
More Constructive Lower Bounds
on Classical Ramsey Numbers

Xiaodong Xu † Guangxi Academy of Sciences
Nanning, Guangxi 530007, China

xxdmaths@sina.com

Zehui Shao ‡

School of Information Science & Technology
Chengdu University, Chengdu 610106, China

kidszh mail@163.com

Stanis law P. Radziszowski
Department of Computer Science

Rochester Institute of Technology, Rochester NY, USA
spr@cs.rit.edu

September 14, 2010

Abstract. We present several new constructive lower bounds for
classical Ramsey numbers. In particular, the inequality R(k, s+1) ≥
R(k, s) + 2k − 2 is proved for k ≥ 5. The general construction per-
mits us to prove that for all integers k, l, with k ≥ 5 and l ≥ 3,
the connectivity of any Ramsey-critical (k, l)-graph is at least k,
and if k ≥ l − 1 ≥ 1, k ≥ 3 and (k, l) 6= (3, 2), then such graphs
are Hamiltonian. New concrete lower bounds for Ramsey numbers
are obtained, some with the help of computer algorithms, including:
R(5, 17) ≥ 388, R(5, 19) ≥ 411, R(5, 20) ≥ 424, R(6, 8) ≥ 132,
R(6, 12) ≥ 263, R(7, 8) ≥ 217, R(7, 9) ≥ 241, R(7, 12) ≥ 417,
R(8, 17) ≥ 961, R(9, 10) ≥ 581, R(12, 12) ≥ 1639, and also one
three-color case R(8, 8, 8) ≥ 6079.

Keywords: Ramsey numbers, connectivity
AMS subject: 05C55

†Supported in part by the Basic Research Fund of Guangxi Academy of Sci-
ences (10YJ25XX01).

‡Supported by the School Fund (2010XJZ27) and Science and Technology
Project of Chengdu University (10RKYB041ZF-023).

1



1 Introduction

For positive integers k1, · · · , km, m ≥ 2, the classical Ramsey num-
ber R(k1, · · · , km) is the smallest integer n meeting the following
condition: in any edge coloring of Kn with m colors, for some
i ∈ {1, 2, · · · ,m}, there exists a subgraph Kki

of Kn whose all edges
are colored with color i. Although the existence of Ramsey numbers
R(k1, · · · , km) was proved long ago [7], it is still notoriously difficult
to find their exact values in nontrivial cases, or even just to obtain
good bounds.

The sets of vertices and edges of a graph G and their cardinalities
will be denoted by V G, EG, n(G) and e(G), respectively. For X ⊂
V G, we will denote by G[X] the subgraph induced in G by X. Any
partition (coloring) of the edges of Kn into m classes avoiding Kki

in color i, will be called a (k1, · · · , km;n)-coloring. For two colors,
m = 2, edge colorings can be considered as graphs where the second
color corresponds to nonedges. We will refer to (k, l)-graph as a
graph without Kk and without independent sets of order l. Hence,
the construction of any (k, l)-graph on n vertices, i.e. a (k, l;n)-
coloring, will prove that n < R(k, l). Any (k, l;R(k, l) − 1)-graph
will be called Ramsey-critical (k, l)-graph.

Known lower and upper bounds for various types of Ramsey num-
bers are gathered in the dynamic survey [6] by the third author.
Many constructive lower bounds for classical cases are presented in
[11] and [10], and some of them are enhanced in this paper.

After reviewing previous work in Section 2, the difference be-
tween similar Ramsey numbers is studied in Section 3, where some
constructive lower bounds generalizing those in [11] and [10] are pre-
sented. In particular, we show that R(k, s+1) ≥ R(k, s)+2k−2 for
k ≥ 5. Next, several new lower bounds for some concrete small cases
are obtained directly from the general construction and others with
the help of computer algorithms. The new bound R(8, 8, 8) ≥ 6079
is derived in Section 4. Finally, in Section 5 we prove that for all in-
tegers k, l, with k ≥ 5 and l ≥ 3, the connectivity of any (k, l)-graph
is no less than k, and that if k ≥ l− 1 ≥ 1, k ≥ 3 and (k, l) 6= (3, 2),
then such graphs are Hamiltonian.
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2 Previous work

The following theorem and corollary were proved by constructive
methods as parts of Theorems 2 and 3 in [11].

