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Abstract. The comparative statics of the optimal portfolios across individuals is

carried out for a continuous-time complete market model, where the risky assets

price process follows a joint geometric Brownian motion with time-dependent and

deterministic coefficients. It turns out that the indirect utility functions inherit the

order of risk aversion (in the Arrow-Pratt sense) from the von Neumann-Morgenstern

utility functions, and therefore, a more risk-averse agent would invest less wealth

(in absolute value) in the risky assets.
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1 Introduction

Portfolio selection problem is one of the classical problems in the economics of uncer-

tainty. The optimal portfolios depend on agents’ characters (preference and wealth

level) and on the market’s structure (the risk-free return, the return and risk of the

risky assets). Various agents would have different allocations of wealth between the

risk-free asset and the risky assets, due to the differences in preference and/or the

differences in wealth level. The comparative statics of the optimal portfolios with

respect to preference and/or wealth level has first been carried out by Arrow [1] and

Pratt [13], for a static model with a risk-free asset and a risky asset. For this model,

if the excess return of the risky asset is positive, then (1) the more risk-averse an

agent is, the less wealth is invested in the risky asset; and (2) if an agent displays

decreasing absolute (relative) risk aversion, then the amount (proportion) of wealth

invested in the risky asset is increasing in wealth.
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Since then, decades have passed, but few works have been reported for dynamic

models,1 as far as we know, until Borell [2]. For a continuous-time complete mar-

ket model, where the risky assets price process follows a joint geometric Brownian

motion, and for an agent who only consumes at the terminal time, Borell [2] has

analyzed the changes of the optimal portfolios across the wealth levels. The similar

conclusions that hold for the static models have been obtained there by showing the

indirect utility function inherits the decreasing absolute (relative) risk aversion from

the von Neumann-Morgenstern utility function.2

The purpose of this paper is to investigate how the agents’ preference impacts

the optimal portfolios, for the same market model as in Borell [2], but with time-

dependent and deterministic coefficients. As a result (see Theorem 5.1), we find

that the indirect utility functions inherit the order of risk aversion from the von

Neumann-Morgenstern utility functions. Observing that the vector of optimal port-

folio proportions is given by the vector of log-optimal portfolio proportions multi-

plied by the indirect relative risk tolerance, we know it is enough for any agent to

replace investments in all assets with investments in the risk-free asset and a single

“mutual fund”, whose portfolio is log-optimal. Based on these facts, a continuous-

time version of comparative statics across individuals can be established: the more

risk-averse an agent is, the less wealth is invested in the log-optimal portfolio, and

hence, the less wealth in absolute value is invested in the risky assets. Using the

result here, all conclusions in Borell [2] on comparisons across wealth levels can be

easily recovered, as special cases.

The remainder of this paper is organized as follows: Section 2 describes the mar-

ket model. Section 3 reviews the optimal solutions of portfolio selection problems,

both of the dynamic programming method and the martingale/duality approach

are included. In particular, it is pointed out that the amount of wealth invested in

the log-optimal portfolio equals the indirect absolute risk tolerance. Section 4 gives

some representations of the indirect absolute risk tolerance and derives a nonlinear

parabolic PDE (partial differential equation) for the indirect absolute risk tolerance

1Except for some specific cases such as constant absolute (relative) risk aversion, in which the

solutions can be explicitly worked out.
2 The indirect utility function also inherits the increasing relative risk aversion from the von

Neumann-Morgenstern utility function. The preservation of decreasing (increasing) absolute risk

aversion has been presented by Gollier [5], for static and complete models.
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function. Section 5 presents the main result of this paper and Section 6 recovers the

conclusions of Borell [2]. The other sections provide the technical arguments.

We shall make use of the following notation: M⊤ stands for transposition of a

vector or a matrix M ; |ζ | =
√

ζ⊤ζ is the usual Euclidean norm for a vector ζ ; 1

is the n-dimensional vector with each component equals 1; and for a domain D ⊂
[0, T ]× (0,∞), C1,∞(D) denotes the set of all functions f : D → R such that f(t, x)

are continuously differentiable with respect to t and infinite times differentiable

with respect to x, for all (t, x) ∈ D; C(D) denotes the set of all continuous functions

f : D → R.

2 The Financial Market

We consider the typical setup for a continuous-time financial market economy on the

finite time span [0, T ]. The financial market consists of a risk-free asset and n risky

assets. The risk-free asset’s price process S0(t) evolves according to the following

equation:

dS0(t) = S0(t)r(t)dt, S0(0) = 1,

where r(t) is the interest rate process. The i-th risky asset’s price process Si(t)

satisfies the following equation:

dSi(t) = Si(t)

(

bi(t)dt+

n
∑

j=1

σij(t)dBj(t)

)

, Si(0) > 0, 1 ≤ i ≤ n.

Here B(t) = (B1(t), · · · , Bn(t))⊤ is an n-dimensional standard Brownian motion

defined on a probability space (Ω,F , (Ft),P). The information structure (Ft) is

the P-augmentation of the filtration generated by B(t) and F = FT . Set b(t) =

(b1(t), · · · , bn(t))⊤ and σ(t) = (σij(t))1≤i,j≤n. In this paper, we always assume the

coefficients r(t), b(t), and σ(t) satisfy the following condition:

Assumption 2.1 (1) All of r(t), bi(t) (1 ≤ i ≤ n), and σij(t) (1 ≤ i, j ≤ n) are

deterministic and continuous functions of t, on [0, T ]; (2) the matrix σ(t) is non-

singular for each t and there exists a constant c > 0 such that ζ⊤σ(t)−1ζ ≥ c|ζ |2 for

all t ∈ [0, T ] and ζ ∈ Rn.

In the above setting, the financial market is complete and admits a unique equiv-

alent martingale measure, or risk-neutral measure, denoted by Q, whose density
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process is dQ
dP

∣

∣

Ft

= ρ(t), where

ρ(t) := exp

{

−
∫ t

0

θ(τ)⊤dB(τ)−
∫ t

0

|θ(τ)|2
2

dτ

}

,

θ(t) := σ(t)−1(b(t)− r(t)1).

By the Girsanov’s Theorem,

B∗(t) := B(t) +

∫ t

0

θ(τ)⊤dτ

is an n-dimensional standard Brownian motion under Q. Obviously, each risky asset

price process satisfies the following equation:

dSi(t) = Si(t)

(

r(t)dt+
n
∑

j=1

σij(t)dB∗j(t)

)

, 1 ≤ i ≤ n.

The state-price deflator H is defined by

H(t) = exp

{

−
∫ t

0

r(τ)dτ

}

ρ(t).

It is well known that Si(t)H(t) is a martingale, for i = 1, . . . , n.

3 Utility Maximization

In this paper, a von Neumann-Morgenstern utility function U : (0,∞) → R is sup-

posed to be a strictly increasing, strictly concave, and twice-continuously-differentiable

function that satisfies the Inada condition

U ′(0) = lim
x↓0

U ′(x) = ∞ and U ′(∞) = lim
x↑∞

U ′(x) = 0.

Given a von Neumann-Morgenstern utility function U , the Arrow-Pratt coefficient

of absolute risk aversion at x is −U ′′(x)
U ′(x)

, and the absolute risk tolerance is − U ′(x)
U ′′(x)

.

Accordingly, −xU ′′(x)
U ′(x)

is the Arrow-Pratt coefficient of relative risk aversion and

− U ′(x)
xU ′′(x)

is the relative risk tolerance. Let us introduce an assumption on U that will

be used.

Assumption 3.1 The absolute risk tolerance function of U satisfies the linear growth

condition, that is, there is a constant c > 0 such that

−U ′(x)

U ′′(x)
≤ c(1 + x), for all x > 0.
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Following Merton [11], we assume that (1) there are no transaction costs, taxes,

or asset indivisibility; (2) the agents are price takers; (3) short sales of all assets, with

full use of proceeds, are allowed; and (4) trading in assets takes place continuously

in time.

We consider an agent who consumes only at the terminal time and whose utility

function for the consumption at the terminal time is U . At any given starting time

t, the preference of the agent for the terminal consumption can be represented by

the expected utility Et[U(X(T ))], where X(T ) is the value of the terminal wealth

and Et is the conditional expectation operator at time t. The agent is allowed to

allocate the wealth between the risk-free asset and the risky assets so as to maximize

the expected utility. That is, the agent solves the dynamic investment problem

max
(φ(s))

Et[U(X(T ))] (3.1)

subject to































dX(s) = [X(s)r(s) + φ(s)⊤(b(s)− r(s)1)]ds+ φ(s)⊤σ(s)dB(s),

X(s) ≥ 0, s ∈ [t, T ],

X(t) = x,

(3.2)

where φ(s) = (φ1(s), · · · , φn(s))⊤ is the vector of values of wealth invested in the

risky assets at time s ∈ [t, T ], x > 0 is the value of wealth at the starting time

t. The first constraint in (3.2) is the dynamic budget constraint determining the

evolution of the wealth process. The second constraint in (3.2) is the nonnegative

wealth constraint ruling out the possibility of create something out of nothing.

