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OPTIMIZATION AND CONVERGENCE OF OBSERVATION
CHANNELS IN STOCHASTIC CONTROL

SERDAR YÜKSEL AND TAMÁS LINDER

Abstract. This paper studies the optimization of observation channels (stochastic kernels) in
partially observed stochastic control problems. In particular, existence and continuity properties
are investigated mostly (but not exclusively) concentrating on the single-stage case. Continuity
properties of the optimal cost in channels are explored under total variation, setwise convergence,
and weak convergence. Sufficient conditions for compactness of a class of channels under total
variation and setwise convergence are presented and applications to quantization are explored.
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1. Introduction. In stochastic control, one is often concerned with the following
problem: Given a dynamical system, an observation channel (stochastic kernel), a cost
function, and an action set, when does there exist an optimal policy, and what is an
optimal control policy? The theory for such problems is advanced, and practically
significant, spanning a wide variety of applications in engineering, economics, and
natural sciences.

In this paper, we are interested in a dual problem with the following questions to
be explored: Given a dynamical system, a cost function, an action set, and a set of
observation channels, does there exist an optimal observation channel? What is the
right convergence notion for continuity in such observation channels for optimization
purposes? The answers to these questions may provide useful tools for characterizing
an optimal observation channel subject to constraints.

We start with the probabilistic setup of the problem. Let X ⊂ R
n, be a Borel

set in which elements of a controlled Markov process {Xt, t ∈ Z+} live. Here and
throughout the paper Z+ denotes the set of nonnegative integers and N denotes the
set of positive integers. Let Y ⊂ R

m be a Borel set, and let an observation channel Q
be defined as a stochastic kernel (regular conditional probability) from X to Y, such
that Q( · |x) is a probability measure on the (Borel) σ-algebra B(Y) on Y for every
x ∈ X, and Q(A| · ) : X → [0, 1] is a Borel measurable function for every A ∈ B(Y).
Let a decision maker (DM) be located at the output an observation channel Q, with
inputs Xt and outputs Yt. Let U be a Borel subset of some Euclidean space. An
admissible policy Π is a sequence of control functions {γt, t ∈ Z+} such that γt is
measurable with respect to the σ-algebra generated by the information variables

It = {Y[0,t], U[0,t−1]}, t ∈ N, I0 = {Y0}.

where

Ut = γt(It), t ∈ Z+ (1.1)
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are the U-valued control actions and we used the notation

Y[0,t] = {Ys, 0 ≤ s ≤ t}, U[0,t−1] = {Us, 0 ≤ s ≤ t− 1}.

The joint distribution of the state, control, and observation processes is determined
by (1.1) and the following relationships:

Pr
(

(X0, Y0) ∈ B
)

=

∫

B

P (dx0)Q(dy0|x0), B ∈ B(X× Y),

where P is the (prior) distribution of the initial state X0, and

Pr

(

(Xt, Yt) ∈ B

∣

∣

∣

∣

X[0,t−1] = x[0,t−1], Y[0,t−1] = y[0,t−1], U[0,t−1] = u[0,t−1]

)

=

∫

B

P (dxt|xt−1, ut−1)Q(dyt|xt), B ∈ B(X× Y), t ∈ N,

where P (·|x, u) is a stochastic kernel from X× U to X.
One way of presenting the problem in a familiar setting is the following: Consider

a dynamical system described by the discrete-time equations

Xt+1 = f(Xt, Ut,Wt),

Yt = g(Xt, Vt)

for some measurable functions f, g, with {Wt} being independent and identically dis-
tributed (i.i.d) system noise process and {Vt} an i.i.d. disturbance process, which are
independent of X0 and each other. Here, the second equation represents the com-
munication channel Q, as it describes the relation between the state and observation
variables.

With the above setup, let the objective of the decision maker be the minimization
of the cost

J(P,Q,Π) = EQ,Π
P

[ T−1
∑

t=0

c(Xt, Ut)

]

, (1.2)

over the set of all admissible policies Π, where c : X× U → R is a Borel measurable
cost function and EQ,Π

P denotes the expectation with initial state probability measure
given by P under policy Π and given channel Q. We adapt the convention that
random variables are denoted by capital letters and lowercase letters denote their
realizations. Also, given a probability measure µ the notation Z ∼ µ means that Z
is a random variable with distribution µ. Finally, let P be the set of all admissible
policies Π described above.

We are interested in the following problems:
Problem P1. Continuity on the space of channels (stochastic kernels)
Suppose {Qn, n ∈ N} is a sequence of communication channels converging in some
sense to a channel Q. When does

Qn → Q

imply

inf
Π∈P

J(P,Qn,Π) → inf
Π∈P

J(P,Q,Π)?
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Problem P2: Existence of optimal channels Let Q be a set of communication
channels. When do there exist minimizing and maximizing channels for the problems

inf
Q∈Q

inf
Π∈P

EQ,Π
P

[ T−1
∑

t=0

c(Xt, Ut)

]

and

sup
Q∈Q

inf
Π∈P

EQ,Π
P

[ T−1
∑

t=0

c(Xt, Ut)

]

.

If solutions to these problems exist, are they unique?
Problems P1 and P2 are challenging even in the single-stage (T = 1) setup and

in most of the paper we consider this case. Admittedly, the multi-stage case is more
important and we briefly consider this case is Section 6 at the end of the paper. Future
work is needed to fully address this technically more complex case.

The answers to problems P1 and P2 may help solve problems in application areas
such as:

• For a partially observed stochastic control problem, sometimes we have con-
trol over the observation channels by encoding/quantization. When does
there exist an optimal quantizer for such a setup? (Optimal quantization)

• Given an uncertainty set for the observation channels, can one identify a
worst element/best element? (Robust control)

• When estimating channels from empirical observations, under quite general
assumptions estimations converge to the actual distribution, in some sense.
For example, if an observation channel has the form Yt = Xt + Vt, where
the independent noise Vt has a density, nonparametric density estimation
methods lead to convergence in total variation, whereas for the general case,
the empirical measures converge weakly with probability one [10], [13]. Do
these modes of convergence imply that we could design the optimal control
policies based on empirical estimates, and does the optimal cost converge
to the correct limit as the number of measurements grows? (Consistency of
empirical controllers)

In the following, we will address problems P1 and P2 and introduce conditions
under which we can provide affirmative/conclusive answers.

1.1. Relevant literature. The problems stated are related to three main areas
of research: Robust control, optimal quantizer design and design of experiments.

References [8, 26, 28] have considered both optimal control and estimation and
the related problem of optimal control design when the channel is unknown. In
particular, [28] studies the existence of optimal continuous estimation policies and
worst-case channels under a relative entropy constraint characterizing the uncertainty
in the system. In [26], the total variation norm is considered as the measure of the
uncertainty, and the inf-sup policy is determined (thus, the setup considered as a
min-max problem for the generation of optimal control policies). Similarly, there are
connections with robust detection, such as those studied by Huber [21] and Poor [25],
when the source distribution to be detected belongs to some set.

A related area is on the theory of optimal quantization: References [1], [16] are
related as these papers study the effects of uncertainties in the input distribution
and consider robustness in the quantizer design. References [22] and [24] study the



4

consistency of optimal quantizers based on empirical data for an unknown source. In
the context of decentralized detection, [29] studied certain topological properties and
the existence of optimal quantizers. We will regard the quantizers as a particular class
of channels, and look for such optimal channels. One by-product of our analysis will be
a new approach to obtain conditions for the existence of optimal quantizers for a given
class of cost functions under mild conditions. We also note that, regarding connections
with information theory, some discussions on the topology of information channels are
presented in [23]. Recently, [34] considered continuity and other functional properties
of minimum mean square estimation problems under Gaussian channels.

As mentioned earlier, in most of the paper we consider the single-stage case. We
will also briefly consider the technically more complex multi-stage case in Section 6
where further conditions on the controlled Markov chain must be imposed. The full
development of this general setup is the subject of future work.