Theorem 1 [11] Given a (k, s)-graph G and a (k, t)-graph H, for
some k ≥ 3 and s, t ≥ 2, if both G and H contain an induced subgraph
isomorphic to some Kk−1-free graph M , then

R(k, s + t− 1) ≥ n(G) + n(H) + n(M) + 1.

Corollary 1 [11] If 2 ≤ s ≤ t and k ≥ 3, then

R(k, s + t− 1) ≥ R(k, s) + R(k, t) +
{

k − 3, if s = 2;
k − 2, if s ≥ 3.

The first inequality of Corollary 1 for s = 2, R(k, t+1) ≥ R(k, t)+
2k−3, was proved by Burr et al. in 1989 [2]. Here, we will improve it
for k ≥ 5 in Corollary 3 in the next section. The following Theorem
2 and its generalization in Corollary 2 were proved in [10].

Theorem 2 [10] If k ≥ 2, s ≥ 5, then R(2k−1, s) ≥ 4R(k, s−1)−3.

Corollary 2 [10] For k1 ≥ 5 and ki ≥ 2, we have

R(k1, 2k2 − 1, k3, · · · , kr) ≥ 4R(k1 − 1, k3, · · · , kr)− 3.

In 1980, Paul Erdős wrote in [4], page 11 (using r for our R):
Faudree, Schelp, Rousseau and I needed recently a lemma stating

lim
n→∞

r(n + 1, n)− r(n, n)
n

= ∞ (a)

We could prove (a) without much difficulty, but could not prove that
r(n + 1, n) − r(n, n) increases faster than any polynomial of n. We
of course expect

lim
n→∞

r(n + 1, n)
r(n, n)

= C
1
2 , (b)
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where C = limn→∞ r(n, n)1/n. Based on work reported in this pa-
per, the best known lower bound estimate for the difference in (a)
seems to be barely Ω(n). Between 2007 and 2009 we asked about it
several mathematicians, including Erdős’ co-workers he mentioned
himself, but nobody could recall the proof, not even its existence.
The conclusion we are inclined to draw is that there exists no known
proof of this result, though possibly it was known to Erdős. It is
thus prudent to consider (a) at the moment to be only a conjecture.

3 Building-up lower bounds

First we present a new constructive result in Theorem 3, which while
similar to Theorem 1, it gives wider applicability. In the sequel, we
will also show that in several cases it leads to better lower bounds
for some classical two-color Ramsey numbers.

Theorem 3 Let k ≥ 4 and s, t ≥ 2. Given a (k, s)-graph G and a
(k, t)-graph H, let M be a graph isomorphic to induced subgraphs of
G and H. If the vertex set V M can be partitioned into two nonempty
sets, V M = W1 ∪W2, so that for every v ∈ V M −Wi and i ∈ {1, 2}
there is no Kk−1 in M [Wi ∪ {v}], then

R(k, s + t− 1) ≥ n(G) + n(H) + n(M) + 1.

Proof. Let p = n(G), q = n(H),m = n(M), and mi = |Wi|, mi > 0
for i ∈ {1, 2}, so we have m = m1 + m2. First, we will construct a
graph F on the vertex set V G∪V H ∪W1 ∪W2 and then prove that
it contains no Kk and no independent sets of order s+ t−1. Since F
has the right number of vertices this will complete the proof of the
theorem.

Let U = V G = {u1, · · · , up}, V = V H = {v1, · · · , vq} and W =
V M = {w1, · · · , wm}. Without loss of generality, we can assume
that the graphs G, H and M are labeled so that their parts induced
on U1 = {uj | 1 ≤ j ≤ m1}, U2 = {uj | m1 + 1 ≤ j ≤ m1 + m2},
V1 = {vj | 1 ≤ j ≤ m1}, V2 = {vj | m1 + 1 ≤ j ≤ m1 + m2},
W1 = {wj | 1 ≤ j ≤ m1} and W2 = {wj | m1 + 1 ≤ j ≤ m1 + m2},
are isomorphic under the mapping uj → vj → wj .
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The set of edges of F contains the edges of the graphs G, H,
M [W1] and M [W2]. The other edges in EF are defined as follows.
For i ∈ {1, · · · ,m}, j ∈ {1, · · · , p}, i 6= j, if (ui, uj) ∈ EG then
(wi, uj) ∈ EF , and for i ∈ {1, · · · ,m}, j ∈ {1, · · · , q}, i 6= j, if
(vi, vj) ∈ EH then (wi, vj) ∈ EF . Finally, EF contains the edges of
a matching (ui, vi)i=1,···,m between U1 ∪ U2 and V1 ∪ V2. Note that
EF doesn’t contain any edges between W1 and W2.