Following Cox and Huang [3], see also Karatzas et al [7] and Pliska [12], we can

transform the dynamic problem (3.1) into a static one:

max
X(T )≥0

Et[U(X(T ))]

subject to Et

[

H(T )
H(t)

X(T )
]

≤ x.

(3.3)

In other words, the dynamic budget constraint in (3.2) can be replaced by a static

budget constraint.
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Since U ′(0) = ∞, the solution X(T ) of problem (3.3) is strictly positive and the

first-order condition is

U ′(X(T )) = λ(t, x)
H(T )

H(t)
, (3.4)

where the Lagrangian multiplier λ(t, x) > 0. Henceforth, we use I to denote the

inverse marginal utility function U ′−1, that is, U ′(I(y)) = y, for all y > 0. Obviously,

I is strictly decreasing and continuously differentiable on (0,∞), and

I(0) = lim
y↓0

I(y) = ∞, I(∞) = lim
y↑∞

I(y) = 0.

With this notation, the solution X(T ) of problem (3.3) is

X(T ) = I

(

λ(t, x)
H(T )

H(t)

)

. (3.5)

Furthermore, since U is increasing, the budget constraint is binding:

Et

[

H(T )

H(t)
X(T )

]

= x,

that is, the Lagrangian multiplier λ(t, x) satisfies the following equation:

Et

[

H(T )

H(t)
I

(

λ(t, x)
H(T )

H(t)

)]

= x. (3.6)

For any t ∈ [0, T ] and y > 0, set

µ(t, y) = Et

[

H(T )

H(t)
I

(

y
H(T )

H(t)

)]

. (3.7)

Obviously, the independent increments of Brownian motion yield that µ is a deter-

ministic function defined on [0, T ] × (0,∞), and for any given t, µ(t, y) is strictly

decreasing with respect to y. Particularly, µ(T, y) = I(y), for y > 0. We can see

from (3.6) and the definition of µ(t, y) that, for all t ∈ [0, T ] and x > 0,

µ(t, λ(t, x)) = x. (3.8)

Hence, λ(t, x) is also a deterministic function defined on [0, T ]× (0,∞), and for any

given t, λ(t, x) is strictly decreasing with respect to x. Particularly, λ(T, x) = U ′(x),

for x > 0.

Let u(t, x) denote the value function of the problem (3.1), or the indirect utility

function, given that the value of wealth at the starting time t is x, that is

u(t, x) = Et

[

U

(

I

(

λ(t, x)
H(T )

H(t)

))]

, (3.9)
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for all (t, x) ∈ [0, T ]×(0,∞). The independent increments of Brownian motion yield

that u is a deterministic function defined on [0, T ]× (0,∞). For the indirect utility

function, we have the following proposition:

Proposition 3.1 Under Assumptions 2.1 and 3.1,

u ∈ C1,∞([0, T )× (0,∞)) ∩ C([0, T ]× (0,∞)).

Proof. See Appendix A. �

Under the conditions of the preceding proposition, following Merton [11], the

principle of optimality leads to the following HJB (Hamilton-Jacobi-Bellman) equa-

tion for u:

max
φ

{

ut + [rx+ φ⊤(b− r1)] ux +
1

2
φ⊤σσ⊤φ uxx

}

= 0, (3.10)

on [0, T )× (0,∞), with terminal condition

u(T, x) = U(x), for all x > 0. (3.11)

It is well known that ux(t, x) > 0 and uxx(t, x) < 0, for all (t, x) ∈ [0, T ]×(0,∞). The

first-order condition for the maximality in (3.10) implies that the optimal portfolio

policy φ̂ is in the following feedback form:

φ̂(t, x) = − ux(t, x)

uxx(t, x)
(σ(t)σ(t)⊤)−1(b(t)− r(t)1),

that is,

φ̂(t, x) = f(t, x)(σ(t)σ(t)⊤)−1(b(t)− r(t)1), (3.12)

where

f(t, x) = − ux(t, x)

uxx(t, x)
, for all (t, x) ∈ [0, T ]× (0,∞).

Obviously, f(t, x) > 0, for all (t, x) ∈ [0, T ] × (0,∞). f(t, x) is the absolute risk

tolerance of the indirect utility function. In this paper, we call it the indirect absolute

risk tolerance function. Accordingly, we call f(t,x)
x

the indirect relative risk tolerance

function.

In view of (3.12),

φ̂(t, x)

x
=

f(t, x)

x
(σ(t)σ(t)⊤)−1(b(t)− r(t)1), (3.13)
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for all (t, x) ∈ [0, T ) × (0,∞). φ̂(t,x)
x

is the vector of optimal portfolio proportions,

whose components represent the proportions of total wealth held in the risky as-

sets. In particular, for logarithmic utility function U(x) = log x, whose relative risk

tolerance is constant and equals 1, it is well know3 that the indirect relative risk

tolerance f(t,x)
x

= 1, for all (t, x) ∈ [0, T ]× (0,∞), and hence, by (3.13), the vector

of optimal portfolio proportions is (σ(t)σ(t)⊤)−1(b(t) − r(t)1), which, hereafter, is

called the vector of log-optimal portfolio proportions.

Notice that, for any von Neumann-Morgenstern utility function U , the vector

of optimal portfolio proportions is given by the vector of log-optimal portfolio pro-

portions multiplied by the indirect relative risk tolerance. This means effectively

that it is enough for any agent to replace investments in all assets with investments

in the risk-free asset and a single “mutual fund”, whose portfolio is log-optimal.

Different agents would have different weights between the log-optimal portfolio and

the risk-free asset, depending on their indirect relative risk tolerance. The weight

of total wealth invested in the log-optimal portfolio equals the indirect relative risk

tolerance. The larger the indirect relative risk tolerance is, the larger weight is in-

vested in the log-optimal portfolio. Accordingly, the amount of wealth invested in

the log-optimal portfolio equals the indirect absolute risk tolerance. The larger the

indirect absolute risk tolerance is, the more wealth is invested in the log-optimal

portfolio.

4 Indirect Absolute Risk Tolerance Functions

Now we investigate the indirect absolute risk tolerance function f .

In this section, we let X̂(T, x) denote the solution of problem (3.3). Note the

solution depends on both of the starting wealth x and the starting time t. For

simplicity, however, we suppress the explicit dependence on t in the notation.

The Lagrangian multiplier λ(t, x) gives the marginal, or shadow, value of relaxing

the static budget constraint in (3.3). It therefore equals the agent’s marginal utility

of wealth at the optimum, that is

λ(t, x) = ux(t, x).

3See Merton [10].
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In view of (3.4), the first-order condition is

U ′(X̂(T, x)) = ux(t, x)
H(T )

H(t)
. (4.1)

Moreover, the budget constraint is binding:

Et

[

X̂(T, x)
H(T )

H(t)

]

= x. (4.2)

Lemma 4.1 Under Assumptions 2.1 and 3.1, we have for any t ∈ [0, T ) that

Et

[

∂X̂(T, x)

∂x

H(T )

H(t)

]

= 1, for all x > 0. (4.3)

Proof. We can obtain (4.3) by differentiating formally the both sides of (4.2) with

respect to x. For a rigorous proof, see Appendix B. �

Differentiating (4.1) with respect to x yields

U ′′(X̂(T, x))
∂X̂(T, x)

∂x
= uxx(t, x)

H(T )

H(t)
,

and consequently, by (4.1) again,

− U ′(X̂(T, x))

U ′′(X̂(T, x))
= − ux(t, x)

uxx(t, x)

∂X̂(T, x)

∂x
= f(t, x)

∂X̂(T, x)

∂x
. (4.4)

Proposition 4.1 Under Assumptions 2.1 and 3.1, for all t ∈ [0, T ] and x > 0,

f(t, x) = Et

[

−U ′(X̂(T, x))

U ′′(X̂(T, x))

H(T )

H(t)

]

(4.5)

= Et



−
U ′
(

I
(

λ(t, x)H(T )
H(t)

))

U ′′
(

I
(

λ(t, x)H(T )
H(t)

))

H(T )

H(t)



 . (4.6)

Proof. We can obtain (4.5) from (4.4) and Lemma 4.1. From (3.5), we get (4.6) as

well. �

Remark 4.1 Gollier [5] obtained the same conclusion as in the preceding proposi-

tion, for static models.