The rest of the paper is organized as follows. In the next section, we introduce
three relevant topologies on the space of communication channels. The continuity
problem is considered in Section 3. We study the problem of existence of optimal
channels in Section 4, followed by applications on quantization in Section 5. Section 6
gives an outlook to the multi-stage setup. The paper ends with the concluding remarks
and discussions in Section 7.

2. Some topologies on the space of communication channels. One ques-
tion that we wish address is the choice of an appropriate notion of convergence for a
sequence of observation channels. Toward this end, we first review three notions of
convergence for probability measures.

Let P(RN) denote the family of all probability measure on (X,B(RN )) for some
N ∈ N. Let {µn, n ∈ N} be a sequence in P(RN ). Recall that {µn} is said to converge
to µ ∈ P(RN ) weakly if

∫

RN

c(x)µn(dx) →

∫

RN

c(x)µ(dx)

for every continuous and bounded c : RN → R. On the other hand, {µn} is said to
converge to µ ∈ P(RN ) setwise if

∫

RN

c(x)µn(dx) →

∫

RN

c(x)µ(dx)

for every measurable and bounded c : RN → R. Setwise convergence can also be
defined through pointwise convergence on Borel subsets of RN (see, e.g., [20]), that is

µn(A) → µ(A), for all A ∈ B(RN )

since the space of simple functions is dense in the space of bounded and measurable
functions under the supremum norm.

For two probability measures µ, ν ∈ P(RN ), the total variation metric is given by

‖µ− ν‖TV := 2 sup
B∈B(RN )

|µ(B)− ν(B)|

= sup
f : ‖f‖∞≤1

∣

∣

∣

∣

∫

f(x)µ(dx) −

∫

f(x)ν(dx)

∣

∣

∣

∣

, (2.1)

where the supremum is over all measurable real f such that ‖f‖∞ = supx∈RN |f(x)| ≤
1. A sequence {µn} is said to converge to µ ∈ P(RN ) in total variation if ‖µn−µ‖TV →
0.
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Setwise convergence is equivalent to pointwise convergence on Borel sets whereas
convergence in total variation requires uniform convergence on Borel sets. Thus con-
vergence in total variation implies setwise convergence, which in turn implies weak
convergence. It follows that the induced topologies are of decreasing order of strength,
with the topology induced by convergence in total variation being the strongest and
the topology induced by weak convergence being the weakest, with the topology in-
duced by setwise convergence is in between these two. The topologies corresponding
to convergence in total variation and weak convergence are metrizable (the natural
metric for total variation convergence is d(µ, ν) = ‖ν−ν‖TV ; the usual choice for weak
convergence is the Prohorov metric [4]). The topology induced by setwise convergence
is not first countable, so it is not metrizable (see, e.g., [14, Prop. 2.2.1]).

2.1. Convergence of information (observation) channels. Here X = R
n

and Y = R
m, and Q denotes the set of all observation channels (stochastic kernels)

with input space X and output space Y. For P ∈ P(X) and Q ∈ Q we let PQ
denote the joint distribution induced on (X× Y,B(X× Y)) by channel Q with input
distribution P :

PQ(A) =

∫

A

Q(dy|x)P (dx), A ∈ B(X× Y).

Definition 2.1 (Convergence of Channels).

(i) A sequence of channels {Qn} converges to a channel Q weakly at input P
if PQn → PQ weakly.

(ii) A sequence of channels {Qn} converges to a channel Q setwise at input P
if PQn → PQ setwise, i.e., if PQn(A) → PQ(A) for all Borel sets A ⊂ X× Y.

(iii) A sequence of channels {Qn} converges to a channel Q in total variation at
input P if PQn → PQ in total variation, i.e., if ‖PQn − PQ‖TV → 0.

If we introduce the equivalence relation Q
P
≡ Q′ if and only if PQ = PQ′,

Q,Q′ ∈ Q, then the convergence notions in Definition 2.1 only induce the corre-
sponding topologies (resp. metrics) on the resulting equivalence classes in Q, instead
of Q. Since in most of the development the input distribution P is fixed, there should
be no confusion when (somewhat incorrectly) we talk about the induced topologies
(resp. metrics) on Q.

The preceding definition involved the input distribution P . The next lemma gives
sufficient conditions which may be easier to verify. The proof is given in the Appendix.

Lemma 2.2.

(i) If {Qn( · |x)} converges to Q( · |x) weakly for P -a.e. x, then PQn → PQ
weakly.

(ii) If {Qn( · |x)} converges to Q( · |x) setwise for P -a.e. x, then PQn → PQ
setwise.

(iii) If {Qn( · |x)} converges to Q( · |x) in total variation for P -a.e. x, then PQn →
PQ in total variation.

The conditions in Lemma 2.2 are almost universal in the choice of input proba-
bility measures; that is, the convergence characterizations will be independent of the
input distributions if each of the conditions is replaced with convergence of {Qn( · |x)}
to Q( · |x) for all x ∈ X. This is particularly useful when the input distribution
is unknown, or when the input distributions may change. The latter can occur in
multi-stage stochastic control problems.
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Example 2.3.
(i) Consider the case where the observation channel has the form Yt = Xt+Vt,

where {Vt} is an i.i.d. noise (disturbance) process. Suppose Vt ∼ fθ0 for some θ0 ∈ Θ,
where Θ ⊂ R

d is a parameter set and {fθ : θ ∈ Θ} is a parametric family of n-
dimensional densities such that fθn(v) → fθ0(v) for all v ∈ R

n and any sequence of
parameters θn such that θn → θ0. Then by Scheffé’s theorem fθn converges to fθ0
in the L1 sense, and consequently, the sequence of corresponding additive channels
Qn( · |x), defined by

Qn(A|x) =

∫

A

fθn(z − x) dz, A ∈ B(Rn)

converges to the channel Q( · |x) (corresponding to fθ) in total variation for all x.
(ii) Consider again the observation channel Yt = Xt + Vt, but assume this time

that we only know that Vt has a density f (which is unknown to us). If we have access
to independent observations V1, . . . , Vn from the noise process, then we can use any
of the consistent nonparametric methods, e.g., [10], to obtain an estimate fn which
converges (with probability one) to f in the L1 sense as n → ∞. More explicitly,
letting (Ω,A,P) be the probability space on which the independent observations {Vi}
are defined, for any ω ∈ Ω, the estimate fn = fn,ω is a pdf on R

n, and there exists
A ∈ A with P(A) = 1 such that

∫

|fn,ω(z) − fn(z)| dz → 0 as n → ∞ for all ω ∈ A.
The estimated channel Qn( · |x) = Qn,ω( · |x) corresponding to fn,ω converges to the
true channel Q( · |x) in total variation for all x with probability one. More explicitly,
for any ω ∈ A, Qn,ω( · |x) converges to Q( · |x) in total variation as n → ∞ for all x.

(iii) Now suppose that the observation channel Q is such that Q( · |x) admits a
conditional density f(y|x) for all x ∈ R

n. Given observations (X1, Yn), . . . , (Xn, Yn)
drawn independently from the distribution PQ, there exists a sequence of nonpara-
metric conditional density estimates fn(y|x) such that

∫
(
∫

|fn(y|x) − f(y|x)| dy

)

P (dx) → 0

with probability one [17]. This immediately implies that the channels Qn correspond-
ing to these estimates converge to Q in total variation at input P .

(iv) Finally, assume again the additive model Yt = Xt+Vt, where now we do not
have any information about the distribution µ of Vt. In this case there are no methods
to consistently estimate µ in total variation from independent samples V1, . . . , Vn

[11]. However, the empirical distribution µn of the samples converges weakly to µ
with probability one [13]. The corresponding estimated observation channels Qn( · |x)
converge weakly to the true channel Q( · |x) for all x with probability one.

2.2. Classes of assumptions. Throughout the paper the following classes of
assumptions will be adopted for the cost function c and the (Borel) set U ⊂ R

k in
different contexts:
Assumptions.

A1. The function c : X × U → R is non-negative, bounded, and continuous on
X× U.

A2. The function function c : X × U → R is non-negative, measurable, and
bounded.

