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TIME PERIODIC SOLUTIONS OF THE NAVIER–STOKES
EQUATIONS WITH NONZERO CONSTANT BOUNDARY

CONDITIONS AT INFINITY∗

GUILLAUME VAN BAALEN† AND PETER WITTWER†

Abstract. We construct solutions for the Navier–Stokes equations in three dimensions with a
time periodic force which is of compact support in a frame that moves at constant speed. These
solutions are related to solutions of the problem of a body which moves within an incompressible
fluid at constant speed and rotates around an axis which is aligned with the motion. In contrast
to other authors who analyze stationary solutions in a frame of reference attached to the body, the
analysis for the present problem is done in a frame which is moving at constant speed but is not
rotating. This avoids the unpleasant unbounded linear terms which are present in a description with
respect to a rotating frame.
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1. Introduction. The classic paper of Weinberger [9] concerning the steady fall
of a body in a Navier–Stokes liquid starts with the following definition: “We say a
body undergoes a steady falling motion in an infinite viscous fluid if the motion of
the fluid as seen by an observer attached to the body is independent of time.”

One of the interesting possible cases is a body that is falling steadily, and is
rotating around an axis that is parallel to the direction in which the body is falling.

A first proof of the existence of such solutions for this case has been given only
recently in the three papers by Galdi and Silvestre [4, 3, 2]. Their method for solving
the problem is to consider the equations, as proposed by Weinberger, in a frame
attached to the body, where the flow is stationary. In this frame the Navier–Stokes
equations have an additional linear term with unbounded coefficients, which is due to
the transformation into the rotating frame. This complicates the problem considerably
when compared to the situation without rotation.

It is important to note that even without the rotation the problem is difficult
because of the slow decay of the vorticity in the downstream region. This leads to a
very strong asymmetry in the behavior at infinity, and the main difficulty is to encode
this behavior when choosing function spaces.

Once the existence of a solution is established one is interested in giving detailed
information concerning its behavior at infinity. As in related problems, this behavior is
expected to be independent of the details of the body. It turns out to be possible to use
this fact in order to simplify the analysis of the asymptotic behavior, by considering
first the problem in the whole space, and to mimic the body by a smooth force of
compact support (see the end of this section for details). The case with a body, i.e.,
the case of an exterior domain, can then be treated in a second step, once the behavior
at infinity is understood. For a related problem in two dimensions, this strategy has
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1788 GUILLAUME VAN BAALEN AND PETER WITTWER

been implemented in [5].
The present paper contains the results for the first step of the strategy in [5].

Namely, we give a proof of the existence of a solution for the problem in the whole
space, where the body is replaced by a force term of compact support.

Our strategy for constructing solutions is different from the one used in [4, 3, 2].
Instead of constructing stationary solutions in a frame which moves with constant
speed and rotates, we choose a frame that is only moving but not rotating; i.e., we
consider the Navier–Stokes equations (the ∂xu term is due to the translational motion
of the frame)

∂tu = −∂xu− (u · ∇)u+Δu−∇p+ f ,(1)

∇ · u = 0 ,(2)

lim
x→∞u(x) = 0(3)

in Ω = R
3, with f a given vector field, compactly supported and time periodic with

some frequency λ.
This choice of coordinate system avoids the unpleasant unbounded linear terms

mentioned before, but the solution is not time independent but time periodic in our
coordinates, and we expand it therefore into a Fourier series. The resulting equations
are then treated with the methods that we have developed in [8, 6], which allow us to
treat the asymmetric behavior of the solutions in an optimal way. Namely, we choose a
coordinate system where the body falls along the (negative) x-axis, and then consider
the x-axis as a “time”coordinate and look at the “time” evolution of the resulting
system for positive times and negative times, choosing Sobolev-type norms in the
variables transverse to the “time” direction and weighted supremum norms in the
“time”coordinate. These ideas lead to a very natural functional setting and allow for
a very detailed description of the behavior at positive and negative “times.”We show
in particular that the vorticity decays exponentially fast in the negative x-direction
and like x−3/2 within the wake in the positive x-direction. The description of the
velocity field is equally precise.

Instead of looking at (1)–(3) we rather look at the equations for the vorticity; i.e.,
we solve the system

∂tω + ∂xω −Δω = ∇× [(u× ω) + f ] ,(4)

∇ · u = 0 ,(5)

∇× u = ω .(6)

In order to solve equations (4)–(6) we proceed as follows. We define the Biot–Savart
map K,

(7) Kω = u ,

with u defined as the solution of (5)–(6), and the map C (the nonlinearity),

(8) C(u,ω) = u× ω .

We further define the map S,
(9) Sq = ∇× (∂t + ∂x −Δ)−1q .

Then we consider, for a given f that is 2π
λ -periodic in time, the map N defined by

(10) N (ω) = S (C(Kω,ω) + f) .
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Below we show that N defines a differentiable map on a certain Banach space, and
contracts, for small f , a neighborhood of zero into itself. By the contraction mapping
principle there exists therefore a (locally unique) solution to the equation ω = N (ω).
The Banach space chosen below will give detailed decay rates for the vorticity at large
spatial distances. In a future publication, we plan to show how this information can
be used to give an asymptotic expansion of the vorticity and velocity fields in the
downstream direction; see [10, 8] for similar results in the stationary case in three
dimensions, and in the time-periodic case in two dimensions.

The paper is organized as follows. In section 2, we give our functional setting and
formulate our existence result. In section 3, we study the Biot–Savart map K, and in
section 4 the nonlinear map u × ω. The core of the paper is in section 5, where we
study the map S = ∇× (∂t + ∂x −�)−1.

Before concluding this section, we explain in more details how the model (1)–(3)
relates to flows in exterior domains. To do so, let Ω(t) ⊂ R

3 be an exterior domain,
i.e., Ω(t)c = R

3 \ Ω(t) is compact (and smooth) for all times, and denote by δ(Ω(t)c)
the radius of the “obstacle” Ω(t)c. Using a time dependent Ω is necessary to describe,
say, a rotating obstacle. For readability, this explicit dependence is omitted below.
Consider then the following Navier–Stokes system in Ω:

∂tu+ (u · ∇)u−�u+∇p = 0 ,(11)

∇ · u = 0 ,(12)

lim
|x|→∞

u(x, t) = u∞ �= (0, 0, 0) ,(13)

u|∂Ω = 0 .(14)

In Appendix C (see Proposition 21), we prove the existence of a so-called extension
map Ea,b from Ω to R

3. Namely we prove that if ∇u ∈ L2(Ω), there exists Ea,b[u] :
R

3 → R
3 which interpolates smoothly between Ea,b[u](x) = 0 if |x| ≤ aδ(Ωc), and

Ea,b[u](x) = u(x) if |x| ≥ bδ(Ωc) for some 1 < a < b, and satisfies ∇ · Ea,b[u](x) = 0
for all x ∈ R

3.
Assume now that a solution of (11)–(14) exists, and set ũ = Ea,b[u] and ω̃ = ∇×ũ.

Consider then

(15) F[u] = ∂tũ−�ũ− ũ× ω̃ .

Clearly, F[u] : R3 → R
3 is supported in the annulus aδ(Ωc) ≤ |x| ≤ bδ(Ωc). Namely,

if |x| ≥ bδ(Ωc), the right-hand side of (15) is the left-hand side of (11), and so
F[u](x) = 0 for |x| ≥ bδ(Ωc). Similarly, if |x| ≤ aδ(Ωc), ũ(x) = ω̃(x) = 0, and so
F[u](x) = 0 for |x| ≤ aδ(Ωc).

The idea is now to consider F[u] as given and ω̃ and ũ as unknowns solving the
following system holding in the whole space R

3:

(16) ∂tω̃ = �ω̃ +∇× (ũ× ω̃ + F) , ∇ · ũ = 0 and ω̃ = ∇× ũ ,

where F = F[u] is compactly supported and the curl of a function. Up to translation
of the velocities by u∞ and choice of axes/units where u∞ = (1, 0, 0), (16) is the same
as (4)–(6). Since ũ = u and ω̃ = ω for |x| ≥ bδ(Ωc), studying large-distance behavior
of solutions of (16) in the whole space R3 is a first step in understanding large-distance
asymptotics of solutions of the Navier–Stokes equations in exterior domains. We now
briefly sketch the strategy that we hope to implement in a future paper. The first
step is to start from a weak formulation of the problem with a body and to prove
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1790 GUILLAUME VAN BAALEN AND PETER WITTWER

existence of a solution. We expect such solutions to be smooth but, generally, to know
little information about their behavior at infinity. The second step is then to truncate
such a weak solution as described above. This provides a source term for the problem
in the whole space which is then treated with the techniques in the present paper.
The third step is to use the information obtained from the present paper to prove
a weak-strong uniqueness result. This last result would then allow us to conclude
that the original weak solution and the solution discussed here coincide outside the
cut-off region. The above steps will be done in a later paper. This strategy has been
implemented with success in a similar problem in [5].

