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Abstract

The large-time behavior of solutions to Burgers equation with small viscosity is de-
scribed using invariant manifolds. In particular, a geometric explanation is provided for
a phenomenon known as metastability, which in the present context means that solutions
spend a very long time near the family of solutions known as diffusive N-waves before
finally converging to a stable self-similar diffusion wave. More precisely, it is shown that
in terms of similarity, or scaling, variables in an algebraically weighted L

2 space, the self-
similar diffusion waves correspond to a one-dimensional global center manifold of stationary
solutions. Through each of these fixed points there exists a one-dimensional, global, at-
tractive, invariant manifold corresponding to the diffusive N-waves. Thus, metastability
corresponds to a fast transient in which solutions approach this “metastable” manifold of
diffusive N-waves, followed by a slow decay along this manifold, and, finally, convergence
to the self-similar diffusion wave.
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1 Introduction

It is well known that viscosity plays an important role in the evolution of solutions to viscous
conservation laws and that its presence significantly impacts the asymptotic behavior of solu-
tions. Much work has been done to understand the relationship between solutions for zero and
nonzero viscosity. For an overview, see, for example, [Daf05, Liu00]. With regard to Burgers
equation, one key property is the following. If uµ = uµ(x, t) denotes the solution to Burgers
equation with viscosity µ and u0 = u0(x, t) denotes the solution to the inviscid equation, then
it is known that uµ → u0 in an appropriate sense for any fixed t > 0 as µ → 0. However, for
fixed µ, the large time behavior of uµ and u0 is quite different, and they converge to solutions
known as diffusion waves and N-waves, respectively. Thus, the limits µ → 0 and t → ∞ are not
interchangeable.

Recently, a phenomenon known as metastability has been observed in Burgers equation with
small viscosity on an unbounded domain [KT01]. Generally speaking, metastable behavior is
when solutions exhibit long transients in which they remain close to some non-stationary state
(or family of non-stationary states) for a very long time before converging to their asymptotic
limit. In [KT01], the authors observe numerically that solutions spend a very long time near a
family of solutions known as “diffusive N-waves,” before finally converging to the stable family
of diffusion waves. This terminology1 is due to the fact that the diffusive N-waves are close
to inviscid N-waves. In [KT01] this is proven in a pointwise sense. Furthermore, in terms of
scaling, or similarity, variables, they compute an asymptotic expansion for solutions to Burgers
equation with small viscosity. They find that the stable diffusion waves correspond to the first
term in the expansion, whereas the diffusive N-waves correspond to taking the first two terms.
Thus, by characterizing the metastability in terms of these diffusive N-waves, they provide a
way of understanding the interplay between the limits µ → 0 and t → ∞.

In this paper, we show that the metastable behavior in the viscous Burgers equation, described
in [KT01], can be viewed as the approach to, and motion along, a normally attractive, invariant
manifold in the phase space of the equation. In terms of the similarity variables, we show that one
has the following picture. There exists a global, one-dimensional center manifold of stationary
solutions corresponding to the self-similar diffusion waves. Through each of these fixed points
there exists a global, one-dimensional, invariant, normally attractive manifold corresponding to
the diffusive N-waves. For almost any initial condition, the corresponding solution of Burgers
equation approaches one of the diffusive N-wave manifolds on a relatively fast time scale: τ =
O(| logµ|). Due to attractivity, the solution remains close to this manifold for all time and
moves along it on a slower time scale, τ = O(1/µ), towards the fixed point which has the same
total mass. Note this this corresponds to an extremely long timescale t ≈ O(e1/µ) in the original
unscaled time variable. This scenario is illustrated in Figure 1.

Note that, in [Liu00], it was shown that the large time behavior of solutions to a general class of
conservation laws is governed by that of solutions to Burgers equation. Roughly speaking, this is
due to the marginality of the nonlinearity in the case of Burgers equation and the fact that any

1These diffusive N-waves are also discussed in [Whi99, §4.5], where they are referred to simply as N-waves.
Here, as in [KT01], we reserve the term N-wave for solutions of the inviscid equation and diffusive N-wave for
solutions of the viscous equation.
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Figure 1: A schematic diagram of the invariant manifolds in the phase space of Burgers equation,
(2.3), and their role in the metastable behavior. The solution trajectory (blue) experiences an
initial fast transient of τ = O(| logµ|) before entering a neighborhood of the manifold of diffusive
N-waves (green). It then remains in this neighborhood for all time as it approaches, on the slower
time scale of τ = O(1/µ), a point on the manifold of stable stationary states (red).

higher order nonlinear terms in other conservation laws are irrelevant. Therefore, the present
analysis for Burgers equation could potentially be used to predict and understand metastability
in other conservation laws with small viscosity, as well.

We remark that a similar metastable phenomenon has also been investigated in Burgers equation
on a bounded interval [BKS95, SW99] and numerically observed in the Navier-Stokes equations
on a two-dimensional bounded domain [YMC03]. Furthermore, metastability has been observed
in reaction-diffusion equations: for example, on a bounded interval [FH89, CP89, CP90] and
spatially discrete lattice [GVV95]. In [CP90], the metastable states were described in terms of
global unstable invariant manifolds of equilibria.

The remainder of the paper is organized as follows. In §2 we state the equations and function
spaces within which we will work, as well as some preliminary facts about the existence of
invariant manifolds in the phase space of Burgers equation. We also precisely formulate our
results, Theorems 1 and 2. In sections §3, §4, and §5 we prove Lemma 2.1, Theorem 1, and
Theorem 2, respectively. Concluding remarks are contained in §6. Finally, the appendix contains
a calculation that is referred to in §2.

2 Set-up and statement of results

We now explain the set-up for the analysis and some preliminary results on invariant manifolds.
Our main results are precisely stated in §2.3.
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2.1 Equations and scaling variables

The scalar, viscous Burgers equation is the initial value problem

∂tu = µ∂2
xu− uux

u|t=0 = h, (2.1)

and we assume the viscosity coefficient µ is small: 0 < µ ≪ 1. For reasons described below, it
is convenient to work in so-called similarity or scaling variables, defined as

u(x, t) =
1√
1 + t

w

(

x√
1 + t

, log(t+ 1)

)

ξ =
x√
1 + t

, τ = log(t + 1). (2.2)

In terms of these variables, equation (2.1) becomes

∂τw = Lµw − wwξ

w|τ=0 = h, (2.3)

where Lµw = µ∂2
ξw + 1

2
∂ξ(ξw).