Apart from the representations (4.5)-(4.6), the indirect absolute risk tolerance

function f satisfies a nonlinear parabolic PDE and is continuous on the boundary,

as showed in the next proposition.
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Proposition 4.2 Under Assumptions 2.1 and 3.1,

f ∈ C1,∞([0, T )× (0,∞)) ∩ C([0, T ]× (0,∞)),

and satisfies PDE

1

2
|θ|2f 2fxx + rxfx + ft − rf = 0, (4.7)

on [0, T )× (0,∞), with terminal condition

f(T, x) = −U ′(x)

U ′′(x)
, for all x > 0. (4.8)

Proof. See Appendix B. �

In the following part of this section, the optimal wealth process of problem (3.1)

is denoted by {X̂(s), s ∈ [t, T ]}. It was first pointed out by Cox and Leland [4]

that {f(s, X̂(s))H(s), s ∈ [t, T ]} is a local martingale when the risky asset price

process is a geometric Brownian motion. He and Huang [6] observed it is a general

property of an optimal consumption-portfolio policy (for case of a static model, refer

to Gollier [5]). In what follows, we are going to show {f(s, X̂(s))H(s), s ∈ [t, T ]} is

a martingale.

Proposition 4.3 Under Assumptions 2.1 and 3.1, {f(s, X̂(s))H(s), s ∈ [t, T ]} is a

martingale, for each t ∈ [0, T ) and x > 0.

Proof. By Lemma B.3, {f(s, X̂(s))H(s), s ∈ [t, T ]} is a nonnegative local martin-

gale, and hence a supermartingale. So it suffices to show

Et[f(T, X̂(T ))H(T )] = f(t, x)H(t).

This can be easily obtained from (4.5). �

5 Comparisons Across Individuals

Apart from an agent with utility function U as described in the previous sections,

we consider another agent whose utility function is V . Just like the arguments in

the previous sections, we will use the following assumption:
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Assumption 5.1 The absolute risk tolerance function of V satisfies the linear growth

condition, that is, there is a constant c > 0 such that

− V ′(x)

V ′′(x)
≤ c(1 + x), for all x > 0.

The agent whose utility function is V solves the following dynamic investment

problem:

max
(ϕ(s))

Et[V (X(T ))], (5.1)

subject to






























dX(s) = [X(s)r(s) + ϕ⊤(s)(b(s)− r(s)1)]ds+ ϕ⊤(s)σ(s)dB(s),

X(s) ≥ 0, for s ∈ [t, T ],

Xt = x,

where ϕ(s) = (ϕ1(s), · · · , ϕn(s))⊤ is the vector of values of wealth invested in the

risky assets at time s ∈ [t, T ].

Let v(t, x) denote the indirect utility function for problem (5.1). From Proposi-

tion 3.1, we know v ∈ C1,∞([0, T )×(0,∞))∩C([0, T ]×(0,∞)), provided Assumptions

2.1 and 5.1 are satisfied. The corresponding indirect absolute risk tolerance function

is g(t, x) = − vx(t,x)
vxx(t,x)

, and the optimal portfolio policy ϕ̂ is in the following feedback

form:

ϕ̂(t, x) = g(t, x)(σ(t)σ(t)⊤)−1(b(t)− r(t)1). (5.2)

Given two utility functions U and V , we say U is more risk-averse than V , or U

is less risk-tolerant than V , if −U ′′(x)
U ′(x)

≥ −V ′′(x)
V ′(x)

, that is, − U ′(x)
U ′′(x)

≤ − V ′(x)
V ′′(x)

, for every

x > 0. It is well known that U is more risk-averse than V if and only if there exists

an increasing concave function F such that U(x) = F (V (x)), for all x; that is, U is

a concave transformation of V (In other words, U is “more concave” than V .)

Remark 5.1 Obviously, if V satisfies Assumption 5.1 and U is more risk-averse

that V , then U satisfies Assumption 3.1.

Now we are ready to report the main result of this paper.
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Theorem 5.1 Under Assumptions 2.1 and 5.1, assume further that U is more risk-

averse than V , then f(t, x) ≤ g(t, x), for all t ∈ [0, T ) and x > 0.

Proof. See Section 8. �

The preceding theorem shows: If the agent with utility function U(x) is more

risk-averse than the agent with utility function V (x), then, for each time t ∈ [0, T ),

the corresponding indirect utility function u(t, x) is more risk-averse than v(t, x) as

well. According to the discussion at the end of Section 3, at each time t ∈ [0, T ),

if the agents have the same value of wealth, then the former agent invests less in

the log-optimal portfolio (and hence, less in absolute value of wealth in the risky

assets) than the later. So, we establish a dynamic, continuous-time version of the

comparative statics of the optimal portfolios across individuals.

Under the conditions of the preceding theorem , by Remark 5.1 and Proposition

4.2, f and g satisfy the same PDE on [0, T ) × (0,∞). Moreover, at the terminal

time,

f(T, x) = −U ′(x)

U ′′(x)
≤ − V ′(x)

V ′′(x)
= g(T, x), for all x > 0.

It seems that we can apply the techniques of maximum principles for parabolic PDEs

to prove the assertion of the previous theorem. However, due to the nonlinearity of

PDE (4.7) and unboundedness of the domain, the techniques of maximum principles

can not be directly used to f and g. In order to overcome this point, we approximate

f with a sequence {f (m), m ≥ 2}, which satisfy the PDEs with bounded domains.

For these PDEs with bounded domains, we can use the techniques of maximum

principles, then by approximation, the the preceding theorem can be proved. The

approximating sequence is constructed in Section 7, and the proof of the preceding

theorem is completed in Section 8.

6 Comparisons Across Wealth Levels

In this section, we recover all conclusions in Borell [2], based on Proposition 4.1 and

Theorem 5.1.

A utility function U is called to exhibit decreasing absolute risk aversion (hence-

forth, DARA) [resp. increasing absolute risk aversion (henceforth, IARA)], if −U ′′(x)
U ′(x)
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is decreasing [resp. increasing] with respect to x. Accordingly, U is called to exhibit

decreasing relative risk aversion (henceforth, DRRA) [resp. increasing relative risk

aversion (henceforth, IRRA)] if −xU ′′(x)
U ′(x)

is decreasing [resp. increasing] with respect

to x.

Theorem 6.1 Under Assumptions 2.1 and 3.1, if U exhibits DARA, then for each

t, u(t, ·) exhibits DARA, namely, f(t, x) is increasing with respect to x.

Proof. We have known that I is strictly decreasing, and for each t, λ(t, x) is strictly

decreasing with respect to x. Then the assertions follows from (4.6). �

Remark 6.1 The preservation of DARA has already been reported by Borell [2], for

a continuous-time complete model; see Gollier [5, pp.209-210], for a static complete

model. The method used here is same to that of Gollier [5].4

We can see from the preceding theorem and the discussion at the end of Section

3 that, if the utility function of the agent exhibits DARA, then the amount of wealth

invested in the log-optimal portfolio is increasing as the total wealth rises.

As for the relative risk aversion, we have the following theorem, whose conclusion

has already been reported by Borell [2]. The methodology here, however, is different

from there. According to the method of Borell [2], the IRRA case is much more

complicate than the DRRA case. According to the method here, however, both

cases can be easily dealt with, based on Theorem 5.1.

Theorem 6.2 Under Assumptions 2.1 and 3.1, we have the following assertions:

(a) If U exhibits DRRA, then for each t, u(t, ·) exhibits DRRA, namely, f(t,x)
x

is

increasing with respect to x;

(b) If U exhibits IRRA, then for each t, u(t, ·) exhibits IRRA, namely, f(t,x)
x

is

decreasing with respect to x.

4Gollier [5], for a static complete model, has showed the preservation of IARA. But in our

settings, as observed by Borell [2, p.144], the assumption U ′(0) = ∞ totally eliminates utility

functions U exhibiting IARA (see also Lemma A.1). We believe, in our continuous-time setting,

the preservation of IARA can be proved as well, by considering the utility functions defined on the

whole real line (−∞,∞), instead of the positive real line (0,∞).
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Proof. Suppose U exhibits DRRA. For any constant γ > 1, consider the utility

function V defined by V (x) = U(γx), for all x > 0. Obviously, we have

−xV ′′(x)

V ′(x)
= −γxU ′′(γx)

U ′(γx)
≤ −xU ′′(x)

U ′(x)
,

which yields U is more risk averse than V . Then by Theorem 5.1,

f(t, x) ≤ g(t, x), for all (t, x) ∈ [0, T ]× (0,∞). (6.1)

Moreover, it is easy to see v(t, x) = u(t, γx), for all t ∈ [0, T ] and x > 0. By

computation, g(t, x) = f(t,γx)
γ

. Thus we get from (6.1) that f(t,x)
x

≤ f(t,γx)
γx

, for all

t ∈ [0, T ] and x > 0. By the arbitrariness of γ > 1, we have proved assertion (a).

