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Abstract. This paper considers the portfolio management problem for an investor with finite
time horizon who is allowed to consume and take out life insurance. Natural assumptions,
such as different discount rates for consumption and life insurance lead to time inconsistency.
This situation can also arise when the investor is in fact a group, the members of which have
different utilities and/or different discount rates. As a consequence, the optimal strategies are
not implementable. We focus on hyperbolic discounting, which has received much attention
lately, especially in the area of behavioural finance. Following [10], we consider the resulting
problem as a leader-follower game between successive selves, each of whom can commit for an
infinitesimally small amount of time. We then define policies as subgame perfect equilibrium
strategies. Policies are characterized by an integral equation which is shown to have a solution in
the case of CRRA utilities. Our results can be extended for more general preferences as long as
the equations admit solutions. Numerical simulations reveal that for the Merton problem with
hyperbolic discounting, the consumption increases up to a certain time, after which it decreases;
this pattern does not occur in the case of exponential discounting, and is therefore known in
the litterature as the “consumption puzzle”. Other numerical experiments explore the effect of
time varying aggregation rate on the insurance premium.
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1 Introduction

The investment/consumption problem in a stochastic context was considered by Merton [23]
and [24]. His model consists in a risk-free asset with constant rate of return and one or more
stocks, the prices of which are driven by geometric Brownian motion. The horizon T is pre-
scribed, the portfolio is self-financing, and the investor seeks to maximize the expected utility of
intertemporal consumption plus the final wealth. Merton provided a closed form solution when
the utilities are of constant relative risk aversion (CRRA) or constant absolute risk aversion
(CARA) type. It turns out that for (CRRA) utilities the fraction of wealth invested in the risky
asset is constant through time. Moreover for the case of (CARA) utilities, they are linear in
wealth.

Richard [30] added life insurance to the investor’s portfolio, assuming an arbitrary but known
distribution of death time. In the same vein Pliska [28] studied optimal life insurance and
consumption for an income earner whose lifetime is random and unbounded. More recently
Kwak et al.[18] looked at the problem of finding optimal investment and consumption for a
family whose parents receive deterministic labor income until some deterministic time horizon.

The aim of this paper is to revisit these problems in the case when the psychological discount
rate is not constant. By now there is substantial evidence that people discount the future at a
non-constant rate. More precisely, there is experimental evidence (see Frederick et. al. [11] for
a review) that people are more sensitive to a given time delay if it occurs earlier: for instance,
a person might prefer to get two oranges in 21 days than one orange in 20 days, but also prefer
to get one orange right now than two oranges tomorrow. This is known as the common

difference effect, and would not occur if future utilities are discounted at a constant rate.
Individual behaviour is best described by hyperbolic discounting, where the discount factor

is h(t) = (1+ at)−
b
a , with a, b > 0. The corresponding discount rate is r (t) = b

1+at
, which starts

from r (0) = b
a
and decreases to zero. Because of its empirical support, hyperbolic discounting

has received a lot of attention in the areas of: microeconomics, macroeconomics and behavioural
finance. We just mention here among others the works of Loewenstein and Prelec [21], Laibson
[20] and Barro [2].

It is well-known that, for non-constant discount rates, optimal strategies are time inconsis-
tent: for t1 < t2, the planner at time t1 will find a strategy f1 to be optimal on [t1,∞), while the
planner at time t2 will find a different strategy f2 to be optimal on that interval. As a result, the
planner at time t2 will not implement the strategy devised by the planner at time t1, unless there
exists some commitment mechanism. If there is none, then the strategy f1, which is optimal
from the perspective of the planner at time t1, is not implementable, and the planner at time t1
must look for a second-best strategy. This situation was first analyzed by Strotz [31], and this
line of research has been pursued by many others (see Pollak [29], Phelps [27], Peleg and Yaari
[26], Goldmann [12], Laibson [20], Barro [2], Krusell and Smith [19]), mostly in the framework
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of planning a discrete-time economy with production (Ramsey’s problem). It is by now well
established that time-consistent strategies are Stackelberg equilibria of a leader-follower game
among successive selves (today’s self has divergent interests from tomorrow’s). More recently,
the problem has been taken up again by Karp [13], [14], [15], [16]. Luttmer and Mariotti, [22],
Ekeland and Lazrak [7], [8], [9], always within the framework of planning economic growth. In a
series of papers Björk and Murgoci [3], Björk, Murgoci and Zhou [4] look at the mean variance
problem which is also time inconsistent.

