is “nearly-optimal”, that is it

matches the value function of the optimal strategy up to order O(λ
2
3 ).

�

6. Appendix. Proof of Lemma 4.3: We shall only consider δ of orderO
(

λ1/3
)

.

For such δ, h(δ) = O(λ
4
3 ), h′(δ) = O(λ), so it follows from (4.6) that for t ∈ [0, T ] we

have

f±
1 (t, δ) (6.1)

= νλ− pγ2(t)νe
−pA(T−t)λ

5
3 + h′(δ) +O

(

λ2
)

= νλ− pγ2(t)νe
−pA(T−t)λ

5
3 + 3δλ

2
3 −

4δ3

ν2
+ 3Bδλ

4
3 +O

(

λ2
)

.

Consider δ0 , − 1
2νλ

1/3
(

1− ξ0(t)λ
1/3

)

, where ξ0(t) ,
√

ξ2(t) + η, with η satisfying
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|η| < min
s∈[0,T ]

ξ2(s). From (3.10) it follows that

f±
1 (t, δ0) = νλ− p(T − t)γ2νλ

5
3 −

3

2
νλ+

3

2
νξ0(t)λ

4
3 −

3

2
Bνλ

5
3

+
1

2
ν λ

(

1− 3ξ0(t)λ
1
3 + 3ξ20(t)λ

2
3

)

+O
(

λ2
)

= ν
(3

2
ξ20(t)− p(T − t)γ2 −

3

2
B
)

λ
5
3 +O

(

λ2
)

.

(6.2)

Then f±
1 (t, δ0) =

3
2νηλ

5
3 + O

(

λ2
)

. Thus, when η > 0 we have f±
1 (t, δ0) > 0, and

when η < 0 we have f±
1 (t, δ0) < 0 for sufficiently small λ > 0. Therefore, for t ∈ [0, T ],

and any η ∈
(

0, min
s∈[0,T ]

ξ2(s)
)

for sufficiently small λ > 0 there exists

δ±1 (t) ∈

(

−
1

2
νλ

1
3

(

1− λ
1
3

√

ξ2(t)− η
)

,−
1

2
νλ

1
3

(

1− λ
1
3

√

ξ2(t) + η
)

)

satisfying f±
1 (t, δ±1 (t)) = 0. In other words, δ±1 (t) = − 1

2νλ
1
3

(

1− ξ(t)λ
1
3

)

+ o
(

λ
2
3

)

.

The proof of the existence of δ±2 (t) is analogous.

For t ∈ [0, T ], we note that for δ = − 1
2νλ

1
3

(

1 − ξ(t)λ
1
3

)

+ o(λ
2
3 ) we have

∂f±

1 (t,δ)
∂t =

pνγ2λ
5
3 +O(λ2), and

∂f±

1 (t,δ)

∂δ = 3λ
2
3 − 12δ2

ν2 +O(λ
4
3 ) = 6ξ(t)λ+ o(λ). By the implicit

function theorem δ±1 (t) is a continuously differentiable function and its derivative is

dδ±1 (t)

dt
= −

∂f±

1 (t,δ)

∂t

∂f±

1 (t,δ)

∂δ

= O(λ
2
3 ) (6.3)

The second derivative can be computed similarly.
�
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