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A VARIATIONAL APPROACH FOR ESTIMATING THE
COMPLIANCE OF THE CARDIOVASCULAR TISSUE: AN INVERSE

FLUID-STRUCTURE INTERACTION PROBLEM

MAURO PEREGO , ALESSANDRO VENEZIANI∗, AND CHRISTIAN VERGARA†

Abstract. Estimation of the stiffness of a biological soft tissue is useful for the detection
of pathologies such as tumors or atherosclerotic plaques. Elastography is a method based on the
comparison between two images before and after a forced deformation of the tissue of interest. An
inverse elasticity problem is then solved for the Young modulus estimation. In the case of arteries,
no forced deformation is required, since vessels naturally move under the action of blood. Young
modulus can be therefore estimated by solving a coupled inverse fluid-structure interaction problem.
In this paper we focus on the mathematical properties of this problem and its numerical solution. We
give some well posedness analysis and some preliminary results based on a synthetic data-set, i.e. test
cases where the exact Young modulus is known and the displacement dataset is numerically generated
by solving a forward fluid-structure interaction problem. We address the problem of the presence of
the noise in the measured displacement and of the proper sampling frequency for obtaining reliable
estimates.

Key words. Fluid-structure Interaction, Inverse Problems, Parameter Estimation

1. Introduction. The term compliance in physiology is referred to the tendency
of a vessel or more in general a hollow organ to resist recoil toward its original di-
mension when a distending or compressing force is removed. A practical definition of
compliance is the ratio between the volume variation in a vessel and the correspond-
ing pressure variation (see e.g. [30]). Nevertheless, there are different definitions of
compliance, mainly dependent of the different methods for measuring it.

This parameter is supposed to have a role in different cardiovascular pathologies,
so its estimation is a major issue in clinical diagnosis and therapy. For example, low
compliance of a artery vessel could be an indicator of atherosclerosis or hypertension
(see e.g. [20], Chapter 28, and [11], Chapter 5). Moreover, an increase of the stiff-
ness of the left ventricle wall is a clear marker of diastolic dysfunction, i.e a clinical
condition leading to an increase of the end diastolic left ventricle pressure, that may
be the primum movens of heart failure (see e.g. [20], Chapter 15, and [11], Chapter
79). More in general, the deformability of soft tissues is an important index for the
detection of anomalies or diseases such as tumors. For all these reasons, an accurate
estimation of this parameter in vivo has a great relevance for diagnostic purposes
and however it is difficult for many reasons. As stated in the pioneering work [8], “a
practical method of measuring the compliance of the arterial system in both patients
and healthy individuals must meet the following requirements at least: it must be
relatively simple, safe and should cause minimal discomfort to the subject.” Among
the techniques specifically devised for the vascular compliance, we mention (see [36])
1) Methods based on the simultaneous measures of pressure and cross-sectional area
at different points and times [46]; 2) Methods based on measuring the rate of propa-
gation of flow waves coming form the heart (pulse wave velocity) [3, 49]. The former
has a major drawback in its invasivity. The latter requires a specific attention in han-
dling pressure wave reflections (see [49]) and relies upon the assumption of cylindrical
vessels, which is not true in general.
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†Dipartimento di Ingegneria dell’Informazione e Metodi Matematici, Università di Bergamo, Italy,
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Other methods were proposed for more general purposes, in particular for the
detection of tumors in a soft tissue. In particular, elastography is an approach where
tissue elasticity (or stiffness) is inferred by the analysis of images of the tissue before
and after the application of a proper deformation (see e.g. [34, 33, 43, 2]). Images
are in general acquired with ultrasound or magnetic resonance. Basic steps of this
approach are: (i) First acquisition of the specimen in the original configuration; (ii)
Application of a deformation to the specimen and second acquisition; (iii) Tracking of
the displacement from the comparison between the two images; (iv) Estimation of the
rigidity of the tissue. Both steps (iii) and (iv) require the solution of inverse problems.
Step (iii) is actually an image registration step [15] for retrieving the displacement field.
Step (iv) entails the solution of what has been called the inverse elasticity problem.
The shear modulus or the Young modulus of the tissue, assumed to be linearly elastic,
is estimated by minimizing the mismatch between the measures (displacement field)
and the solution of an appropriate elasticity problem. More recently, in [35] a similar
approach has been proposed to evaluate the Young modulus of mandibular bone. In
general, the problem of estimating the parameters of a partial differential equation
has been pursued in [5, 48, 7] for the diffusion coefficient in the elliptic case and in
[26] for the convective heat transfer coefficent in the heat equation.

The present work follows a similar approach specifically devised for vessel com-
pliance. As a matter of fact, for our purpose the specificity of vessels is that they do
not need an externally forced deformation, since blood pulsatility naturally induces
vessel motion. The latter can be retrieved from time frames of the vessel of interest
and proper measurements of blood velocity and pressure. No particular devices or
protocols are therefore needed in our approach different from a routine 4D scan of a
patient. The methodological drawback here is that the deformation is not known a
priori but it is induced by blood. For this reason, the inverse problem to be solved for
the parameter estimation is not simply an elasticity model, but a fully coupled fluid-
structure interaction (FSI) system. Some steps in this direction have been carried
out in [27] where however the FSI problem was one-dimensional. In [28] a coefficient
estimation of the 1D model was based on the minimization of the differences with a
3D computation.

In summary, our approach for estimating compliance is as follows (see Fig. 1).

Retrieval of the vessel displacement ηmeas by image registration procedures on time
frames of the vessel of interest (see e.g. [40] where images acquired with a
Siemens c©SOMATOM are used with a frequency of 65 frames per heart beat).
Reliability of our approach relies also upon the availability of measures of
blood velocity and pressure to be used as boundary conditions in the second
step.

Minimization of the difference between ηmeas and the displacement computed by
solving the coupled 3D blood-vessel problem, to estimate the Young modulus.

In this paper we focus on the second step, which is an example of an inverse
fluid-structure interaction (IFSI) problem. The corresponding forward mathemati-
cal problem, the 3D fluid-structure interaction (FSI) system, has been considered in
numerical haemodynamics simulations since many years (see e.g. Perktold and his
co-workers, [39, 38]). This is still a challenging problem both under the view point
of mathematical analysis and numerical solution. Relevant contribution have been
given by different authors (see e.g. [10, 41, 47, 6, 9, 14, 50]). The recent reviews in
the book [16] by Y. Maday (Chapter 8) and J.F. Gerbeau and M. Fernandez (Chap-
ter 9) give an up-to-date picture of the current research in this field. Examples of
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Fig. 1.1. Scheme of the proposed approach

inverse problems addressing a fully coupled FSI problem are analyzed in [29], where
the minimization of a functional involving measured and computed fluid velocity and
structure displacement is considered.

The purpose of this paper is to perform preliminary analysis of the IFSI problem
when the structure is assumed to be linearly elastic and the only parameter to be
estimated is the Young modulus. The same approach in principle can be adopted
with more complex structure models (see e.g. [23]) and with more parameters to
be estimated. In particular, we discuss different approaches for tackling with IFSI
problem. This is a 4D optimization problem. Different strategies can be followed for
its solution depending on the order of the optimization and discretization steps. We
focus on an approach where the original problem is first discretized in time, then the
optimization step is performed. The well posedness of the resulting IFSI problem is
analyzed. Possible numerical methods for its solution are then introduced. In this
first work, numerical results presented refer to 2D and 2D axisymmetric test cases,
where synthetic data (that is obtained by a forward FSI problem) are considered,
aiming at a general assessment of the methodology. More complex test cases referring
to real geometries will be presented elsewhere. Finally, it is worth mentioning that
an IFSI problem with different control variables has been considered in [17], as a step
for prescribing flow rates to the blood flow problem in compliant domains.

There are two relevant concerns that need to be addressed at this stage.
1. Sampling frequency. Displacement is retrieved at instants driven by the ac-

quisition device. More data are available and more accurate is supposed to
be the estimate of the compliance. A careful analysis of the impact of this
sampling frequency on the reliability of the entire process is however a major
issue.

2. Noise. Measurements are affected by errors and noise, introduced by both
the acquisition and the registration. A precise quantification of the impact of
the noise with realistic acquisition devices to the final estimate is beyond the
purpose of the present paper. However, in the synthetic numerical simulations
we will investigate the impact of possible uncertainties to the reliability of the
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Fig. 2.1. Representation of the domain of the IFSI problem: fluid domain on the left, structure
domain on the right.

entire method, for drawing preliminary conclusions on their relevance.