Ekeland and Pirvu [10] seem to have been the first to have considered the Merton problem
with non-constant psychological discount rates. They studied the case of an investor who has a
CRRA utility u (c) = −1

p
cp, p < 1, and a quasi-exponential discount factor h (t), that is, h (t)

must belong to one of the families:

h (t) = λe−r1t + (1− λ) e−r2t,

h (t) = (1 + at) e−rt.

Extending the basic idea of Ekeland and Lazrak [7] to the stochastic framework, they find
time-consistent strategies in the limiting case when the investor can commit only during an
infinitesimal time interval. They show that time-consistent strategies exist if a certain BSDE
has a solution, and they show that, because of the special form of the discount factor, this BSDE
reduces to a system of two ODEs which has a solution.

The aim of this paper is to extend these results to more general discount rates, and more
general problems. Quasi-exponential discount rates, although mathematically convenient, are
not realistic. As we saw earlier, empirically observed discount rates among individuals tend to
be hyperbolic. But there is another, perhaps more compelling, reason why general discount rates
are of interest. Standard portfolio theory assumes that the investor is an individual. However,
in most situations investment decisions are made by a group, such as the management team
in the case when the investor entrusts his portfolio to professionals. Even when the investor
manages the portfolio directly, the word ”investor” which is suggestive of a single decision-maker
very often hides a different reality, namely the family: one would expect the husband and the
wife to take part in investment decisions concerning the couple. By now, the relevant economic
literature has made abundantly clear (see Chiappori and Ekeland, [5]) that the group cannot be
represented by a single utility function. Instead, there should be one utility function, and one
discount factor per member of the group. The actual decision taken is the result of negociations
within the group, a kind of black box which cannot be opened by outsiders. However, if the group
is efficient, that is, if the outcome is Pareto optimal, then it can be modelled by maximising a
suitable convex combination of the members’ utilities, the weight conferred to each individual
representing his/her power within the group. In the (very) particular case when all members
of the group have the same utility, but different discount rates, the group behaves as a single
individual with non-constant discount rate.

The difficulty in dealing with non-constant discount rates is to define time-consistent strate-
gies and to prove that they exist. We follow the approach pionneered by Ekeland and Lazrak
[7] in the deterministic framework, by considering the limiting case when the decision-maker
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can commit only during an infinitesimal amount of time. This approach was already followed
in our earlier work [10], in the case of quasi-exponential discount factors. The proofs in that
paper do not readily extend to the case of general discount factors, so in the present work we
present a different method. Whereas [10] characterizes the time-consistent stategies in terms
of a certain BSDE, we now characterize them in terms of a certain ”value function”, which
is shown to satisfy a certain integral equation which has a natural interpretation. Assuming
utilities to be (CRRA), we decouple time and space, and reduce it to a one-dimensional integral
equation, which we solve by a fixed-point argument. Moreover this one dimensional equation
is amenable to numerical treatments so one can compare the equilibrium policies arising from
different choices of discounting. The numerical scheme we employ consists of the discretization
of the one dimensional equation in three steps. This is based on a Riemann sum approximation
of the integral. We obtain closed form solutions in certain cases.