A3. The function c : X × U → R is non-negative, measurable, bounded, and
continuous on U for every x ∈ X.
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A4. U is a compact set.
A5. U is a convex set.

3. Problem P1: Continuity of the optimal cost in channels. In this sec-
tion, we consider continuity properties under total variation, setwise convergence and
weak convergence. We consider the single-stage case, and thus investigate the conti-
nuity of the functional

J(P,Q) = inf
Π

EQ,Π
P

[

c(X0, U0)
]

= inf
γ∈G

∫

X×Y

c(x, γ(y))Q(dy|x)P (dx)

in the channel Q, where G is the collection of all Borel measurable functions mapping
Y into U. Note that by our previous notation, Π = γ is an admissible first-stage
control policy. As before, in this section Q denotes the set of all channels with input
space X and output space Y.

Total variation is a stringent notion for convergence. For example a sequence
of discrete probability measures never converges in total variation to a probability
measure which admits a density function with respect to the Lebesgue measure. On
the other hand, setwise convergence induces a topology on the space of probability
measures and channels which is not easy to work with. This is mainly due to the
property that the space under this convergence is not metrizable. However, the space
of probability measures on a complete, separable, metric (Polish) space endowed with
the topology of weak convergence is itself a complete, separable, metric space [4].
The Prohorov metric, for example, can be used to metrize this space. This metric has
found many applications in information theory and stochastic control. Furthermore,
there are well-known conditions to identify whether a family of probability measures is
weakly compact [4]. For these reasons, one would like to work with weak convergence.
However, as we will observe, weak convergence is insufficient in a general setup for
obtaining continuity.

Before proceeding further, however, we look for conditions under which an optimal
control policy exists; i.e, when the infimum in infγ E

Q,γ
P [c(X,U)] is a minimum. The

following simple result is proved in the Appendix.
Theorem 3.1. Suppose assumptions A3 and A4 hold. Then, there exists an

optimal control policy for any channel Q.
Remark. The assumptions that c is bounded and U is compact can be weakened

in the preceding theorem. For example, one can prove the same result by assuming
that U = R

k, lim‖u‖→∞ c(x, u) = ∞ for all x, c(x, u) is lower semi-continuous on U

for every x, and there exists u0 such that
∫

c(x, u0)P (dx) < ∞.

3.1. Weak convergence.

3.1.1. Absence of continuity under weak convergence. The following coun-
terexample demonstrates that J(P,Q) may not be continuous under weak convergence
of channels even for continuous cost functions and compact X, Y, and U. Note that
the absence of continuity here is also implied by a less elementary counterexample for
setwise convergence in Section 3.2.1.

Let X = Y = U = [a, b] for some a, b ∈ R, a < b. Suppose the cost is given as
c(x, u) = (x− u)2 and assume that P is a discrete distribution with two atoms:

P =
1

2
δa +

1

2
δb,
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where δa is the delta measure at point a, that is, δa(A) = 1{a∈A} for every Borel set
A, where 1E denotes the indicator function of event E. Let {Qn} be a sequence of
channels given by

Qn( · |x) =

{

δa+ 1
n

if x ≥ a+ 1
n
,

δa if x < a+ 1
n
.

(3.1)

In this case, the optimal control policy, which is unique up to changes in points
of measure zero, is

γn(y) = a1{y<a+ 1
n
} + b1{y≥a+ 1

n
}, n ∈ N, n ≥

1

b− a
,

leading to a cost of 0. We observe that the limit of the sequence {Qn( · |x)} is given
by

Q( · |x) = δa for all x ∈ R. (3.2)

Thus, by Lemma 2.2, Qn → Q weakly at input P . However, the limit of the sequence
of channels cannot distinguish between the inputs, since the channel output always
equals a. Thus, even though

J(P,Qn) = 0, for all n ≥
1

b− a
,

the cost of Q = limn Qn is

J(P,Q) =
(b− a)2

4

since, letting (X,Y ) ∼ PQ, we have γ(y) = E[X |Y = y] = (b+ a)/2 for all y.

3.1.2. Upper semi-continuity under weak convergence.
Theorem 3.2. Suppose assumptions A1 and A5 hold. If {Qn} is a sequence of

channels converging weakly at input P to a channel Q, then

lim sup
n→∞

J(P,Qn) ≤ J(P,Q),

that is, J(P,Q) is upper semi-continuous on Q under weak convergence.
Proof. Let µ be an arbitrary probability measure on (X×Y,B(X×Y)) and let µY

be its second marginal, i.e., µY(A) = µ(X×A) for A ∈ B(Y). Let g ∈ G be arbitrary.
By Lusin’s theorem [27, Thm. 2.24] there is a continuous function1 f : Y → U such
that

µY{y : f(y) 6= g(y)} < ǫ.

Letting B = {y : f(y) 6= g(y)} we obtain

∫

∣

∣c(x, g(y))− c(x, f(y))
∣

∣µ(dx, dy) =

∫

X×B

∣

∣c(x, g(y))− c(x, f(y))
∣

∣µ(dx, dy)

1Lusin’s theorem as stated in [27] implies the statement for U = R. The extension to the case
U = RK is straightforward. If U is any closed and convex subset of RK , then there is a continuous
function π : RK

→ U such that π(u) = u on U (the metric projection onto U). Then f̂ = π ◦ f is the
desired continuous mapping from Y into U.
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< ǫ · c∗,

where c∗ = supx,u c(x, u) < ∞ by assumption A1, so that

∫

c(x, f(y))µ(dx, dy) <

∫

c(x, g(y))µ(dx, dy) + c∗ǫ. (3.3)

Let C be the set of continuous functions from Y into U, define

j(µ, C) = inf
γ∈C

∫

c(x, γ(y))µ(dx, dy), j(µ,G) = inf
γ∈G

∫

c(x, γ(y))µ(dx, dy)

and note that j(µ, C) ≥ j(µ,G) since C ⊂ G. By (3.3), j(µ, C) is upper bounded
by the right-hand-side of (3.3). Since g in (3.3) was arbitrary, we obtain j(µ, C) ≤
j(µ,G) + c∗ǫ, which in turn implies j(µ, C) ≤ j(µ,G) since ǫ > 0 was arbitrary. Hence
j(µ, C) = j(µ,G).

Applying the above first to PQn and then to PQ, we obtain

lim sup
n→∞

inf
γ∈G

∫

c(x, γ(y))PQn(dx, dy) = lim sup
n→∞

inf
f∈C

∫

c(x, f(y))PQn(dx, dy)

≤ inf
f∈C

lim sup
n→∞

∫

c(x, f(y))PQn(dx, dy)

= inf
f∈C

∫

c(x, f(y))PQ(dx, dy)

= inf
γ∈G

∫

c(x, γ(y))PQ(dx, dy)

where the next to last equality holds since PQn converges weakly to PQ.

3.2. Continuity properties under setwise convergence.

3.2.1. Absence of continuity under setwise convergence. The following
counterexample demonstrates that J(P,Q) may not be continuous under setwise con-
vergence of channels even for continuous cost functions and compact X, Y, and U.

Let X = Y = U = [0, 1]. Assume that X has distribution

P =
1

2
δ0 +

1

2
δ1.

Let Q( · |x) = U([0, 1]) for all x, so that if (X,Y ) ∼ PQ, then Y is independent of X
and has the uniform distribution on [0, 1]. Let c(x, u) = (x− u)2.

By independence, E[X |Y ] = E[X ] = 1/2, so

J(P,Q) = min
γ∈G

E[(X − γ(Y ))2] = E[(X − E[X |Y ])2]

=
1

2

(

1−
1

2

)2

+
1

2

(

0−
1

2

)2

=
1

4
.

For n ∈ N and k = 1, . . . , n consider the intervals

Lnk =

[

2k − 2

2n
,
2k − 1

2n

)

, Rnk =

[

2k − 1

2n
,
2k

2n

)

(3.4)
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and define the “square wave” function

hn(t) =

n
∑

k=1

(

1{t∈Lnk} − 1{t∈Rnk}

)

.