We will study the evolution of (2.3) in the algebraically weighted Hilbert space

L2(m) =

{

w ∈ L2(R) : ‖w‖2L2(m) =

∫

(1 + ξ2)m|w(ξ)|2dξ < ∞
}

.

It was shown in [GW02] that, in the spaces L2(m) with m > 1/2, the operator Lµ generates a
strongly continuous semigroup and its spectrum is given by

σ(Lµ) =
{

−n

2
, n ∈ N

}

∪
{

λ ∈ C : Re(λ) ≤ 1

4
− m

2

}

. (2.4)

This is exactly the reason why the similarity variables are so useful. Equation (2.4) shows that
the operator Lµ has a gap, at least for m > 1/2, between the continuous part of the spectrum
and the zero eigenvalue. As m is increased, more isolated eigenvalues are revealed, allowing
one to construct the associated invariant manifolds (see below for more details). In contrast,
the linear operator in equation (2.1), in terms of the original variable x, has spectrum given by
(−∞, 0], which prevents the use of standard methods for constructing invariant manifolds.

For future reference, we remark that the eigenfunctions associated to the isolated eigenvalues
λ = −n/2 are given by

ϕ0(ξ) =
1√
4πµ

e−
ξ2

4µ , ϕn(ξ) = (∂nξ ϕ0)(ξ). (2.5)

See [GW02] for more details. Smoothness and well-posedness of equations (2.1) and (2.3) can
be dealt with using standard methods, for example information about the linear semigroups and
nonlinear estimates using variation of constants.
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2.2 Invariant manifolds

We now present the construction, in the phase space of (2.3), of the explicit, global, one-
dimensional center manifold that consists of self-similar stationary solutions. We remark that
this is similar to the global manifold of stationary vortex solutions of the two-dimensional Navier-
Stokes equations, analyzed in [GW05]. First, note that stationary solutions satisfy

∂ξ(µwξ +
1

2
ξw − 1

2
w2) = 0.

They can be found explicitly by integrating the above equation and rewriting it as

∂ξ(e
ξ2/(4µ)w)

(eξ2/(4µ)w)2
=

1

2µ
e−ξ

2/(4µ).

Integrating both sides of this equation from −∞ to ξ leads to the following self-similar stationary
solution, for each α0 ∈ R:

w(ξ) =
α0e

−ξ2/(4µ)

1− α0

2µ

∫ ξ

−∞ e−η2/(4µ)dη
.

Note that equation (2.3) preserves mass, and we can therefore characterize these solutions by
relating the parameter α0 to the total mass M of the solution. We have

M =

∫ ∞

−∞
w(ξ)dξ = α0

∫ ∞

−∞

e−ξ
2/(4µ)

1− α0

2µ

∫ ξ

−∞ e−η2/(4µ)dη
dξ = −2µ log(1− α0

√

π

µ
),

where we have made the change of variables θ = 1− α0

2µ

∫ ξ

−∞ e−η
2/(4µ)dη. Therefore, we define

AM(ξ) =
α0e

−ξ2/(4µ)

1− α0

2µ

∫ ξ

−∞ e−η2/(4µ)dη
, α0 =

√

µ

π
(1− e−M/(2µ)). (2.6)

These solutions are often referred to as diffusion waves [Liu00].

For m > 1/2, the operator Lµ has a spectral gap in L2(m). By applying, for example, the results
of [CHT97], we can conclude that there exists a local, one-dimensional center manifold near the
origin. In addition, because each member of the family of diffusion waves is a fixed point for
(2.3), they must be contained in this center manifold. Thus, this manifold is in fact global, as
indicated by figure 1.

Remark 2.1. Another way to identify this family of asymptotic states is by means of the Cole-
Hopf transformation, which works for the rescaled form of Burgers equation as well as for the
original form (2.1). If w is a solution of (2.3), define

W (ξ, τ) = w(ξ, τ)e−
1
2µ

R ξ
−∞ w(y,τ)dy = −2µ∂ξ exp

(

− 1

2µ

∫ ξ

−∞
w(y, τ)dy

)

. (2.7)

A straightforward computation shows that W satisfies the linear equation

∂τW = LµW. (2.8)
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Conversely, let W be a solution of (2.8) for which 1− 1
2µ

∫ ξ

−∞W (y, τ)dy > 0 for all ξ ∈ R and
τ > 0. Then the inverse of the above Cole-Hopf transformation is

w(ξ, τ) = −2µ∂ξ log

(

1− 1

2µ

∫ ξ

−∞
W (y, τ)dy

)

. (2.9)

The family of scalar multiples of the zero eigenfunction, β0ϕ0(ξ), where ϕ0 is given in (2.5), is
an invariant manifold (in fact, an invariant subspace) of fixed points for (2.8). Thus, the image
of this family under (2.9) must be an invariant manifold of fixed points for (2.3). Computing
this image leads exactly to the family (2.6), where β0 =

√
4πµα0.

Remark 2.2. One can prove that this self-similar family of diffusion waves is globally stable
using the entropy functional

H [w](τ) =

∫

R

w(ξ, τ)e−
1
2µ

R ξ
−∞ w(y,τ)dy log

[

w(ξ, τ)e−
1
2µ

R ξ
−∞ w(y,τ)dy

e−
ξ2

4µ

]

dξ.

This is just the standard Entropy functional for the linear equation (2.8) with potential ξ2/(4µ),
in combination with the Cole-Hopf transformation. For further details regarding these facts, see
[DiF03].

We next construct the manifold of diffusive N-waves. Recall that, by (2.4), if m > 3/2 then
both the eigenvalue at 0 and the eigenvalue at −1/2 are isolated. The latter will lead to a one
dimensional stable manifold at each stationary solution.

To see this, define w = AM + v and obtain

vτ = AM
µ v − vvξ

AM
µ v = Lµv − (AMv)ξ, (2.10)

where AM
µ is just the linearization of (2.3) about the diffusion wave with mass M . One can

see explicitly, using the Cole-Hopf transformation, that the operators Lµ and AM
µ are conjugate

with conjugacy operator given explicitly by

AM
µ U = ULµ

U = ∂ξ

[(∫ ξ

−∞
·
)

e
1
2µ

R ξ
−∞AM (y)dy

]

, U−1 = ∂ξ

[(∫ ξ

−∞
·
)

e−
1
2µ

R ξ
−∞AM (y)dy

]

. (2.11)

Thus, one can check that the spectra of the operators AM
µ and Lµ are equivalent in L2(m).