2. Main result. In order to formulate precisely our main result, we first intro-
duce some notation and function spaces. Let x = (x, y, z) ∈ R

3, r =
√
x2 + y2 + z2,

and, for 0 ≤ α ≤ 1,

Wα(x, y, z) = e
|x|−x

2 α+ r−x
2 (1−α) .

Since W1(x, y, z) = e
|x|−x

2 , we often simply write W1(x) instead of W1(x, y, z). It will
be important later on that Wα ≥ 1 and Wα ≥ W1 for all α ∈ [0, 1]. We will use the
symbols �T and ∇T to describe the transverse Laplacian, i.e., �Tf(x, y, z) = (∂2

y +
∂2
z )f(x, y, z), and the transverse gradient ∇Tf(x, y, z) = (0, ∂yf(x, y, z), ∂zf(x, y, z)).

Definition 1. For fixed 0 ≤ α ≤ 1 and λ > 0, we define the following:
1. C∞

0,per(R
4,R3) is the space of smooth (vector) functions that are compactly

supported in their first three arguments and 2π
λ -periodic in their last argument.

For any f ∈ C∞
0,per(R

4,R3), we define its Fourier coefficient fn ∈ C∞
0 (R3,R3)

for any n ∈ Z by

fn(x) =
λ

2π

∫ 2π
λ

0

dt e−inλt f(x, t) ⇔ f(x, t) =
∑
n∈Z

fn(x)e
iλnt .

2. C∞
0,per,sol(R

4,R3) is the subset of those f ∈ C∞
0,per(R

4,R3) satisfying ∇ · f = 0.

3. Wα is the Banach space obtained by completing C∞
0,per,sol(R

4,R3), with respect
to the norm

‖f ;Wα‖ =
∑
n∈Z

sup
x∈R

(1 + |x|) 1
2

(1 + |x| − x)
1
2

‖Wα(x, ·)fn(x, ·)‖1

+
∑
n∈Z

sup
x∈R

(1 + |x|) 3
2

(1 + |x| − x)
1
2

‖Wα(x, ·)fn(x, ·)‖∞

+
∑
n∈Z

sup
x∈R

(1 + |x|)2
(1 + |x| − x)

1
2

‖W1(x)�Tfn(x, ·)‖2 .

4. U is the Banach space obtained by completing C∞
0,per,sol(R

4,R3), with respect
to the norm

‖f ;U‖ =
∑
n∈Z

sup
x∈R

(1 + |x|) 1
2

ln(2 + |x|+ x)
‖fn(x, ·)‖2

+
∑
n∈Z

sup
x∈R

(1 + |x|)(1 + |x| − x)
1
2

(
‖fn(x, ·)‖∞ + ‖∇Tfn(x, ·)‖2

)

+
∑
n∈Z

sup
x∈R

(1 + |x|) 3
2 (1 + |x| − x)

1
2 ‖�Tfn(x, ·)‖2 .
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5. Qα is the Banach space obtained by completing C∞
0,per(R

4,R3), with respect to
the norm

‖f ;Qα‖ =
∑
n∈Z

sup
x∈R

(1 + |x|) 5
2 ‖Wα(x, ·)fn(x, ·)‖∞

+
∑
n∈Z

sup
x∈R

(1 + |x|) 3
2 ‖Wα(x, ·)fn(x, ·)‖1

+
∑
n∈Z

sup
x∈R

(1 + |x|)3‖W1(x)�Tfn(x, ·)‖2 .

We then have the following lemmas.
Lemma 2. For all 0 ≤ α ≤ 1, the (linear) Biot–Savart map K

K : Wα → U
ω �→ u

such that Kω = u is the (unique) solution of ∇ ·u = 0 and ∇×u = ω is well defined
and continuous.

Lemma 3. For all 0 ≤ α ≤ 1, the bilinear map

C : U ×Wα → Qα

(u,ω) �→ u× ω

is well defined and continuous.
Lemma 4. Let 0 < α ≤ 1. Then the linear map S

S : Qα → Wα

q �→ ω ,

such that ω = Sq solves (∂t + ∂x +�)ω = ∇× q, is well defined and continuous.
Lemma 2 is proved in section 3, Lemma 3 in section 4, and Lemma 4 in section

5. It follows from Lemmas 2, 3, and 4 that the quantities

C1(α) ≡ ‖S;L(Qα;Wα)‖ · ‖C;L(U ,Wα;Qα)‖ · ‖K;L(Wα;U)‖ ,

C2(α) ≡ ‖S;L(Qα;Wα)‖

are finite for all 0 < α ≤ 1, where, as usual, ‖A;L(B;D)‖ denotes the operator norm
of A ∈ L(B,D), the space of continuous linear maps from B to D.

Definition 5. Let 0 < α ≤ 1 and f ∈ Qα with ‖f ;Qα‖ < ∞. Then ω is called
an α-solution of (4)–(6) if

(i) ω ∈ Wα,
(ii) N (ω) ≡ S (C(Kω,ω) + f) = ω.
With this definition at hand we can now give a precise formulation of our main

result.
Theorem 6 (existence). Let 0 < α ≤ 1, f ∈ Qα, and assume that ‖f ;Qα‖ ≤

(4C1(α)C2(α))
−1. Then there exists an α-solution ω in Wα. This solution is unique

in the ball

B(α, ‖f ;Qα‖) =
{
ω ∈ Wα s.t. ‖ω;Wα‖ ≤ 1−

√
1−4C1(α)C2(α)‖f ;Qα‖

2C1(α)

}
.
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Proof. Lemmas 2, 3, and 4 imply that for all ω1,ω2 ∈ Bρ(Wα) = {ω ∈ Wα

s.t. ‖ω;Wα‖ ≤ ρ},
‖N (ωi);Wα‖ ≤ C1(α)ρ

2 + C2(α)‖f ;Qα‖ ,

‖N (ω1)−N (ω2);Wα‖ ≤ 2C1(α)ρ‖ω1 − ω2;Wα‖ .

Since ‖f ;Qα‖ ≤ (4C1(α)C2(α))
−1, N is a contraction on the ball Bρ(Wα) for

ρ =
1−√1− 4C1(α)C2(α)‖f ;Qα‖

2C1(α)
<

1

2C1(α)
,

which completes the proof.

3. The Biot–Savart map K. Our purpose in this section is to derive estimates
on the solution of

(17) ∇× u = ω and ∇ · u = 0 ,

where ω ∈ Wα for 0 ≤ α ≤ 1. We will show the following.
Proposition 7. For any 0 ≤ α ≤ 1, the solution map K of (17) is a continuous

linear map from Wα to U .
From now on, we will use the letter C to denote a numerical constant, whose

value may change even within the same line, but is independent of the functions that
are estimated.

Proof. Since ∇·ω = 0, taking the Fourier transform on R
3, we find for the Fourier

coefficients ûn that

ûn(k) =
ik× ω̂n(k)

|k|2 .

Performing the inverse Fourier transform with respect to k1, we get the following
pointwise estimate:

|ûn(x, k2, k3)| ≤
∫ ∞

−∞
dy e−

√
k2
2+k2

3 |x−y| |ω̂n(y, k2, k3)| .

Let K̂(x, k2, k3) = e−
√

k2
2+k2

3 |x|. Since ‖K̂(x, ·)‖∞ = 1 and ‖K̂(x, ·)‖2 ≤ 2|x|−1, we
find ∑

n∈Z

‖un(x, ·)‖2 ≤
∫
|x−y|≥2

2C1(ω) dy

|x− y|√1 + |y| +
∫
|x−y|≤2

C2(ω) dy

(1 + |y|) ,(18)

∑
n∈Z

‖ûn(x, ·)‖1 + ‖∇Tun(x, ·)‖2 + ‖�Tun(x, ·)‖2 ≤
∫ ∞

−∞

C5(ω) dy

(1 + |y|) 3
2

,(19)

where C5(ω) = C3(ω) + C4(ω) and

C1(ω) ≡
∑
n∈Z

sup
x∈R

(1 + |x|) 1
2 (1 + |x| − x)‖ωn(x, ·)‖1 ,

C2(ω) ≡
∑
n∈Z

sup
x∈R

(1 + |x|)(1 + |x| − x)‖ωn(x, ·)‖2 ,

C3(ω) ≡
∑
n∈Z

sup
x∈R

(1 + |x|) 3
2 (1 + |x| − x) (‖ω̂n(x, ·)‖1 + ‖∇Tωn(x, ·)‖2) ,

C4(ω) ≡
∑
n∈Z

sup
x∈R

(1 + |x|)2(1 + |x| − x)‖�Tωn(x, ·)‖2 .
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We show below that
∑4

i=1 Ci(ω) ≤ C‖ω;Wα‖. For the moment, we note that

∑
n∈Z

sup
x∈R

‖un(x, ·)‖2 + ‖ûn(x, ·)‖1 + ‖∇Tun(x, ·)‖2 + ‖�Tun(x, ·)‖2 ≤
4∑

i=1

Ci(ω) ,

which does not yet give the decay as |x| → ∞ needed for u to be in U .
We first improve (18) and (19) for x ≥ 4 by writing |ûn(x, k2, k3)| ≤ Ûn(x, k2, k3)+

V̂n(x, k2, k3), where

Ûn(x, k2, k3) =

∫ x+
√

|x|

x−
√

|x|
dy |ω̂n(y, k2, k3)| ,

V̂n(x, k2, k3) =

∫
|y−x|≥

√
|x|
dy e−

√
k2
2+k2

3 |x−y| |ω̂n(y, k2, k3)| .