The outline of the paper is as follows. In Sect. 2 we address the forward FSI
problem considered, both in strong and weak formulation, and we recall the basic
properties of the solution to this problem. Moreover, we introduce the general setting
of the IFSI problem and an approach for its solution (Karush-Kuhn-Tucker (KKT)
conditions). Well posedness analysis of the IFSI problem is carried out in Sect. 3.
Numerical method for the solution are presented in Sect. 4, whilst numerical results
are presented and discussed in Sect. 5. Finally, in Sect. 6 we deal with a simplified
structure model which leads to a significant reduction of the computational time.

2. The IFSI Problem.

2.1. The forward problem. Let us consider the domain Ωtf ⊂ R
d (d=2, 3,

being the space dimension) represented in Fig. 2.1 (on the left). This represents
the lumen of a vessel and it is function of time t. Inflow and outflow sections are
denoted by Γtf,i where i = 1, . . . , Ns and Ns is the number of sections (three in Figure
2.1). Blood velocity is denoted by u(x, t), the pressure by p(x, t). The incompressible
Navier-Stokes equations for a Newtonian fluid are assumed to hold in Ωtf . Since we
work in a moving domain, the fluid problem is stated in an Arbitrary Lagrangian-
Eulerian (ALE) framework (see e.g. [25, 10]). The ALE mapping is defined by an
appropriate lifting of the structure displacement at the FS interface Σt. A classical
choice is to consider a harmonic extension operator in the reference domain, which
defines the velocity of the points of the fluid domain w.

The vessel wall is denoted by Ωts, which is still a subset of R
d (see Fig. 2.1, right).

The intersection of Ωts and Ωtf is empty, their union is called Ωt. The vascular wall is
assumed to obey the equations of a linear elastic material. As mentioned above, more
complex constitutive laws where the parameters can be used as control variables in
the optimization process could be a possible development of this work. As for the
fluid, the inflow/outflow sections (three in Fig. 2.1) are denoted by Γts,i. With Σtout
we denote the external surface of the structure domain.

If we denote by η(x, t) the wall displacement with respect to a reference config-
uration, the Cauchy stress tensor for the wall will be

T s(η) := γ1(∇η + (∇η)T ) + γ2(∇ · η)I,

4



where

γ1 :=
E

2(1 + ν)
, γ2 :=

Eν

(1 + ν)(1 − 2ν)
,

are the Lamé constants, I is the identity tensor, E is the Young modulus and ν is the
Poisson ratio. For the sake of notation, we set

Ss(η) =
1

2(1 + ν)
(∇η + (∇η)T ) +

ν

(1 + ν)(1 − 2ν)
(∇ · η)I

so that we can write T s = E Ss. The compliance of the vessel is completely described
by the Young modulus E, which is in general a function of space (e.g. an atheroscle-
rotic plaque has different modulus than healthy tissue) and time (in the heart, see
[24]). The Young modulus is the parameter we want to estimate, so we will use it as
control variable in the optimization process. Specific assumptions on E will be pos-
tulated later on. To describe the structure kinematics we adopt a purely Lagrangian
approach. Moreover, we assume the displacements to be small, so that the constitu-
tive law is referred to the reference domain Ωs := Ω0

s. Consederably, we drop index t
when referring to structure domain and boundary. For any function g defined in the
reference solid configuration, we denote by ĝ its counterpart in the current domain.

The two subproblems are coupled by the interface conditions, stating the con-
tinuity of the velocity and stress fields. The strong formulation of the FSI forward
problem, including the computation of the arbitrary extension in the fluid domain of
the FS interface structure displacement, reads therefore as follows (n is the outward
unit vector normal to the associated part of ∂Ωts).

1. Fluid-Structure problem. Find fluid velocity u, pressure p and structure
displacement η such that






ρf
DAu

Dt
+ ρf ((u−w) · ∇)u−∇ · T f = ff in Ωtf × (0, T ),

∇ · u = 0 in Ωtf × (0, T ),

ρs
∂2η

∂t2
−∇ · (E Ss) = fs in Ωs × (0, T ),

u = ∂bη
∂t on Σt × (0, T ),

T̂ s n− T f n = 0 on Σt × (0, T ),
T s n = 0, on Σout × (0, T ),

(2.1)

where T̂ s := T s(η̂) and T f (u, p) = −pI + µ(∇u+ (∇u)T );
2. Geometry problem. Given the interface structure displacement η|Σ, find a

map A : Ω0
f → Ωtf through an harmonic extension Ext of this boundary value

and find accordingly the new fluid domain Ωtf by moving the point x0 of the

reference domain Ω0
f :

At(x0) = x0 + Ext(η|Σ0), w = ∂tA
t ◦ (At)−1, Ωtf = At(Ω0

f ). (2.2)

Here, ρf and ρs are the fluid and structure density, µ is the constant blood viscosity,
ff and fs the forcing terms. The two matching conditions enforced at the inter-
face are (2.1)4 (continuity of fluid and structure velocities ) and (2.1)5 (continuity of
stresses). The fluid and structure are also coupled by the geometry problem, leading
to a highly nonlinear system of partial differential equations. System (2.1) has to
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be endowed with suitable boundary conditions on Ωtf \ Σt and Ωs \ (Σ ∪ Σout), and
with suitable initial conditions. We prescribe a free-stress condition on Σout, however,
other boundary conditions could be considered as well for including the presence of
surrounding tissues. For the inflow/outflow sections, several papers discuss possible
reliable conditions in haemodynamics: in this respect, see the recent review in [16],
Chapter 11. In particular we prescribe natural conditions for the structure and either
Dirichlet conditions or natural conditions, depending on the data availability (blood
velocity or pressure), for the fluid. The correct prescription of these conditions is
crucial for the reliability of the parameter estimation in vivo. However, from the
methodological viewpoint different conditions do not introduce significant changes, so
we do not dwell with this aspect any longer.

2.2. The time-continuous inverse problem. Let us assume that the dis-
placement data retrieved from the image registration process are available within the
interval [0, T ] in some instants denoted by τk, k = 1, . . . , N (N being the number of
instants when image registration is performed). It is realistic and not restrictive to
assume that the time step between two measurement instants is constant. It will be
denoted by ∆τ . This is actually driven by the sampling frequency of the image de-
vices. Let η̂meas(x, τk) be the measured displacement at τk for x ∈ Στk . We introduce
the following functional

Jc =
1

2

N∑

k=1

∫

Σ

(ηmeas(x, τk) − η(x, τk))
2
dσ.

where η(x, τk) solves equations (2.1) at instants τk. We may consider the functional

JR
c = Jc + Rc(E)

where Rc(E) is a non-negative regularization term depending on the regularity as-
sumptions on E. Given an admissible set Ead for the control variable E, a first possible
formulation of the IFSI problem reads:

Problem 1. For t > 0,x ∈ Ωs, find E = E(x, t) ∈ Ead that minimizes the
functional JR

c under the constraint (2.1).
The term Ead is the set where we are looking for the minimum. In the following,

unless stated otherwise, we define Ead as:

Ead := {E : E ∈ L∞(Ωs), 0 < Emin ≤ E ≤ Emax,with Emin, Emax ∈ R}. (2.3)

Remark 1. The term Rc can be the usual Tychonov regularization, which is
expected to force better mathematical and numerical properties to the minimization
process. As an example, it could be defined as

Rc(E) =
ξ

2

N∑

k=1

∫

Ωs

(E(x, τk) − Eref )
2
dx,

where Eref is a reference value (available for instance from ex vivo specimens). In
this case, the regularization is forcing the value of E to be close to the reference value.
Parameter ξ weights the relevance of the regularization in the minimization procedure
and can be tuned empirically on the basis of the Morozov’s discrepancy principle (see
e.g. [12]).
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Remark 2. The minimization of the mismatch between measured and computed
displacement fields is performed over the interface between the fluid and the structure
domain. This choice is basically motivated by the fact that usually this is clearly visible
in the images (due to the high contrast of the difference in the grey levels of the two
regions) so the retrieved displacement on the interface is expected to be more correct.
This is however just one possible choice driven by technical limitation of the image
acquisition. Should clear images of the vessel wall be available, minimization of the
mismatch can be performed over the entire structure domain Ωs.

Problem 1 entails the solution of a time-dependent minimization problem. A
possible approach for the solution is the introduction of Lagrange multipliers for the
constraints given by (2.1) and (2.2) and of a functional (Lagrangian) to be minimized
without constraints. This functional is then differentiated with respect to the state
variables (blood velocity and pressure, and structure displacement), the multipliers
and the control variable E, so to obtain the classical KKT system (state problem,
adjoint problem, optimality conditions).

This approach is expected to suffer from two major drawbacks.
1. Complexity. The adjoint of an initial value problem is a final value problem so

that, in principle, solution requires to handle a genuine 4D coupled problem
(for three space dimensions), which is expensive. Moreover, the constraint is
represented by a moving domain problem, where the shape of the domain is
unknown. In computing the adjoint problem, differentiation with respect to
the domain (shape derivative) needs to be performed, that is in general fairly
expensive too.