Suppose that there is a complete subgraph Kk in F induced by a
set S ⊂ V F . Consider the parts of S and its sizes, Si ⊂ S, si = |Si|
for 1 ≤ i ≤ 4, as follows:

S1 = S ∩ V G, S2 = S ∩ V H,

S3 = S ∩W1, S4 = S ∩W2,

Case 1 (s1, s2 > 0). Observe that we must have s1 = s2 = 1, since
the only edges in EF between V G and V H form a partial matching.
Hence we have that uj ∈ S1 and vj ∈ S2 for some special 1 ≤ j ≤ m.
Further, since s3∗s4 = 0 we can assume that s3 = k−2, S4 = ∅. This
in turn would imply that the induced graph M [S3 ∪ {wj}] contains
Kk−1, contrary to the assumptions od the theorem.
Case 2 (s1 ∗ s2 = 0). Without loss of generality assume that s2 =
s4 = 0. From the construction we can easily see that the induced
subgraph G[S1 ∪ {uj ∈ V G | wj ∈ W1}] contains Kk, which is a
contradiction.

It remains to be shown that F has no independent sets of order
s + t − 1. Here, we will use a method very similar to the proof of
Theorem 2 (Theorem 9 in [10]). Consider any independent set I in
F , and its parts Ii, as follows:

I1 = I ∩ V G, I2 = I ∩ V H,

I3 = I ∩W1, I4 = I ∩W2,

I5 = {uj ∈ I1 | wj ∈ I3} ∪ {vj ∈ I2 | wj ∈ I3},
I6 = {uj ∈ I1 | wj ∈ I4} ∪ {vj ∈ I2 | wj ∈ I4},
I7 = I1 \ (I5 ∪ I6), I8 = I2 \ (I5 ∪ I6).

Directly from the construction it can be concluded that

|I3 ∪ I6 ∪ I7| ≤ s− 1 and |I4 ∪ I5 ∪ I8| ≤ t− 1.
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by considering isomorphic embedding of all parts Ij into the vertex

set V G and V H, respectively. Since clearly I =
4⋃

i=1
Ii =

8⋃
i=3

Ii, we

obtain |I| ≤ s + t− 2. This finishes the proof of the theorem. 2

For nontrivial choices of the graphs G, H and M the construction
will produce triangles, so we need k ≥ 4. Even in the case of k = 4,
when M is K3-free, one should use simpler construction of Theorem
1. In the computational results presented in the sequel we have also
used a slightly weaker version of Theorem 3. Namely, it is sufficient
to find any partition of the vertex set V M into W1 ∪ W2, so that
neither of M [W1] or M [W2] contains a Kk−2. Then the assumptions
of Theorem 3 hold, and thus the same construction works. Another
observation related to this theorem concerns a possible special case,
namely H = M = Kk−1, and the corresponding partition of V M
into K2 and Kk−3. If we use t = 2 and any critical (k, s)-graph as
G, then for k ≥ 5 we obtain a (k, s+1)-graph F (note that for k = 4
this special case of the partition doesn’t satisfy the assumptions).
This implies R(k, s + 1) ≥ R(k, s) + 2k − 2, which improves by one
Corollary 1 for s = 2, as in the second part of the next corollary.

Corollary 3 If k ≥ 5 and 2 ≤ s, t, then R(k, s + t− 1) ≥ R(k, s) +
R(k, t)+k−2. In particular, we have R(k, s+1) ≥ R(k, s)+2k−2.

We are ready to derive some new lower bounds for two-color
Ramsey numbers, as in the following theorem. The new bounds
improve on those given in [6].

Theorem 4 R(6, 12) ≥ 263, R(7, 8) ≥ 217, R(7, 12) ≥ 417,
R(9, 10) ≥ 581, and R(12, 12) ≥ 1639.
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Proof. Using Corollary 3 with the best known lower bounds for
R(k, s) recorded in [6], we obtain:

R(6, 12) ≥ R(6, 11) + 2× 6− 2 ≥ 263,
R(7, 8) ≥ R(7, 7) + 2× 7− 2 ≥ 217,

R(7, 12) ≥ R(7, 11) + 2× 7− 2 ≥ 417,
R(9, 10) ≥ R(9, 9) + 2× 9− 2 ≥ 581,

R(11, 12) ≥ R(11, 11) + 2× 11− 2 ≥ 1617,
R(12, 12) ≥ R(12, 11) + 2× 12− 2 ≥ 1639.