For convenience, we also define

M1[F̂ ](x) = ‖F̂ (x, ·)‖2 ,

M2[F̂ ](x) = ‖F̂ (x, ·)‖1 + ‖k2F̂ (x, ·)‖2 + ‖k3F̂ (x, ·)‖2 ,

M3[F̂ ](x) = ‖(k22 + k23)F̂ (x, ·)‖2 ,

Jp(x) = |x| p2
{

ln(|x|)−1 if p = 1 ,

1 if p > 1 .

Since ‖K̂(z, ·)‖∞ = 1, M1[K̂](z) ≤ 2|z|−1, M2[K̂](z) ≤ 10|z|−2, M3[K̂](z) ≤ 4|z|−3,
and ∑

n∈Z

sup
z∈R

(1 + |z|) 1+p
2 Mp[ωn](z) ≤ C1+p(ω) for p = 1, 2, 3 ,

we find that for all p ∈ {1, 2, 3},
∑
n∈Z

sup
x≥4

|x| p2 Mp[Ûn](x) ≤ C1+p(ω) sup
x≥4

|x| p2
∫ x+

√
|x|

x−
√

|x|

dy

(1 + |y|) 1+p
2

≤ C C1+p(ω) ,

∑
n∈Z

sup
x≥4

Jp(x) Mp[V̂n](x) ≤ C1(ω) sup
x≥4

Jp(x)Ip(x) ,

where

(20) Ip(x) =

∫ x−
√

|x|

−∞

dy

|x− y|p√1 + |y| +
∫ ∞

x+
√

|x|

dy

|x− y|p√1 + |y| .

We now claim that for any p ≥ 1, we have supx≥4 Jp(x)Ip(x) < ∞. Changing variables
in (20), we find

Ip(x) = |x| 12−p

∫ ∞

1+ 1√
|x|

dz

|1− z|p√|z| + |x| 12−p

∫ 1− 1√
|x|

−∞

dz

|1− z|p√|z| .

We consider the case p = 1 first, finding

I1(x) ≤ 1

|x| 12

⎛
⎝∫ 2

1+ 1√
|x|

dz

z − 1
+

∫ ∞

2

dz

(z − 1)
√
z
+

∫ 1− 1√
|x|

1
2

dz

1− z
+

∫ 1
2

−∞

dz

(1− z)
√|z|

⎞
⎠

≤ 6|x|− 1
2 ln(|x|) ,
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1794 GUILLAUME VAN BAALEN AND PETER WITTWER

while if p > 1,

Ip(x) ≤ |x| 12−p

⎛
⎝∫ ∞

1+ 1√
|x|

dz

|1− z|p +

∫ 1− 1√
|x|

1
2

dz

|1− z|p +

∫ 1
2

−∞

dz

|1− z|p√|z|

⎞
⎠

≤ |x|− p
2

(
5|x| 1−p

2 +
2

p− 1

)
.

Finally, we improve (18) and (19) for x ≤ −4 by writing |ûn(x, k2, k3)| ≤ Ûn(x, k2, k3)+
V̂n(x, k2, k3), where, this time, we set

Ûn(x, k2, k3) =

∫ x
2

−∞
dy |ω̂n(y, k2, k3)| ,

V̂n(x, k2, k3)| =
∫ ∞

x
2

dy e−
√

k2
2+k2

3 |x−y| |ω̂n(y, k2, k3)| .

Since ∑
n∈Z

sup
z≤0

(1− z)
3+p
2 Mp[ωn](z) ≤ C1+p(ω) ,

we find for all x ≤ −4 and p ∈ {1, 2, 3} that

∑
n∈Z

sup
x≤−4

|x| 1+p
2 Mp[Ûn](x) ≤ C C1+p(ω) sup

x≤−4
|x| 1+p

2

∫ x
2

−∞

dy

(1− y)
3+p
2

≤ C C1+p(ω) ,

∑
n∈Z

sup
x≤−4

|x|p− 1
2Mp[V̂n](x) ≤ C C1(ω) sup

x≤−4
|x|p− 1

2

∫ ∞

x
2

dy

|x− y|p√|y| ≤ C C1(ω) .

To complete the proof, we bound the Ci(ω) by first noting that

‖W1(x)ωn(x, ·)‖p ≤ ‖Wα(x, ·)ωn(x, ·)‖p

for all α ∈ [0, 1], n ∈ Z, and 1 ≤ p ≤ ∞. We can then use Lemma 19 (see Appendix
A) to get

‖W1(x)ω̂n(x, ·)‖1 ≤ ‖Wα(x, ·)ωn(x, ·)‖
1
2
2 · ‖W1(x)�Tωn(x, ·)‖

1
2
2 ,

‖W1(x)∇Tωn(x, ·)‖2 ≤ ‖Wα(x, ·)ωn(x, ·)‖
1
2
2 · ‖W1(x)�Tωn(x, ·)‖

1
2
2 ,

which implies that

∑
n∈Z

sup
x∈R

(1 + |x|) 3
2

(1 + |x| − x)
1
2

(‖W1(x)ω̂n(x, ·)‖1 + ‖W1(x)∇Tωn(x, ·)‖2) ≤ C‖ω;Wα‖ ,

giving Ci(ω) ≤ C‖ω;Wα‖.
In Appendix B, we prove additional properties of the velocity field, namely, that it

exhibits a wake, in the sense that it decays significantly slower inside cones extending
in the downstream direction (x → ∞) than outside of such cones.

D
ow

nl
oa

de
d 

05
/0

6/
14

 to
 1

29
.1

94
.8

.7
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TIME PERIODIC SOLUTIONS OF NAVIER–STOKES EQUATIONS 1795

4. The nonlinear map u× ω. In this section, we examine the nonlinear map
C(u,ω) = u× ω. We prove the following.

Lemma 8. For all α ∈ [0, 1], the bilinear map C : U ×Wα → Qα is continuous.
Proof. We first note that(

u× ω)
n
(x) =

∑
m∈Z

un−m(x)× ωm(x) .

We also note that straightforward Lp-space interpolation gives

∑
n∈Z

sup
x∈R

(1 + |x|) 3
2− 1

p

(1 + |x| − x)
1
2

‖Wα(x, ·)ωn(x, ·)‖p ≤ ‖ω;Wα‖

for all 1 ≤ p ≤ ∞. We can then use

‖Wα(x, ·)un−m(x, ·) × ωm(x, ·)‖p ≤ ‖un−m(x, ·)‖∞‖Wα(x, ·)ωm(x, ·)‖p
to conclude that∑

n∈Z

sup
x∈R

(1 + |x|) 5
2− 1

p ‖Wα(x, ·)
(
u× ω)

n
(x, ·)‖p ≤ C‖u;U‖ · ‖ω;Wα‖

for all 1 ≤ p ≤ ∞. On the other hand, using Lemma 19 (see Appendix A), we find

‖W1(x)�T(un−m(x, ·) × ωm(x, ·))‖2 ≤ C(A1(x) +A2(x) +A3(x)) ,

where

A1(x) ≡ ‖un−m(x, ·)‖∞ · ‖W1(x)�Tωm(x, ·)‖2 ,

A2(x) ≡ 2‖∇Tun−m(x, ·)‖4 · ‖W1(x)∇Tωm(x, ·)‖4
≤ ‖∇Tun−m(x, ·)‖ 1

2
2 · ‖�Tun−m(x, ·)‖ 1

2
2

· ‖Wα(x, ·)ωm(x, ·)‖ 1
4
2 · ‖W1(x)�Tωm(x, ·)‖ 3

4
2 ,(21)

A3(x) ≡ ‖�Tun−m(x, ·)‖2 · ‖W1(x)ωm(x, ·)‖∞
≤ ‖�Tun−m(x, ·)‖2 · ‖Wα(x, ·)ωm(x, ·)‖ 1

2
2 · ‖W1(x)�Tωm(x, ·)‖ 1

2
2 ,(22)

using Lemma 19 and W1(x) ≤ Wα(x, y, z) to get (21) and (22).

5. The S map. Our main purpose in this section is to find ω solving

(∂t + ∂x −�)ω = ∇× q

for a given q ∈ Qα. In terms of the Fourier coefficients with index m ∈ Z, one can
write

(23) ωm(x) =
(Sq)

m
(x) ≡

∫
R3

ds du dv ∇×Kλm(x− s) qm(s) ,

where x = (x, y, z), s = (s, u, v), ∇ = (∂x, ∂y, ∂z), and

(24) Kn(x, y, z) =
e

x−r
√

1+4in
2

r
for r =

√
x2 + y2 + z2 .