Since
∫ 1

0 hn(t) dt = 0 and |hn(t)| ≤ 1, the function

fn(t) =
(

1 + hn(t)
)

1{t∈[0,1]}

is a probability density function. Furthermore, the proof of the Riemann-Lebesgue
lemma (for example [31], Thm. 12.21) can be used almost verbatim to show that

lim
n→∞

∫ 1

0

hn(t)g(t) dt = 0 for all g ∈ L1([0, 1],R)

and therefore

lim
n→∞

∫ 1

0

fn(t)g(t) dt =

∫ 1

0

g(t) dt for all g ∈ L1([0, 1],R). (3.5)

In particular, we obtain that the sequence of probability measures induced by the
sequence {fn} converges setwise to U([0, 1]).

Now, for every n, define a channel as

Qn( · |x) =

{

U([0, 1]), x = 0

∼ fn, x = 1.

Then Qn(·|x) → Q setwise for x = 0 and x = 1, and thus PQn → PU([0, 1]) setwise.
However, letting (X,Yn) ∼ PQn, a simple calculation shows that the optimal policy
for PQn is

γn(y) = E[X |Yn = y] =

{

0, y ∈
⋃n

k=1 Rnk

2
3 , y ∈

⋃n
k=1 Lnk

and therefore for every n ∈ N

J(P,Qn) = min
γ∈G

E[(X − γ(Yn))
2]

=
1

2

∫ 1

0

(0− γn(y))
2 dy +

1

2

∫ 1

0

(1− γn(y))
2fn(y) dy

=
1

6
.

Thus, the optimal cost value is not continuous under setwise convergence.

3.2.2. Upper semi-continuity under setwise convergence.
Theorem 3.3. Under assumption A2 the optimal cost

J(P,Q) := inf
γ

EQ,γ
P [c(X,U)]

is sequentially upper semi-continuous on the set of communication channels Q under
setwise convergence.
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Proof. Let {Qn} converge setwise to Q at input P . Then

lim sup
n→∞

inf
γ∈G

∫

c(x, γ(y))PQn(dx, dy) ≤ inf
γ∈G

lim sup
n→∞

∫

c(x, γ(y))PQn(dx, dy)

= inf
γ∈G

∫

c(x, γ(y))PQ(dx, dy),

where the equality holds since c is bounded.

3.3. Continuity under total variation.
Theorem 3.4. Under assumption A2 the optimal cost J(P,Q) is is continuous

on the set of communication channels Q under under the topology of total variation.
Proof. Assume Qn → Q in total variation at input P . Let ǫ > 0 and pick

the ǫ-optimal policies γn and γ under channels Qn and Q, respectively. That is,

letting Ĵ(Q′, γ′) = EQ′,γ′

P [c(X,U)] for any γ′ ∈ G and Q′ ∈ Q, we have Ĵ(Qn, γn) <

J(P,Qn) + ǫ and Ĵ(Q, γ) < J(P,Q) + ǫ.
Considering first the case J(P,Qn) < J(P,Q), we have

J(P,Q) − J(P,Qn) ≤ J(P,Q)− Ĵ(Qn, γn) + ǫ

≤ Ĵ(Q, γn)− Ĵ(Qn, γn) + ǫ.

By a symmetric argument it follows that

|J(P,Q)− J(P,Qn)| ≤ max
(

Ĵ(Q, γn)− Ĵ(Qn, γn), Ĵ(Qn, γ)− Ĵ(Q, γ)
)

+ ǫ (3.6)

Now, since c is bounded, it follows from (2.1) that for any γ′ ∈ G,

|Ĵ(Qn, γ
′)− Ĵ(Q, γ′)| =

∣

∣

∣

∣

∫

c(x, γ′(y))PQn(dx, dy)−

∫

c(x, γ′(y))PQ(dx, dy)

∣

∣

∣

∣

≤ ‖c‖∞‖PQn − PQ‖TV .

This and (3.6) imply |J(P,Qn) − J(P,Q)| ≤ ‖c‖∞‖PQn − PQ‖TV + ǫ. Since ǫ > 0
was arbitrary, we obtain |J(P,Qn)−J(P,Q)| ≤ ‖c‖∞‖PQn−PQ‖TV . Since ‖PQn−
PQ‖TV → 0 by Lemma 2.2, we obtain J(P,Qn) → J(P,Q) as claimed.

4. Problem P2: Existence of optimal channels. Here we study characteri-
zations of compactness which will be useful in obtaining existence results.

The discussion on weak convergence showed us that weak convergence does not
induce a strong enough topology, i.e., under which useful continuity properties can be
obtained. In the following, we will obtain conditions for compactness for the other two
convergence notions, that is, for setwise convergence and total variation. We note that
in the topologies induced by these three modes of convergence, notions of compactness
and sequential compactness coincide (for total variation and weak convergence this
follows from metrizability; for setwise convergence see [6, Thm. 4.7.25]).

We first discuss setwise convergence. A set of probability measures M on some
measurable space is said to be setwise precompact if every sequence in M has a
subsequence converging setwise to a probability measure (not necessarily in M). For
two finite measures ν and µ defined on the same measurable space we write ν ≤ µ if
ν(A) ≤ µ(A) for all measurable A.

We have the the following condition for setwise (pre)compactness:
Lemma 4.1 ([6, Thm. 4.7.25]). Let µ be a finite measure on a measurable space

(T,A). Assume a set of probability measures Ψ ⊂ P(T) satisfies

P ≤ µ, for all P ∈ Ψ.
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Then Ψ is setwise precompact.
As before, PQ ∈ P(X×Y) denotes the joint probability measure induced by input

P and channel Q, where X = R
n and Y = R

m. A simple consequence of the preceding
majorization criterion is the following.

Lemma 4.2. Let ν be a finite measure on B(X × Y) and let P be a probability
measure on B(X). Suppose Q is a set of channels such that

PQ ≤ ν, for all Q ∈ Q.

Then Q is setwise precompact at input P in the sense that any sequence in Q has a
subsequence {Qn} such that Qn → Q setwise at input P for some channel Q.

Proof. By Lemma 4.1, the set of joint measures M = {PQ : Q ∈ Q} is setwise
precompact, that is, any sequence in M has a subsequence {PQn} converging to
some P̂ setwise. Furthermore, since the first marginal of PQ is P for all n, the first
marginal of P̂ is also P (since PQn(A× X) → P̂ (A× X) for all A ∈ B(X)). Now let
Q be a regular conditional probability measure satisfying P̂ = PQ.

For a probability density function p on R
N we let Pp denote the induced proba-

bility measure: Pp(A) =
∫

A
p(x) dx, A ∈ B(RN). The next lemma gives a sufficient

condition for precompactness under total variation.
Lemma 4.3. Let µ be a finite Borel measure on R

N and let F be an equicontinuous
and uniformly bounded family of probability density functions. Define Ψ ⊂ P(RN) by

Ψ = {Pp : Pp ≤ µ, p ∈ F}.

Then Ψ is precompact under total variation.
Proof. By Lemma 4.1, Ψ is setwise precompact and thus any sequence in Ψ has

a subsequence {Pn} such that Pn → P setwise for some P ∈ P(RN ). P is clearly
absolutely continuous with respect to the Lebesgue measure on R

N , and so it admits
a density p.