Assertion (b) can be proved by letting γ ∈ (0, 1) and by the same way. �

We can see from the preceding theorem and the discussion at the end of Section

3 that, if the utility function of the agent exhibits DRRA (resp. IRRA), then the

weight of wealth invested in the log-optimal portfolio is increasing (resp. decreasing)

as the total wealth rises.

7 Approximation

We now begin to construct the approximating sequence {f (m), m ≥ 2}.
Given a utility function U , for each m ≥ 2 and for each t ∈ [0, T ), we consider

the following constrained problem:

max
(φ(s))

Et[U(X(T ))], (7.1)

subject to














































dX(s) = [X(s)r(s) + φ⊤(s)(b(s)− r(s)1)]ds+ φ⊤(s)σ(s)dB(s),

1
m

≤ X(T ) ≤ m,

X(s) ≥ 0, for s ∈ [t, T ],

Xt = x,

where φ(s) = (φ1(s), · · · , φn(s))⊤ is the vector of values of wealth invested in risky

assets at time s ∈ [t, T ], and 1
m
e−

R

T

t
r(s)ds < x < me−

R

T

t
r(s)ds.

14



Following an identical discussion as in Section 3, we can see the dynamic problem

(7.1) can be transformed into a static one:

max
1
m
≤X(T )≤m

Et[U(X(T ))]

subject to Et

[

H(T )
H(t)

X(T )
]

≤ x.

(7.2)

By a similar discussion as in Section 3, the solution X(m)(T ) is,

X(m)(T ) =
1

m
∨ I

(

λ(m)(t, x)
H(T )

H(t)

)

∧m, (7.3)

where the Lagrangian multiplier λ(m)(t, x) > 0 and we use the following notation:

1

m
∨ x ∧m =































1
m
, for x ≤ 1

m
;

x, for x ∈
(

1
m
, m
)

;

m, for x ≥ m.

Moreover, the static budget constraint is binding:

Et

[

H(T )

H(t)
X(m)(T )

]

= x,

that is,

Et

[

H(T )

H(t)

(

1

m
∨ I

(

λ(m)(t, x)
H(T )

H(t)

)

∧m

)]

= x. (7.4)

For any y > 0, define

µ(m)(t, y) = Et

[

H(T )

H(t)

(

1

m
∨ I

(

y
H(T )

H(t)

)

∧m

)]

. (7.5)

The independent increments of Brownian motion yield µ(m) is a deterministic func-

tion defined on [0, T ] × (0,∞). Obviously, for any given t ∈ [0, T ), µ(m)(t, y) is

continuous and strictly decreasing with respect to y, on (0,∞), and

lim
y↓0

µ(m)(t, y) = me−
R

T

t
r(s)ds, lim

y↑∞
µ(m)(t, y) =

1

m
e−

R

T

t
r(s)ds.

By (7.4) and the definition of µ(m),

µ(m)(t, λ(m)(t, x)) = x, (7.6)

15



for any 1
m
e−

R

T

t
r(s)ds < x < me−

R

T

t
r(s)ds. Therefore, λ(m) is a deterministic function

defined on D(m) ∪ T (m), where

D(m) =

{

(t, x) :
1

m
e−

R

T

t
r(s)ds < x < me−

R

T

t
r(s)ds, t ∈ [0, T )

}

,

T (m) =

{

(T, x) :
1

m
< x < m

}

.

Moreover, for any given t ∈ [0, T ), λ(m)(t, x) is continuous and strictly decreasing

with respect to x, on
(

1
m
e−

R

T

t
r(s)ds, me−

R

T

t
r(s)ds

)

, and

lim
x↓ 1

m
e−

R

T
t

r(s)ds

λ(m)(t, x) = ∞, lim
x↑me−

R

T
t

r(s)ds

λ(m)(t, x) = 0.

In view of (7.3), the indirect utility function of problem (7.2) is

u(m)(t, x) = Et

[

U

(

1

m
∨ I

(

λ(m)(t, x)
H(T )

H(t)

)

∧m

)]

.

The independent increments of Brownian motion yield that u(m) is a deterministic

function defined on D(m) ∪ T (m).

Proposition 7.1 Under Assumption 2.1, for each m ≥ 2,

u(m) ∈ C1,∞(D(m)) ∩ C(D(m) ∪ T (m)),

Proof. See Appendix C. �

The preceding proposition implies u(m) satisfies the following HJB equation:

max
φ

{

u
(m)
t + [rx+ φ⊤(b− r1)]u(m)

x +
1

2
φ⊤σσ⊤φ u(m)

xx

}

= 0,

on D(m), with terminal condition

u(m)(T, x) = U (m)(x), for x ∈
(

1

m
,m

)

.

For each m ≥ 2, the indirect absolute risk tolerance function is

f (m)(t, x) = −u
(m)
x (t, x)

u
(m)
xx (t, x)

, for (t, x) ∈ D(m) ∪ T (m).
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Proposition 7.2 Under Assumptions 2.1 and 3.1, for each m ≥ 2,

f (m) ∈ C1,∞(D(m)) ∩ C(D(m) ∪ T (m)),

and satisfies PDE

1

2
|θ|2(f (m))2f (m)

xx + rxf (m)
x + f

(m)
t − rf (m) = 0, (7.7)

on D(m), with terminal condition

f (m)(T, x) = −U ′(x)

U ′′(x)
, for x ∈

(

1

m
,m

)

, (7.8)

and boundary conditions























lim
(s,x)→(t,me−

R

T
t

r(s)ds)

f (m)(s, x) = 0, for t ∈ [0, T );

lim
(s,x)→

“

t, 1
m

e−
R

T
t

r(s)ds
”

f (m)(s, x) = 0, for t ∈ [0, T ).

(7.9)

Moreover, we have

lim sup
(s,x)→(T, 1

m)
f (m)(s, x) = −U ′

(

1
m

)

U ′′
(

1
m

) , (7.10)

lim sup
(s,x)→(T,m)

f (m)(s, x) = −U ′(m)

U ′′(m)
. (7.11)

Proof. See Appendix C. �

The sequence f (m) constructed above is indeed approximating f , as the following

proposition shows.

Proposition 7.3 Under Assumptions 2.1 and 3.1, limm→∞ f (m)(t, x) = f(t, x), for

all (t, x) ∈ [0, T )× (0,∞).

Proof. See Appendix C. �

8 Proof of Theorem 5.1

In this section, we use the results in Section 7 to finish the proof of Theorem 5.1.
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Under the conditions of Theorem 5.1, from Proposition 4.2, we know the indirect

absolute risk tolerance function

g ∈ C1,∞([0, T )× (0,∞)) ∩ C([0, T ]× (0,∞)),

and satisfies PDE

1

2
|θ|2g2gxx + rxgx + gt − rg = 0, (8.1)

on [0, T )× (0,∞), with terminal condition

g(T, x) = − V ′(x)

V ′′(x)
, for all x > 0. (8.2)

Since V satisfies Assumption 5.1 and U is more risk averse than V , we know U

satisfies Assumption 3.1. Let the approximating sequence {f (m), m ≥ 2} of f be

constructed as in Section 7.

Lemma 8.1 Under Assumptions 2.1 and 5.1, if − U ′(x)
U ′′(x)

< − V ′(x)
V ′′(x)

, for all x > 0,

then for each m ≥ 2, f (m)(t, x) ≤ g(t, x), on D(m).

Proof. For each m ≥ 2, set

B(m)
0 =

{(

t,
1

m
e−

R

T

t
r(s)ds

)

: t ∈ [0, T ]

}

,

B(m)
1 =

{

(t,me−
R

T

t
r(s)ds) : t ∈ [0, T ]

}

,

then D(m) = D(m) ∪ ∂∗D(m), where D(m) denotes the closure of D(m) and ∂∗D(m) =

B(m)
0 ∪ T (m) ∪B(m)

1 . The function f (m) is originally defined on D(m) ∪T (m). Now we

extend its definition to D(m) as follows: f (m)(t, x) = 0, for all (t, x) ∈ B(m)
0 ∪ B(m)

1

such that t < T , and

f (m)

(

T,
1

m

)

= −U ′
(

1
m

)

U ′′
(

1
m

) , f (m)(T,m) = −U ′(m)

U ′′(m)
.

With this extension, we can see from Proposition 7.2 that f (m) is an upper semi-

continuous function5 on D(m).