We will prove the following.
Proposition 9. For all 0 < α ≤ 1, the map S : Qα → Wα is continuous.
The proof of the proposition will be given in section 5.2, once we have proved all

the necessary estimates on the (family of) kernels Kn in the next section. Note that
we formally have ∇ · (Sq) = 0 since Sq is the curl of a function.
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1796 GUILLAUME VAN BAALEN AND PETER WITTWER

5.1. Estimates on kernel. In this section, we establish estimates on the kernels
Kn defined in (24). For further reference, we note that the (partial) Fourier transform
K̂n(x, k1, k2) of Kn(x, y, z) with respect to y, z is

K̂n(x, k1, k2) =
e

x−|x|
√

1+4(in+k2)
2√

1 + 4(in+ k2)
,

where k =
√
k21 + k22 . Furthermore, we have

∂xKn(x, y, z) =

(
r − x

√
1 + 4in

2r
− x

r2

)
e

x−r
√

1+4in
2

r
,

∇TKn(x, y, z) = −xT

r

(
(2 + r

√
1 + 4in)

r2

)
e

x−r
√

1+4in
2 ,

where xT = (0, y, z) and r =
√
x2 + y2 + z2. In our estimates, we will use repeatedly

the function

Λ(n) =

√√
1 + 16n2 + 1

2
.

We give below Sobolev estimates on Kn that are uniform in n. To improve readability,
we will often use the shorthand notation Λ instead of Λ(n), suprema over n ∈ λZ
becoming suprema over Λ ≥ 1.

Lemma 10. Let 1 ≤ p ≤ 2, q > 2, and 0 < α ≤ 1. The following estimates hold:

sup
n∈λZ

sup
x∈R

|x| 32− 1
p e

|x|(Λ−1)
2 ‖Wα(x, ·)∇TKn(x, ·)‖p ≤ C(α) ,

sup
n∈λZ

sup
|x|≥ 1

2

|x| 32− 1
q e

|x|(Λ−1)
4 ‖Wα(x, ·)∇TKn(x, ·)‖q ≤ C(α) ,

with C(α) → ∞ as α → 0.

Proof. Let ρ =
√

y2 + z2. Straightforward computations give

|∇TKn(x, y, z)| ≤ ρ
√
4 + 4rΛ + r2(2Λ2 − 1)

e
x−rΛ

2

r3
≤ 2

ρ(2 + rΛ)

r3
e

x−rΛ
2 ,

from which we get that

‖Wα(x, ·)∇TKn(x, ·)‖∞ ≤ sup
ρ≥0

ρ(2 +
√
x2 + ρ2Λ)

(x2 + ρ2)
3
2

e
x−

√
x2+ρ2Λ
2 +

|x|−x
2 α+

√
ρ2+x2−x

2 (1−α) .

Replacing the supremum over ρ by a supremum over s = Λ(
√
x2 + ρ2 − |x|), we get

‖Wα(x, ·)∇TKn(x, ·)‖∞ ≤ e−
|x|
2 (Λ−1) sup

s≥0
e−

s
2Λ (Λ−1+α)Λ

2
√
s(2 + s+ Λ|x|)
(s+ |x|Λ) 5

2

≤ e−
|x|
2 (Λ−1) sup

s≥0

e−
s
2Λ (Λ−1+α)(2 + s)

|x|2 +
e−

s
2Λ (Λ−1+α)

√
sΛ

|x| 32

≤ C
Λe−

|x|
2 (Λ−1)

|x| 32√Λ− 1 + α

(
1 +

1√|x|

)
(25)
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for all 0 < α ≤ 1. Using again the change of variables s = Λ(
√
x2 + ρ2 − |x|), we find

‖∇TKn(x, ·)‖1 ≤
∫ ∞

0

dρ
ρ2(2 +

√
x2 + ρ2Λ)

(x2 + ρ2)
3
2

e
x−

√
x2+ρ2Λ
2

≤ Ce
x−|x|Λ

2

∫ ∞

0

ds

√
s2 + 2s|x|Λ(2 + s+ |x|Λ)

(s+ |x|Λ)2 e−
s
2

≤ Ce
x−|x|Λ

2

∫ ∞

0

ds

√
s(2 + s+ |x|Λ)
(s+ |x|Λ) 3

2

e−
s
2

≤ Ce
x−|x|Λ

2

∫ ∞

0

ds

√
s(2 + s+ |x|)
(s+ |x|) 3

2

e−
s
2 ≤ C

e
x−|x|Λ

2

|x| 12 .

Along the same lines, we find that

‖∇TKn(x, ·)‖2 ≤ C

(∫ ∞

0

dρ
ρ3(2 +

√
x2 + ρ2Λ)2

(x2 + ρ2)3
ex−

√
x2+ρ2Λ

) 1
2

≤ C
e

x−|x|Λ
2

|x|
(∫ ∞

0

ds
|x|2Λ2s(2 + s+ |x|Λ)2

(s+ |x|Λ)4 e−s

) 1
2

≤ C
e

x−Λ|x|
2

|x| .

Using interpolation and straightforward modifications of the above to include the
weight Wα, we find that

sup
n∈λZ

sup
x∈R

|x| 32− 1
p e

|x|(Λ−1)
2 ‖Wα(x, ·)∇TKn(x, ·)‖p ≤ C(α)

for all 1 ≤ p ≤ 2 and 0 < α ≤ 1 with C(α) → ∞ as α → 0. Furthermore, from (25),
we get

(26) sup
n∈λZ

sup
|x|≥ 1

2

|x| 32− 1
q e

|x|(Λ−1)
4 ‖Wα(x, ·)∇TKn(x, ·)‖q ≤ C(α)

for all q > 2 and 0 < α ≤ 1. Note that in (26) the restriction of the supremum over
|x| ≥ 1

2 is essential to be able to use part of the exponential decay as |x| → ∞ to
compensate for the growth of the algebraic prefactor as Λ → ∞ (or |n| → ∞).

Lemma 11. Let β, γ ∈ N with β+ γ ≥ 1. For any combination of i, j among y, z,
it holds that

sup
n∈λZ

sup
x∈R

|x|3e |x|(Λ−1)
4

1 + |x| ‖W1(x)�T∇TKn(x, ·)‖2 ≤ C ,

sup
n∈λZ

sup
x∈R

e
|x|(Λ−1)

4 |x|1+β+γ

(1 + |x|)β+γ
2

‖W1(x)∂
1+β
i ∂γ

j Kn(x, ·)‖2 ≤ C ,

sup
n∈λZ

sup
x∈R

e
|x|(Λ−1)

4 |x|2+β+γ

(1 + |x|) 1+β+γ
2

‖W1(x)∂
1+β
i ∂γ

j Kn(x, ·)‖∞ ≤ C .

Proof. In this proof, we work with the Fourier transform with respect to y, z.

Setting f(k, n) ≡ k7√
16n2+(1+4k2)2

, we find

‖�T∇TKn(x, ·)‖2 ≤ C

(∫ ∞

0

dk exp

(
x−

√√
16n2+(1+4k2)2+1+4k2

2 |x|
)
f(k, n)

) 1
2

.
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Performing the change of variables√√
16n2 + (1 + 4k2)2 + 1 + 4k2

2
= Λ +

s

|x|
and setting

T0(s, |x|,Λ) = (s+ 2|x|Λ)3(2|x|Λ2 + 2s|x|Λ − |x|2 + s2)3

(s+ |x|Λ)7 ,

we find that

‖�T∇TKn(x, ·)‖2 ≤ C
e

x−|x|Λ
2

|x|3
(∫ ∞

0

ds T0(s, |x|,Λ)s3e−s

) 1
2

≤ C
e

x−|x|Λ
2

|x|3
(∫ ∞

0

ds (s+ |x|Λ)2s3e−s

) 1
2

≤ C
e

x−|x|Λ
2 (1 + |x|Λ)

|x|3 .

We thus find

sup
n∈λZ

sup
x∈R

e
|x|(Λ−1)

4 |x|3
1 + |x| ‖W1(x)�T∇TKn(x, ·)‖2 ≤ C .

Proceeding similarly, we find for all β+ γ ≥ 1 and any combination of i, j among y, z
that

‖∂1+β
i ∂γ

j Kn(x, ·)‖2 ≤ C
e

x−|x|Λ
2

|x|1+β+γ

(∫ ∞

0

ds (s+ |x|Λ)β+γs1+β+γe−s

) 1
2

≤ C
e

x−|x|Λ
2 (1 + |x|Λ)β+γ

2

|x|1+β+γ
,

‖∂1+β
i ∂γ

j Kn(x, ·)‖∞ ≤ C
e

x−|x|Λ
2

|x|2+β+γ

∫ ∞

0

ds (s+ |x|Λ) 1+β+γ
2 s

1+β+γ
2 e−s

≤ C
e

x−|x|Λ
2 (1 + |x|Λ)β+γ

2

|x|1+β+γ
,

where we used ‖F (x, ·)‖∞ ≤ ‖F̂ (x, ·)‖1.
Lemma 12. Let 1 ≤ p ≤ 2, q > 2, and 0 < α ≤ 1. The following estimates hold:

sup
n∈λZ

sup
x∈R

|x| 32− 1
p (1 + |x|) 1

2

1 + |x| − x+ (|x| + x)
1
2

e
|x|(Λ−1)

4 ‖Wα(x, ·)∂xKn(x, ·)‖p ≤ C(α) ,

sup
n∈λZ

sup
|x|≥ 1

2

|x| 32− 1
q (1 + |x|) 1

2

1 + |x| − x+ (|x|+ x)
1
2

e
|x|(Λ−1)

4 ‖Wα(x, ·)∂xKn(x, ·)‖q ≤ C(α) ,

sup
n∈λZ

sup
x∈R

e
|x|(Λ−1)

4 |x|3
(1 + |x|) 1

2 (1 + |x| − x)
‖W1(x)�T∂xKn(x, ·)‖2 ≤ C .