Furthermore, we can see explicitly that the eigenfunctions of AM
µ are given explicitly by

Φn(ξ) = ∂ξ





∫ ξ

−∞ ϕn(y)dy

1− α
2µ

∫ ξ

−∞ e−
η2

4µdη



 ,

where ϕn is an eigenfunction of Lµ. Notice that, up to a scalar multiple, Φ1 = ∂ξAM . If we
chose m > 3/2, by (2.4) we can then construct a local, two-dimensional center-stable manifold
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near each diffusion wave. We wish to show that, if the mass is chosen appropriately, then this
manifold is actually one-dimensional. Furthermore, we must show that this manifold is a global
manifold.

To do this, we appeal to the Cole-Hopf transformation. Using (2.7), we define

V (ξ, τ) = v(ξ, τ)e−
1
2µ

R ξ
−∞ v(y,τ)dy

and find that V solves the linear equation

∂τV = AM
µ V.

Thus, the two-dimensional center-stable subspace is given by span{Φ0,Φ1}. The adjoint eigen-
function associated with Φ0 is just a constant. Therefore, if we restrict to initial conditions that
satisfy

∫

R

V (ξ, 0)dξ = 0, (2.12)

then the subspace will be one dimensional and given by solutions of the form

V (ξ, τ) = α1Φ1(ξ)e
− τ

2 .

One can check that condition (2.12) is equivalent to
∫

R

v(ξ, 0)dξ = 0.

Since w = AM + v, we can insure this condition is satisfied by choosing the diffusion wave that
satisfies

M =

∫

R

AM(ξ)dξ =

∫

R

w(ξ, 0)dξ.

Thus, near each diffusion wave of mass M , there exists a local invariant foliation of solutions
with the same mass M that decay to the diffusion wave at rate e−

1
2
τ .

To extend this to a global foliation, we simply apply the inverse Cole-Hopf transformation (2.9),
as in Remark 2.1, to the invariant subspace

{V (ξ, τ) = α1Φ1(ξ)} = {V (ξ, τ) = α1∂ξAM}.

This leads to the global stable invariant foliation consisting of solutions to (2.10) of the form

vN(ξ, τ) =
α1e

− τ
2A′

M(ξ)

1− α1

2µ
e−

τ
2AM (ξ)

.

Using the relationship between v and w, this foliation leads to a family of solutions of (2.3) of
the form

w̃N(ξ, τ) = AM(ξ) + vN (ξ, τ) = AM(ξ) +
α1e

− τ
2A′

M(ξ)

1− α1

2µ
e−

τ
2AM(ξ)

. (2.13)

Below it will be convenient to use a slightly different formulation of this family, which we now
present.
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The subspace span{ϕ0, ϕ1}, corresponding to the first two eigenfunctions in (2.5), is invariant
for equation (2.8). Therefore, as in Remark 2.1, by using the inverse Cole-Hopf transformation
(2.9) we immediately obtain the explicit, two parameter family

wN(ξ, τ) =
β0ϕ0(ξ) + β1e

− τ
2ϕ1(ξ)

1− β0
2µ

∫ ξ

−∞ ϕ0(y)dy − β1
2µ
e−

τ
2ϕ0(ξ)

, (2.14)

where
β0 =

√

4πµα0 = 2µ(1− e−
M
2µ ). (2.15)

Based on the above analysis, (2.14) and (2.13) are equivalent. Note that, although the method
used to produce (2.14) is much more direct than that of (2.13), we needed to use the operator
AM and its spectral properties to justify the claim that this family does in fact correspond to
an invariant stable foliation of the manifold of diffusion waves.

We now explain why solutions of the form (2.14) are referred to as the family of diffusive N-waves.
As mentioned in §1, this terminology was justified in [KT01] by showing that each solution wN
is close to an inviscid N-wave pointwise in space. Since we are working in L2(m), we need to
prove a similar result in that space.

Recall some facts about the N-waves, which can be found, for example, in [Liu00]. Define

p = −2 inf
y

∫ y

−∞
u(x)dx, and q = 2 sup

y

∫ ∞

y

u(x)dx, (2.16)

which are invariant for solutions of equation (2.1) when µ = 0. (Note that our definitions of p
and q differ from those in [KT01] by a factor of 2.) The mass satisfies M = (q − p)/2. We will
refer to q as the “positive mass” of the solution and p as the “negative mass” of the solution.
The associated N-wave is given by

Np,q(x, t) =

{

x
t+1

if −
√

p(t + 1) < x <
√

q(t+ 1)

0 otherwise,

which is a weak solution of (2.1) only when µ = 0. When 0 < µ ≪ 1 it is only an approximate
solution because the necessary jump condition associated with weak solutions is not satisfied.
One can check that its positive and negative mass are given by q and p. In terms of the similarity
variables (2.2), this gives a two-parameter family of stationary solutions

Np,q(ξ) =

{

ξ if −√
p < ξ <

√
q

0 otherwise
(2.17)

of equation (2.3) when µ = 0.

We now relate the quantities β0 and β1 in (2.14) to the quantities p and q. These calculations
follow closely those of [KT01, §5]. Using equation (2.15) and the fact that M = (q − p)/2, we
see that

β0 = 2µ(1− e−
(q−p)
4µ ) =

{

2µ+ exp if q > p

−2µe−
(q−p)
4µ +O(µ) if q < p,

(2.18)
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where exp = O(e−C/µ) for some C > 0. Using the calculation in the appendix, one can relate
the quantity β1 in (2.14), for any fixed τ , to the quantities p and q via

β1e
− τ

2 = −4µ3/2
√
πep/(4µ) − 1

√
µ√
π

+O(µ) for 0 < q < p, (2.19)

and a similar result holds for q > p > 0. Two key consequences of this, which will be used
below, are

• The quantities β0 and β1 are related via

β0

β1

= exp, (2.20)

• The values of p and q for the diffusive N-waves change on a timescale of τ = O( 1
µ
). (Recall

they are only invariant for µ = 0.)

This second property, which can be seen by differentiating (2.19) with respect to τ , will lead to
the slow drift along the manifold of diffusive N-waves (see below for more details).

The following lemma, which will be proved in §3, states precisely that there exists an N-wave
that is close in L2(m) to each member of the family wN , at least if the viscosity is sufficiently
small, thus justifying the terminology “diffusive N-wave.”

Lemma 2.1. Given any positive constants δ, p and q, let wN(ξ, τ) be a member of the family
(2.14) of diffusive N-waves such that, at time τ = τ0, the positive mass of wN(·, τ0) is q and the
negative mass is p. There exists a µ0 > 0 sufficiently small such that, if 0 < µ < µ0, then

‖wN(·, τ0)−Np.q(·)‖L2(m) < δ

2.3 Statement of main results

We have seen above that the phase space of (2.3) does possess the global invariant manifold
structure that is indicated in figure 1. To complete the analysis, we must prove our two main
results, which provide the fast time scale on which solutions approach the family of diffusive N-
waves and the slow time scale on which solutions decay, along the metastable family of diffusive
N-waves, to the stationary diffusion wave.