2. Storage. Even if at the numerical level splitting techniques can overcome the
solution of a fully 4D problem, still the solution at all the time steps needs
typically to be stored, with a massive memory occupancy.

For all these reasons we resort to a different formulation of the problem where
dependence on time is discretized before the formulation of the minimization problem.

2.3. The time-discrete forward problem. Let us consider the time dis-
cretization of the fluid-structure interaction problem (2.1). For the sake of simplicity
we assume a constant time step ∆t such that

∆t =
∆τ

s
with N ∋ s ≥ 1.

In other words, the measurements instants τk are a subset of the time discretization of
(2.1). This is not restrictive, since numerical arguments (stability, accuracy) usually
force to use time steps smaller than the acquisition interval of current devices. Should
instants τk do not coincide with time discretization nodes, suitable interpolation pro-
cedures need to be introduced for computing the difference between measurements
and numerical simulations. These (standard) procedures do not change the core of
the procedure we address in this work.

We set tn = n∆t for n = 0, . . . , N and denote by zn the approximation of a generic
time dependent function z at time level tn. For the time discretization of (2.1) we
resort basically to an implicit Euler scheme for first order differential problems in time
and BDF schemes for second order time derivatives. Observe, however, that all the
arguments detailed in this work can be extended to other time discretization schemes.
More precisely, a semi-implicit approximation is considered (see e.g. [14, 1]) for the
fluid problem for tackling with the nonlinearities induced by the convective term and
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by the moving domain. Differently from [14] we treat implicitely the fluid viscous
term. Denote by Ω⋆f , u

⋆ and w⋆ appropriate extrapolations of the fluid domain, fluid
velocity and fluid domain velocity, respectively. The simplest choice is given by the
first order extrapolations Ω⋆f = Ωnf , u

⋆ = un and w⋆ = wn.
Since we resort to Finite Element space discretizations we introduce directly the

weak formulation of the time-discrete fluid-structure interaction problem. The follow-
ing spaces will be useful,

V ⋆ = {v ∈H1(Ω⋆f ) : v|Γ⋆
D,f

= 0}, Q⋆ = L2(Ω⋆f ), W = {ψ ∈H1(Ωs) : ψΓD,s
= 0},

where Γ⋆D,f and ΓD,s are the portions of the boundary where a Dirichlet condition is

prescribed. We denote moreover Z⋆ =
{

(v,ψ) ∈ V ⋆ ×W : v|Σ⋆ −
bψ|Σ⋆

∆t = 0
}

. Then

we set

a(u,η;v,ψ)⋆ :=
ρf

∆t (u,v)
⋆
f + (T f (u, p),∇v)⋆f + ρf (((u

⋆ −w⋆) · ∇)u,v)⋆f+

+ρs

(
η

∆t2 ,
ψ

∆t

)

s
,

b(q;v)⋆ := −(q,∇ · v)⋆f ,

(2.4)

where (v,w)⋆f :=
∫
Ω⋆

f

v ·w dx and (ψ,χ)s :=
∫
Ωs
ψ · χ dx. Given g ∈ H1/2(Σ⋆), let

Rf (g) ∈H
div(Ω⋆f ) := {v ∈H1(Ω⋆f ) : ∇ · v = 0} and Rs(g) ∈H

1(Ωs) be two lifting
functions for the FS inteface continuity, defined as

Rf (g) −Rs(g) = −
g

∆t
on Σ⋆.

Due to the arbitrariness of one of these functions, in what follows we set Rs(g) = 0.
When applied to function ηm−1, we will set Rm

f := Rf (η
m−1).

Then, at each time tn, the weak formulation of the time discrete semi-implicit
forward problem related to (2.1) and (2.2) consists of the following steps. Here, we
assume E to be a given function in Ead, and we still denote with u the velocity after
the lifting.

1. Compute suitable extrapolations Ω⋆f , u
⋆ and w⋆ for the approximation of

Ωn+1
f , un+1 and wn+1.

2. Given fn+1
f ∈ L2(Ω⋆f ) and fn+1

s ∈ L2(Ωs), find (un+1,ηn+1) ∈ Z⋆ and

pn+1 ∈ Q⋆ such that





a(un+1,ηn+1;v,ψ)⋆ +
(
E Ss(η

n+1), 1
∆t∇ψ

)
s
+ b(pn+1;v)⋆ =

= Fn+1
f (v) + Fn+1

s

(
ψ
∆t

)
− a(Rn+1

f ,0;v,ψ)⋆,

b(q;un+1)⋆ = 0,

(2.5)

for all (v,ψ) ∈ Z⋆ and q ∈ Q⋆.
3. Update the fluid domain to obtain Ωn+1

f through (2.2).

Functionals Fn+1
f and Fn+1

s account for forcing terms, boundary data on ∂Ω⋆f \ Σ⋆

and ∂Ωs \ Σ and terms coming from the time discretization.

2.4. Properties of the time discrete fluid-structure interaction problem.
Let ‖ · ‖Lp and ‖ · ‖H1 be the usual Lp and H1 norms computed in Ω⋆f or Ωs (for
the norms computed on the FS interface, we denote explicitely the dependence of the
space on Σ). Given (v,ψ) ∈ Z⋆, we also define the following norm for the couple
(v,ψ) : ‖(v,ψ)‖2

Z⋆ := ‖v‖2
H1 + ‖ψ‖2

H1 . Moreover, in what follows, C denotes a
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positive constant that does not depend on the solution of the FSI problem or on E,
but possibly could depend on the data ηmeas, w

⋆, u⋆, Ff , Fs, µ, ρf , ρs, ∆t and on
the Neumann and Dirichlet data. When we want to stress the dependence of C on
the generic parameter ζ we write C(ζ). From now on we drop the temporal index of
the current solution.

We denote K := min(
ρf

∆t , µ) − 1
2‖∇ · w⋆‖L2 . Notice that K > 0 either when a

divergence free ALE extension w⋆ is adopted or for ∆t small enough and viscosity
large enough.

Proposition 1. Under the assumption K > 0 and E ∈ Ead, problem (2.5)
admits a unique solution (u,η) ∈ Z⋆ and p ∈ Q⋆. Moreover u and η, are bounded
for E ∈ Ead.

Proof. Thanks to the Korn’s inequality (see e.g. [4]), for K > 0 the bilinear form
a(·, ·; ·, ·) + (ESs(·), ·) is coercive

a(v,ψ;v,ψ) + (ESs(ψ),ψ) ≥ C(Emin) ‖(v,ψ)‖2
Z⋆ . (2.6)

Moreover, an inf-sup condition holds for problem (2.5) (see e.g. [17]), yielding the well
posedness of the problem. Moreover, starting from (2.5) and recalling that ∇·Rf = 0,
by taking (v,ψ) = (u, η) we have for all E ∈ Ead

K‖u‖2
H1 +

ρs
∆t3

‖η‖2
L2 +

Emin
∆t(1 + ν)

‖∇η‖2
L2 ≤ C‖u‖H1 + C‖η‖L2 .

Hence

‖u‖H1 ≤ C, ‖η‖L2 ≤ C, ‖η‖H1 ≤ C(Emin). (2.7)

Bound on the pressure follows from the inf-sup condition (see e.g. [19]).
Upon the previous Proposition, we can introduce a map η : Ead → W defined

for all E ∈ Ead by η(E) = η, where η is the unique solution of (2.5). Therefore,
functional Jc could be thought as a function of E.

The following bound is an immediate consequence of the previous Proposition,
thanks to the trace inequality.

‖η‖L2(Σ) ≤ C. (2.8)

Finally, from the equality, valid for any (v,ψ) ∈ Z⋆,

(
E Ss(η),

1

∆t
∇ψ

)

s

= Ff (v) + Fs

(
ψ

∆t

)
− a(u,η;v,ψ)⋆ − a(Rf ,0;v,ψ)⋆,

it follows that for any (v,ψ) ∈ Z⋆, thanks to (2.7)1,2,

∣∣∣∣

(
E Ss(η),

1

∆t
∇ψ

)

s

∣∣∣∣ ≤ C ‖(v,ψ)‖Z⋆ . (2.9)

2.5. Position of the inverse problem and the KKT conditions. Let us
consider the functional

J =

∫

Σ

(ηmeas(x, τk) − η(x, τk))
2
dσ.

Then, for each k = 1, 2, . . . N we consider the following problem.

9



Problem 2. Given a regularization term R, find E ∈ Ead that minimizes the
functional

JR = J + R(E(·, τk)).

under the constraint (2.5).
Following Remark 1, a possible regularization term is given by

R(E) =
ξ

2

∫

Ωs

(E(x, τk) − Eref )
2
dx. (2.10)

In the sequel, if not otherwise specified, we will refer to the unregularized functional
J .