Proof. We first note that

|∂xKn(x, y, z)| ≤ e
x−Λr

2

r3

√
(r2 − xrΛ − 2x)2 + x2r2(Λ2 − 1)

≤ Rn,1(x, y, z) + Rn,2(x, y, z) ,
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where

Rn,1(x, y, z) =
e

x−Λr
2

r

∣∣∣∣r − x

2r
− x

r2

∣∣∣∣ and Rn,2(x, y, z) =
e

x−Λr
2

r

√
Λ(Λ− 1) .

Using the change of variables s = Λ(
√
x2 + ρ2 − |x|) and setting

T1(s, |x|,Λ) =
(

s

2Λ|x|2 +
|x| − x

|x|2 +
1

|x|2 +

√
Λ(Λ− 1)

|x|

)
,

we find that

‖Wα(x, ·)∂xKn(x, ·)‖∞ ≤ e−
|x|
2 (Λ−1) sup

s≥0
e−

s
2Λ (Λ−1+α)T1(s, |x|,Λ)

≤ e−
|x|
2 (Λ−1)

|x|2
(

1

Λ− 1 + α
+ |x| − x+

√
Λ(Λ− 1)|x|

)
,

from which we deduce, for all 0 < α ≤ 1, that

(27) sup
n∈λZ

sup
x∈R

|x|2e |x|
4 (Λ−1)

1 + |x| − x+ (|x|+ x)
1
2

‖Wα(x, ·)∂xKn(x, ·)‖∞ ≤ C(α) ,

with C(α) → ∞ as α → 0. For the other norms, we have

‖Rn,1(x, ·)‖1 ≤ Ce
x−Λ|x|

2

∫ ∞

0

ds
|(s+ Λ|x|)(s+ Λ(|x| − x)) − 2xΛ2|

Λ(s+ Λ|x|)2 e−
s
2

≤ C
e

x−Λ|x|
2 (1 + |x| − x)

1 + |x| ,

‖Rn,1(x, ·)‖2 ≤ Ce
x−Λ|x|

2

(∫ ∞

0

ds
((s+ Λ|x|)(s+ Λ(|x| − x))− 2xΛ2)2

(s+ Λ|x|)5 e−s

) 1
2

≤ C
e

x−Λ|x|
2 (1 + |x| − x)

|x|(1 + |x|) 1
2

,

‖Rn,2(x, ·)‖1 ≤ C

√
1− 1

Λ
e

x−Λ|x|
2

∫ ∞

0

ds e−
s
2 ≤ C

√
1− 1

Λ
e

x−Λ|x|
2 ,

‖Rn,2(x, ·)‖2 ≤ C

√
1− 1

Λ
e

x−Λ|x|
2

(∫ ∞

0

ds
e−s

s+ Λ|x|
) 1

2

≤ C

√
1− 1

Λ

e
x−Λ|x|

2

|x|
|x|Λ√
1 + |x|Λ .

Modifying the above estimates to incorporate the weight Wα, we find for all 1 ≤ p ≤ 2
and 0 < α ≤ 1 that

‖Wα(x, ·)Rn,1(x, ·)‖p ≤ C(α)
e−

|x|(Λ−1)
2 (1 + |x| − x)

|x| 32− 1
p (1 + |x|) 1

2

with C(α) → ∞ as α → 0, while

‖Wα(x, ·)Rn,2(x, ·)‖1 ≤ C(α)

√
1− 1

Λ
e−

|x|(Λ−1)
2 ,

‖Wα(x, ·)Rn,2(x, ·)‖2 ≤ C(α)

√
1− 1

Λ

e−
|x|(Λ−1)

2

|x|
|x|Λ√
1 + |x|Λ .
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We then get for all 1 ≤ p ≤ 2 and 0 < α ≤ 1 that

sup
n∈λZ

sup
x∈R

|x| 32− 1
p (1 + |x|) 1

2

1 + |x| − x+ (|x|+ x)
1
2

e
|x|(Λ−1)

4 ‖Wα(x, ·)∂xKn(x, ·)‖p ≤ C(α) ,

which, when combined with (27), gives

sup
n∈λZ

sup
|x|≥ 1

2

|x| 32− 1
q (1 + |x|) 1

2

1 + |x| − x+ (|x| + x)
1
2

e
|x|(Λ−1)

4 ‖Wα(x, ·)∂xKn(x, ·)‖q ≤ C(α)

for all q > 2 and 0 < α ≤ 1.
Finally, we find

‖�T∂xKn(x, ·)‖2 ≤ C
e

x−|x|Λ
2

|x|3
(∫ ∞

0

ds T2(s, |x|,Λ)T3(s, |x|,Λ)s2e−s

) 1
2

,

where

T2(s, |x|,Λ) = (s+ 2|x|Λ)4(s+ |x|Λ − x)2 + (s+ 2|x|Λ)2(Λ2 − 1)x2(Λ|x|)2 ,

T3(s, |x|,Λ) = (2|x|Λ2 + 2s|x|Λ − |x|2 + s2)2

(s+ |x|Λ)7 .

Setting T4(s, |x|,Λ) =
(
(s+ |x|Λ)(s+ |x|Λ − x)2 + (Λ2 − 1)x2|x|Λ), we thus get

‖�T∂xKn(x, ·)‖2 ≤ C
e

x−|x|Λ
2

|x|3
(∫ ∞

0

ds T4(s, |x|,Λ)s2e−s

) 1
2

≤ C
e

x−|x|Λ
2

√
1 + |x|Λ

|x|3
{

1 + |x|(Λ − 1) if x ≥ 0 ,

1 + |x|Λ if x ≤ 0 ,

from which we deduce

sup
n∈λZ

sup
x∈R

e
|x|(Λ−1)

4 |x|3
(1 + |x|) 1

2 (1 + |x| − x)
‖W1(x)�T∂xKn(x, ·)‖2 ≤ C ,

using again part of the exponential decay to compensate for the growth of the pre-
factor as |x|Λ → ∞.

5.2. The map S. It is practical to decompose the map S from (23) as S =
S+
0 + S+

1 + S−
0,T + S−

1,T + S−
0,L + S−

1,L, where, in terms of the Fourier coefficients with
index m ∈ Z, we set

[2]
(S+

0 f
)
m
(x) =

∫ x− |x|+1
2

−∞
ds

∫
R2

du dv ∇× (Kλm(x− s) fm(s)
)
,(28)

(S+
1 f
)
m
(x) =

∫ x

x− |x|+1
2

ds

∫
R2

du dv ∇× (Kλm(x− s) fm(s)
)
,(29)

(S−
0,Tf

)
m
(x) =

∫ ∞

x+ |x|+1
2

ds

∫
R2

du dv ∇T × (Kλm(x− s) fm(s)
)
,(30)

(S−
1,Tf

)
m
(x) =

∫ x+ |x|+1
2

x

ds

∫
R2

du dv ∇T × (Kλm(x− s) fm(s)
)
,(31)
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(S−
0,Lf

)
m
(x) =

∫ ∞

x+ |x|+1
2

ds

∫
R2

du dv ∇L × (Kλm(x− s) fm(s)
)
,(32)

(S−
1,Lf

)
m
(x) =

∫ x+ |x|+1
2

x

ds

∫
R2

du dv ∇L × (Kλm(x− s) fm(s)
)
,(33)

with x = (x, y, z) and s = (s, u, v), ∇ = (∂x, ∂y, ∂z), ∇T = (0, ∂y, ∂z), and ∇L =
(∂x, 0, 0).

Note that the first argument of Kλm is positive in S+
i and negative in S−

i,T and

S−
i,L. Also, in S+

0 , S−
0,T, and S−

0,L, we avoid integrating close to the locations where
some of the kernel estimates of the previous section are singular. We can now break
the proof of Proposition 9 into the following.

Proposition 13. For all 0 < α ≤ 1, the six linear maps defined in (28)–(33) are
continuous from Qα to Wα.

The proof follows immediately from Lemmas 15, 16, and 17 below. We first quote
an easy result.