Let h = f (m) − g, then h is upper semi-continuous on D(m). Since − U ′(x)
U ′′(x)

<

− V ′(x)
V ′′(x)

, for all x > 0, we know h < 0 on ∂∗D(m). Obviously, ∂∗D(m) is a compact set,

5See Appendix D.
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and therefore, from Proposition D.2, we can see on ∂∗D(m), h attains its maximum

at some (t0, x0) ∈ ∂∗D(m), which implies h(t, x) ≤ −ε < 0, for all (t, x) ∈ ∂∗D(m),

where ε = −h(t0, x0) > 0. Moreover, there exists a constant δ > 0 such that6

h(t, x) < − ε
2
< 0, for all (t, x) ∈ O(m)(δ) ∩ D(m), where

O(m)(δ) = O(m)
1 (δ) ∪O(m)

2 (δ) ∪O(m)
3 (δ),

O(m)
1 (δ) =

{

(t, x) : t ∈ [0, T ],
1

m
e−

R

T

t
r(s)ds ≤ x <

1

m
e−

R

T

t
r(s)ds + δ

}

,

O(m)
2 (δ) = (T − δ, T ]×

(

1

m
,m

)

,

O(m)
3 (δ) =

{

(t, x) : t ∈ [0, T ], me−
R

T

t
r(s)ds − δ < x ≤ me−

R

T

t
r(s)ds

}

.

Obviously, D(m) \O(m)(δ) is a compact set, then there exists a constant α such that

−α +
1

2
|θ|2(f (m) + g)gxx − r < 0, on D(m) \ O(m)(δ).

Suppose, to the contrary, that f (m) > g somewhere in D(m). Consider function w

defined by w = heαt, then w < 0 on O(m)(δ) ∩ D(m) and w > 0 somewhere in D(m).

Obviously, w is upper semi-continuous, and therefore, by Proposition D.2, w attains

its positive maximum at (t1, x1) ∈ D(m) \ O(m)(δ). So, at (t1, x1), w > 0, wx = 0,

wxx ≤ 0, and wt = hte
αt + αheαt ≤ 0. Consequently, at (t1, x1), h > 0, hx = 0,

hxx ≤ 0, and ht ≤ −αh. Thus, at (t1, x1), we have from (7.7) and (8.1) that7

0 =
1

2
|θ|2[(f (m))2f (m)

xx − g2gxx] + rx(f (m)
x − gx)

+(f
(m)
t − gt)− r(f (m) − g)

=
1

2
|θ|2(f (m))2hxx + rxhx + ht +

[

1

2
|θ|2(f (m) + g)gxx − r

]

h

≤
[

−α +
1

2
|θ|2(f (m) + g)gxx − r

]

h

< 0,

which leads to a contradiction. �

6Otherwise, for each k ≥ 1, there exists a (tk, xk) ∈ O(m)( 1
k
) ∩ D(m) such that h(tk, xk) ≥ − ε

2 .

It is not difficult to see that there is a subsequence of {(tk, xk), k ≥ 1}, which is still denoted by

{(tk, xk), k ≥ 1}, converging to some (s, y) ∈ ∂∗D(m). From the upper semi-continuity of h, we

have h(s, y) ≥ lim supk→∞
h(tk, xk) ≥ − ε

2 , which is impossible, since −ε is the maximum of h on

∂∗D(m).
7I would like to thank Yongsheng Song for a fruitful discussion.
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Lemma 8.2 Under Assumptions 2.1 and 5.1, if − U ′(x)
U ′′(x)

< − V ′(x)
V ′′(x)

, for all x > 0,

then f(t, x) ≤ g(t, x), on [0, T )× (0,∞).

Proof. Proposition 7.3 and Lemma 8.1 combined yield the assertion. �

Now we prove Theorem 5.1 as follows.

Proof of Theorem 5.1. For any ε > 0, let Uε : (0,∞) → R be a function such

that its derivative U̇ε(x) = U ′(x)e−εx, for all x ∈ (0,∞). Obviously, Uε is a utility

function and

−U̇ε(x)

Üε(x)
=

U ′(x)

−U ′′(x) + εU ′(x)
, for all x > 0,

which implies

− U̇ε(x)

Üε(x)
< −U ′(x)

U ′′(x)
≤ − V ′(x)

V ′′(x)
, for all x > 0. (8.3)

Corresponding to utility function Uε, the indirect absolute risk tolerance function is

denoted by f ε(t, x). By Lemma 8.2, we have

f ε(t, x) ≤ g(t, x), for all (t, x) ∈ [0, T )× (0,∞).

In order to complete the proof, it suffices to show limε↓0 f
ε(t, x) = f(t, x), for all

t ∈ [0, T ) and x > 0.

Actually, U̇ε(x) ↑ U ′(x) and − U̇ε(x)

Üε(x)
↑ − U ′(x)

U ′′(x)
as ε ↓ 0, for all x > 0. Let Iε

denote the inverse marginal utility function of Uε, that is, U̇ε(Iε(y)) = y for all

y > 0, then Iε(y) ↑ I(y) as ε ↓ 0, for all y > 0. Let µε(t, y) = Et

[

Iε
(

y
H(T )
H(t)

)

H(T )
H(t)

]

,

then µε(t, y) ↑ µ(t, y) as ε ↓ 0, for all (t, y) ∈ [0, T )× (0,∞). Let λε be defined by

µε(t, λε(t, x)) = x, for all (t, x) ∈ [0, T )× (0,∞),

then λε(t, x) ↑ λ(t, x) as ε ↓ 0, for all (t, x) ∈ [0, T )× (0,∞). Consequently, we have

−
U̇ε
(

Iε
(

λε(t, x)H(T )
H(t)

))

Üε

(

Iε
(

λε(t, x)H(T )
H(t)

))

H(T )

H(t)
→ −

U ′
(

I
(

λ(t, x)H(T )
H(t)

))

U ′′
(

I
(

λ(t, x)H(T )
H(t)

))

H(T )

H(t)

almost surely as ε ↓ 0, for all (t, x) ∈ [0, T )× (0,∞). Moreover, by Proposition 4.1,

we have

f ε(t, x) = Et



−
U̇ε
(

Iε
(

λε(t, x)H(T )
H(t)

))

Üε

(

Iε
(

λε(t, x)H(T )
H(t)

))

H(T )

H(t)



 .

Then by the same way to prove Proposition 7.3, using the Dominated Convergence

Theorem, we can have limε↓0 f
ε(t, x) = f(t, x), for all t ∈ [0, T ) and x > 0. �
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Appendix

A Proof of Proposition 3.1

Lemma A.1 If U ′(0) = ∞, then lim infx↓0− U ′(x)
U ′′(x)

= 0.

Proof. Suppose otherwise that lim infx↓0− U ′(x)
U ′′(x)

= A > 0, then there exists a

x0 ∈ (0, 1) such that, − U ′(x)
U ′′(x)

> A
2
, for all x ∈ (0, x0). Then we have

(logU ′(x))′ =
U ′′(x)

U ′(x)
> − 2

A
, for x ∈ (0, x0),

and therefore,

logU ′(1)− logU ′(x) =

∫ 1

x

U ′′(z)

U ′(z)
dz >

2(x− 1)

A
, for x ∈ (0, x0).

Thus U ′(x) < U ′(1)e
2(1−x)

A , for x ∈ (0, x0), which is impossible, since U ′(0) = ∞. �

Lemma A.2 For any utility function U , there exist constants c0 > 0 and c1 > 0

such that

|U(I(y))| ≤ max{c0 + y, c0 + c1I(y)}, for all y > 0. (A.1)

Proof. The concavity of U implies

U(I(y)) ≤ U(1) + U ′(1)(I(y)− 1), for all y > 0. (A.2)

On the other hand, it is well know that U(I(y))− yI(y) = supx>0[U(x)− yx]. Then

− U(I(y)) ≤ −yI(y)− U(1) + y ≤ −U(1) + y, for all y > 0. (A.3)

Finally, a combination of (A.2) and (A.3) yields the assertion. �

Lemma A.3 Under Assumption 3.1, we have

U ′(x) ≤ U ′(1)

(

1 + x

2

)− 1
c

, for all x > 1, (A.4)

I(y) ≤ 2(U ′(1))cy−c − 1, for all y ∈ (0, U ′(1)). (A.5)
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Proof. By Assumption 3.1,

(logU ′(x))′ =
U ′′(x)

U ′(x)
≤ − 1

c(1 + x)
, for all x > 0.