For the sake of the numerical solution, we follow the standard Lagrange multiplier
approach. We introduce accordingly the Lagrangian functional at time tnk , obtained
by adding to J the FSI problem (2.5) as a constraint:

L(U ,P,H;λU , λP ,λH ; E) = J (H; E) + a(U ,H;λU ,λH)⋆+

+

(
E Ss(H),

1

∆t
∇λH

)

s

+ b(P;λU )⋆ + b(λP ;U)⋆+

−Ff (λU ) − Fs

(
λH

∆t

)
+ a(Rf ,0;λU ,λH)⋆.

We point out that the Lagrangian functional does not depend on the fluid domain
position variable, since the latter is assumed to be known as a consequence of the
time semi-implicit discretization.

In order to find the corresponding Euler equations, we impose that in correspon-
dence of the solution [u, p,η;λu, λp,λη;E] the Gateaux differentials of L evaluated
for any test function vanish. We introduce the following notation. Given N Ba-
nach spaces Z1, . . . , ZN , let Z = Z1 × Z2 × . . . × ZN and M : Z → R, be such
that (y1, . . . , yN ) ∈ Z → M(y1, . . . , yN ) ∈ R, and let < ·, · > be the duality pairing
between Z ′ and Z. We indicate with

< dMyj
[z1, . . . , zN ], g >= lim

ε→0

(M(y1, .., yj + εg, .., yN ) −M(y1, .., yj , .., yN )

ε

)∣∣∣
y=z

the Gateaux differential of M with respect of yj , computed at z = (z1, . . . , zN ) ∈ Z
and acting along the direction g ∈ Zj . For the sake of notation, we set< dMzj

, g >=<
dMyj

[z1, . . . , zN ], g >.
Then, the solution which minimizes functional J under the constraint given by

the FSI problem is a stationary point of the Lagrangian functional and therefore can
be computed by imposing that the gradient of L vanishes. In particular, by forcing
to zero the Gateaux derivatives of the Lagrangian functional with respect to the state
variables we formally obtain the adjoint problem, namely

{
< dLu,v > + < dLη,

ψ
∆t >= 0

< dLp, q >= 0

for all (v,ψ) ∈ Z⋆ and q ∈ Q⋆. The Optimality condition is obtained by forcing to
zero the explicit derivative with respect to the control variable

< dLE , ϕ >= 0,

10



for all ϕ ∈ L∞(Ωs). These two problems together with the state problem (obtained
by vanishing the derivatives of L with respect to the Lagrange multipliers)

{
< dLλu

,v > + < dLλη
, ψ∆t >= 0

< dLλp
, q >= 0,

for all (v,ψ) ∈ Z⋆ and q ∈ Q⋆, yield at each tnk the following coupled KKT system.

Given (Ff , Fs) ∈ (Z⋆)′ and ηmeas ∈W , find E ∈ Ead, (u,η) ∈ Z⋆, p ∈ Q⋆, (λu,λη) ∈
Z⋆ and λp ∈ Q⋆, such that

State pbl :






a(u,η;v,ψ)⋆ +
(
E Ss(η), 1

∆t∇ψ
)
s
+ b(p;v)⋆ =

= Ff (v) + Fs

(
ψ

∆t

)
− a(Rf ,0;v,ψ)⋆,

b(q;u)⋆ = 0;

(2.11a)

Adjoint pbl :






a(v,ψ;λu,λη)
⋆ +

(
E Ss(

ψ
∆t ),∇λη

)

s
+ b(λp;v)

⋆+

+
∫
Σ
(η − ηmeas) ·ψ dσ = 0,

b(q;λu)
⋆ = 0;

(2.11b)

Opt. cond : (ϕSs(η),∇λη)s = 0, (2.11c)

for all (v,ψ) ∈ Z⋆, q ∈ Q⋆ and ϕ ∈ L∞(Ωs).
The optimality condition states that η and ∇λη have to be orthogonal with

respect to the symmetric and coercive operator Ss (this follows by taking ϕ = 1 in
(2.11c)).

System (2.11) couples two linearized fluid-structure interaction problems and a
scalar equation. In particular, for the adjoint problem the interface velocity condition
reads

λu =
λ̂η

∆t
on Σ⋆,

whilst the interface stress condition is

T s(λ̂η)n− T f (λu, λp)n = − (η̂ − η̂meas) , on Σ⋆. (2.12)

The right-hand side takes into account the mismatch between the data and the solu-
tion, and modifies the homogeneous interface stress condition (2.1)5 accordingly.

3. Well posedness analysis. Let us start with an existence result. The exis-
tence is retrived using the direct method in the the calculus of variations. In particular,
the basic steps of the proof have been inspired by the work of [26] for the identification
of the heat convective term in Robin conditions.

Theorem 1. Under the same hypotheses of Proposition 1, for ξ ≥ 0 there exists
at least one minimizer to the optimization Problem 2, with R defined as in (2.10).

Proof. Since J is bounded, infE∈Ead
J (E) ∈ R and there exists a sequence

Ek ∈ Ead such that

lim
k→∞

J (Ek) = inf
E∈Ead

J (E).

Being Ek bounded in L∞(Ωs), it follows from the Banach-Alaoglu theorem (see e.g.
[44]) that there exists a subsequence of Ek, which we still call Ek, such that

Ek → Ē weakly-* in L∞(Ωs),
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with Ē ∈ Ead. Let (uk, ηk) ∈ Z⋆ be the solution of (2.11a) associated with Ek.
Since bounds on (uk, ηk) ∈ Z⋆ do not depend on Ek, there exists a subsequence
(uk, ηk) ∈ Z⋆ weakly converging to (ū, η̄) ∈ Z⋆.

Now, for any ψ ∈W , it follows that
(
Ek Ss(η

k),∇ψ
)
s

=

=
(
Ek
(
Ss(η

k) − Ss(η̄)
)
,∇ψ

)
s
+
(
(Ek − Ē)Ss(η̄),∇ψ

)
s
+
(
Ē Ss(η̄),∇ψ

)
s
.

The convergence of Ek and ηk implies that

lim
k→∞

(
Ek Ss(η

k),∇ψ
)
s

=
(
Ē Ss(η̄),∇ψ

)
s
. (3.1)

Analogously, it can be shown that:

lim
k→∞

a
(
uk,ηk,ϕ,ψ

)
= a (ū, η̄,ϕ,ψ) . (3.2)

For construction, (uk, ηk) and Ek satisfy the state equation (2.11a), which reads:

a(uk,ηk;v,ψ)⋆ +
(
EkSs(η

k), 1
∆t∇ψ

)
s
+ b(p;v)⋆ =

= Fn+1
f (v) + Fn+1

s

(
ψ

∆t

)
− a(Rf ,0;v,ψ)⋆.

Letting k tend to infinity, from equations (3.1) and (3.2), we have that (ū, η̄) and Ē
satisfies the state equation (2.11a).

We conclude proving that Ē realizes the infimum of J . We recall that, thanks to
Rellich-Kondrachov embedding theorem, ηk converge strongly to η̄ in L2(Σ). More-
over, weak−∗ convergence in L∞ implies weak convergence in L2. The weak lower

semi-continuity of the functional
∫

Ωs

(
Ek − Eref

)2
dx in L2(Ωs) implies that

J (Ē) = 1
2

∫

Σ

(η̄ − ηmeas)
2
dσ + ξ

2

∫

Ωs

(
Ē − Eref

)2
dx ≤

≤ 1
2 limk→∞

∫

Σ

(
η(Ek) − ηmeas

)2
dσ + ξ

2 lim infk→∞

∫

Ωs

(
Ek − Eref

)2
dx ≤

≤ lim infk→∞

(
1
2

∫

Σ

(
η(Ek) − ηmeas

)2
dσ + ξ

2

∫

Ωs

(
Ek − Eref

)2
dx

)
=

= limk→∞ J (Ek) = infE∈Ead
J (E),

and the thesis is proven.
Notice that the regularizing term is not strictly needed to the existence theorem.
As we have previosuly pointed out, in practice the displacement retrieved by

images and registration is affected by noise (in the image acquisition) and numerical
errors (in the registration). For this reason, it is worth investigating the continuous
dependence of the minimum Ē on the measurments. Following [26], we have the
following result.

Proposition 2. Let ηkmeas be a sequence converging to ηmeas in L2(Σ), and Ek

a minimizer associated to ηkmeas as for the previous Proposition. The sequence Ek

features a subsequence weak-* converging in L∞(Σ) to a minimizer of Problem 2.
Proof. By definition of Ek, we have for all E ∈ Ead

1

2

∫

Σ

(
η(Ek) − ηkmeas

)2
dσ +

ξ

2

∫

Ωs

|Ek − Eref |
2 dx ≤

12



≤
1

2

∫

Σ

(
η(E) − ηkmeas

)2
dσ +

ξ

2

∫

Ωs

|E − Eref |
2 dx.