We show that hyperbolic discounting may result in consumption patterns which are obser-
vationally different from the optimal strategies in the Merton model. The latter predicts that
consumption grows smoothly over time if the interest rate exceeds the discount rate (or decays
smoothly otherwise). However, household data indicates that consumption is hump-shaped.
This is referred to in the literature as the consumption puzzle, and we show that it can arise as
a time-consistent strategy in certain cases of hyperbolic discounting.

By running numerical simulations we study the effect of the weight given by the insurer to
the beneficiaries on the life insurance process.

Organization of the paper: The remainder of this paper is organized as follows. In section
2 we describe the model and formulate the objective. Section 3 introduces the value function.
Section 4 presents the main result. Section 5 deals with CRRA utilities. Numerical results are
discussed in Section 6. An extension to multiple managers is discussed in Section 7. The paper
ends with an appendix containing some proofs.

2 The Model

2.1 The decisions

Consider a financial market consisting of a savings account and one stock (the risky asset).
The inclusion of more risky assets can be achieved by notational changes. The savings account
accrues interest at the riskless rate r > 0. The stock price per share follows an exponential
Brownian motion

dS(t) = S(t) [α dt+ σ dW (t)] , 0 ≤ t ≤ ∞,

where {W (t)}t≥0 is a 1−dimensional Brownian motion on a filtered probability space,
(Ω, {Ft}t≥0,P). The filtration {Ft} is the completed filtration generated by {W (t)}. Let us
denote by µ , α− r > 0 the excess return.

A decision-maker in this market is continuously investing in the stock and the bond, con-
suming and buying life insurance, while receiving income at the continuous deterministic rate

4



i(t). This assumption is key in deriving our results. Relaxing it to accommodate for problems
relevant to small enterprises is not obvious and would be an interesting research project.

Life insurance is offered as a sucession of term contracts with infinitesimally small horizon.
At every time t, a contract is offered, costing 1 unit of account. If the holder dies immediately
after, the insurance company pays l (t) to his/her beneficiaries. The deterministic function l (t)
is prescribed.

At every time t, the investor chooses ζ(t), the investment in the risky asset, c(t) the con-
sumption, and p(t), the amount of life insurance. Given an adapted process {ζ(t), c(t), p(t)}t≥0,
the equation describing the dynamics of wealth Xζ,c,p(t) is given by

dXζ,c,p(t) = rXζ,c,p(t)dt− c(t)dt− p(t)dt+ i(t)dt + ζ(t)(α dt+ σdW (t))

Xζ,c,p(0) = X (0) , (2.1)

the initial wealth X(0) being exogenously specified.
We assume a benchmark deterministic time horizon T . The investor is alive at time t = 0 and

has a lifetime denoted by τ , which is a non-negative random variable defined on the probability
space (Ω,F ,P) and independent of the Brownian motion W. Denote by g (t) its density and by
G (t) its distribution:

G(t) , P(τ < t) =

∫ t

0
g(u) du.

It will be useful for later computations to introduce the hazard function λ (t), that is, the
instantaneous death rate, defined by

λ(t) , lim
δt→0

P(t ≤ τ < t+ ε | τ ≥ t)

ε
=

g(t)

1−G(t)
,

so that g(t) = λ(t) exp{−
∫ t

0 λ(u) du}. We have, from the definition:

P(τ < s | τ > t) = 1− exp{−

∫ s

t

λ(u) du}. (2.2)

and

P(τ > T |τ > t) = exp{−

∫ T

t

λ(u) du}. (2.3)

Next we turn to risk preferences.

2.2 Utility functions

Definition 2.1 A utility function U is a strictly increasing, strictly concave differentiable real-
valued function defined on [0,∞) which satisfies the Inada conditions

U ′(0) , lim
x↓0

U ′(x) = ∞, U ′(∞) , lim
x→∞

U ′(x) = 0. (2.4)
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The strictly decreasing C1 function U ′ maps (0,∞) onto (0,∞) and hence has a strictly
decreasing, C1 inverse I : (0,∞) → (0,∞).