Then for all x > 1,

logU ′(x)− logU ′(1) =

∫ x

1

(logU ′(z))′dz ≤ −
∫ x

1

dz

c(1 + z)
= −1

c
log

1 + x

2
,

yielding (A.4). Suppose y < U ′(1), then I(y) > 1, and therefore, by (A.4),

y = U ′(I(y)) ≤ U ′(1)

(

1 + I(y)

2

)− 1
c

,

which implies (A.5). �

Lemma A.4 Under Assumption 3.1, we have for all a > 0 that
∫ ∞

−∞

ezI(ez) e−az2 dz < ∞, (A.6)

∫ ∞

−∞

|U(I(ez))| e−az2 dz < ∞. (A.7)

Proof. By Lemma A.3, we have

I(ez) ≤















2(U ′(1))c e−cz − 1, if ez < U ′(1);

1, if ez ≥ U ′(1),

(A.8)

which obviously yields (A.6). A combination of (A.1) and (A.8) leads to (A.7). �

We refer to Karatzas and Shreve [8, pp.254-255] for the following lemma:

Lemma A.5 Suppose k : R → R is a Borel-measurable function satisfying the

condition
∫ ∞

−∞

|k(z)|e−az2dz < ∞,

for some a > 0. Set

κ(t, z) = E[k(z +
√
t ξ)], (t, z) ∈

[

0,
1

2a

)

× R,

where ξ ∼ N (0, 1), the standard normal distribution. Then κ has continuous deriva-

tives of all orders, for all t ∈
(

0, 1
2a

)

and z ∈ R. Moreover, if f is continuous at

z0 ∈ R, then κ is continuous at (0, z0). Particularly, if f is continuous on R, then

κ is continuous on
[

0, 1
2a

)

× R.
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Lemma A.6 Under Assumptions 2.1 and 3.1,

µ ∈ C1,∞([0, T )× (0,∞)) ∩ C([0, T ]× (0,∞)), (A.9)

λ ∈ C1,∞([0, T )× (0,∞)) ∩ C([0, T ]× (0,∞)). (A.10)

Proof. Let k(z) = ezI(ez), for all z ∈ R. Obviously, k(z) > 0, for all z ∈ R. By

Lemma A.4,
∫∞

−∞
k(z)e−az2 dz < ∞, for all a > 0. Set

κ(t, z) = E[k(z +
√
t ξ)], (t, x) ∈ [0,∞)× R,

where ξ ∼ N (0, 1). Then by Lemma A.5, κ has continuous derivatives of all orders,

for all t ∈ (0,∞) and z ∈ R, and is continuous on [0,∞)× R. Since

log

(

y
H(T )

H(t)

)

= log y −
∫ T

t

r(s)ds− 1

2
Θ(t)−

∫ T

t

θ(s)⊤dB(s),

where Θ(t) =
∫ T

t
|θ(s)|2ds, for all t ∈ [0, T ], we can see from (3.7) that

µ(t, y) =
1

y
Et

[

k

(

log

(

y
H(T )

H(t)

))]

=
1

y
κ

(

Θ(t), log y −
∫ T

t

r(s)ds− 1

2
Θ(t)

)

,

and therefore, (A.9) follows. Here we have used the fact that Θ is continuously

differentiable on [0, T ], which is obvious under Assumption 2.1.

Now we prove λ ∈ C1,∞([0, T )× (0,∞)), using the Implicit Function Theorem8.

To this end, we extent the definition of µ to a open domain containing [0, T )×(0,∞).

Let β : (−∞, T ] → [0,∞) and γ : (−∞, T ] → R be defined as follows:

β(t) =















Θ(t), for t ∈ [0, T ],

Θ(0)− |θ(0)|2t, for t < 0,

γ(t) =















∫ T

t
r(s)ds, for t ∈ [0, T ],

∫ T

0
r(s)ds− r(0)t, for t < 0.

Obviously, β and γ are continuously differentiable on (−∞, T ]. Let µ̃ be defined by

µ̃(t, y) =
1

y
κ

(

β(t), log y − γ(t)− 1

2
β(t)

)

, for (t, y) ∈ (−∞, T ]× (0,∞).

8See Zorich [14].
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Then µ̃ ∈ C1,∞((−∞, T ) × (0,∞)). It is not difficult to see that, for each t ∈
(−∞, T ],

µ̃(t, y) = E

[

e−γ(t)− 1
2
β(t)+

√
β(t) ξI

(

ye−γ(t)− 1
2
β(t)+

√
β(t) ξ

)]

is strictly decreasing with respect to y, on (0,∞). Let λ̃ be defined by

µ̃(t, λ̃(t, x)) = x, for (t, x) ∈ (−∞, T ]× (0,∞).

Then by the Implicit Function Theorem, λ̃ ∈ C1,∞((−∞, T ) × (0,∞)). Moreover,

it is easy to see that µ̃ = µ, on [0, T ]× (0,∞), and therefore, recalling (3.8), λ̃ = λ,

on [0, T ]× (0,∞). Thus we have λ ∈ C1,∞([0, T )× (0,∞)).

It remains to show λ is continuous at (T, x), for all x > 0. Let sequence (tn, xn) ∈
[0, T ]× (0,∞) converge to (T, x), for some x > 0, we shall prove limn→∞ λ(tn, xn) =

U ′(x). Suppose lim infn→∞ λ(tn, xn) < U ′(x), then there exists some y0 ∈ (0, U ′(x))

such that lim infn→∞ λ(tn, xn) < y0, then

x = lim
n→∞

µ(tn, λ(tn, xn)) ≥ lim inf
n→∞

µ(tn, y0) = µ(T, y0) = I(y0) > x,

which leads to a contradiction. Thus lim infn→∞ λ(tn, xn) < U ′(x) is impossible.

Similarly, we can prove lim supn→∞ λ(tn, xn) > U ′(x) is impossible. So we complete

the proof. �

Lemma A.7 Suppose Assumption 2.1 is satisfied and q : (0,∞) → R is a Borel-

measurable function satisfying the condition

∫ ∞

0

|q(ez)| exp
{

− z2

2(Θ(0) + ε)

}

dz < ∞, for some ε > 0,

where Θ(t) =
∫ T

t
|θ(s)|2ds, for all t ∈ [0, T ]. Let ν be defined by

ν(t, y) = Et

[

q

(

y
H(T )

H(t)

)]

, (t, y) ∈ [0, T ]× (0,∞).

Then ν ∈ C1,∞([0, T ) × (0,∞)). Moreover, if q is continuous at y0 > 0, then

ν is continuous at (T, y0). Particularly, if q is continuous on (0,∞), then ν ∈
C([0, T ]× (0,∞)).

Proof. It is just similar to the proof of (A.9). �

Based on the previous lemmas, we are able to prove Proposition 3.1 as follows.
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Proof of Proposition 3.1. Let q(y) = U(I(y)) and

ν(t, y) = Et

[

q

(

y
H(T )

H(t)

)]

= Et

[

U

(

I

(

y
H(T )

H(t)

))]

,

then by Lemmas A.4 and A.7,

ν ∈ C1,∞([0, T )× (0,∞)) ∩ C([0, T ]× (0,∞)).

Moreover, recalling (3.9), u(t, x) = ν(t, λ(t, x)). Then by Lemma A.6, we finish the

proof. �

B Supplementary Data for Section 4

Proof of Lemma 4.1. We can rewrite (4.1) as

X̂(T, x) = I

(

ux(t, x)
H(T )

H(t)

)

.

Differentiating the preceding equality with respect to x yields

∂X̂(T, x)

∂x
= I ′

(

ux(t, x)
H(T )

H(t)

)

uxx(t, x)
H(T )

H(t)
. (B.1)

Obviously, ∂X̂(T,x)
∂x

> 0 almost surely, for each x > 0. Let function l be defined by

l(t, y) = Et

[

I ′
(

y
H(T )

H(t)

)(

H(T )

H(t)

)2
]

, (B.2)

for all (t, y) ∈ [0, T ]× (0,∞). We can see from Proposition 3.1, (B.1) and Lemma

B.1 below that, for any t ∈ [0, T ],

Et

[

∂X̂(T, x)

∂x

H(T )

H(t)

]

= uxx(t, x)l(t, ux(t, x))

is continuous with respect to x, on (0,∞). Moreover, for any z > z0 > 0, we have9

∫ z

z0

Et

[

∂X̂(T, x)

∂x

H(T )

H(t)

]

dx

= Et

[

∫ z

z0

∂X̂(T, x)

∂x

H(T )

H(t)
dx

]

(by Fubini’s Theorem)

= Et

[

(X̂(T, z)− X̂(T, z0))
H(T )

H(t)

]

= z − z0, (by (4.2))

9I would like to thank Jia-An Yan for a helpful suggestion.
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which leads to (4.3). �

Lemma B.1 Under Assumptions 2.1 and 3.1, let function l be defined by (B.2),

then

l ∈ C1,∞([0, T )× (0,∞)) ∩ C([0, T ]× (0,∞)).

Proof. Obviously, I ′(y) < 0, for all y > 0. For each y > 0,

−I ′(y) = − 1

U ′′(I(y))
= − U ′(I(y))

yU ′′(I(y))
≤ c

1 + I(y)

y
,

where the inequality follows from Assumption 3.1. Thus, for any z ∈ R,

0 < −e2zI ′(ez) ≤ c(ez + ezI(ez)).