Theorem 1. (The Initial Transient) Fix m > 3/2. Let w(ξ, τ) denote the solution to the
initial value problem (2.3) whose initial data has mass M , and let Np,q(ξ) be the inviscid N-wave
with values p and q determined by the initial data w(ξ, 0) = h(ξ) ∈ L2(m). Given any δ > 0,
there exists a T > 0, which is O(| logµ|), and µ sufficiently small so that

||w(T )−Np,q||L2(m) ≤ δ. (2.21)

9



This theorem states that, although the quantities p and q are determined by the initial data
w(ξ, 0), w is close to the associated N-wave, Np,q, at a time τ = T = O(| logµ|). The reason for
this is that p = p(τ) and q = q(τ) change on a time scale of O(1/µ), which can be seen using
equation (2.19) and is slower than the initial evolution of w. The rate of change of p and q also
determines the rate of motion of solutions along the manifold of diffusive N-waves, as illustrated
in Figure 1. Note that this theorem states that the solution will be close to an inviscid N-wave
after a time T = O(| logµ|). By combining this with Lemma 2.1, we see that the solution is also
close to a diffusive N-wave.

We remark that the timescale O(| logµ|) was rather unexpected. We actually expected to
approach a diffusive N -wave on a time scale O(1), although we have not yet been able to obtain
this stronger result. However, these time scales correspond well with the numerical observations
of [KT01, Figure 1], where one can see that, for µ = 0.01, the solution looks like a diffusive
N-wave at time 2 and a diffusion wave at time 100.

Remark 2.3. To some extent, this fast approach to the manifold of N-waves can be thought of
in terms of the Cole-Hopf transformation (2.7), which depends on µ. For small µ, this nonlinear
coordinate change can reduce the variation in the solution for |ξ| large. This is illustrated in
figure 5.1 of [KN02]. If µ is small enough, the Cole Hopf transformation can make the initial
data look like an N-wave even before any evolution has taken place.

Theorem 2. (Local Attractivity) There exists a c0 sufficiently small such that, for any
solution w(·, τ) of the viscous Burger’s equation (2.3) for which the initial conditions satisfy

w|τ=0 = w0
N + φ0,

where w0
N is a diffusive N-wave and ‖φ0‖L2(m) ≤ c0, there exists a constant Cφ such that

w(·, τ) = wN(·, τ) + φ(·, τ),

with wN the corresponding diffusive N-wave solution and

‖φ(·, τ)‖L2(m) ≤ Cφe
−τ .

By combining these results, we obtain a geometric description of metastability. Theorem 1 and
Lemma 2.1 tell us that, for any solution, there exists a T = O(| logµ|) at which point the solution
is near a diffusive N-wave. By using Theorem 2 with this solution at time T as the “initial
data,” we see that the solution must remain near the family of diffusive N-waves for all time. As
remarked above, the time scale ofO(1/µ) on which the solution decays to the stationary diffusion
wave is then determined by the rates of change of p(τ) and q(τ) within the family of diffusive
N-waves. In other words, near the manifold of diffusive N-waves, w(ξ, τ) = wN(ξ, τ) + φ(ξ, τ),
where φ(ξ, τ) ∼ e−τ and wN(ξ, τ) is approaching a self-similar diffusion wave on a timescale
determined by the rates of change of p(τ) and q(τ), which are O(1/µ).

We remark that it is not the spectrum of Lµ that determines, with respect to µ, the rate of
metastable motion. Instead, this is given by the sizes of the coefficients β0 and β1 in the spectral
expansion and their relationship to the quantities p and q.
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3 Proof of Lemma 2.1

We now prove Lemma 2.1.

In [KT01], Kim and Tzavaras prove that the inviscid N -wave is the point-wise limit, as µ → 0,
of the diffusive N -wave. Here we extend their argument to show that one also has convergence
in the L2(m) norm. For simplicity we will check explicitly the case in which 0 < q < p - the case
in which q is larger than p follows in an analogous fashion. However, we note that we do require
that both p and q be nonzero which is why we stated in the introduction that our results hold
only for “almost all” initial conditions. See Remark 3.1, below.

Using equation (2.13) we can write the diffusive N -wave with positive and negative mass given
by q and p at time τ0 as

wN(ξ, τ0) =
β0ϕ0(ξ) + β1e

−τ0/2ϕ1(ξ)

1− β0
2µ

∫ ξ

−∞ ϕ0(y)dy − β1
2µ
e−τ0/2ϕ0(ξ)

=
β0ϕ0(ξ) + β̃1ϕ1(ξ)

1− β0
2µ

∫ ξ

−∞ ϕ0(y)dy − β̃1
2µ
ϕ0(ξ)

where for notational simplicity we have defined β̃1 = β1e
−τ0/2. If we now recall that ϕ1(ξ) =

− ξ
2µ
ϕ0(ξ), we can rewrite the expression for the wN as

wN(ξ, τ0) =
ξ − 2µβ0

β̃1

1− 2µ

β̃1ϕ0(ξ)
{1− β0

2µ

∫ ξ

−∞ ϕ0(y)dy}
. (3.22)

We need to prove that
∫ ∞

−∞
(1 + ξ2)m(wN(ξ, τ0)−Np,q(ξ))

2 < δ2 .

We’ll give the details for
∫ ∞

0

(1 + ξ2)m(wN(ξ, τ0)−Np,q(ξ))
2 < δ2/2 .

The integral over the negative half axis is entirely analogous.

Break the integral over the positive axis into three pieces - the integral from [0,
√
q − ǫ], the

integral from [
√
q− ǫ,

√
q+ ǫ] and the integral from [

√
q+ ǫ,∞). Here ǫ is a small constant that

will be fixed in the discussion below. We refer to the integrals over each of these subintervals as
I, II, and III respectively and bound each of them in turn.

The simplest one to bound is the integral II. Note that, using equations (2.15) and (2.19), the
denominator in (3.22) can be bounded from below by 1/2 and, thus, the integrand is can be
bounded by C(1 + (

√
q + ǫ)2)mq. Therefore, if ǫ <

√
q, we have the elementary bound

II ≤ Cǫq(1 + 4q)m.