The legacy process of the decision-maker, {Zζ,c,p(t)}t≥0, is defined by

Zζ,c,p(t) , η(t)Xζ,c,p(t) + l(t)p(t), (2.5)

where η (t) and l (t) are prescribed deterministic and continuous functions. The legacy is the
sum of two terms: the first one, η(t)Xζ,c,p(t), is the part of his wealth which will benefit his
heirs (after taxes, and various costs), and the second one l(t)p(t) is the life insurance. Although
the insurance premium p(t) is allowed to be negative we require that the legacy Zζ,c,p(t) stays
positive. A negative p(t) means that the decision maker can sell life insurance.

Let U1, U2, U3 be utility functions as in Definition 2.1; U1 is the utility from intertemporal
consumption, U2 is the utility of the final wealth and U3 is the utility of the legacy.

Next, we define the admissible strategies. Sometimes, to ease notations, we write Xt,x(s)
and Zt,x(s) for E[Xζ,c,p(s)|Xζ,c,p(t) = x] and E[Zζ,c,p(s)|Xζ,c,p(t) = x].

Definition 2.2 An R
3-valued stochastic process {ζ(t), c(t), p(t)}t≥0 is called an admissible strat-

egy process if

• it is progressively measurable with respect to the sigma algebra σ({ W (t)}t≥0),

• c(t) ≥ 0, Zζ,c,p(t) ≥ 0 for all , a.s.; Xζ,c,p(T ) ≥ 0, a.s.

• moreover we require that for all t, x ≥ 0

E sup
{t≤s≤T}

|U1(c(s))| < ∞, E|U2(X
t,x(T ))| < ∞, E sup

{t≤s≤T}
|U3(Z

t,x(s))| < ∞. (2.6)

The last set of inequalities are purely technical and are satisfied for e.g. bounded strategies.
They are essential in proving our main result and are related to the fact that the expected utility
criterion is continuously updated.

2.3 The intertemporal utility

In order to evaluate the performance of an investment-consumption-insurance strategy the de-
cision maker uses an expected utility criterion. For an admissible strategy process
{ζ(s), c(s), p(s)}s≥0 and its corresponding wealth process {Xζ,c,p(s)}s≥0, we denote the expected
intertemporal utility by

J(t, x, ζ, c, p) , E

[
∫ T∧τ

t

h(s − t)U1(c(s)) ds + nh(T − t)U2(X
ζ,c,p(T ))1{τ>T |τ>t}

+ m(τ − t)ĥ(τ − t)U3(Z
ζ,c,p(τ))1{τ≤T |τ>t}

∣

∣

∣

∣

Xζ,c,p(t) = x

]

, (2.7)

where:
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• n > 0 is a constant

• m (t) > 0 is a continuous function

• h and ĥ are continuously differentiable, positive and decreasing functions, such that h (0) =
ĥ (0) = 1.

The interpretation is as follows. The decision-maker will collect Xζ,c,p(T ) at time T , if he is
still alive at time T , and the coefficient n is the weight he attributes to getting that lump sum,
as compared to the utility of continuous consumption up to time T . The function h (t) is his
discount function, and it is no longer restricted to the exponential and quasi-exponential type.

He may, however, die before time T , in which case his wealth will accrue to others, and the
decision-maker is taking the utility of his beneficiaries into account when managing his portfolio.

Since the death time τ is independent of the uncertainty driving the stock, we have the
following simplified expression for the functional J, which is proved in Appendix A.

Lemma 2.3 The functional J of (2.7) equals

J(t, x, ζ, c, p) = E

[
∫ T

t

Q(s, t)U1(c(s)) ds (2.8)

+

∫ T

t

q(s, t)U3(Z
t,x(s)) ds + nQ(T, t)U2(X

t,x(T ))

]

, (2.9)

where

q(s, t) , h̄(s− t)λ(s) exp{−

∫ s

t

λ(z) dz}, h̄(t) , m(t)ĥ(t) (2.10)

Q(s, t) , h(s − t) exp{−

∫ s

t

λ(z) dz} (2.11)

A natural objective for the decision maker is to maximize the above expected utility criterion.
However, because neither q nor Q are exponentials, time inconsistency will bite, that is, a
strategy that will be considered to be optimal at time 0 will not be considered so at later times,
so it will not be implemented unless the decision-maker at time 0 can constrain the decision-
maker at all times t > 0.