By setting again Ē the limit of the bounded sequence Ek, from the latter inequality
and the convergence results obtained in the previous Theorem, it follows

J (Ē) =
1

2

∫

Σ

(
η(Ē) − ηmeas

)2
dσ +

ξ

2

∫

Ωs

|Ē − Eref |
2 dx ≤

≤
1

2
lim
k→∞

∫

Σ

(
η(Ek) − ηkmeas

)2
dσ +

ξ

2
lim inf
k→∞

∫

Ωs

|Ek − Eref |
2 dx ≤

≤ lim inf
k→∞

(
1

2

∫

Σ

(
η(E) − ηkmeas

)2
dσ +

ξ

2

∫

Ωs

|E − Eref |
2 dx

)
= J (E),

which proves that Ē is a minimizer of J for ‖ηkmeas − ηmeas‖L2(Σ) → 0.

3.1. Properties of J .
Proposition 3. The following inequality holds

‖η1 − η2‖L2(Σ) ≤ C(Emin) ‖E2 − E1‖L∞ , ∀E1, E2 ∈ Ead. (3.3)

Since functional J depends continuously on η, then it depends continuously on E in
the L∞ topology.

Proof. Let (u1, p1,η1) and (u2, p2,η2) be the solutions to the equation (2.5) for
E = E1 and E = E2, respectively. By subtracting from the state equation with E1

the one with E2 and choosing as test functions (v,ψ) = (u1−u2, η1−η2), we obtain

a(u1 − u2,η1 − η2;u1 − u2,η1 − η2)
⋆ +

(
E1 Ss(η1),

1

∆t
∇(η1 − η2)

)

s

+

−

(
E2 Ss(η2),

1

∆t
∇(η1 − η2)

)

s

= 0.

By adding and subtracting the term
(
E1 Ss(η2),

1
∆t∇(η1 − η2)

)
s
, we have

a(u1 − u2,η1 − η2;u1 − u2,η1 − η2)
⋆ +

(
E1 Ss(η1 − η2),

1
∆t∇(η1 − η2)

)
s

=

=
(
(E2 − E1)Ss(η2),

1
∆t∇(η1 − η2)

)
s
.

By using the inequality (2.9), with (v, ψ) = (u1 − u2, η1 − η2) , we obtain

| a(u1 − u2,η1 − η2;u1 − u2,η1 − η2)
⋆| +

(
E1 Ss(η1 − η2),

1
∆t∇(η1 − η2)

)
s
≤

≤
∥∥∥E2−E1

E2

∥∥∥
L∞

∣∣(E2Ss(η2),
1

∆t∇(η1 − η2)
)
s

∣∣ ≤
≤ C

Emin
‖E2 − E1‖L∞‖(u1 − u2,η1 − η2)‖Z⋆ .

From the coercivity (2.6), it follows that

C(Emin)‖(u1 − u2,η1 − η2)‖
2
Z⋆ ≤

C

Emin
‖E2 − E1‖L∞‖(u1 − u2,η1 − η2)‖Z⋆ .
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Then, from the follow inequalities, holding for all (v,ψ) ∈ Z⋆,

‖(v,ψ)‖Z⋆ ≥ ‖ψ‖H1 ≥ C‖ψ‖L2(Σ),

the thesis follows.
Proposition 4. For E ∈ Ead, J is Gateaux differentiable.
Proof. From the adjoint problem (2.11b), by following steps analogous to the ones

of Proposition 1 and thanks to (2.8), we obtain

K‖λu‖
2
H1 +

ρs
∆t3

‖λη‖
2
L2 +

Emin
∆t(1 + ν)

‖∇λη‖
2
L2 ≤ C‖η − ηmeas‖L2(Σ)‖λu‖H1 ,

and it follows

‖λu‖H1 ≤ C, ‖λη‖L2 ≤ C, ‖λη‖H1 ≤ C(Emin). (3.4)

We point out that the total Gateaux derivative of J with respect to E, along a
direction ϕ ∈ L∞ is given by (see e. g. [22])

〈
dJ

dE
,ϕ

〉
= 〈dLE , ϕ〉 =

1

∆t
(ϕSs(η),∇λη)s . (3.5)

The linear operator dJ
dE is bounded, in fact
∣∣∣∣

〈
dJ

dE
,ϕ

〉∣∣∣∣ ≤ C‖ϕ‖L∞ ‖η‖H1‖λη‖H1 (3.6)

and ‖η‖H1 , ‖λη‖H1 are bounded thanks to (2.7) and (3.4).
For a usual regularizing term R such as in (2.10), Gateaux differentiability of JR

is therefore guaranteed in E ∈ Ead.
When JR has a minimum in Ē belonging to the interior of a set Ead, then the

Gateaux derivative of JR in any direction must be zero, leading to the KKT system.
However, solution Ē can in general belong to ∂Ead. In this case, KKT system is
not guaranteed to have a solution. There are however some particular choices of the
admissible set Ead, combined with a proper regularizing term, where E belongs to the
interior of Ead and then the solution to KKT system does exist. This will be the topic
of the next subsection.

3.2. Special choices of Ead. We consider two cases, E ∈ W 1,∞(Ωs) and E
given by a linear combination of suitable functions. In both cases, we will able to
prove the existence of (at least) one minimizer in (0,+∞).

Proposition 5. Let us consider Ead := {E : E ∈ W 1,∞(Ωs), E > 0}, and the

regularization term R(E) = ξ
2

∥∥∥∥log
(

E
Eref

)2
∥∥∥∥
W 1,∞

. Then, for ξ > 0 there exists at

least one minimizer to the optimization Problem 2.
Proof. Let µ be the infimum of JR, namely µ = infE>0 J

R. Let us consider the
minimizing sequence JR(Ek) → µ, Ek ∈ Ead. Then, there exists ε > 0, such that for
k large enough,

J (Ek) + R(Ek) = JR(Ek) ≤ µ+ ε.

Hence, in particular,

R(Ek) =
ξ

2

∥∥∥∥∥log

(
Ek

Eref

)2
∥∥∥∥∥
W 1,∞

≤ µ+ ε
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This inequality implies that Ek belongs to a bounded and closed set E in W 1,∞(Ωs)
and moreover we have that

Eref exp

(
−

√
2(µ+ ε)

ξ

)
≤ Ek ≤ Eref exp

(√
2(µ+ ε)

ξ

)
.

Since the embedding of W 1,∞ in L∞ is compact [13], there exists a subsequence Ek

converging to Ē ∈ E in the L∞ topology. The regularization term R(E) is lower
semicontinuous in L∞. In fact it can be written in the form R = ξ

2‖f(u,Du)‖L∞ ,

with u = log
(

E
Eref

)2

and f convex with respect to the second argument and the

lower semicontinuity of R follows from the Corollary 1.5 in [21]. Thanks to the
continuity of J (Proposition 3), and the lower semicontinuity of R, we have that
JR(Ē) = infE>0 J

R.
Similarly, we consider the case in which E is given by a linear combination of func-

tions ϕi ∈ L∞(Ωs), namely E =
∑N
i=1 ai ϕi, with a = [a1, . . . , aN ] ∈ R

N . Precisely,
we limit the analysis to a set of functions ϕi which satisfy the following property, for
any E1, E2 ∈ R

+ and a ∈ R
N

N∑

i=1

aiϕi(x) ∈ [E1, E2],∀x ∈ Ωs ⇐⇒ a ∈ [E1, E2]
N . (3.7)

We point out that piecewise constant and piecewise linear functions fulfill property
(3.7).

Proposition 6. Let us consider the set Ead := {E : E =
∑N
i=1 ai ϕi, a ∈

R
N , ai > 0,∀i}, where the functions ϕi ∈ L∞(Ωs) satisfy the property (3.7). Let us

take R(E) = ξ
2

∥∥∥log
(

E
Eref

)∥∥∥
2

L∞

. Then, for ξ > 0 there exists at least one minimizer

to the optimization Problem 2.
Proof. Let µ be the infimum of JR, namely µ = infE∈E J

R. Let us consider the
minimizing sequence JR(Ek) → µ, Ek ∈ Ead. Then, there exists ε > 0, such that for
k large enough,

J (Ek) + R(Ek) = JR(Ek) ≤ µ+ ε,

Hence

R(Ek) =
ξ

2

∥∥∥∥log

(
Ek

Eref

)∥∥∥∥
2

L∞

≤ µ+ ε.

The sequence Ek reads Ek =
∑N
i=1 a

k
i ϕi. Hence the above inequlity, together with

property (3.7), implies that the sequence ak belongs to the compact set [E1, E2]
N ,

with E1 = Eref exp

(
−
√

2(µ+ε)
ξ

)
and E2 = Eref exp

(√
2(µ+ε)
ξ

)
. It is therefore

possible to extract two subequences, such that ak → ā ∈ [E1, E2]
N . Hence Ek →

Ē :=
∑N
i=1 āiϕi. Thanks to the continuity of J (Proposition 3) and of R in L∞(Ωs)

we have that JR(Ē) = infE>0 J
R.