Let pn be the density of Pn. It suffices to show that

lim
n→∞

‖pn − p‖1 = 0 (4.1)

since ‖pn − p‖TV = 2‖pn − p‖1 = 2
∫

|pn(x) − p(x)| dx.
Pick a sequence of compact sets Kj ⊂ R

N such that Kj ⊂ Kj+1 for all j ∈ N,
and

⋃

j Kj = R
N . Since the collection of densities {pn} is uniformly bounded and

equicontinuous, it is precompact in the supremum norm on each Kj by the Arzelà-
Ascoli theorem [13]. Thus there exist subsequences {p

n
j

k

} such that

lim
k→∞

sup
x∈Kj

|p
n
j

k

(x)− pj(x)| = 0

for some continuous pj : Kj → [0,∞).
Since the Kj are nested, one can choose {p

n
j+1

k

} to be a subsequence of {p
n
j

k

}

for all j ∈ N. Then pj+1 coincides with pj on Kj and we can define p̂ on R
N by

setting p̂(x) = pj(x), x ∈ Kj . We can now use Cantor’s diagonal method to pick an

increasing sequence of integers {mi} which is a subsequence of each {nj
k}, and thus

lim
i→∞

pmi
(x) = p̂(x), for all x ∈ R

N . (4.2)

Note that by construction the convergence is uniform on eachKj (and p̂ is continuous).
By uniform convergence Ppmi

(A) → Pp̂(A) for all Borel subsets A of Kj . The setwise
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convergence of Pn to Pp implies Ppmi
(A) → Pp(A) for all Borel sets, so we must have

p = p̂ almost everywhere. This and (4.2) imply via Scheffé’s theorem [5] that

‖pmj
− p‖1 → 0

which completes the proof.
The next result is an analogue of Lemma 4.2 and has an essentially identical

proof.
Lemma 4.4. Let Q be a set of channels such that {PQ : Q ∈ Q} is a precompact

set of probability measures under total variation. Then Q is precompact under total
variation at input P .

The following theorem, when combined with the preceding results, gives sufficient
conditions for the existence of best and worst channels when the given family of
channels Q is closed under the appropriate convergence notion.

Theorem 4.5. Recall problem P2.
(i) There exist a worst channel in Q, that is, a solution for the maximization

problem

sup
Q∈Q

J(P,Q) = sup
Q∈Q

inf
γ

EQ,γ
P E[c(X,U)]

when the set Q is weakly compact and assumptions A1, A4, and A5 hold.
(ii) There exist a worst channel in Q when the set Q is setwise compact and

assumption A2 holds.
(iii) There exist best and worst channels in Q, that is, solutions for the minimiza-

tion problem infQ∈Q J(P,Q) and the maximization problem supQ∈Q J(P,Q) when the
set Q is compact under total variation and assumption A2 holds.

Proof. Under the stated conditions, we have upper semi-continuity or continuity
(Theorems 3.2, 3.3, and 3.4) under the corresponding topologies. By compactness,
the existence of the cost maximizing (worst) channel follows when J(P,Q) is upper-
semicontinuous, while the existence of the cost minimizing (best) channel follows when
J(P,Q) is continuous in Q.

Remark. The existence of worst channels is useful for the robust control or game-
theoretic approach to optimization problems. If the problem is formulated as a game
where the uncertainty in the set is regarded as a maximizer and the controller is the
minimizer, one could search for a max-min solution, which we prove to exist. One
could also look for min-max solutions, a topic which we leave as a future research
topic. We note that, in information theory, problems of similar nature have been
considered in the context of mutual information games [9].

5. Application: quantizers as a class of channels. Here we consider the
problem of convergence and optimization of quantizers. We start with the definition
of a quantizer.

Definition 5.1. An M -cell vector quantizer, q, is a (Borel) measurable mapping
from X = R

n to the finite set {1, 2, . . . ,M}, characterized by a measurable partition
{B1, B2, . . . , BM} such that Bi = {x : q(x) = i} for i = 1, . . . ,M . The Bi are called
the cells (or bins) of q.

Remarks.
(i) For later convenience we allow for the possibility that some of the cells of

the quantizer are empty.
(ii) Traditionally, in source coding theory, a quantizer is a mapping q : Rn → R

with a finite range. Thus q is defined by a partition and a reconstruction value in R
n
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for each cell in the partition. That is, for given cells {B1, . . . , BM} and reconstruction
values {c1, . . . , cM} ⊂ R

n, we have q(x) = ci if and only if x ∈ Bi. In our definition,
we do not include the reconstruction values.

A quantizer q with cells {B1, . . . , BM}, however, can also be characterized as a
stochastic kernel Q from X to {1, . . . ,M}) defined by

Q(i|x) = 1{x∈Bi}, i = 1, . . . ,M

so that q(x) =
∑M

i=1 Q(i|x). We denote by QD(M) the space of all M -cell quantizers
represented in the channel form. In addition, we let Q(M) denote the set of (Borel)
stochastic kernels from X to {1, . . . ,M}, i.e., Q ∈ Q(M) if and only if Q( · |x) is
probability distribution on {1, . . . ,M} for all x ∈ X, and Q(i| · ) is Borel measurable
for all i = 1, . . . ,M . Note that QD(M) ⊂ Q(M), and by our definition QD(M − 1) ⊂
QD(M) for all M ≥ 2. We note that elements of Q(M) are sometimes referred to in
the literature as random quantizers.

Lemma 5.2. The set of quantizers QD(M) is setwise precompact at any input
P .

Proof. Proof follows from Lemma 4.2 and the interpretation above regarding
a quantizer as a channel. In particular, a majorizing finite measure ν is obtained
by defining ν = P × λ, where λ is the counting measure on {1, . . . ,M} (note that
ν(Rn × {1, . . . ,M}) = M). Then for any measurable B ⊂ R

n and i = 1, . . . ,M , we
have ν(B × {i}) = P (B)λ({i}) = P (B) and so

PQ(B × {i}) = P (B ∩Bi) ≤ P (B) = ν(B × {i}).

Since any measurable D ⊂ X × {1, . . . ,M} can be written as the disjoint union of
the sets Di × {i}, i = 1, . . . ,M , with Di = {x ∈ X : (x, i) ∈ D}, the above implies
PQ(D) ≤ ν(D).

The following simple lemma provides a useful formula.

Lemma 5.3. A sequence {Qn} in Q(M) converges to a Q in Q(M) setwise at
input P if and only if

∫

A

Qn(i|x)P (dx) →

∫

A

Q(i|x)P (dx) for all A ∈ B(X) and i = 1, . . . ,M .

Proof. The lemma follows by noticing that for any Q ∈ Q(M) and measurable
D ⊂ X× {1, . . . ,M},

PQ(D) =

∫

D

Q(dy|x)P (dx) =

M
∑

i=1

∫

Di

Q(i|x)P (dx)

where Di = {x ∈ X : (x, i) ∈ D}.

The following counterexample shows that the space of quantizers QD(M) is not
closed under setwise convergence:

Let X = [0, 1] and P the uniform distribution on [0, 1]. Recall the definition
Lnk =

[

2k−2
2n , 2k−1

2n

)

in (3.4) and let Bn,1 =
⋃n

i=1 Lnk and Bn,2 = [0, 1] \Bn,1. Define
{Qn} as the sequence of 2-cell quantizers given by

Qn(1|x) = 1{x∈Bn,1}, Qn(2|x) = 1{x∈Bn,2}.
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Then (3.5) implies that for all A ∈ B([0, 1]),

lim
n→∞

∫

A

Qn(dy|x)P (dx) = lim
n→∞

∫ 1

0

1

2
fn(t) dt =

1

2
P (A),

and thus, by Lemma 5.3, Qn converges setwise to Q given by Q(1|x) = Q(2|x) = 1
2

for all x ∈ [0, 1]. However, Q is not a (deterministic) quantizer.
Definition 5.4. The class of finitely randomized quantizers QFR(M) is the con-

vex hull of QD(M), i.e., Q ∈ QFR(M) if and only if there exist k ∈ N, Q1, . . . , Qk ∈

QD(M), and α1, . . . , αk ∈ [0, 1] with
∑k

i=1 αi = 1, such that

Q(i|x) =

k
∑

j=1

αjQj(i|x), for all i = 1, . . . ,M and x ∈ X.

The next result shows that QR(M) is the closure of the convex hull of QD(M).
Theorem 5.5. For any Q ∈ Q(M) there exists a sequence {Q̂n} of finitely

randomized quantizers in QFR(M) which converges to Q setwise at any input P .
Proof. We will prove the existence of a sequence {Q̂n} in QFR(M) such that

Q̂n( · |x) → Q( · |x) setwise for all x ∈ X.
Let PM = {z ∈ R

M : z1 + · · · + zM = 1, zi ≥ 0, i = 1, . . . ,M} denote the
probability simplex in R

M and note that each Q ∈ Q(M) is uniquely represented by
the function Qv : X → PM defined by

Qv(x) = (Q(1|x), Q(2|x), . . . , Q(M |x)).