2.4 Time-consistent strategies

We now introduce a special class of time-consistent strategies, which will henceforth be called
policies. That is, we consider that the decision-maker at time t can commit his successors up
to time ε, with ε → 0, and we seek strategies which it is optimal to implement right now
conditioned on them being implemented in the future.

More precisely, suppose that a strategy f is time-consistent. This means that, if it has
been applied up to time t, the decision-maker at time t will apply it as well. Since there is no
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commitment mechanism to force him to do so, he will only apply strategy f if it is in his own
best interests. Denote his current wealth by X(t). He has two possibilities: either to stick to
the strategy f , or to apply another one. To simplify matters, we will assume that the decision-
maker considers only a very short time interval, [t, t+ ǫ], so short in fact that all strategies can
be assumed to be constant on that interval. The decision-maker then just compares the effect
of investing ζ̄, consuming c̄ and buying p̄ worth of insurance, as required by the strategy f at
time t, with the effect of investing ζ, consuming c and buying p worth of insurance, for different
(constant) values. There will be, as usual, an immediate effect, corresponding to the change in
consumption between t and t+ ǫ, and a long-term effect, corresponding to the change in wealth
at time t+ ǫ.

Let us formalize this idea:

Definition 2.4 An admissible trading strategy {ζ̄(s), c̄(s), p̄(s)}t≤s≤T is a policy if there exists
a map F = (F1, F2, F3) : [0, T ]× R → R× [0,∞) × R such that for any t, x > 0

lim inf
ǫ↓0

J(t, x, ζ̄, c̄, p̄)− J(t, x, ζǫ, cǫ, pǫ)

ǫ
≥ 0, (2.12)

where:
ζ̄(s) = F1(s, X̄(s)), c̄(s) = F2(s, X̄(s)), p̄(s) = F3(s, X̄(s)) (2.13)

and the wealth process {X̄(s)}s∈[t,T ] is a solution of the stochastic differential equation (SDE):

dX̄(s) = [rX̄(s)+µF1(s, X̄(s))−F2(s, X̄(s))−F3(s, X̄(s))+i(s)]ds+σF1(s, X̄(s))dW (s). (2.14)

Here, the process {ζǫ(s), cǫ(s), pǫ(s)}s∈[t,T ] is another investment-consumption strategy de-
fined by

ζǫ(s) =

{

ζ̄(s), s ∈ [t, T ]\Eǫ,t

ζ(s), s ∈ Eǫ,t,
(2.15)

cǫ(s) =

{

c̄(s), s ∈ [t, T ]\Eǫ,t

c(s), s ∈ Eǫ,t,
(2.16)

pǫ(s) =

{

p̄(s), s ∈ [t, T ]\Eǫ,t

p(s), s ∈ Eǫ,t,
(2.17)

with Eǫ,t = [t, t+ǫ], and {ζ(s), c(s), p(s)}s∈Eǫ,t is any strategy for which {ζǫ(s), cǫ(s), pǫ(s)}s∈[t,T ]

is an admissible policy.

In other words, policies are Markov strategies such that unilateral deviations during an
infinitesimally small time interval are penalized. Note that:

• this does not mean that unilateral deviations during a finite interval of time are penalized
as well: it is possible that deviating from the policy between t1 and t2 will be to the
advantage of all the decision-makers operating between t1 and t2.
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• however, if a Markov strategy is not a policy, then it certainly will not be implemented,
for at some point it will be to the advantage of some lone decision-maker to deviate,
during a very small time interval, which is enough to compromise all the plans laid by his
predecessors.