Next consider term III. For ξ >
√
q, Np,q(ξ) = 0 so

III =

∫ ∞

√
q+ǫ

(1 + ξ2)m(wp,q(ξ, τ0))
2dξ (3.23)

11



To estimate this term we begin by considering the denominator in (3.22). Using (2.18) and
(2.19), we have

1− β0

2µ

∫ ξ

−∞
ϕ0(y)dy = e

1
4µ

(p−q) +
β0

2µ

∫ ∞

ξ

ϕ0(y)dy. (3.24)

Thus, the full denominator in (3.22) has the form

1− 2µ

β̃1ϕ0(ξ)

{

e
1
4µ

(p−q) +
β0

2µ

∫ ∞

ξ

ϕ0(y)dy

}

= 1− 4
√
πµ3/2

β̃1

e
1
4µ

(p−q)eξ
2/(4µ) +

β0

β̃1

∫∞
ξ

ϕ0(y)dy

ϕ0(ξ)

= 1 +
4
√
πµ3/2

1
√
πµ3/2ep/(4µ) +O(

√
µ)

e
1
4µ

(p−q)eξ
2/(4µ) + exp

= 1 +

(

e
1
4µ

(ξ2−q)

1 +O(µ−1e−p/(4µ))

)

+ exp,

where exp denotes terms that are exponentially small in µ (i.e. contain terms of the form
e−p/(4µ) or e−q/(4µ)), uniformly in ξ. Note that, in the above, the term

∫∞
ξ

ϕ0(y)dy/ϕ0(ξ) was
bounded uniformly in µ using the estimate

∫ ∞

x

e−
s2

2 ds ≤ 1

x
e−

x2

2 , for x > 0,

which can be found in [KS91, Problem 9.22]. But with this estimate on the denominator of wN ,
we can bound the integral III by

III ≤ C

∫ ∞

√
q+ǫ

(1 + ξ2)m(ξ − 2µβ0

β̃1

)2(1 + e
1
4µ

(ξ2−q))−2dξ,

where the constant C can be chosen independent of µ for µ < µ0 if µ0 is sufficiently small. This
integral can now be bounded by elementary estimates, and we find

III ≤ Ce−ǫ
√
q/2µ,

where the constant C depends on q but can be chosen independent of µ.

Finally, we bound the integral I. Note that for 0 < ξ <
√
q, Np,q(ξ) = ξ, so

wp,q(ξ, τ0)−Np,q(ξ) =
−2µβ0

β̃1
+ ξe

1
4µ

(ξ2−q) + ξexp

(1 + e(ξ2−q)/4µ + exp)

However, using our expressions for β0,1 in terms of p and q and the fact that in term I ξ2 − q <
−ǫ

√
q we see that all of these terms are exponentially small. Since the length of the interval of

integration is bounded by
√
q we have the bound

I ≤ Cqe−ǫ
√
q/(4µ) + exp.

Combining the estimates on the terms I, II, and III we see that if we first choose ǫ << δ and
then µ << ǫ, the estimate in the lemma follows. This completes the proof of Lemma 2.1.

Remark 3.1. The calculation in the appendix shows that β1 = 0 if and only if p = 0 or q = 0.
Therefore, in that case, wN is really just a diffusion wave, and so there is no metastable period
in which it looks like an inviscid N-wave.
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4 Proof of Theorem 1

In this section we show that for arbitrary initial data in L2(m), m > 3/2, the solution approaches
an inviscid N-wave in a time of O(| logµ|), thus proving Theorem 1.

Remark 4.1. Here we will use a different form of the Cole-Hopf transformation than that given
in (2.7). In particular, we will use

U(x, t) = e−
1
2µ

R x
−∞ u(y,t)dy. (4.25)

Equation (2.7) is essentially the derivative of (4.25), and both transform the nonlinear Burgers
equation into the linear heat equation. Each is useful, for us, in different ways. Equation (2.7)
preserves the localization of functions, for example, whereas (4.25) leads to a slightly simpler
inverse, which will be easier to work with in the current section.

Using the Cole-Hopf transformation (4.25) and the formula for the solution of the heat equation,
we find that the solution of (2.1) can be written as

u(x, t) =

∫ (x−y)
t

e−
1
2µ(

1
2t
(x−y)2+H(y))dy

∫

e−
1
2µ(

1
2t
(x−y)2+H(y))dy

,

where H(y) =
∫ y

−∞ h(z)dz. If we change to the rescaled variables (2.2), this gives the solution
to (2.3) in the form

w(ξ, τ) =

∫

(ξ − η)e−
1
2µ(

1
2
(ξ−η)2+H(eτ/2η))dη

∫

e−
1
2µ(

1
2
(ξ−η)2+H(eτ/2η))dη

. (4.26)

We will prove that, if we fix δ > 0, then there exists a µ sufficiently small and a T sufficiently
large (O(| logµ|) as µ → 0) such that

‖w(·, T )−Np,q(·)‖L2(m) < δ.

We estimate the norm by breaking the corresponding integral into subintegrals using (−∞,−√
p−

ǫ), (−√
p− ǫ,−√

p + ǫ), (−√
p + ǫ,−ǫ), (−ǫ, ǫ), (ǫ,

√
q − ǫ), (

√
q − ǫ,

√
q + ǫ) and (

√
q + ǫ,∞).

Note that the integrals over the “short” intervals can all be bounded by Cǫ, so we’ll ignore
them. We’ll estimate the integrals over (ǫ,

√
q− ǫ) and (

√
q+ ǫ,∞) - the remaining two are very

similar.

First, consider the region where ξ >
√
q + ǫ. In this region, N(ξ) ≡ 0, so we only need to show

that, given any δ > 0, there exists a µ sufficiently small and T > 0, of O(| logµ|), such that

∫ ∞

√
q+ǫ

(1 + ξ2)m|w(ξ, τ)|2dξ < δ.

Consider the formula for w, given in equation (4.26). To bound this, we must bound the
denominator from below and the numerator from above. We will first focus on the denominator.