4. Numerical solution of the IFSI problem. In order to solve the non-
linear minimization problem, we choose to eliminate the dependence of JR on the
state variables (u,η), by solving the state equation. In this way we can use standard
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solvers for the state equations and standard optimization tools for minimizing JR. In
particular we are willing to use gradient-based methods such as the steepest descent
method and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method (see e. g. [32]).
This is a common choice when solving PDE-constraint optimization problems, since
the gradient of the functional can be effectively computed using the adjoint equation
(see, e. g., [22]). Gradient-based methods require to evaluate the functional JR(Ek)

and/or the functional derivative dJR

dE

∣∣∣
Ek

for some value of the control variable Ek. We

solve first the state equation to get ηk and then we evaluate JR(Ek) = J (ηk(Ek))+
R(Ek). Moreover, once λkη is obtained by solving the adjoint equation, from (3.5) it
follows that the derivative can be computed with the following expression

〈
dJR

dE

∣∣∣∣
Ek

, ϕ

〉
=

1

∆t

(
ϕSs(η

k),∇λkη

)

s
+

〈
dR

dE

∣∣∣∣
Ek

, ϕ

〉
.

Remark 3. BFGS is a method devised for unconstrained optimization, while the
problem at hand features the constrain E > 0. To overcome this problem, we use as
a control variable ψ = log(E), so that E = exp(ψ) > 0 for every ψ ∈ L∞(Ωs). We

notice that dJR

dψ

∣∣∣
ψk

is given then by

〈
dJR

dψ

∣∣∣∣
ψk

, ϕ

〉
=

1

∆t

(
ϕEk Ss(η

k),∇λkη

)

s
+

〈
dR

dψ

∣∣∣∣
ψk

, ϕ

〉
, ∀ϕ ∈ L∞(Ωs).

4.1. Finite Element Discretization. Let Zh be a finite dimensional subspace
of Z, Qh a finite dimensional subspace for the pressure and Eh the finite dimensional
subspace for E. In particular we will refer basically to a Lagrange finite element
approximation of the problem and we denote with N the total degrees of freedom of
the FSI problem.

For the state and the adjoint problems, we introduce the vector of the unknowns
U ∈ R

N and ΛU ∈ R
N , respectively, whose entries collect all the unknown of velocity,

pressure and displacement and the corresponding Lagrange multipliers. For easiness
of implementation we introduce a measurements vector Umeas ∈ R

N . The only entries
of Umeas actually used are the ones corresponding to the structure interface degrees
of freedom.

We introduce the FSI finite-element matrix A ∈ R
N×N related to the bilinear

forms a(·, ·; ·, ·) and b(·; ·) defined in (2.4) (the latter being extended with zero entries
in the structure degrees of freedom) and the finite-element matrices K ∈ R

N×N and
KS ∈ R

N×N associated with the bilinear forms
(
ESs(·),

1
∆t∇·

)
s

and(
Ss(·),

1
∆t∇·

)
s

(extended with zero entries in the fluid degrees of freedom). Moreover,
we set

(MΣ)kl :=

∫

Σ⋆

ζk · ζl dσ, k, l = 1, . . . , N,

where the ζl are the structure basis functions related to the mesh interface nodes
xj , j = 1, . . . , Ninterf for the structure displacement degrees of freedom, whilst are
the zero functions for the fluid velocity and pressure degrees of freedom.

We assume that measures are available in all the nodes of the finite element mesh.
This can be assumed to be realistic after a proper interpolation of the map retrieved
by the registration procedure. A careful analysis of the impact of the interpolation
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error on the accuracy of the compliance estimation is beyond the scope of the present
work and will be investigated elsewhere.

The algebraic counterpart of system (2.11) reads






(A+K(E))U = F ,
MΣU + (AT +KT (E))ΛU = FΛ +MΣUmeas,

UTKS ΛU = 0,
(4.1)

for suitable vectors F and FΛ.
We detail the algorithm to solve the non-linear system (4.1), in the case the

steepest descent method is used and ξ = 0 (no regularization term).
Algorithm 1. For k = 1, . . . up to the fulfilment of a given convergence test:
1. Solve the linear system

(A+K(Ek))Uk = F ;

2. Solve the linear system

(AT +KT (Ek))(ΛU )k = FΛ −MΣ(Uk −Umeas);

3. Given a suitable δk ∈ R, update

Ek+1 −Ek = δkU
T
k KS (ΛU )k;

4. Stopping criterion: condition on the gradient of J

‖UT
k KS (ΛU )k‖ ≤ ε.

Since for the BFGS scheme we have used the Gnu Scientific Library [18] (see
Section 6.1), we do not detail this scheme in what follows and we refer the reader to
[32]. We remark that we have used the same stopping criterion as in Algorithm 1.

5. Numerical results. In this Section we assume that the Young modulus E
is constant in space, which is reasonable for healthy vessels over small regions.

As we have pointed out in the Introduction, the numerical results presented here
do not rely upon a real image registration, but on synthetic data, with the purpose
of assessing the accuracy and the reliability of the method. The problem is therefore
formulated over 2D domains (for both the fluid and the structure). The displacement
data ηmeas are generated by the solution ηfwd over Σ⋆ of the forward problem for a
given value of the Young modulus, taken within a physiological range. The knowledge
of the “exact” Young modulus allows a quantitative analysis of the accuracy and the
robustness of the method. We consider at first simple rectangular domain mimicking
a 2D pipe. We analyze the impact of (artificially added) noise to the synthetic data
and of different sampling frequencies of the displacement. More precisely, in the
instants when the displacement measures are available the IFSI problem is solved. In
the other instants of the time discretization, the usual forward FSI problem is solved
using the last Young modulus estimate available. The latter is used as initial guess for
the successive IFSI problem to be solved. Successively, we consider a more realistic
domain, mimicking a 2D arterial bifurcation.

For the 2D structure we consider the following equation of linear elasticity (see
e.g. [37, 42])

ρs∂ttη − γ1∇ · (∇η + (∇η)t) − γ2∇ · ((∇ · η)I) + βη = 0,
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where β = E/((1 − ν2)R2) and R is the radial dimension of the fluid domain. The
latter term accounts transversal membrane effects in the 2D domain (see [42]). This
term does not affect the analysis carried out in the previous Sections, that is readily
extended. For the fluid, we assign the following impulsive Neumann condition at the
inlet

pn− µ
(
∇u+ ∇uT

)
· n = P (t)n

where

P (t) =

{
2 · 104 dyne/cm2 t ≤ 0.005 s,
0 t > 0.005 s.

Homogeneous Neumann condition is prescribed at the outlets. In a real context these
conditions need to be replaced by in vivo measurements on either blood velocity or
pressure.

In all the simulations of the present Section we set ρf = 1 g/cm2, ρs = 1.1 g/cm2,
µ = 0.035Poise, h = 0.02 cm and ∆t = 0.001 s. We use a Matlab Finite Element code
where Algorithm 1 is implemented, with a tolerance ε = 10−6, and we use P1bubble-
P1 finite elements spaces for the fluid subproblem and P1 elements for the structure
subproblem.

Moreover, we do not consider any regularization term in the functional (ξ = 0).
The FSI state and adjoint problems are solved with a monolithical approach.

5.1. Results in a 2D pipe. In this section, we consider the domains Ω0
f =

(0, 6s)× (0, 1) and Ωs = ((0, 6)× (0.5, 0.6))∪ ((0, 6)× (−0.6,−0.5)), where the inlet is
given by Γin := {0} × (0, 1). To obtain the data, we consider the constant (realistic)
value Edata = 1.3·106 dyne/cm2 for the forward simulation. Moreover, we set ν = 0.3.

In the first set of simulations we assume that displacement field ηmeas is avail-
able in each grid point of the space discretization and in each instant of the time
discretization. In Figure 5.1 we show the convergence history of the control variable
Ek at the first time step, starting from different values of the initial Young modulus
E0. In this case we use the value δk = 110Ek, empirically tuned. In all the three
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Fig. 5.1. Convergence history of Ek at the first time step for different values of the initial guess
of Young modulus: E0 = 104 dyne/cm2 (left), E0 = 105 dyne/cm2 (middle), E0 = 107 dyne/cm2

(right). With the horizontal line we have depicted the value Edata.

cases the convergence is achieved within a few iterations. For the subsequent time
steps, convergence is invariably obtained in just 1 iteration. This is not surprising
since the data are not affected by any noise.