2

The next improvements of the lower bounds required some help
of computer algorithms. The results are collected in Theorem 5. All
of them improve over the bounds from [8] or listed in [6].

Theorem 5 R(5, 17) ≥ 388, R(5, 19) ≥ 411, R(5, 20) ≥ 424,
R(6, 8) ≥ 132, R(7, 9) ≥ 241, and R(8, 17) ≥ 961.

Proof. Let us define the graph G387 by taking as its edges just one
color in the tripling construction with p = 127, which builds up on
the well known Mathon’s construction [5], as described in [9]. With
some computations, it can be checked that G387 is a (5, 17; 387)-
graph establishing the bound R(5, 17) ≥ 388, which improves over
the previously listed value of 385 [6]. In the following, we will use
the same graph in two other constructions.

k s t |V G| |V H| |V M | |V F |
6 6 3 101 17 13 131
7 7 3 204 22 14 240
5 17 3 387 13 10 410
5 17 4 387 24 12 423

Table 1. Parameters of Theorem 3 used in Theorem 5.

Each of the rows in Table 1 presents sizes of the parameters
used in an application of Theorem 3, for which a proper partition
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of the set V M was found. The graph G387 was used as G in the
third and fourth row. The other cases of G and all graphs H were
taken from the standard set of known largest Ramsey graphs for the
corresponding parameters (cf. [6, 11]). The common subgraph M
and the partition V M = W1 ∪W2 were found in each case with the
help of computer heuristics (larger common parts possibly could be
found). Four lower bounds in Theorem 5 are one larger than the
entries in the last column of Table 1. Finally, we obtain R(8, 17) ≥
961 from R(7, 9) ≥ 241 by applying Theorem 2. 2

4 New lower bound for R(8, 8, 8)

Theorem 6 below is a special case of a more general result in [10].
The Paley graph Qp is defined for primes p of the form 4t + 1. The
vertex set of Qp is Zp, and the vertices x and y are joined by an edge
if and only if x− y is a square modulo p.

Theorem 6 [10] For a prime p of the form 4t + 1, let αp be the
order of the largest clique in the Paley graph Qp. Then

R(3, αp + 2, αp + 2) ≥ 6p + 3.

Following the construction used in the proof of Theorem 2 in [10],
one can easily conclude the following lemma by using Corollary 2.

Lemma 1 Suppose k ≥ 2, s, t ≥ 4. If G is a (k, s, t;n)-coloring, in
which the subgraph induced by the edges in color 1 is d-regular, then
there exists a (2k − 1, s, t + 1; 4n)-coloring, in which the subgraph
induced by the edges in color 1 is (n + 3d + 1)-regular.

The new lower bound on R(8, 8, 8) will be obtained using Theo-
rem 6 and Lemma 1 above.

Theorem 7 R(8, 8, 8) ≥ 6079.
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Proof. Using Theorem 6 with p = 101 we can obtain a (3, 7, 7; 608)-
coloring, furthermore, by following the construction of the proof in
[10], we can see that it is regular of degree 202 in color 1. Next, by
Lemma 1 we can build a (5, 7, 8; 2432)-coloring, which is regular of
degree 1215 = 608+3×202+1. Using Lemma 1 once more, we make
a (9, 8, 8; 9728)-coloring, which is regular of degree 6078 in color 1.
Now the neighborhood in color 1 of any vertex in the last coloring
induces a (8, 8, 8; 6078)-coloring, which completes the proof. 2

5 Connectivity of Ramsey graphs

Beveridge and Pikhurko in [1], using Theorem 1, proved that for
any k, l ≥ 3, the connectivity of any Ramsey-critical (k, l)-graph is
no less than k − 1. Here, in Theorem 8, for k ≥ 5, we increase
this bound on connectivity to k. Similarly, the following Corollary
4 improves over a corollary in [1] on Ramsey-critical graphs which
are Hamiltonian. Our results directly depend on Corollary 3, in a
way that they could be further strengthened if the lower bound of
Corollary 3 is improved.