13



We will write the denominator as
∫

e−
1
2µ(

1
2
(ξ−η)2+H(eτ/2η))dη =

∫ −Re−τ/2

−∞
e−

1
2µ(

1
2
(ξ−η)2+H(eτ/2η))dη

+

∫ ∞

Re−τ/2

e−
1
2µ(

1
2
(ξ−η)2+H(eτ/2η))dη

+

∫ Re−τ/2

−Re−τ/2

e−
1
2µ(

1
2
(ξ−η)2+H(eτ/2η))dη

≡ I1 + I2 + I3,

for some R > 0 that will be determined later. Consider the first integral, I1. In this region

|H(e
τ
2 η)| = |

∫ e
τ
2 η

−∞

1

(1 + y2)
m
2

(1 + y2)
m
2 h(y)dy|

≤ ||h||m
∫ −R

−∞

1

(1 + y2)m
dy

≤ C(R, ||h||m),

(4.27)

where the constant C(R, ||h||m) → 0 as R → ∞ or ||h||m → 0. In addition, note that the error
function satisfies the bounds

z

1 + z2
e−

z2

2 ≤
∫ ∞

z

e−
s2

2 ds ≤ 1

z
e−

z2

2 ,

for z > 0 [KS91, pg 112, Problem 9.22]. Therefore, we have that

I1 ≥ e−
C(R,||h||m)

2µ

∫ −Re
τ
2

−∞
e−

1
4µ

(ξ−η)2dη

≥ e
−C(R,||h||m)

2µ
2µ(ξ +Re−τ/2)

2µ+ (ξ +Re−
τ
2 )2

e−
(ξ+Re

− τ
2 )2

4µ

≥ C
µ√
q
e

−C(R,||h||m)
2µ e−

(ξ+Re
− τ

2 )2

4µ

≥ C
µ√
q
e

−C(R,||h||m)
2µ e−

R2e−τ

2µ e−
ξ2

2µ ,

(4.28)

where we have used the fact that (a + b)2 ≤ 2a2 + 2b2. In order to bound I2, we will use that,
for η > Re

τ
2 , similar to (4.27)

|
∫ e

τ
2 η

−∞
h(y)dy| = |M −

∫ ∞

e
τ
2 η

h(y)dy| ≤ M + C(R, ||h||m).

Therefore,

I2 ≥ e−
1
2µ

(M+C(R,||h||m))

∫ ∞

Re−
τ
2

e−
1
4µ

(ξ−η)2dη

= e−
1
2µ

(M+C(R,||h||m))
√

4µ

∫ ξ−Re
− τ

2√
4µ

−∞
e−s

2

ds

≥ Ce−
1
2µ

(M+C(R,||h||m))
√

4µ.

(4.29)
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Note that in making the above estimate, we have chosen τ large enough so that |Re−
τ
2 | < ǫ/2,

and so ξ − Re−τ/2 > 0. Thus, the error function is bounded from below by
√
π/2.

Consider I3. We can bound

H(e
τ
2 η) = M −

∫ ∞

e
τ
2 η

h(y)dy ≤ M +
q

2
.

Therefore,

I3 ≥ e−
1
2µ

(M+ q
2
)

∫ Re
τ
2

Re−
τ
2

e−
1
4µ

(ξ−η)2dη

≥ e−
1
2µ

(M+ q
2
)e−

ξ2

2µ

∫ Re−
τ
2

−Re−
τ
2

e−
η2

2µ dη

≥ e−
1
2µ

(M+ q
2
)e−

ξ2

2µ 2Re−
τ
2 e−

R2e−τ

2µ .

(4.30)

Taking the largest of equations (4.28), (4.29), and (4.30), we obtain
∫

e−
1
2µ(

1
2
(ξ−η)2+H(eτ/2η)) ≥ C

√
µe−

1
2µ

(M+C(R,||h||m)). (4.31)

Now, we will bound the numerator in equation (4.26) from above. We will split the integral up
into the same three regions as above, and denote the resulting terms by J1, J2, and J3. First,
we have

|J1| = |
∫ −Re−

τ
2

−∞
(ξ − η)e−

1
4µ

(ξ−η)2e−
1
2µ
H(e

τ
2 η)dη|

≤ |e
C(R,||h||m)

2µ

∫ −Re−
τ
2

−∞
(ξ − η)e−

1
4µ

(ξ−η)2dη|

= e
C(R,||h||m)

2µ 2µe−
(ξ+Re

− τ
2 )2

4µ

≤ 2µe
C(R,||h||m)

2µ e−
ξ2

4µ .

(4.32)

Next, consider J2. We have

|J2| = |
∫ ∞

Re−
τ
2

(ξ − η)e−
1
4µ

(ξ−η)2e−
1
2µ
H(e

τ
2 η)dη|

If we now integrate by parts inside the integral and use the fact that H(e
τ
2 η) ≥ M − (q/2), we

obtain

|J2| ≤ Cµe−
M
2µ e

1
4µ

[q−(ξ−Re−τ/2)2] + e−
M
2µ |
∫ ∞

Reτ/2
e−

1
4µ

(ξ−η)2h(eτ/2η)e+
1
2µ

(M−H(e
τ
2 η))dη|. (4.33)

We now turn to J3. Again we use the fact that H(e
τ
2 η) ≥ M − (q/2). Then

|J3| ≤ 2CRe−
τ
2 e−

M
2µ (ξ +Re−

τ
2 )e

1
4µ

[q−(ξ−Re−τ/2)2]. (4.34)
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Combining the estimates for the Ji’s, equations (4.32) - (4.34), and the estimate for the denom-
inator (4.31), we have

∫ ∞

√
q+ǫ

(1 + ξ2)m|w(ξ, τ)|2dξ ≤ C

∫ ∞

√
q+ǫ

(1 + ξ2)mµe
M
µ e

2
µ
C(R,||h||m)e−

ξ2

2µdξ

+ C

∫ ∞

√
q+ǫ

(1 + ξ2)m
1

µ
e

1
µ
C(R,||h||m)(Re−

τ
2 )2(ξ +Re−

τ
2 )2e

1
2µ

[q−(ξ−Re−τ/2)2]dξ

+ C

∫ ∞

√
q+ǫ

(1 + ξ2)mµe
1
µ
C(R,||h||m)e

1
2µ

[q−(ξ−Re−τ/2)2]dξ

+ C

∫ ∞

√
q+ǫ

(1 + ξ2)m
1

µ
e

1
µ
C(R,||h||m)|

∫ ∞

Re−τ/2

e−
1
4µ

(ξ−η)2h(eτ/2η)e+
1
2µ

(M−H(e
τ
2 η))dη|2dξ

≡ I + II + III + IV .

We now estimate term II. Terms I and III are similar. Define z = ξ−√
q− ǫ ∈ (0,∞). Recalling

that τ has been chosen sufficiently large so that Re−
τ
2 < ǫ/2, we have

e
1
2µ

[q−(ξ−Re−τ/2)2] ≤ e−
1
2µ
z2e−

1
8µ
ǫ2e−

1
2µ
ǫ
√
q.

Therefore, we have

|II| ≤ C

µ
e

1
µ
C(R,||h||m)

∫ ∞

0

(1 + (z +
√
q + ǫ)2)m(z +

√
q +

3

2
ǫ)e−

1
2µ
z2e−

1
8µ
ǫ2e−

1
2µ
ǫ
√
qdz

≤ C(
√
q)2m+1e−

1
2µ
ǫ
√
q 1√

µ
e

1
µ
C(R,||h||m)e−

1
8µ
ǫ2.