In Figure 5.2 we report the wall-normal displacement obtained with the “forward”
simulation (“data”) and computed by solving the IFSI problem, by choosing E0 =
105 dyne/cm2 as initial guess at the first time step.
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Fig. 5.2. Data obtained by the “forward” numerical simulation (solid line) and wall-normal
displacement obtained with the proposed methodology. Time: t = 0.001 s (up, left), t = 0.004 s (up,
right), t = 0.007 s (bottom, left), t = 0.010 s (bottom, right).

Impact of noise. In the second set of simulations, we add to the data obtained
by the forward simulation a random space-dependent noise in order to mimick the
measurement error of the acquisition/registration procedure. Again, we assume dis-
placements data available at all the instants of the time discretization.

In particular, at each time step we add a uniform noise νP to the data com-
ing from the forward simulations (ηmeas = ηfwd + νP ). Precisely we take νP =
P M U(−0.5, 0.5), where P is a percentage of error, M the maximum in space of the
absolute value of displacement obtained by the forward simulation, and U the (vec-
tor) uniform probability distribution in the interval [−0.5, 0.5]. In Figure 5.3 we show
the noisy data obtained with P = 0.1 compared with the original signal and with
the results of the numerical simulation after the optimization process. In this case,
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Fig. 5.3. Data obtained with the “forward” numerical simulation without and with noise (P =
0.1), and wall-normal displacement obtained by the numerical simulation. Time: t = 0.005 s.

the converged values of the Young modulus at each time step are different, since the
data are affected by a time-dependent error. Since we have assumed E to be constant
in time, a simple way for filtering the effect of noise is to average the sequence of
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estimates for Ek, k = 1, . . .. We perform the average over 10 steps. In Table 5.1 we
report the mean estimated Young modulus and the standard deviation over 5 simula-
tions corresponding to 5 different realizations of the noise, for different values of noise
percentage P and initial guesses E0. The results show small standard deviation in all
the cases, suggesting that the simple average in this case is enough for filtering the
inaccuracies induced by the noise. In Table 5.1 we report the mean of the percentage
errors and of the number of iterations needed to reach convergence.

↓ E0 \ P → 1% 5% 10%

104 dyne/cm2 1.2799 ± 0.0027 1.2565 ± 0.0255 1.2253 ± 0.0134
1.54% (1.3) 3.34% (1.2) 5.74% (1.2)

105 dyne/cm2 1.2803 ± 0.0041 1.2717 ± 0.0090 1.2802 ± 0.0526
1.52% (1.1) 2.18% (1.1) 3.39% (1.1)

107 dyne/cm2 1.3147 ± 0.0180 1.3565 ± 0.0248 1.3424 ± 0.0299
1.63% (2.3) 4.43% (2.2) 3.36% (2.2)

Table 5.1
Random noise case. Mean and standard deviation of the five estimates (to be multiplied by 106,

top) and mean percentage error and number of iterations (bottom) for different values of the initial
guess of the Young modulus and of the percentage of random noise.

A remarkable and pretty unexpected feature of these results is that even in pres-
ence of large noise mean error is below 6%.

Data under-sampling (sparse data). In the third set of simulations, we suppose to
know the measured data ηmeas only at a particular subset of interface nodes and time
discretization instants (sparse data). In particular, if xk are the interface nodes, we
use the acquired data at points xmeask = xpk, p ∈ N, and at instants ni = q i, q ∈ N,
and set E0 = 106 dyne/cm2. In Table 5.2 we report the mean percentage error and
the mean number of iterations (in brackets) obtained by running 5 simulations with
different random noise and over 10 time steps. In the instants when the displacements
field ηmeas is not available, we simply solve the forward FSI problem with the current
guess for the Young modulus. Alternatively, an interpolation of the available data
over all (or a part of) the time steps could be considered.

We observe that by decreasing the number of informations used in the minimiza-
tion procedure, both the error and the number of iterations increases. A more detailed

P → 1% 5%

p = 2, q = 1 3.4% (1.3) 2.9% (2.4)
p = 4, q = 1 6.9% (4.8) 6.7% (6.9)
p = 2, q = 2 5.2% (1.7) 4.4% (3.5)
p = 4, q = 2 8.6% (4.5) 7.7% (9.4)

Table 5.2
Spot data case. Mean percentage error and number of iterations (in brackets) for different

values of the percentage of random noise, and of values of p and q.

quantitative analysis aiming at showing which is the minimal number of informations
needed to have a robust estimate of E is under investigation.

5.2. 2D arterial bifurcation. In this section we present the results obtained
by applying the proposed methodology to a 2D geometry of a simplified arterial
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bifurcation. In this case we set ν = 0.49 in order to take into account the quasi-
incompressibility of the human arteries, and Edata = 3.5 · 106 dyne/cm2. In Fig. 5.4,

2.5 · 105 dyne/cm2 3.499991 dyne/cm2

0.00025% (2.25)
2.5 · 106 dyne/cm2 3.500017 dyne/cm2

0.00049% (2.87)
2.5 · 107 dyne/cm2 3.499982 dyne/cm2

0.00051% (4.37)
Table 5.3

Carotid simulation. Average of the converged estimates of the Young modulus (to be multiplied
by 106) over 8 time steps (up), percentage error (bottom) and mean number of iterations to reach
coonvergence (bottom, in brachets).

on the left, the pressure in the deformed fluid domain and the exploded position of
the structure obtained with the forward simulation are shown at 3 different instants.
On the right of the same figure, the differences of pressure solutions obtained with the
forward simulation and with the proposed methodology (with E0 = 2.5·105 dyne/cm2)
are plotted in the reference domain. In Table 5.3, we show the values of the average of
the converged Young modulus over 8 time steps, the percentage error and the mean
number of iterations needed to reach convergence. We point out that Algorithm
1 both in term of accuracy and in terms of convergence performs in a remarkably
efficient way.
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6. The membrane structure model. As pointed out previously, with current
devices displacement is mainly retrieved on the interface between fluid and structure.
The thickness of a vascular wall on the other hand is usually thinner than the dimen-
sion of the lumen. In order to reduce the computational time, we could consider the
vascular wall as a thin membrane more than as a full “thick” structure.

6.1. Problem setting. A simplified membrane model for the normal displace-
ment η := η · n has been proposed in [37, 31], namely

ρs∂ttη + E β η = 0, in Σ,

with

β =
hs

1 − ν2
(4ρ2

1 − 2(1 − ν)ρ2),

where ρ1 and ρ2 are respectively the mean curvature and the Gaussian curvature, and
hs is the thickness of the membrane. Moreover, in [31] it has been also showed that
after time discretization, the FSI problem can be reduced to a purely fluid problem
with Robin boundary conditions at the fluid structure interface.

Let us define V ⋆
m and Eadm as:

V ⋆
m := {v ∈ V ⋆ : (v−(v·n)n)|Σ⋆ = 0}, Eadm := {E ∈ L∞(Σ) : 0 < Emin ≤ E ≤ Emax}.

Then, the fluid-membrane interaction problem reads:
Given ηn−1 and ηn−2 in H1/2(Σ) and un ∈ V n

m, find u ∈ V ⋆
m, p ∈ Q⋆, η ∈ H1/2(Σ)

and E ∈ Eadm such that






ρf
∆t

(u− un,v)
⋆
f+ (T f (u, p),∇v)

⋆
f + ρf ((u⋆ −w⋆) · ∇)u,v)

⋆
f + b(p,v)+

+

∫

Σ⋆

(
ρshs
∆t

+ Eβ∆t

)
u · nv · n dσ+

−

∫

Σ⋆

(
ρshs
∆t2

(
η̂n − η̂n−1

)
− Eβ η̂n

)
v · n dσ = 0,

b (q,u) = 0,
η̂ = η̂n + ∆t(u · n|Σ⋆),

(6.1)

for all v ∈ V ⋆
m and q ∈ Q⋆. In this case, the functional to be minimized reads

Jm(E) =
1

2

∫

Σ

(η(E) − n · ηmeas)
2
dσ.

As in the case of the thick structure, we find the necessary conditions for E by solving
the KKT system.

Since β ≥ 0, under the same hypotheses of Proposition 1 it is possible to prove
that there exists a unique solution to problem (6.1). Moreover u is bounded inH1(Ω⋆f )
(see [31]). Therefore, Theorem 1 and Propositions 5 and 6 extend straightforwardly.

6.2. Numerical results. In this section we present two test cases. In the first
one we consider an axisymmetric tube whose wall has a constant Young modulus.
In the second one we consider a simplified axisymmetric geometry representing an
abdominal aneurysm with a piecewise linear Young modulus for the aneurysm wall.

In the following simulations, we use as the control variable ψ = log(E). With
abuse of notation, the functional is J (ψ) := J (E(ψ)) = J (exp(ψ)). To find a
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minimum of J , we resort to the BFGS method provided by the Gnu Scientific Library
[18]. As tolerance in the stopping criterion we use ε = 1e − 3. Moreover, if not
otherwise specified, we do not consider any regularization term in the functional.