Lemma 14. For any f ∈ Qα, the quantities

Aα(f) =
∑
n∈Z

∫ ∞

−∞
ds ‖Wα(s, ·)fn(s, ·)‖1 ,

Bp,α(f) =
∑
n∈Z

sup
x∈R

(1 + |x|) 5
2− 1

p ‖Wα(s, ·)fn(s, ·)‖p ,

D(f) =
∑
n∈Z

sup
x∈R

(1 + |x|)3‖W1(s)�Tfn(s, ·)‖2

satisfy Aα(f) + Bp,α(f) + D(f) ≤ C‖f ;Qα‖ for all 1 ≤ p ≤ ∞.
We first estimate the S+

i maps. Note that the estimates in (35) and (37) below
are stronger than those needed for S+

i f to be in Wα. In particular, since S+
1 f decays

by a factor of |x|− 1
2 faster than S+

0 f as |x| → ∞, S+
1 f can be neglected in a first order

asymptotic expansion of Sf as |x| → ∞.
Lemma 15. Let 0 < α ≤ 1. There exists a constant C(α) with C(α) → ∞ as

α → 0 such that∑
n∈Z

sup
x∈R

(1 + |x|) 3
2− 1

p ‖Wα(x, ·)
(S+

0 f
)
n
(x, ·)‖p ≤ C(α) Aα(f) ,(34)

∑
n∈Z

sup
x∈R

(1 + |x|)2− 1
p ‖Wα(x, ·)

(S+
1 f
)
n
(x, ·)‖p ≤ C(α) Bp,α(f) ,(35)

∑
n∈Z

sup
x∈R

(1 + |x|)2‖W1(x)�T

(S+
0 f
)
n
(x, ·)‖2 ≤ C(α) Aα(f) ,(36)

∑
n∈Z

sup
x∈R

(1 + |x|) 5
2 ‖W1(x)�T

(S+
1 f
)
n
(x, ·)‖2 ≤ C(α) D(f)(37)

for all 1 ≤ p ≤ ∞.
Proof. Let 0 < α < 1, r = (x, y, z), r′ = (s, u, v), r =

√
x2 + y2 + z2, and

r′ =
√
s2 + u2 + v2. By the triangle inequality, we have

Wα(x, y, z) ≤ e
|x−s|−(x−s)

2 α+ |r−r′|−(x−s)
2 (1−α)e

|s|−s
2 α+ r′−s

2 (1−α)

= Wα(x− s, y − u, z − v)Wα(s, u, v) ,

W1(x) ≤ W1(x− s)W1(x) .
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We find

‖Wα(x, ·)
(S+

0 f
)
n
(x, ·)‖p ≤ C(α)

∫ x− |x|+1
2

−∞
ds

‖Wα(s, ·)fn(s, ·)‖1
|x− s| 32− 1

p

,

‖Wα(x, ·)
(S+

1 f
)
n
(x, ·)‖p ≤ C(α)

∫ x

x− |x|+1
2

ds
‖Wα(s, ·)fn(s, ·)‖p

|x− s| 12 ,

‖W1(x)�T

(S+
0 f
)
n
(x, ·)‖2 ≤ C(α)

∫ x− |x|+1
2

−∞
ds

1 + |x− s|
|x− s|3 ‖W1(s)fn(s, ·)‖1 ,

‖W1(x)�T

(S+
1 f
)
n
(x, ·)‖2 ≤ C(α)

∫ x

x− |x|+1
2

ds
‖W1(s)�Tfn(s, ·))‖2

|x− s| 12

for all 1 ≤ p ≤ ∞, from which (34)–(37) follow at once, using

W1(s) = e
|s|−s

2 ≤ e
|s|−s

2 α+ r′−s
2 (1−α) = Wα(s, u, v)

and Lemma 18 (see Appendix A).
We next estimate S−

i,T. Note again the stronger estimates in (39) and (41), show-

ing that S−
1,Tf can also be neglected in a first order expansion of Sf as |x| → ∞.

Lemma 16. Let 0 < α ≤ 1. There exists a constant C(α) with C(α) → ∞ as
α → 0 such that∑

n∈Z

sup
x∈R

(1 + |x|) 3
2− 1

p ‖Wα(x, ·)
(S−

0,Tf
)
n
(x, ·)‖p ≤ C(α) Aα(f) ,(38)

∑
n∈Z

sup
x∈R

(1 + |x|)2− 1
p ‖Wα(x, ·)

(S−
1,Tf

)
n
(x, ·)‖p ≤ C(α) Bp,α(f) ,(39)

∑
n∈Z

sup
x∈R

(1 + |x|)2‖W1(x)�T

(S−
0,Tf

)
n
(x, ·)‖2 ≤ C(α) Aα(f),(40)

∑
n∈Z

sup
x∈R

(1 + |x|) 5
2 ‖W1(x)�T

(S−
1,Tf

)
n
(x, ·)‖2 ≤ C(α) D(f)(41)

for all 1 ≤ p ≤ ∞.
Proof. The estimates for S−

i,T are very similar to the ones for S+
i . Namely, we

have

‖Wα(x, ·)
(S−

0,Tf
)
n
(x, ·)‖p ≤ C(α)

∫ ∞

x+ |x|+1
2

ds
‖Wα(s, ·)fn(s, ·)‖1

|x− s| 32− 1
p

,

‖Wα(x, ·)
(S−

1,Tf
)
n
(x, ·)‖p ≤ C(α)

∫ x+ |x|+1
2

x

ds
‖Wα(s, ·)fn(s, ·)‖p

|x− s| 12 ,

‖W1(x)�T

(S−
0,Tf

)
n
(x, ·)‖2 ≤ C(α)

∫ ∞

x+ |x|+1
2

ds
1 + |x− s|
|x− s|3 ‖W1(s)fn(s, ·)‖1 ,

‖W1(x)�T

(S−
1,Tf

)
n
(x, ·)‖2 ≤ C(α)

∫ x+ |x|+1
2

x

ds
‖W1(s)�Tfn(s, ·)‖2

|x− s| 12 ,

from which (38)–(41) follow at once, using Lemma 18 (see Appendix A).
We conclude this section with the estimates on S−

i,L. All estimates below are

stronger than what is needed for S−
i,Lf to be in Wα. In particular, S−

i,Lf decays by a
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factor of x−1 faster than, say, S+
0 f as x → ∞. This means that S−

0,Lf and S−
1,Lf can

also both be neglected in an asymptotic expansion of Sf as x → ∞. These functions
are, however, relevant as x → −∞.

Lemma 17. Let 0 < α ≤ 1. There exists a constant C(α) with C(α) → ∞ as
α → 0 such that

∑
n∈Z

sup
x∈R

(1 + |x|) 5
2− 1

p

(1 + |x| − x)
3
2

‖Wα(x, ·)
(S−

0,Lf
)
n
(x, ·)‖p ≤ C(α)max

{
Aα(f) , Bp,α(f)

}
,(42)

∑
n∈Z

sup
x∈R

(1 + |x|) 5
2− 1

p

(1 + |x| − x)
3
2

‖Wα(x, ·)
(S−

1,Lf
)
n
(x, ·)‖p ≤ C(α)max

{
Aα(f) , Bp,α(f)

}
,(43)

∑
n∈Z

sup
x∈R

(1 + |x|)3
(1 + |x| − x)

3
2

‖W1(x)�T

(S−
0,Lf

)
n
(x, ·)‖2 ≤ C(α)max

{
Aα(f) , D(f)

}
,(44)

∑
n∈Z

sup
x∈R

(1 + |x|)3
(1 + |x| − x)

3
2

‖W1(x)�T

(S−
1,Lf

)
(x, ·)‖2 ≤ C(α)max

{
Aα(f) , D(f)

}
(45)

for all 1 ≤ p ≤ ∞, n ∈ Z, and x ∈ R.
Proof. We will consider separately the cases x ≥ 0 and x < 0. We first note that

the integration variable s always satisfies s ≥ x. Furthermore, if x ≥ 0, we have

Wα(x, y, z) = e
r−x
2 (1−α) ≤ e

|r−r′|−(x−s)
2 (1−α)e

r′−s
2 (1−α)

= e(x−s)αWα(x− s, y − u, z − v)Wα(s, u, v) .