This can be made as small as we like (for any q) by choosing R large enough so that C(R, ||h||m) <
ǫ2/16 and µ sufficiently small.

Term IV can be bound by

|IV | ≤ C
1

µ
e

2
µ
C(R,||h||m)||f(z) ∗ g(z)||2L2,

where f(z) = (1 + |z|m)h(eτ/2z) and g(z) = (1 + |z|m)e− 1
4µ
z2 , and we have used the fact that

(1+ |ξ|m) ≤ C(1 + |ξ− η|m)(1 + |η|m). Estimating the convolution by the L1 norm of g and the
L2 norm of f , we arrive at

|IV | ≤ Ce−τ/2e
2
µ
C(R,||h||m)||h||2m.

In order to make this term small, we much chose R so that C(R, ||h||m) ∼ µ as µ → 0. One
can check that C(R, ||h||m) ≤ C||h||m/R2m−1. Since we have required that Re−τ/2 < ǫ/2, this
means we must chose τ large enough so that

τ ≥ C

2m− 1
| log(µ)|.

Term IV will then be small because e−τ/2 is.
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Next consider the part of the integral contributing to ‖w(·, τ) − N(·)‖m for ǫ < ξ <
√
q − ǫ.

We assume, as above, that Re−τ/2 < ǫ/2. From (4.26) and the fact that N(ξ) = ξ for ξ in this
range, we have

w(ξ, τ)−N(ξ) = −
∫

ηe−
1
2µ(

1
2
(ξ−η)2+H(eτ/2η))dη

∫

e−
1
2µ(

1
2
(ξ−η)2+H(eτ/2η))dη

As above we will split the denominator up into three pieces, I1 - I3, to bound it from below, and
split the numerator up into three pieces, J1 - J3, to bound it from above. Many of the estimates
are similar to those above, and so we omit some of the details.

For the denominator, we have

|I1| ≥ e−
1
2µ
C(R,||h||m)

∫ −Re−τ/2

−∞
e−

1
2µ(

1
2
(ξ−η)2)dη

≥ Cµe−
1
2µ
C(R,||h||m)e−

ξ2

4µ .

Also,

|I2| ≥ C
√
µe−

1
2µ

(M+C(R,||h||m)),

where, as above, we have used the fact that ξ −Re−τ/2 > 0. Finally, we have

|I3| ≥ e−
M
2µ

− q
4µ 2Re−τ/2e−

1
4µ

(ξ−Re−τ/2)2 .

For the numerator, we have

|J1| ≤ e
C(R,||h||m)

2µ

∫ −Re−τ/2

−∞
−ηe−

1
4µ

(ξ−η)2dη

≤ e
C(R,||h||m)

2µ

∫ ∞

ξ+Re−τ/2

(z − ξ)e−
z2

4µdz

≤ Cµe
C(R,||h||m)

2µ e−
(ξ+Re−τ/2)2

4µ + Cµξe−
(ξ+Re−τ/2)2

4µ

≤ Cµξe−
ξ2

4µ .

where we have used the fact that ξ > 0. Next,

|J2| ≤ e−
M
2µ e

C(R,||h||m)
2µ

√

4µ

∫
ξ−Re−τ/2

√
4µ

−∞
(ξ −

√

4µz)e−z
2

dz

≤ Cµξe−
M
2µ e

C(R,||h||m)
2µ e−

(ξ−Re−τ/2)2

4µ .

Lastly,

|J3| ≤ Ce−
M
2µ e

C(R,||h||m)
2µ (Re−τ/2)2e−

1
4µ

(ξ−Re−τ/2)2
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Therefore, we have

∫

√
q−ǫ

ǫ

(1 + ξ2)m|w(ξ, τ)−N(ξ)|2dξ

≤ C

∫

√
q−ǫ

ǫ

(1 + ξ2)m





ξe−
M
2µ e

C(R,||h||m)
2µ e−

(ξ−Re−τ/2)2

4µ

√
µe−

1
2µ

(M+C(R,||h||m))





2

dξ

≤ C
1

µ

∫

√
q−ǫ

ǫ

(1 + ξ2)m+1e
2
µ
C(R,||h||m)e−

(ξ−Re−τ/2)2

2µ dξ

≤ C
1

µ
e

2
µ
C(R,||h||m)

∫

√
q−2ǫ

0

(1 + (z + ǫ)2)me−
ǫ2

8µ e−
zǫ
2µ e−

z2

2µdz

≤ C
1√
µ
e

2
µ
C(R,||h||m)e−

ǫ2

8µ ,

where we have used the change of variables ξ = z + ǫ. This can be made small by first choosing
R large enough so that 2C(R, ||h||m) < ǫ2/8, and then taking µ small.

5 Proof of Theorem 2

In the previous section we saw that in a time τ = O(| logµ|) we end up in an arbitrarily small
(but O(1) with respect to µ) neighborhood of the manifold of diffusive N -waves. In the present
section we show that this manifold is locally attractive by proving Theorem 2.

Remark 5.1. An additional consequence of the proof of this theorem is that the manifold of
diffusive N-waves is attracting in a Lyapunov sense because the rate of approach to it, O(e−τ ),
is faster than the decay along it, O(e−τ/2). Note that this is not immediate from just spectral
considerations since this manifold does not consist of fixed points. Therefore, the eigendirections
at each point on the manifold can change as the solution moves along it.

Remark 5.2. In [KN02, §5], the authors make a numerical study of the metastable asymptotics
of Burgers equation. Their numerics indicate that, while the rate of convergence toward the
diffusive N-wave (e−τ in our formulation) seems to be optimal, the constant in front of the
convergence rate (Cφ in our formulation) can be very large for some initial conditions. In fact,
our proof indicates that this constant can be as large as O(1/µ)max{1, eM/2µ}.

To prove the theorem note that by the Cole-Hopf transformation we know that if w(ξ, τ) =
wN(ξ, τ) + φ(ξ, τ) solves the rescaled Burger’s equation, where wN is given in equation (2.14),
then

W (ξ, τ) = (wN(ξ, τ) + φ(ξ, τ))e−
1
2µ

R ξ
−∞(wN (y,τ)+φ(y,τ))dy

is a solution of the (rescaled) heat equation:

∂τW = LµW. (5.35)
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We now write W = VN+Ψ, where VN = wN exp(− 1
2µ

∫ ξ

−∞wN(y, τ)dy) = β0ϕ0(ξ)+β1e
−τ/2ϕ1(ξ).