By Lemma A.4,
∫∞

−∞
q(ez) e−az2 dz < ∞, for all a > 0, where q(y) = −y2I ′(y). Since

l(t, y) = −
Et

[

q
(

y
H(T )
H(t)

)]

y2
,

the proof can be finished by using Lemma A.7. �

Proof of Proposition 4.2. By Lemma B.2 below, we only need to show f ∈
C([0, T ]× (0,∞)). Noting I ′(y) = 1

U ′′(I(y))
, we have from (4.6) that

f(t, x) = Et

[

−λ(t, x)
H(T )

H(t)
I ′
(

λ(t, x)
H(T )

H(t)

)

H(T )

H(t)

]

,

that is, f(t, x) = −λ(t, x)l(t, λ(t, x)), where l is defined by (B.2). Lemmas B.1 and

A.6 combined lead to f ∈ C([0, T ]× (0,∞)). �

Lemma B.2 Under Assumptions 2.1 and 3.1, f ∈ C1,∞([0, T )× (0,∞)), and sat-

isfies PDE (4.7), on [0, T )× (0,∞), with terminal condition (4.8).

Proof. By (3.11) and Proposition 3.1, it suffices to show f satisfies PDE (4.7). By

He and Huang [6, Proposition 2], f satisfies the equation

1

2
φ̂⊤σσ⊤φ̂fxx + rxfx + ft − rf = 0.

Substituting (3.12) into the previous equation yields (4.7). In the following, we give

a direct proof. Substituting (3.12) into the HJB equation (3.10), we can have

ut + (rx+ |θ|2f)ux +
1

2
|θ|2f 2uxx = 0.
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Noting f 2uxx = −fux = u2
x

uxx
, the preceding equation can be rewritten as

ut + rxux +
1

2
|θ|2fux = 0.

Differentiating the previous equation with respect to x yields

uxt + rux + rxuxx +
1

2
|θ|2fxux +

1

2
|θ|2fuxx = 0,

and consequently,

uxt

ux

+
1

2
|θ|2fx −

rx

f
+ r − 1

2
|θ|2 = 0.

Differentiating the previous equation with respect to x yields

uxxtux − uxtuxx

u2
x

+
1

2
|θ|2fxx −

rf − rxfx

f 2
= 0. (B.3)

Obviously,
uxxtux − uxtuxx

u2
x

=
ft

f 2
,

which, together with (B.3), implies (4.7). �

Lemma B.3 Under Assumptions 2.1 and 3.1, {f(s, X̂(s))H(s), s ∈ [t, T ]} is a local

martingale, for each t ∈ [0, T ) and x > 0.

Proof. The dynamics of {X̂(s), s ∈ [t, T ]} is

dX̂(s) = [X̂(s)r(s) + φ̂(s, X̂(s))⊤(b(s)− r(s)1)]ds+ φ̂(s, X̂(s))⊤σ(s)dB(s).

By the Itô’s Formula,

df(s, X̂(s))

= fs(s, X̂(s))ds+ fx(s, X̂(s))[X̂(s)r(s) + φ̂(s, X̂(s))⊤(b(s)− r(s)1)]ds

+
1

2
fxx(s, X̂(s))φ̂(s, X̂(s))⊤σ(s)σ(s)⊤φ̂(s, X̂(s))ds

+fx(s, X̂(s))φ̂(s, X̂(s))⊤σ(s)dB(s).

By the definition of H(s), we have

dH(s) = −r(s)H(s)ds−H(s)θ(s)⊤dB(s).
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Therefore,

d[f(s, X̂(s))H(s)]

= f(s, X̂(s))dH(s) +H(s)df(s, X̂(s))

−fx(s, X̂(s))φ̂(s, X̂(s))⊤σ(s)θ(s)H(s)ds

= H(s)
[1

2
φ̂(s, X̂(s))⊤σ(s)σ(s)⊤φ̂(s, X̂(s))fxx(s, X̂(s))

+ r(s)X̂(s)fx(s, X̂(s)) + fs(s, X̂(s))− r(s)f(s, X̂(s))
]

ds

+ a local martingale

= H(s)
[1

2
|θ(s)|2f 2(s, X̂(s))fxx(s, X̂(s)) + r(s)X̂(s)fx(s, X̂(s))

+fs(s, X̂(s))− r(s)f(s, X̂(s))
]

ds+ a local martingale,

where the last equality follows from (3.12). Then Lemma B.2 implies the ds-term

is null and hence {f(s, X̂(s))H(s), s ∈ [t, T ]} is a local martingale. �

C Supplementary Data for Section 7

In this section, we use 1A to denote the indicator function of a set A.

C.1 Proof of Proposition 7.1

Proof of Proposition 7.1. Firstly, for each m ≥ 2, the function 1
m
∨ I(y) ∧m is

bounded and continuous. Then by similar discussions as in Lemma A.6, we can see

µ(m) ∈ C1,∞([0, T )× (0,∞)) ∩ C([0, T ]× (0,∞)), (C.1)

λ(m) ∈ C1,∞(D(m)) ∩ C(D(m) ∪ T (m)). (C.2)

Finally, the assertion can be obtained by the same method to prove Proposition

3.1. �

C.2 Proof of Proposition 7.2

Lemma C.1 Suppose Assumptions 2.1 is satisfied. For each m ≥ 2, let ν(m) be

defined by

ν(m)(t, y) = Et

[

q(m)

(

y
H(T )

H(t)

)]

, for all (t, y) ∈ [0, T ]× (0,∞), (C.3)
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where

q(m)(y) = −U ′(I(y))

U ′′(I(y))
y 1{ 1

m
<I(y)<m}, for all y > 0. (C.4)

then ν(m) ∈ C1,∞([0, T ) × (0,∞)) and ν(m) is continuous at (T, y), for all y ∈
(0,∞) \

{

U ′(m), U ′
(

1
m

)}

.

Proof. Obviously, for each m ≥ 2, q(m) is bounded on (0,∞) and is continuous on

(0,∞) \
{

U ′(m), U ′
(

1
m

)}

. Then Lemma A.7 leads to the assertion. �

Lemma C.2 Under Assumptions 2.1, for each m ≥ 2,

f (m)(t, x)

= Et



−
U ′
(

I
(

λ(m)(t, x)H(T )
H(t)

))

U ′′
(

I
(

λ(m)(t, x)H(T )
H(t)

))

H(T )

H(t)
1{ 1

m
<I(λ(m)(t,x)

H(T )
H(t) )<m}



 (C.5)

= Et

[

−U ′(X(m)(T ))

U ′′(X(m)(T ))

H(T )

H(t)
1{ 1

m
<X(m)(T )<m}

]

, (C.6)

for all (t, x) ∈ D(m) ∪ T (m).

Proof. In view of (7.3), we only need to prove (C.5). From the facts that λ(m)(t, x) =

u
(m)
x (t, x) and that

U ′
(

I
(

λ(m)(t, x)H(T )
H(t)

))

U ′′
(

I
(

λ(m)(t, x)H(T )
H(t)

)) = λ(m)(t, x)
H(T )

H(t)
I ′
(

λ(m)(t, x)
H(T )

H(t)

)

,

we know it suffices to show, for each m ≥ 1,

u(m)
xx (t, x)Et

[

(

H(T )

H(t)

)2

I ′
(

u(m)
x (t, x)

H(T )

H(t)

)

1n

1
m
<I

“

u
(m)
x (t,x)

H(T )
H(t)

”

<m
o

]

= 1, (C.7)

for all (t, x) ∈ D(m) ∪ T (m).

Let q(m) and ν(m) be defined by (C.4) and (C.3), respectively. Then

q(m)(y) = −y2I ′(y)1{ 1
m
<I(y)<m},

and therefore,

ν(m)(t, y) = −y2 Et

[

(

H(T )

H(t)

)2

I ′
(

y
H(T )

H(t)

)

1{ 1
m
<I(yH(T )

H(t) )<m}

]

.
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Let β(m)(t, x) denote the left-hand side of (C.7), then

β(m)(t, x) = −u
(m)
xx (t, x)ν(m)(t, u

(m)
x (t, x))

(u
(m)
x (t, x))2

.

Proposition 7.1 and Lemma C.1 combined imply β(m) ∈ C(D(m) ∪ T (m)).