For a positive integer n let PM,n be the collection of probability vectors in PM with
rational components having common denominator n, i.e.,

PM,n =
{

z ∈ PM : zi ∈ {0, 1/n, . . . , (n− 1)/n, 1}, i = 1, . . . ,M
}

.

Clearly, any z ∈ PM can be approximated within error 1/n in the l∞ sense by a
member of PM,n, i.e.,

max
z∈PM

min
z′∈PM,n

‖z − z′‖∞ = max
z∈PM

min
z′∈PM,n

max
i=1,...,M

|zi − z′i| ≤
1

n
.

Breaking ties in a predetermined manner, we can make the selection of z′ for a given
z unique, and thus define a Borel measurable mapping qn : PM → PM,n such that
z′ = qn(z) approximates z in the above sense. Given Q ∈ Q(M), use this mapping
to define Qn ∈ Q(M) through the relation

Qv
n(x) = qn(Q

v(x)).

(The measurability of Q(i|x) in x follows from the measurability of the mapping qn.)
Let {z(1), . . . , z(L(n))} be an enumeration of those elements of PM,n for which the sets

Sj = {x : Qv
n(x) = z(j)}, j = 1, . . . , L(n)

are not empty (clearly, L(n) ≤ (n+ 1)M ). Note that the Si form a Borel-measurable
partition of X and we have

u := (z(1), z(2), . . . , zL(n)) ∈
(

PM

)L(n)



16

and

Qv
n(x) = z(j) if x ∈ Sj .

Viewed as a subset of RM·L(n), the set
(

PM

)L(n)
is compact and convex and therefore

by the Krein-Milman theorem (see, e.g., [3]) it is the closure of the convex hull of

its extreme points. The set of extreme points of
(

PM

)L(n)
is

(

EM
)L(n)

, where EM =
{e1, . . . , eM} is the standard basis for R

M . In particular, we can find u1, . . . , uN ∈
(

EM
)L(n)

and (α1, . . . , αN ) ∈ PN such that
∥

∥u −
∑N

k=1 αkuk

∥

∥ ≤ 1
n
(‖ · ‖ denotes the

standard Euclidean norm in any dimension). Since uk = (uk,1, . . . , uk,L(n)), where
uk,j ∈ EM for all k and j, we can define the deterministic quantizers Qn,k ∈ QD(M),
k = 1, . . . , N , by setting

Qv
n,k(x) = uk,j if x ∈ Sj .

Putting things together, we obtain that

∥

∥

∥

∥

Qv
n(x) −

N
∑

k=1

αkQ
v
n,k(x)

∥

∥

∥

∥

≤
1

n
for all x ∈ X. (5.1)

Define Q̂n ∈ Q(M) by

Q̂n(i|x) =

N
∑

k=1

αkQn,k(i|x).

Combining (5.1) with ‖Qv(x) −Qv
n(x)‖∞ ≤ 1

n
, we obtain

|Q(i|x)− Q̂n(i|x)| ≤
2

n
for all x ∈ X and i = 1, . . . ,M

which implies that Q̂n( · |x) → Q( · |x) setwise for all x ∈ X. Since each Q̂n is a convex
combination of deterministic quantizers in QD(M), the proof is complete.

The preceding theorem has important consequences in that it tells us that the
space of deterministic quantizers is a “basis” for the space of communication channels
between X and {1, . . . ,M} in an appropriate sense. In the following we show that
an optimal channel can be replaced with an optimal quantizer without any loss in
performance.

Proposition 5.6. For any Q ∈ Q(M) there is a Q′ ∈ QD(M) with J(P,Q′) ≤
J(P,Q). If there exists an optimal channel in Q(M) for problem P2, then there is a
quantizer in QD(M) that is optimal.

Proof. Only the first statement needs to be proved. We follow an argument
common in the source coding literature (see, e.g., the Appendix of [33]).

For a policy γ : {1, . . . ,M} → U = X (with finite cost) define for all i,

Bi =
{

x : c(x, γ(i)) ≤ c(x, γ(j)), j = 1, . . . ,M
}

.

Letting B1 = B̄1 and Bi = B̄i \
⋃i−1

j=1 Bj , i = 2, . . . ,M , we obtain a partition
{Bi, . . . , BM} and a corresponding quantizer Q′ ∈ QD(M). It is easy to see that

EQ′,γ
P [c(X,U)] ≤ EQ,γ

P [c(X,U)] for any Q ∈ Q(M).
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The following shows that setwise convergence of quantizers implies convergence
under total variation.

Theorem 5.7. Let {Qn} be a sequence of quantizers in QD(M) which converges
to a quantizer Q ∈ QD(M) setwise at P . Then, the convergence is also under total
variation at P .

Proof. Let Bn
1 , . . . , B

n
M be the cells of Qn. Since Qn → Q setwise at input P ,

we have PQn(B × {i}) → PQ(B × {i}) for any B ∈ B(X). Since PQn(B × {i}) =
∫

B
1{x∈Bn

i
}P (dx), we obtain

P (B ∩Bn
i ) → P (B ∩Bi), for all i = 1, . . . ,M.

If B1, . . . , BM are the cells of Q, the above implies P (Bj ∩Bn
i ) → P (Bj ∩Bi) for all

i, j ∈ {1, . . . ,M}. Since both {Bn
i } and {Bn} are partitions of X, we obtain

P (Bn
i △Bi) → 0 for all i = 1, . . . ,M,

where Bn
i △B = (Bn

i \B) ∪ (B \Bn
i ). Then we have

‖PQn − PQ‖TV

= sup
f :‖f‖∞≤1

∣

∣

∣

∣

∣

M
∑

i=1

(
∫

X

f(x, i)Qn(i|x)P (dx) −

∫

X

f(x, i)Q(i|x)P (dx)

)

∣

∣

∣

∣

∣

= sup
f :‖f‖∞≤1

∣

∣

∣

∣

∣

M
∑

i=1

∫

X

f(x, i)
(

1{x∈Bn
i
} − 1{x∈Bn

i
}

)

P (dx)

∣

∣

∣

∣

∣

≤ sup
f :‖f‖∞≤1

M
∑

i=1

∫

Bn
i
△Bi

|f(x, i)|P (dx)

≤

M
∑

i=1

P (Bn
i △Bi) → 0 (5.2)

and convergence in total variation follows.
We next consider quantizers with convex codecells and an input distribution that

is absolutely continuous with respect to the Lebesgue measure on R
n [18]. Assume

Q ∈ QD(M) with cells B1, . . . , BM , each of which is a convex subset of Rn. By the
separating hyperplane theorem, there exist pairs of complementary closed half spaces
{(Hi,j , Hj,i) : 1 ≤ i, j ≤ M, i 6= j} such that for all i = 1, . . . ,M ,

Bi ⊂
⋂

j 6=i

Hi,j .

Each B̄i :=
⋂

j 6=i Hi,j is a closed convex polytope and by the absolute continuity

of P one has P (B̄i \ Bi) = 0 for all i = 1, . . . ,M . One can thus obtain a (P–a.s)
representation of Q by the M(M − 1)/2 hyperplanes hi,j = Hi,j ∩Hj,i.