Theorem 8 If k ≥ 5 and l ≥ 3, then the connectivity of any
Ramsey-critical (k, l)-graph is no less than k.

Proof. Suppose some graph F is a Ramsey-critical (k, l)-graph, and
its connectivity κ is less than k, for some k ≥ 5 and l ≥ 3. Thus,
by the result of Beveridge and Pikhurko, κ = k − 1. Let C be the
cut-set of V F , |C| = k − 1, such that G[V F \ C] is disconnected.
Let V1 ∪ V2 ∪ C be the corresponding partition of V F . Consider
the graphs G1 = F [V1], n1 = |V1| and G2 = F [V2], n2 = |V2|,
and let s− 1 and t− 1 be their independence numbers, respectively.
Clearly, we have that G1 is a (k, s;n1)-graph, G2 is a (k, t;n2)-graph,
n1 + n2 + (k − 1) = |V F | = R(k, l) − 1, and (s − 1) + (t − 1) < l.
This implies

R(k, s) + R(k, t)− 2 ≥ n1 + n2 = R(k, l)− k.

Thus by Corollary 3 and monotonicity of Ramsey numbers we have
s + t − 1 = l. Furthermore, now it also easily follows that n1 =
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R(k, s) − 1 and n2 = R(k, t) − 1, i.e. both G1 and G2 are Ramsey-
critical for (k, s) and (k, t), respectively.

Observe that for any vertex v ∈ C, the induced subgraph
F [V1 ∪ {v}] must have an independent set of s vertices containing
v, since G1 is Ramsey-critical for (k, s). Similarly, F [V2 ∪ {v}] has
an independent set of t vertices containing the same v. Thus, since
C is a cut-set, we have found an independent set of s + t − 1 = l
vertices in graph F , which contradicts the assumption that F is a
(k, l)-graph. Therefore κ ≥ k. 2

Corollary 4 If k ≥ l − 1 ≥ 1 and k ≥ 3, except (k, l) = (3, 2), then
any Ramsey-critical (k, l)-graph is Hamiltonian.

Proof. For l = 2 the only Ramsey-critical (k, l) graphs are complete
Kk−1, which are Hamiltonian for k ≥ 4. For k ≥ 5 and l ≥ 3,
by Theorem 8, any Ramsey-critical (k, l)-graph F has connectivity
κ ≥ k. Theorem 1 in [3], by Chvátal and Erdős, states that any
k-connected graph on at least three vertices, without independent
sets of order k + 1, is Hamiltonian. Thus, for k ≥ l − 1, a direct
application of the latter implies that F has a Hamiltonian circuit.

The remaining cases of (k, l) are (3, 4), (3, 3), (4, 3), (4, 4) and
(4, 5) for the Ramsey-critical graphs of orders 8, 5, 8, 17 and 24,
respectively. All (3,4;8)-, (3,3;5)-, (4,3;8)- and (4,4;17)-graphs are
known (cf. [6]). There are 3, 1, 3 and 1 of them, respectively, and
they can be easily checked to be Hamiltonian. Let F be any (4, 5; 24)-
graph. We will prove that it has connectivity κ ≥ 5 (bound 4 would
suffice), so again Theorem 1 in [3] will imply that F is Hamiltonian.
Suppose that the graph F has a cut-set C of 4 vertices disconnecting
F , and let V1∪V2∪C be the corresponding partition of the vertex set
V F (using the same notation as in the proof of Theorem 8). Since
R(4, 2) = 4, R(4, 3) = 9 and R(4, 4) = 18, we can easily see that the
only possible parameters of this partition are n1 = 3, s = 2, n2 = 17,
t = 4 and G1 = K3. R(4, 4) = 18 implies that F has minimum
degree at least 6, and thus each vertex in V1 must be connected to
all 4 vertices in C. Hence each vertex in C forms a K4 together with
V1, which is a contradiction. 2
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In particular, for k ≥ 3, all diagonal Ramsey-critical (k, k)-graphs
are Hamiltonian. It is an interesting open question for which k < l−1
Ramsey-critical (k, l)-graphs remain Hamiltonian. We expect it to
be true at least when k is sufficiently close to l.

References

[1] Beveridge A. and Pikhurko O., On the Connectivity of Ex-
tremal Ramsey Graphs. Australasian Journal of Combinatorics,
41 (2008), 57–62.
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