On the other hand, for any given t ∈ [0, T ], and any z0 and z such that

1

m
e−

R

T

t
r(s)ds < z0 < z < me−

R

T

t
r(s)ds,

we have
∫ z

z0

β(m)(t, x) dx

= Et

[

∫ z

z0

u(m)
xx (t, x)

(

H(T )

H(t)

)2

I ′
(

u(m)
x (t, x)

H(T )

H(t)

)

1n

1
m
<I

“

u
(m)
x (t,x)

H(T )
H(t)

”

<m
o dx

]

= Et

[

H(T )

H(t)

∫ z

z0

1n

1
m
<I

“

u
(m)
x (t,x)H(T )

H(t)

”

<m
o dI

(

u(m)
x (t, x)

H(T )

H(t)

)]

= Et

[

H(T )

H(t)

(

1

m
∨ I

(

u(m)
x (t, z)

H(T )

H(t)

)

∧m− 1

m
∨ I

(

u(m)
x (t, z0)

H(T )

H(t)

)

∧m

)]

= z − z0,

where the first equality follows from the Fubini’s Theorem, and the last equality

follows from (7.4) and the fact that λ(m)(t, x) = u
(m)
x (t, x). So, for any given t ∈

[0, T ], we have β(m)(t, x) = 1, for all x ∈
(

1
m
e−

R

T

t
r(s)ds, me−

R

T

t
r(s)ds

)

, which is

desired. �

Lemma C.3 Under Assumption 2.1, for each given m ≥ 2 and t ∈ [0, T ),

lim
(s,x)→

“

t, 1
m

e−
R

T
t

r(s)ds
”

λ(m)(s, x) = ∞, (C.8)

lim
(s,x)→

“

t,me−
R

T
t

r(s)ds
”

λ(m)(s, x) = 0. (C.9)

Proof. We only prove (C.9), since the proof of(C.8) is similar. Suppose, to the

contrary, that

lim sup
(s,x)→

“

t,me−
R

T
t

r(s)ds
”

λ(m)(s, x) > 0, (C.10)
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then there exist a constant ε > 0 and a sequence {(sk, xk), k ≥ 1} ⊂ D(m) ∪ T (m)

converging to
(

t,me−
R

T

t
r(s)ds

)

such that λ(m)(sk, xk) > ε, for all k. Thus, by relation

(7.6),

xk = µ(m)(sk, λ
(m)(sk, xk)) < µ(m)(sk, ε).

By (C.1), letting k → ∞ yields

me−
R

T

t
r(s)ds ≤ µ(m)(t, ε) < me−

R

T

t
r(s)ds,

which leads to a contradiction. So, (C.10) is impossible, and therefore, (C.9) is

proved. �

Lemma C.4 Under Assumption 2.1, for each given m ≥ 2,

lim inf
(s,x)→(T, 1

m)
λ(m)(s, x) ≥ U ′

(

1

m

)

, (C.11)

lim sup
(s,x)→(T,m)

λ(m)(s, x) ≤ U ′(m). (C.12)

Proof. We only prove (C.12), since the proof of (C.11) is similar. Suppose, to the

contrary, that

lim sup
(s,x)→(T,m)

λ(m)(s, x) > U ′(m), (C.13)

then there exist a constant ε > 0 and a sequence {(sk, xk), k ≥ 1} ⊂ D(m) ∪ T (m)

converging to (T,m) such that U ′(m) + ε < U ′
(

1
m

)

and λ(m)(sk, xk) > U ′(m) + ε,

for all k. Thus, by relation (7.6),

xk = µ(m)(sk, λ
(m)(sk, xk)) < µ(m)(sk, U

′(m) + ε).

By (C.1), letting k → ∞ yields

m ≤ µ(m)(T, U ′(m) + ε) = I(U ′(m) + ε) < m,

which leads to a contradiction. So, (C.13) is impossible, and therefore, (C.12) is

proved. �

Proof of Proposition 7.2. From Proposition 7.1, we can see f (m) ∈ C1,∞(D(m)).

According to a similar way to prove Proposition 4.2, we can show f (m) satisfies

PDE (7.7), on D(m), with terminal condition (7.8). So, it suffices to show f (m) is
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continuous at (T, x), for all x ∈
(

1
m
, m
)

, satisfies boundary conditions in (7.9), and

satisfies (7.10) and (7.11).

Let ν(m) be defined by (C.3), then by Lemma C.2,

f (m)(t, x) =
ν(m)(t, λ(m)(t, x))

λ(m)(t, x)
, for all (t, x) ∈ D(m) ∪ T (m).

From (C.2) and Lemma C.1, we can see f (m) is continuous at (T, x), for all x ∈
(

1
m
, m
)

.

In view of (C.5), we can obtain (7.9) from a combination of Lemma C.3 and the

Dominated Convergence Theorem.

From Lemma C.4, we have

lim sup
(s,x)→(T,m)

λ(m)(s, x)
H(T )

H(t)
≤ U ′(m), almost surely,

and therefore,

lim inf
(s,x)→(T,m)

I

(

λ(m)(s, x)
H(T )

H(t)

)

≥ m, almost surely.

Recalling (7.3), we can see the preceding inequality implies

lim
(s,x)→(T,m)

X(m)(T ) = m, almost surely.

Then from (C.6) and the Fatou’s Lemma, we can get

lim sup
(s,x)→(T,m)

f (m)(s, x) ≤ −U ′(m)

U ′′(m)
.

Moreover, (7.8) yields

lim
x↑m

f (m)(T, x) = −U ′(m)

U ′′(m)
.

Thus (7.11) is obtained. The proof of (7.10) is similar. �

C.3 Proof of Proposition 7.3

Lemma C.5 Under Assumptions 2.1 and 3.1, limm→∞ µ(m)(t, y) = µ(t, y), for any

(t, y) ∈ [0, T )× (0,∞).
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Proof. For any m ≥ 2,

H(T )

H(t)

(

1

m
∨ I

(

y
H(T )

H(t)

)

∧m

)

≤ H(T )

H(t)
+

H(T )

H(t)
I

(

y
H(T )

H(t)

)

.

Then in view of (7.5) and (3.7), the assertion can be obtained from the Dominated

Convergence Theorem. �

Lemma C.6 Under Assumptions 2.1 and 3.1, limm→∞ λ(m)(t, x) = λ(t, x), for any

(t, x) ∈ D(m).

Proof. Given (t, x) ∈ D(m), suppose, to the contrary, that either

lim inf
m→∞

λ(m)(t, x) < λ(t, x)

or

lim sup
m→∞

λ(m)(t, x) > λ(t, x).

If lim infm→∞ λ(m)(t, x) < λ(t, x), then there exist a constant ε > 0 and a subse-

quence of {λ(m)(t, x), m ≥ 2}, which is still denoted by {λ(m)(t, x), m ≥ 2}, such
that λ(t, x) − ε > 0 and λ(m)(t, x) < λ(t, x) − ε for any m. Therefore, by relation

(7.6),

x = µ(m)(t, λ(m)(t, x)) > µ(m)(t, λ(t, x)− ε).

By Lemma C.5, letting m → ∞ yields x ≥ µ(t, λ(t, x) − ε) > x, which leads a

contradiction. Thus lim infm→∞ λ(m)(t, x) < λ(t, x) is impossible. By the same way,

we can show lim supm→∞ λ(m)(t, x) > λ(t, x) is also impossible. �

Based on Lemma C.6, we can prove Proposition 7.3 as follows.

Proof of Proposition 7.3. First of all, for any given (t, x) ∈ [0, T ) × (0,∞), we

can see from Lemma C.6 that

−
U ′
(

I
(

λ(m)(t, x)H(T )
H(t)

))

U ′′
(

I
(

λ(m)(t, x)H(T )
H(t)

))

H(T )

H(t)
1{ 1

m
<I(λ(m)(t,x)

H(T )
H(t) )<m}

→ −
U ′
(

I
(

λ(t, x)H(T )
H(t)

))

U ′′
(

I
(

λ(t, x)H(T )
H(t)

))

H(T )

H(t)
, almost surely,
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as m → ∞. Then by Assumption 3.1,

−
U ′
(

I
(

λ(m)(t, x)H(T )
H(t)

))

U ′′
(

I
(

λ(m)(t, x)H(T )
H(t)

))

H(T )

H(t)
1{ 1

m
<I(λ(m)(t,x)

H(T )
H(t) )<m}

≤ c

(

1 + I

(

λ(m)(t, x)
H(T )

H(t)

))

H(T )

H(t)

≤ c

(

1 + I

(

y0
H(T )

H(t)

))

H(T )

H(t)
,

where y0 = infm≥2 λ
(m)(t, x) > 0. Finally, (C.5) and the Dominated Convergence

Theorem combined yield

f (m)(t, x) → Et



−
U ′
(

I
(

λ(t, x)H(T )
H(t)

))

U ′′
(

I
(

λ(t, x)H(T )
H(t)

))

H(T )

H(t)



 = f(t, x),

as m → ∞. �

D Upper Semi-Continuous Functions

Let M be a normed space, and | · | denote the norm. A function f defined on M is

said to be upper semi-continuous at x0 ∈ M if, given ε > 0, there exists a δ > 0 such

that f(x)− f(x0) < ε, for all x ∈ M such that |x− x0| < δ. A function f is said to

be upper semi-continuous on M if it is upper semi-continuous at every point of M.

We refer to Luenberger [9, p.40] for the following two propositions:

Proposition D.1 A function f defined on M is upper semi-continuous at x0 if and

only if lim supx→x0
f(x) ≤ f(x0).

Proposition D.2 An upper semi-continuous function achieves its maximum on any

compact subset.
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