Let QC(M) denote the collection of M -cell quantizers with convex cells and con-
sider a sequence {Qn} in QC(M). It can be shown (see the proof of Thm. 1 in [18])
that using an appropriate parametrization of the separating hyperplanes, a subse-
quence Qnk

can be can be chosen which converges to a Q ∈ QC(M) in the sense that
P (Bnk

i △Bi) → 0 for all i = 1, . . . ,M , where the Bnk

i and the Bi are the cells of Qnk

and Q, respectively. In view of (5.2), we obtain the following.
Theorem 5.8. The set QC(M) is compact under total variation at any input

measure P that is absolutely continuous with respect to the Lebesgue measure on R
n.
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We can now state an existence result for optimal quantization (problem P1).
Theorem 5.9. Let P be absolutely continuous and suppose the goal is to find the

best quantizer Q with M cells minimizing J(P,Q) = infγ E
Q,γ
P (X,U) under assump-

tion A2, where Q is restricted to QC(M). Then an optimal quantizer exists.
Proof. Existence follows from Theorems 4.5 and 5.8.
In the quantization literature finding an optimal quantizer means finding optimal

codecells and corresponding reconstruction points. Our formulation does not require
the existence of optimal reconstruction points (i.e., optimal policy γ). For cost func-
tions of the form c(x, u) = ‖x− u‖p for x, u ∈ R

n and some p > 0, the cells of “good”
quantizers will be convex by Lloyd-Max conditions of optimality; see [18] for further
results on convexity of bins for entropy constrained quantization problems. We note
that [1] also considered such cost functions for existence results on optimal quantizers;
Graf and Luschgy [15] considered more general norm-based cost functions.

6. Multi-stage case. We consider the general case T ∈ N. It should be observed
that the effects of a control policy applied any given time-stage presents itself in two
ways, in both the cost occurred at the given time-stage and the effect on the process
distribution at future time-stages, which is known as the dual effect of control [2]

The next theorem shows the continuity of the optimal cost in the observation
channel under some regularity conditions. Note that the existence of best and worst
channels follows under an appropriate compactness condition as in Theorem 4.5 (iii).
We need the following definition.

Definition 6.1. A sequence of channels {Qn} converges to a channel Q uni-
formly in total variation if

lim
n→∞

sup
x∈X

∥

∥Qn( · |x)−Q( · |x)
∥

∥

TV
= 0.

Note that in the special but important case of additive observation channels,
uniform convergence in total variation is equivalent to the weaker condition that
Qn( · |x) → Q( · |x) in total variation for each x. When the additive noise is abso-
lutely continuous with respect to the Lebesgue measure, uniform convergence in total
variation is equivalent to requiring that the noise density corresponding to Qn con-
verges in the L1 sense to the density corresponding to Q. For example, if the noise
density is estimated from n independent observations using any of the L1 consistent
density estimates described in e.g. [10], then the resulting Qn will converge (with
probability one) uniformly in total variation.

Theorem 6.2. Consider the cost function (1.2) with arbitrary T ∈ N. Suppose
assumption A2 holds. Then, the optimization problem P1 is continuous in the ob-
servation channel in the sense that if {Qn} is a sequence of channels converging to Q
uniformly in total variation, then

lim
n→∞

J(P,Qn) = J(P,Q).

Proof. Let ǫ > 0 and pick ǫ-optimal policies Πn = {γn
0 , γ

n
1 , . . . , γ

n
T−1} and Π =

{γ0, γ1, . . . , γT−1} for channels Qn and Q, respectively. That is, using the notation
in (1.2), we have J(P,Qn,Π

n) < J(P,Qn) + ǫ and J(P,Q,Π) < J(P,Q) + ǫ. The
argument used to obtain (3.6) then gives

|J(P,Q)− J(P,Qn)|
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≤ max

(

J(P,Q,Πn)− J(P,Qn,Π
n), J(P,Qn,Π)− J(P,Q,Π)

)

+ ǫ. (6.1)

We will show that both terms in the maximum converge to zero. First we consider
the term

J(P,Qn,Πn)− J(P,Q,Πn) =

T−1
∑

t=0

EQn,Πn

P [c(Xt, Ut)]− EQ,Πn

P [c(Xt, Ut)]. (6.2)

Under policy Πn = {γn
0 , γ

n
1 , . . . , γ

n
T−1}, we have Ut = γn

t (Y[0,t], U[0,t−1]). We absorb
in the notation the dependence of Ut on γn

0 , . . . , γ
n
t−1 and write Ut = γn

t (Y[0,t]).

For t = 0, . . . , T − 1 and k = 0, . . . , t define ζnk,t : X
k × Y

k → R by setting

ζnt,t(x[0,t], y[0,t]) := c(xt, γ
n
t (y[0,t])

and defining recursively for k = t− 1, . . . , 0

ζnk,t(x[0,k], y[0,k]) :=

∫

P (dxk+1|xk, γ
n
k (y[0,k]))Qn(dyk+1|xk+1)ζ

n
k+1,t(x[0,k+1], y[0,k+1]).

Note that ‖ζnt,t‖∞ ≤ ‖c‖∞ and thus ‖ζnk,t‖∞ ≤ ‖c‖∞ for all k = t− 1, . . . , 0.
Fix 0 ≤ k ≤ t and consider a system such that the observation channel is Q at

stages 0, . . . , k−1 and Qn at stages k, k+1, . . . , t. Let µn
k denote the distribution of the

resulting process segment (X[0,k], Y[0,k]) under policy Πn (by definition µn
0 = PQn).

Also under policy Πn, let νnk denote the distribution of (X[0,k], Y[0,k]) if the observation
channel is Q for all the stages 0, . . . , t. Then we have

EQn,Πn

P [c(Xt, Ut)] =

∫

µn
0 (dx0, dy0)ζ

n
0,t(x0, y0)

and

EQ,Πn

P [c(Xt, Ut)] =

∫

νnt (dx[0,t], dy[0,t])ζ
n
t,t(x[0,t], y[0,t]).

Note that by construction, for all k = 1, . . . , t

∫

µn
k (dx[0,k], dy[0,k])ζ

n
k,t(x[0,k], y[0,k])

=

∫

νnk−1(dx[0,k−1], dy[0,k−1])ζ
n
k−1,t(x[0,k−1], y[0,k−1]).

Thus each term in the sum on the right hand side of (6.2) can be expressed as a
telescopic sum, which in turn can be bounded term-by-term, as follows:

∣

∣EQn,Πn

P [c(Xt, Ut)]− EQ,Πn

P [c(Xt, Ut)]
∣

∣ =

∣

∣

∣

∣

t
∑

k=0

∫

µn
k (dx[0,k], dy[0,k])ζ

n
k,t(x[0,k], y[0,k])

−

∫

νnk (dx[0,k], dy[0,k])ζ
n
k,t(x[0,k], y[0,k])

∣

∣

∣

∣
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≤

t
∑

k=1

‖µn
k − νnk ‖TV ‖ζ

n
k,t‖∞

≤ ‖c‖∞

t
∑

k=1

‖µn
k − νnk ‖TV . (6.3)

For any Borel setB ⊂ X
k×Y

k, define B(x[0,k], y[0,k−1]) = {yk ∈ Y : (x[0,k], y[0,k]) ∈
B}, so that

|µn
k (B)− νnk (B)| =

∣

∣

∣

∣

∫

νnk−1(dx[0,k−1], dy[0,k−1])

∫

P (dxk|xk−1, γ
n
k−1(y[0,k−1])

(

Qn(B(x[0,k], y[0,k−1])|xk)−Q(B(x[0,k], y[0,k−1])|xk)

)∣

∣

∣

∣

≤ sup
xk∈X

‖Qn( · |xk)−Qn( · |xk)‖TV .

The preceding bound and the uniform convergence of {Qn} imply limn ‖µ
n
k−νnk ‖TV =

0 for all k. Combining this with (6.3) and (6.2) gives

J(P,Qn,Πn)− J(P,Q,Πn) → 0.

Replacing Πn with Π we can use an identical argument to show that J(P,Qn,Π) →
J(P,Q,Π). Since ǫ > 0 in (6.1) was arbitrary, the proof is complete.

We obtained the continuity of the optimal cost on the space of channels equipped
with a more stringent notion for convergence in total variation. This result and its
proof indicate that further technical complications emerge in multi-stage problems.
Likewise, upper semi-continuity under weak convergence and setwise convergence re-
quire more stringent uniformity assumptions, which we leave for future research.

One further interesting problem regarding the multi-stage case is to consider
adaptive observation channels. For example, one may aim to design optimal adaptive
quantizers for a control problem. In this case, Markov Decision Process tools can be
used for obtaining existence conditions for optimal channels and quantizers. Some
related results on optimal adaptive quantization are presented in [7].