We thus find the following estimates if x ≥ 0:

‖Wα(x, ·)
(S−

0,Lf
)
n
(x, ·)‖p ≤ C(α)

∫ ∞

x+
|x|+1

2

ds e(x−s)α‖Wα(s, ·)fn(s, ·)‖p ,

‖Wα(x, ·)
(S−

1,Lf
)
n
(x, ·)‖p ≤ C(α)

∫ x+ |x|+1
2

x

ds e(x−s)α‖Wα(s, ·)fn(s, ·)‖p ,

‖W1(x)�T

(S−
0,Lf

)
n
(x, ·)‖2 ≤ C(α)

∫ ∞

x+ |x|+1
2

ds e(x−s)‖W1(s)�Tfn(s, ·)‖2 ,

‖W1(x)�T

(S−
1,Lf

)
n
(x, ·)‖2 ≤ C(α)

∫ x+ |x|+1
2

x

ds e(x−s)‖W1(s)�Tfn(s, ·)‖2 ,

while if x < 0, we have

‖Wα(x, ·)
(S−

0,Lf
)
n
(x, ·)‖p ≤ C(α)

∫ ∞

x+ |x|+1
2

ds

√
1 + |x− s|

|x− s| 32− 1
p

‖Wα(s, ·)fn(s, ·)‖1 ,

‖Wα(x, ·)
(S−

1,Lf
)
n
(x, ·)‖p ≤ C(α)

∫ x+
|x|+1

2

x

ds ‖Wα(s, ·)fn(s, ·)‖p ,

‖W1(x)�T

(S−
0,Lf

)
n
(x, ·)‖2 ≤ C(α)

∫ ∞

x+ |x|+1
2

ds
(1 + |x− s|) 3

2

|x− s|3 ‖W1(s)fn(s, ·)‖1 ,

‖W1(x)�T

(S−
1,Lf

)
n
(x, ·)‖2 ≤ C(α)

∫ x+ |x|+1
2

x

ds ‖W1(s)�Tf(s, ·)‖2 ,

from which the lemma follows at once for x < 0, using again Lemma 18 (see Appendix
A).
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Appendix A. Useful estimates. In this section, we collect useful estimates.
The first one is straightforward.

Lemma 18. Let β > 0 and x ∈ R. Then

sup
s∈[x− |x|+1

2 ,x+ |x|+1
2 ]

1

(1 + |s|)β ≤ 2β

(1 + |x|)β .

The second one is a collection of classical estimates.
Lemma 19. Let f ∈ H2(R2); then

‖∇f‖2 ≤
√
‖f‖2 · ‖�f‖2 ,

‖f‖∞ ≤ ‖f̂‖1 ≤ π
√

‖f‖2 · ‖�f‖2 ,

‖∇f‖4 ≤ 2
3
4
√
π

√
min

{
‖∇f‖2 · ‖�f‖2 , ‖f‖ 1

2
2 · ‖�f‖ 3

2
2

}
.

Proof. Let a = ‖f‖2

‖�f‖2
, b = ‖∇f‖2

‖�f‖2
, and k =

√
k21 + k22 . We have

‖∇f‖2 ≤
(∫

R2

d2k k2|f(k)|2
) 1

2

≤
(∫

R2

d2k

(
1

2a
+

ak4

2

)
|f(k)|2

) 1
2

=
√
‖f‖2‖�f‖2 ,

‖f̂‖1 ≤
∫
R2

d2k

√
1 + a2k4|f̂(k)|√

1 + a2k4
≤
(
‖f‖22

(∫ ∞

0

4πk dk

(1 + a2k4)

)) 1
2

≤ π
√

‖f‖2‖�f‖2 ,

‖∇f‖4 ≤
(∫

R2

d2k
|√1 + (bk)2kf̂(k)| 43

(1 + (bk)2)
2
3

) 3
4

≤
(∫

R2

d2k (1 + (bk)2)k2|f̂(k)|2
(∫ ∞

0

2πk dk

(1 + (bk)2)2

) 1
2

) 1
2

≤ 2
3
4

√
π‖∇f‖2‖�f‖2 .

The proof is completed using the classical inequality ‖f‖∞ ≤ ‖f̂‖1.
Appendix B. Additional properties on the solution of ∇ × u = ω. We

now prove some decay properties of the velocity field. To do so, we first introduce
some notation: r = (x, y, z), |r| = r =

√
x2 + y2 + z2, θ(x, y, z) = arccos(xr ), and

χσ(θ) =

{
1 if θ ≥ σ ,

0 if θ < σ .

Proposition 20. Let ω ∈ Wα; then for all 4
3 < p < 3

2 and 0 < σ < π/2, there
exists a constant C(ε, σ) such that the (divergence-free) solution of ∇×u = ω satisfies

(46) sup
t∈R

sup
r∈R3

(1 + |r|)(1 + χσ(θ(r))|r| 3p−2)|u(r, t)| ≤ C(p, σ) ‖ω;Wα‖ ,

with C(p, σ) → ∞ if p → 4
3 or σ → 0 or σ → π/2.
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In other words, we prove an upper bound |r|−1 on u inside any cone of positive

aperture σ extending in the downstream direction, and a stronger one of at least |r|1− 3
p

outside of such cones. The optimal rate u(r) ∼ |r|−2 outside downward extending
cones (corresponding to p = 1) can only be proved once a downstream asymptotic
expansion of the vorticity is established; see the remark after the proof.

Proof. Fix 0 < σ < π
2 . Note first that the supremum over t in (46) is bounded by

the �1-sum over the Fourier index n ∈ Z. We then recall that by Proposition 7∑
n∈Z

sup
(x,y,z)∈R3

(1 + |x|)|un(x, y, z)| ≤ C‖ω;Wα‖ .

Also, we note for future reference that

∑
n∈Z

|ωn(x, y, z)| ≤ ‖ω;Wα‖
√
1 + |x| − x

(1 + |x|) 3
2

e
x−|x|

2 α+ x−r
2 (1−α)

≤ ‖ω;Wα‖e−|r|(1−cos(θ(r))) 1−α
2 .

Inside the cone of aperture σ, we thus find∑
n∈Z

sup
r∈R3,θ(r)≤σ

(1 + |r|)|un(r)| ≤
∑
n∈Z

sup
r∈R3,θ(r)≤σ

(1 + |x|
√
1 + tan(θ)2)|un(r)|

≤ C(1 +
√
1 + tan(σ)2) ‖ω;Wα‖ .

Outside of the cone, we will use the following bound on u:

|u(r, t)| ≤ I1(r, t) + I2(r, t) + I3(r, t) ,

where, for i ∈ {1, 2, 3}, we have

Ii(x, y, z, t) =
∫
Ri(x,y,z)

da db dc
|ω(a, b, c, t)|

(x − a)2 + (y − b)2 + (z − c)2

with, for a = (a, b, c),

R1(x, y, z) =
{
a ∈ R

3 s.t. |r− a| ≤ |r| sin(σ/2)} ,

R2(x, y, z) =
{
a ∈ R

3 s.t. θ(a) > σ/2 and |r− a| > |r| sin(σ/2)} ,

R3(x, y, z) =
{
a ∈ R

3 s.t. θ(a) ≤ σ/2 and |r− a| > |r| sin(σ/2)} .

We then note that if θ(r) > σ, R1(r) lies outside the cone of aperture σ/2 and
outside the ball of radius |r|(1 − sin(σ/2)). Hence, for all r with θ(r) > σ, we have

I1(r, t) ≤ |r| sin
(σ
2

)∑
n∈Z

sup
(a,b,c)∈R1(r)

|ωn(a, b, c)|

≤ ‖ω;Wα‖ sin
(σ
2

)
|r| exp (− |r|(1−α

2 )(1 − cos(σ/2))(1 − sin(σ/2))
)

= ‖ω;Wα‖ sin
(σ
2

)
|r|e−|r|c(α,σ)

with c(α, σ) > 0 since 0 < σ < π
2 . Therefore, I1(x, y, z, t) decays exponentially outside

the cone of aperture σ.
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For the I2 integral, we find

I2(r, t) ≤ 1

|r|2 sin(σ/2)2
∫
R2(r)

da db dc
∑
n∈Z

|ωn(a, b, c)|

≤ C(σ)
‖ω;Wα‖

|r|2
∫ ∞

0

dρ ρ2 exp
(− ρ(1−α

2 )(1 − cos(σ/2))
) ≤ C(σ)

‖ω;Wα‖
|r|2 .

Finally, for the I3 integral, we set a = (a, b, c) and note that for all 4
3 < p < 3

2 ,
we have

I3(r, t) ≤
(∫ ∞

0

da

∫
R2

db dc (1 − χσ/2(θ(a)))
∑
n∈Z

|ωn(a)|p
)1/p(

4π

∫ ∞

|r| sin(σ
2 )

dr r−
2

p−1

)1− 1
p

≤ C(p, σ) |r|1− 3
p ‖ω;Wα‖

(∫ ∞

0

dx (1 + x)−
3p
2 +1

)1/p

≤ C(p, σ) |r|1− 3
p ‖ω;Wα‖ ,(47)

since
∑

n∈Z
‖ωn(x, ·)‖p ≤ ‖ω;Wα‖(1 + |x|)− 3

2+
1
p for x ≥ 0.

As is apparent from the above proof, the failure of u to decay like |r|−2 out-
side downstream extending cones is due to the vorticity ω not being in L1({r ∈
R

3 s.t. θ(r) < σ/2}) due to its (relatively) slow decay in the wake (see the I3 term
above). The optimal decay rate of |r|−2 outside the wake can only be obtained for the
velocity field corresponding to a vorticity decaying faster than 1/x inside the wake,
for instance, once an asymptotic expansion for the vorticity is obtained. One would
then write

ω = ω − ωe + ωe and u = u− ue + ue,

where ωe and ue are the first few explicit terms in the asymptotic development of
the wake; see, e.g., [10, 8]. In particular, we expect ue ∼ |r|−2 outside downward
extending cones, and ω−ωe to decay faster in the wake. One would thus get improved
estimates on u− ue by pushing the estimate (47) down to p = 1.