That is, VN is the heat equation representation of the diffusive N -wave, which we know is a
linear combination of the Gaussian, ϕ0, and ϕ1.

With the aid of the Cole-Hopf transformation we can show that φ decreases with the rate
claimed in the Proposition. To see this, first note that if we choose the coefficients β0 and β1

appropriately we can insure that
∫

Ψ(ξ, 0) =

∫

ξΨ(ξ, 0)dξ = 0.

This follows from the fact that the adjoint eigenfunctions corresponding to the eigenfunctions
ϕ0 and ϕ1, respectively, are just 1 and −ξ. This in turn means that there exists a constant Cψ
such that

‖Ψ(·, τ)‖L2(m) ≤ Cψe
−τ , (5.36)

at least if m > 5/2. Integrating the Cole-Hopf transformation we find

∫ ξ

−∞
(VN(y, τ) + Ψ(y, τ))dy = −2µ

{

e−
1
2µ

R ξ
−∞((wN (y,τ)+φ(y,τ))dy − 1

}

(5.37)

and, in the case φ = 0,
∫ ξ

−∞ VN = −2µ
{

e−
1
2µ

R ξ
−∞WN − 1

}

. For later use we note the following

easy consequence of (5.37):

Lemma 5.1. There exists a constant δN > 0 such that for all τ ≥ 0 we have

1−
∫ ξ

−∞

1

2µ
(VN(y, τ) + Ψ(y, τ)) dy = e−

1
2µ

R ξ
−∞(wN (y,τ)+φ(y,τ))dy ≥ δN .

Proof. For any finite τ the estimate follows immediately because of the exponential. The only
thing we have to check is that the right hand side does not tend to zero as τ → ∞. However
this follows from the fact that we know (from a Lyapunov function argument, for example) that
wN(ξ, τ)+φ(ξ, τ) → AM(ξ) as τ → ∞, where AM is one of the self-similar solutions constructed
in Section 1 and hence

e−
1
2µ

R ξ
−∞(wN (y,τ)+φ(y,τ))dy → e−

1
2µ

R ξ
−∞ AM (y) = 1−(1−e−M/2µ)

∫ ξ

−∞
ϕ0(y)dy ≥ min{1, e−M/2µ} > 0 .

�

Next note that by rearranging (5.37) we find

∫ ξ

−∞
φ(y, τ)dy = −2µ log

{

1− 1
2µ

∫ ξ

−∞ (VN(y, τ) + Ψ(y, τ))dy

1− 1
2µ

∫ ξ

−∞ VN(y, τ)dy

}

. (5.38)

Differentiating, we obtain the corresponding formula for φ, namely,

φ(ξ, τ) = − 1

2µ

Ψ(ξ, τ)
∫ ξ

−∞ VN(y, τ)dy − VN(ξ, τ)
∫ ξ

−∞Ψ(y, τ)dy − 2µΨ(ξ, τ)
(

1− 1
2µ

∫ ξ

−∞(VN(y, τ) + Ψ(y, τ))dy
)(

1− 1
2µ

∫ ξ

−∞ VN(y, τ)dy
) (5.39)
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But now, by Lemma 5.1 the denominator of the expression for φ can be bounded from below by
δ2N , while in the numerator

∫ ξ

−∞ VN and VN are bounded in time while
∫ ξ

−∞Ψ and Ψ are each
bounded by Cψ,Ψe

−τ which leads to the bound asserted in Theorem 2.

6 Concluding remarks

In the above analysis, the global, one-dimensional manifold of fixed points governing the long-
time asymptotics is constructed directly, in a manner similar to that of [GW05] for the Navier-
Stokes equations in two-dimensions. However, we then utilized the Cole-Hopf transformation to
extend the stable foliation of this manifold to a global foliation, which consists of the diffusive
N-waves that govern the metastable behavior. Ultimately one would like to obtain a similar
geometric description of, for example, the numerically observed metastability in [YMC03] for
the two-dimensional Navier-Stokes equations. In order to do this one would need an alternative
way to construct a global foliation of the manifold of fixed points. This would be an interesting
direction for future work.
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8 Appendix

We now give the calculation that leads to (2.19). Using the definition of p in (2.16), we find
that

p = −2 inf
y

∫ y

−∞
wN(ξ, τ)dξ = 4µ sup

y

∫ y

−∞
∂ξ log

[

1− β0

2µ

∫ ξ

−∞
ϕ0(y)dy −

β1

2µ
e−

τ
2ϕ0(ξ)

]

dξ

= 4µ sup
y

log

[

1− β0

2µ

∫ y

−∞
ϕ0(z)dz −

β1

2µ
e−

τ
2ϕ0(y)

]

.

A direct calculation shows that the supremum is achieved at

y∗ =
2µβ0

β1e
− τ

2

.
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Substituting in this value and rearranging terms, we find

−β1

2µ
e−

τ
2ϕ0(y

∗) = e
p
4µ −

(

1− β0

2µ

∫ y∗

−∞
ϕ0(z)dz

)

.

Since
∫ y∗

−∞ ϕ0(z)dz ∈ (0, 1), the value of β0 in (2.15) implies that the right hand side satisfies

e
p
4µ − 1 ≤ e

p
4µ −

(

1− β0

2µ

∫ y∗

−∞
ϕ0(z)dz

)

≤ e
p
4µ − e−

M
2µ

if M > 0, and

e
p
4µ − e−

M
2µ ≤ e

p
4µ −

(

1− β0

2µ

∫ y∗

−∞
ϕ0(z)dz

)

≤ e
p
4µ − 1

if M < 0. Because ϕ0(y) ≥ 0 and p ≥ 2|M |, we see that, if µ is sufficiently small, then β1 ≤ 0.
Furthermore, β1 = 0 if p = −M/2, ie M < 0 and q = 0. Using the fact that ϕ(y) ≤ 1/

√
4πµ,

we see that

−β1e
− τ

2 ≥ 2µ
√

4πµ

[

e
p
4µ −

(

1− c
β0

2µ

)]

,

where c ∈ (0, 1). This leads to the estimate (2.19), at least when both q 6= 0 and p 6= 0.

We remark that β1 ≤ 0 and the fact that

1− β0

2µ

∫ y

−∞
ϕ0(z)dz = 1− (1− e−

M
2µ )

∫ y

−∞
ϕ0(z)dz ∈

{

(e−
M
2µ , 1) if M > 0

(1, e−
M
2µ ) if M < 0

implies that the denominator in the definition of wN (2.14) is never zero.
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