We use the Finite Element Library LIFEV implemented in C++ (www.lifev.org),
with the same parameters and Finite Elements used in Section 5.

6.2.1. Numerical results on an axisymmetric tube. In these simulations,
we solve the problem in a cylinder of radius R = 0.5 cm and height H = 6 cm, which
may represent an artery. We impose the pressure drop ∆p = 104 dyne/cm2 for the
first 5 ms between the inlet and the outlet of the vessel. As before, we solve a forward
problem with E = 1.3e6 dyne/cm2, obtaining the displacement ηfwd over Σ as the
data for the control problem. Figure 6.1 shows the geometry and the pressure along
a section of the cylinder, for different time instants.

Fig. 6.1. 2d axisymmetric simulation. Geometry at time t = 4 ms, t = 6 ms and t = 8 ms.
Coloured with blood pressure.

We solve the optimization problem over the first 10 time steps, corresponding
to the first 10 ms of the simulation. The most of the computational cost is due to
the solutions of the state and adjoint equations, which in this case are purely fluid
problems. For this reason we report the number of times the state and the adjoint
equations are solved. In particular, in Table 6.1 we report the average number Ns
and Na over 10 time steps of evaluations of the state and the adjoint equations, for
different initial guess of the Young modulus.

Eguess 104 105 106 107 108

Ns|Na 8|8 5|5 3|2 4|4 6|4
Table 6.1

Convergence test. Average number of solutions over 10 time steps of the state and adjoint
problem, for different initial guess of Young modulus.

Impact of noise. In order to take into account the presence of noisy data, we add
a uniform noise νP = P M U(−0.5, 0.5) (where M the maximum in space and time of
the absolute value of displacement obtained by the forward simulation, and P and U
as in Section 5.1) to the data coming from the forward simulation. At each time step
we obtain different estimate for E, so we average them in order to obtain a unique
estimate. We ran the optimization problem for 10 realizations of the noise. In Table
6.2, we report the average, over the 10 realizations, of the estimated values of E, the
percentual errors and the number of times the state and the adjoint problems need
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to be solved. Different initial guess for E and different percentage P are considered.
These results show that the BFGS applied to the membrane case is quite robust with
respect to the noise, both in term of accuracy and convergence. Moreover, it turns
out that the values of E are estimated in excess. This suggests that the average in
time we used to estimate E is polarized. However, a theoretical analysis of this aspect
goes beyond the purposes of this work.

↓ E0 \ P → 0.1 0.2 0.3 0.4

107 dyne/cm2 1.302 ± 0.027 1.314 ± 0.054 1.330 ± 0.085 1.357 ± 0.103
0.2% (4.7|3.0) 1.1% (4.5|3.2) 2.3% (4.6|3.11) 4.4% (4.5|3.0)

105 dyne/cm2 1.303 ± 0.027 1.315 ± 0.056 1.330 ± 0.087 1.348 ± 0.115
0.2% (4.8|3.2) 1.1% (4.7|3.1) 2.3% (4.5|3.1) 3.7% (4.5|3.0)

Table 6.2
Noisy case. Mean and standard deviation of the ten estimates (to be multiplied by 106, top)

and mean percentage error and number of state and adjoint solutions per iteration (bottom) for
different values of the initial guess E0 for the Young modulus and of the percentage P . Exact E is
1.3 · 106 dyne/cm2.

In Figure 6.2 is reported a comparison between the displacement of the forward
simulation, the noisy data ηmeas and the displacement recoverd with the estimated
Young modulus. Despite the presence of noise, the estimated displacement mathces
excellently the forward displacement.
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Fig. 6.2. 2d axisymmetric simulation on a tube. Comparison between the displacement obtained
with the forward simulation, the noisy data and the computed displacement, at time t = 6 ms and
for P = 4

6.2.2. Numerical results on a simplified geometry representing an ab-
dominal aneurysm. We consider a 2D axisymmetric geometry which represents an
abdominal aneurysm (see Figure 6.3, top-left). The vessel membrane wall has been
represented with a sinusoidal function. The radius of the vessel varies from 1 cm to
2.5 cm and the vessel length is 6 cm. We perform a synthetic simulation in which
we prescribe the piecewise linear Young modulus shown in Figure 6.3 (bottom-left).
Tipically, the aneurysm wall is stiffer than the healthy vessel wall (see e.g. [45]). Here,
for the forward simulation, we take Ea = 4 · 106 dyne/cm2, Eb = 107 dyne/cm2, Ec =
5 · 106 dyne/cm2. We prescribe at the inlet a parabolic profile for the velocity, whose
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maximum umax lies on the axis of symmetry and it is given by

umax = u0
max +Amax

{
sin

(
2πt

T

)
; 0

}
,

where u0
max = 5 cm/s, A = 55 cm/s and T = 0.6 s. At the outlet we prescribe the

absorbing Neumann boundary conditions porposed in [31]. We run the simulation
for two “heart beat”, i. e. for 0 < t ≤ 2T . As before, we add a uniform noise

Eb

Ea

E

Ec

6 x [cm]30

axis of symmetry

Fig. 6.3. Aneurysm simulation. Top-left: mesh used for the simulation. Bottom-left: piecewise
linear approximation of the Young modulus E in the forward simulation. Top-right: Velocity vectors
and pressure at time t = 0.96 s. Bottom-right: Comparison between the displacement obtained with
the forward simulation, the noisy data and the computed displacement, at time t = 0.96 s and for
P = 0.1.

νP to the forward displacement ηfwd and we use the result as data for the control
problem. As in the previous simulations, we average in time (during the second heart
beat) the estimated values Eni . In Figure 6.3 (bottom-right) we report a comparison
between the displacement obtained with the forward simulation, the noisy data and
the computed displacement at time t = 0.96 s. Again, the agreement is excellent.

In Table 6.3, we report the average, over the 10 realizations, of the estimated
values of Ea, Eb and Ec and the number of times the state and the adjoint problem
have needed to be solved. Different noise percentage P are considered. The initial
gess is Ea,0 = Eb,0 = Ec,0 = 2 · 107dyne/cm2. The estimated values for P = 0.1
and P = 0.2 are quite accurate. For P = 0.3 the estimate of Ec is not feseable,
hence has not been reported. To overcome this problem, we add to the functional
the regularization term presented in Proposition 6, with ξ = 2e− 5 and Eref = Ea,0.
Table 6.4 shows that the regularization term is effective. The esimates for Ec are
still the more sensible to the noise, but now the estimated values are accettable. In
the first time steps of the simulation, the forward displacements are very small for
x > 3 cm, hence the data is dominated by the noise in that region. This fact can be
an explanation of the high sensibility to the noise of the estimated value for Ec.

This simplified model deserve further investigations. However, for the purpose
of estimating the Young modulus, the membrane model could be a proper trade-off
between accuracy and computational costs. This will be the subject of a future work.
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Ea Eb Ec iter.(state|adjoint)

P = 0.1 4.047 ± 0.118 10.19 ± 0.295 5.194 ± 0.240 12.9|3.5
(1.2%) (1.9%) (3.9%)

P = 0.2 4.034 ± 0.281 10.40 ± 0.505 5.507 ± 0.584 14.8|3.8
(0.9%) (4%) (10%)

P = 0.3 4.200 ± 0.550 10.89 ± 0.850 − 16.0|4.2
(5%) (8.9%)

Table 6.3
Noisy case. Mean and standard deviation (to be multiplied by 106) of the ten estimates for

Ea, Eb, Ec and number of state and adjoint iterations (bottom) for different values of the noise
percentage P . The initial guess is Ea,0 = Eb,0 = Ec,0 = 2 · 107dyne/cm2.

Ea Eb Ec iter.(state|adjoint)

P = 0.1 4.032 ± 0.119 10.15 ± 0.320 5.123 ± 0.129 13.1|3.7
(0.8%) (1.5%) (2.5%)

P = 0.2 4.222 ± 0.238 10.17 ± 0.510 5.349 ± 0.368 14.2|3.6
(5.5%) (1.7%) (7.0%)

P = 0.3 4.446 ± 0.426 10.57 ± 0.780 7.036 ± 3.90 15.5|4.1
(11%) (5.7%) (41%)

P = 0.4 4.386 ± 0.570 11.09 ± 1.519 7.802 ± 4.12 16.9|4.1
(9.6%) (11%) (56%)

Table 6.4
Noisy case with regularization term. Mean and standard deviation (to be multiplied by 106) of

the ten estimates for Ea, Eb, Ec and number of state and adjoint iterations (bottom) for different
values of the noise percentage P . The initial guess is Ea,0 = Eb,0 = Ec,0 = 107dyne/cm2.
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