Appendix C. Divergence-free extensions in exterior domains. Let Ω be a
three-dimensional exterior domain. We denote by δ(Ωc) the diameter of the smallest
(closed) sphere containing Ωc and choose as origin of the coordinate system the center
of that sphere. For 1 < a < b, we also denote by χa,b a smooth function interpolating
between χa,b(r) = 0 if r ≤ aδ(Ωc) and χa,b(r) = 1 if r ≥ bδ(Ωc).

We now construct a divergence-free extension to R3 of a vector field u : Ω → R
3 for

a particular class of divergence-free vector fields vanishing on ∂Ω and having nonzero
limits as |x| → ∞.

Proposition 21. Let 1 < a < b and u satisfy

(48) ∇u ∈ L2(Ω) , ∇ · u = 0 , u|∂Ω = 0 , and lim
|x|→∞

u(x) = u∞ �= 0 .

Then

Ea,b[u](x) = χa,b(|x|)u(x) + Ta,b[u∞](x)(1 − χa,b(|x|)) +∇χa,b(|x|) ×ψ(x)
with ψ(x) =

1

4π

∫
Ω

∇× (u(y) − Ta,b[u∞](y)
) ( 1

|x− y| −
1

|y|
)
d3y

and Ta,b[u∞](x) = u∞

(
χa,b(|x|) + 1

2
|x|χ′

a,b(|x|)
)
− x

(
(u∞ · x) χ′

a,b(|x|)
2|x|
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is well defined for all x ∈ R
3, satisfies

Ea,b[u](x) =

{
u(x) if |x| ≥ bδ(Ωc) ,

0 if |x| ≤ aδ(Ωc) ,
(49)

and is divergence-free, i.e., ∇ · Ea,b[u] = 0.
Note that both Ta,b[u∞] and Ea,b[u] are divergence-free functions over R3, van-

ishing identically inside a sphere containing Ωc and identically equal to their argument
outside of a bigger sphere containing Ωc. While Ea,b[u] is the main object of inter-
est here, Ta,b[u∞] is a convenient way of avoiding boundary terms when using the
divergence theorem to study ψ below.

Proof. That (49) is satisfied is trivial. In particular, Ea,b[u](x) is well defined
outside the annulus Aa,b = {x ∈ R

3 s.t. aδ(Ωc) ≤ |x| ≤ bδ(Ωc)}. We next show
that ψ(x) is well defined for x ∈ Aa,b. For convenience, we define v = u− Ta,b[u∞],
and note that ‖∇ × v‖2 < ∞. Then there exists a compactly supported function
ρ : R+ → R with ρ(0) = 1, and a constant C such that for all x ∈ Aa,b, there holds

sup
x∈Aa,b

|ψ(x)| ≤ C sup
x∈Aa,b

∫
Ω

d3y

(
ρ(|x− y|)
|x− y| +

|x|
|y|2

)
|∇ × v(y)| ≤ C‖∇× v‖2 .

This shows that Ea,b[u](x) is well defined for all x ∈ R
3.

It only remains to show that ∇·Ea,b[u] = 0. Since ∇·Ta,b[u∞] = 0 and ∇·u = 0,
we find

∇ · Ea,b[u](|x|) = ∇χa,b(|x|) ·
(
v(x) −∇×ψ(x)) .

We thus only need to show that ∇×ψ(x) = v(x) for all x ∈ Aa,b since ∇χa,b(|x|) = 0
if x �∈ Aa,b. Using εi,j,k, the completely antisymmetric tensor with ε1,2,3 = 1 so that
[∇× u]i =

∑
j,k εi,j,k∂xjuk, we find

[∇×ψ(x)]i =
3∑

j,k,l,m=1

εi,j,kεk,l,m
4π

∫
Ω

(∂yl
vm(y)) ∂xj

(|x− y|−1
)
d3y

= lim
R→∞

(Ii(R,x) + Ji(R,x))

in the sense of distributions, where

Ii(R,x) =

∫
ΩR

3∑
l=1

∂yl

( 3∑
j,k,m=1

εi,j,kεk,l,m
4π

vm(y)∂xj

(|x− y|−1
))

d3y ,

Ji(R,x) =

3∑
j,k,l,m=1

εi,j,kεk,l,m
4π

∫
ΩR

vm(y)∂xl
∂xj

(|x− y|−1
)
d3y ,

with ΩR = BR ∩ Ω. We now claim that for all x ∈ Aa,b, we have

lim
R→∞

I(R,x) = 0 and lim
R→∞

J(R,x) = v(x) .

We first consider the function J. Since ∇ ·v = 0, using the symbols ∇x, respectively,
∇y, to denote the Nabla operators in the variables x, respectively, y, we find

J(R,x) =

∫
ΩR

∇x ×∇x ×
(

v(y)

4π|x− y|
)
d3y = v(x) +

∫
ΩR

∇x∇x ·
(

v(y)

4π|x− y|
)
d3y

= v(x) −
∫
ΩR

∇x∇y ·
(

v(y)

4π|x− y|
)
d3y ≡ v(x) +K(R,x) ,
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since

(50) �A = ∇(∇ ·A)−∇× (∇×A) and �
(
− 1

4π|x− y|
)

= δ(x− y) .

We now assume that R > bδ(Ωc) and apply the divergence theorem to K and Ii.
Since Aa,b ∩ ∂ΩR = ∅, |x − y|−1 is nonsingular for y ∈ ∂ΩR and x ∈ Aa,b. Using
dσ = R2 sin(θ)dθdφ to denote the surface element on ∂BR, we thus get

K(R,x) =

∫
∂BR

(x− y)(v(y) · y)
4π|x− y|3 |y| dσ ,

Ii(R,x) =

∫
∂BR

3∑
l=1

( 3∑
j,k,m=1

εi,j,kεk,l,mvm(y)
xj − yj

|x− y|3
)
yl

|y|dσ ,

since v(x) = 0 for x ∈ ∂Ω. The proof is complete, since

|K(R,x)|2 + |I(R,x)|2 ≤ C

(∫
∂BR

|v(y)|
|y|2 dσ

)2

≤ C

∫
∂BR

|v(y)|2
|y|2 dσ ,

which tends to 0 as R → ∞ by Lemma 22 below.
To complete the proof of Proposition 21, we need the following result, essentially

due to Leray [7].
Lemma 22. Let Ω be an exterior domain, with a boundary ∂Ω of finite area

Σ(∂Ω). Let u : Ω → R
3 have a finite Dirichlet integral, i.e., be such that ∇u ∈ L2(Ω).

Then there exists a constant vector u∞ such that∫
Ω

|u(x)− u∞|2
|x|2 d3x ≤

∫
Ω

|∇u(x)|2d3x < ∞ ,(51)

lim
R→∞

∫
∂BR

|u(x) − u∞|2
|x|2 dσ = 0 ,(52)

where ∂BR = {x ∈ R
3 s.t. |x| = R} and dσ = R2 sin(θ)dθdφ.

Proof. The existence of u∞ and the estimate (51) is a classical result of Leray [7]
(see also Galdi [1]). In particular, it implies that the vector function

f(x) =
u(x)− u∞

|x|
is in H1(Ω). Namely, (51) gives ‖f‖2 ≤ ‖∇u‖2 and ‖∇f‖2 ≤ ρ−1(‖f‖2 + ‖∇u‖2) ≤
2ρ−1‖∇u‖2, where ρ is the diameter of the largest sphere contained in Ωc. Using
again ΩR = BR ∩ Ω, we next consider

(53) F (R) =

∫
ΩR

∇ ·
( |f(x)|2 x

|x|
)
d3x−

∫
∂Ω

|u∞|2 x · n(x)
|x|3 dΣ ,

where n(x) is the outward normal on ∂Ω and dΣ its surface element. Straightforward
arguments give

sup
R≥δ(Ωc)

|F (R)| ≤ 2

ρ
‖f‖22 + ‖f‖2‖∇f‖2 + |u∞|2

ρ2
Σ(∂Ω) ,(54)

lim
R→∞

F (R) =

∫
Ω

∇ ·
( |f(x)|2 x

|x|
)
d3x−

∫
∂Ω

|u∞|2 x · n(x)
|x|3 dΣ .(55)
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Note that (54) and (55) imply that F (R) has a finite limit as R → ∞. Now, by the
divergence theorem, we have

F (R) =

∫
∂BR

|f(x)|2 dσ +

∫
∂Ω

|f(x)|2 x · n(x)
|x| dΣ−

∫
∂Ω

|u∞|2 x · n(x)
|x|3 dΣ

=

∫
∂BR

|f(x)|2 dσ .

Since for any finite r ≥ δ(Ωc), we have∫ ∞

r

F (R) dR =

∫ ∞

r

∫
∂BR

|f(x)|2 dσ dR =

∫
R3\Br

|f(x)|2 d3x ≤ ‖f‖22 < ∞ ,

we get F (R) → 0 as R → ∞.
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