7. Concluding remarks, some implications and future work. This paper
studied the structural and topological properties of some optimization problems in
stochastic control in the space of observation channels. The main problem we con-
sidered is how to approach appropriate notions of convergence and distance while
studying communication channels in the context of stochastic control problems.

The restriction to Euclidean state spaces is not essential and many (but not all)
of the positive results can be extended to the case where X, Y, and U are arbitrary
Polish spaces. In particular, all the positive results in Sections 3 carry through without
change, except Theorem 3.2. The results of Section 4 hold for this more general setup
(however, in Lemma 4.3 we need the additional condition that the space is σ-compact).
Likewise, most of the positive results in Section 5 on quantization hold more generally
(in fact, Theorem 5.5 holds for an arbitrary measurable space), but two of the main
results, Theorems 5.8 and 5.9, do need the assumption that X is a finite-dimensional
Euclidean space.

7.1. Sufficient conditions for continuity under setwise and weak con-
vergence. A careful analysis of the proof of Theorem 3.4 reveals that we need a
uniform convergence principle for setwise convergence to be sufficient for continuity.
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That is, we wish to have

lim
n→∞

sup
γ∈F

∣

∣

∣

∣

∫
(
∫

Q(dy|x)c(x, γ(y)) −

∫

Qn(dy|x)c(x, γ(y))

)

P (dx)

∣

∣

∣

∣

= 0, (7.1)

where F is a set of allowable policies, to be able to have continuity under setwise con-
vergence. Thus, one important question of practical interest, is the following: What
type of stochastic control problems, cost functions, and allowable policies lead to so-
lutions which admit such a uniform convergence principle under setwise convergence?
Some sufficient conditions for uniform setwise convergence are presented in [30].

Likewise, a parallel discussion applies for weak convergence under the assumption
that for every Qn and for Q, corresponding optimal policies γn and γ are continuous
and are assumed to be from a given class of policies F . One wants to have

∫

X×Y

c(x, γn(y))Qn(dy|x)P (dx) →

∫

X×Y

c(x, γ(y))Q(dy|x)P (dx).

A sufficient condition for this is the following form of uniform weak convergence:

lim
n→∞

sup
γ∈F

∣

∣

∣

∣

∫

X×Y

c(x, γ(y))Qn(dy|x)P (dx) −

∫

X×Y

c(x, γ(y))Q(dy|x)P (dx)

∣

∣

∣

∣

= 0.

7.2. Empirical consistency of optimal controllers. One issue to discuss is
the connections of our results with consistency in learning the channel from empirical
observations.

When one does not know the system dynamics, such as the observation channel,
one typically attempts to learn the channel via test inputs or empirical observations.
Let {(Xi, Yi), i ∈ N} be an X× Y-valued i.i.d sequence generated according to some
distribution µ. Define the the empirical occupation measures for every n ∈ N, by
letting

µn(B) =
1

n

n
∑

i=1

1{(Xi,Yi)∈B},

for every measurable B ⊂ X × Y. Then one has µn(B) → µ(B) almost surely (a.s.)
by the strong law of large numbers. However, it is generally not true that µn → µ
setwise a.s. (e.g., µn never converges to µ setwise when eitherXi or Yi has a nonatomic
distribution), in which case µn cannot converge to µ in total variation.

On the other hand, again by the strong law, for any µ-integrable function f on
X× Y, one has, almost surely,

lim
n→∞

∫

f(x, y)µn(dx, dy) =

∫

f(x, y)µ(dx, dy)

In particular, µn → µ weakly with probability one [13].
In the learning theoretic context, the convergence of the costs optimal for µn to

the cost optimal for µ is called the consistency of empirical risk minimization (see [32]
for an overview). In particular, if the cost function and the allowable control policies
F are such that

lim
n→∞

sup
γ∈F

∣

∣

∣

∣

∫

c(x, γ(y))µn(dx, dy) −

∫

c(x, γ(y))µ(dx, dy)

∣

∣

∣

∣

= 0,
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then we obtain consistency.
A class of measurable functions E is called a Glivenko-Cantelli class [12], if the

integrals with respect to the empirical measures converge almost surely to the integrals
with respect to the true measure uniformly over E . Thus, if

G = {γ : c(x, γ(y)) ∈ E},

where E is a class of Glivenko-Cantelli family of functions, then we could establish
consistency. One example of a Glivenko-Cantelli family of real functions on R

N is the
family {f : ‖f‖BL ≤ M} for some 0 < M < ∞, where ‖ · ‖BL denotes the bounded
Lipschitz norm [12].

Thus, if we restrict the class of control policies, and given a cost function, we can
obtain consistency and robustness to mismatch in the channel due to learning. The
classification of the class of objective functions and policies which would lead to such
a consistency result is a future research problem.

8. Appendix.

8.1. Proof of Lemma 2.2. (i) Since c(x, · ) is continuous and bounded on Y

for all x, we have

lim
n→∞

∫

X×Y

c(x, y)PQn(dx dy) = lim
n→∞

∫

X

(
∫

Y

c(x, y)Qn(dy|x)

)

P (dx)

=

∫

X

(
∫

Y

c(x, y)Q(dy|x)

)

P (dx)

=

∫

X×Y

c(x, y)PQ(dx, dy)

where first we used Fubini’s theorem, and then the dominated convergence theorem
and the fact that

∫

X
c(x, y)Qn(dy|x) is bounded and converges to

∫

X
c(x, y)Q(dy|x)

for P -a.e. x.

(ii) Let A ∈ B(X× Y) and for x, let Ax = {y : (x, y) ∈ A}. Similarly to the previous
proof,

lim
n→∞

PQn(A) = lim
n→∞

∫

X

Qn(Ax|x)P (dx)

=

∫

X

Q(Ax|x)P (dx)

= PQ(A)

by the dominated convergence theorem since limn→∞ Qn(Ax|x) = Q(Ax|x) for P -a.e.
x.

(iii) We have

sup
A∈B(X×Y)

|PQn(A) − PQ(A)| = sup
A∈B(X×Y)

∣

∣

∣

∣

∫

X

Qn(Ax|x)P (dx) −

∫

X

Q(Ax|x)P (dx)

∣

∣

∣

∣

≤ sup
A∈B(X×Y)

∫

X

∣

∣Qn(Ax|x)−Q(Ax|x)
∣

∣P (dx)

≤

∫

X

sup
B∈B(Y)

∣

∣Qn(B|x) −Q(B|x)
∣

∣P (dx).
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Since sup
B∈B(Y)

∣

∣Qn(B|x) − Q(B|x)
∣

∣ → 0 for P -a.e. x, an application of the dominated

convergence theorem completes the proof.

8.2. Proof of Theorem 3.1. We have

J(P,Q) = inf
γ∈G

∫

X×Y

c(x, γ(y))Q(dy|y)P (dx).

Let (X,Y ) ∼ PQ and let P ( · |y) be the (regular) conditional distribution of X given
Y = y. If (PQ)Y denotes the distribution of Y , then

J(P,Q) = inf
γ∈G

∫

Y

∫

X

c(x, γ(y))P (dx|y)(PQ)Y(dy)

=

∫

Y

(

inf
u∈U

∫

X

c(x, u)P (dx|y)

)

(PQ)Y(dy).

where the validity of the second equality is explained below.
By assumption A3, c is bounded and c(x, un) → c(x, u) if un → u for all x; thus

by the dominated convergence theorem
∫

X

c(x, un)P (dx|y) →

∫

X

c(x, u)P (dx|y)

proving that g(u, y) =
∫

X
c(x, u)P (dx|y) is continuous in u for each y. Since U is

compact, there exists γ∗(y) ∈ U such that g(γ∗(y), y) = infu∈U g(u, y). A standard
argument shows that γ∗ : Y → U can be taken to be measurable (see, e.g., Appendix D
of [19]) and we have

J(P,Q) =

∫

X×Y

c(x, γ∗(y))Q(dy|y)P (dx).
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