So time-consistency in the sense of Definition 2.4 is a minimal requirement for rationality:
policies are the only Markov strategies that the decision-maker should consider.

3 The Value Function

We now extend to this situation the notion of a value function, which is classical in optimal
control. Let m , m(0), and I1, I3 be the inverse functions of U ′

1, U
′
3.

Definition 3.1 Let v : [0, T ] × R → R be a C1,2 function, concave in the second variable. We
shall say that v is a value function if we have:

v(t, x) = J(t, x, ζ̄ , c̄, p̄). (3.1)

Here the admissible process {ζ̄(s), c̄(s), p̄(s)}s∈[t,T ] is given by:

ζ̄(s),−
µ ∂v
∂x
(s, X̄(s))

σ2 ∂2v
∂x2 (s, X̄(s))

, c̄(s),I1

(

∂v

∂x
(s, X̄(s))

)

, p̄(s),
1

l(s)

[

I3

(

1

m

∂v

∂x
(s, X̄(s))

)

−η(s)X̄(s)

]

,

(3.2)
where X̄(s) is the corresponding wealth process defined by the SDE

dX̄(s) =

[

rX̄(s)−
µ2 ∂v

∂x
(s, X̄(s))

σ2 ∂2v
∂x2 (s, X̄(s))

− I1

(

∂v

∂x
(s, X̄(s))

)

(3.3)

−
1

l(s)

[

I3

(

1

m

∂v

∂x
(s, X̄(s))

)

− η(s)X̄(s)

]

+ i(s)

]

ds−
µ ∂v
∂x
(s, X̄(s))

σ ∂2v
∂x2 (s, X̄(s))

dW (s)

X̄ (t)=x. (3.4)

The economic interpretation is very natural: if one applies the Markov strategy associated with
v by the relations (3.2), and computes the corresponding value of the investor’s criterion starting
from x at time t, one gets precisely v (t, x). In other words this is fundamentally a fixed-point
characterization.

Let us define the functions F1, F2, F3 by:

F1(t, x) , −
µ ∂v
∂x

(t, x)

σ2 ∂2v
∂x2 (t, x)

, F2(t, x) , I1

(

∂v

∂x
(t, x)

)

, F3(t, x) ,
1

l(t)

[

I3

(

1

m

∂v

∂x
(t, x)

)

− η(t)x

]

.

(3.5)
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Next we impose a technical assumption; for a C1,2 function f : [0, T ]×R → R, let us define the
operator Lf by

Lf(t, x) ,
∂f

∂t
(t, x) + (rx+ µF1(t, x)− F2(t, x)− F3(t, x) + i(t))

∂f

∂x
(t, x) +

σ2F 2
1 (t, x)

2

∂2f

∂x2
(t, x).

Assumption 3.2 Assume that the PDEs

Lf(t, x) = 0, f(s, x) = g(x), (3.6)

have a C1,2 solution on [0, s]×R → R with exponential growth. Here t < s ≤ T, and g(x) is one
of the functions

U1(F2(s, x)) : t < s ≤ T, U3(η(s)x+ l(s)F2(s, x)) : t < s ≤ T, U2(x) : s = T.

4 Main Result

The following Theorem states the central result of our paper. It involves the notions of policies
and value function for which we gave economic intuition.

Theorem 4.1 Let v be a value function which satisfies Assumption 3.2. Then, {ζ̄(s), c̄(s), p̄(s)}s∈[t,T ]

given by (3.2) is a policy.

We proceed in two steps. First we show that the value function v satisfies a partial differential
equation with a non-local term and this is done in the following Lemma, which is proved in
Appendix B.

Lemma 4.2 The function v solves the following equation

∂v

∂t
(t, x) +

(

rx+ µF1(t, x)− F2(t, x)− F3(t, x) + i(t)

)

∂v

∂x
(t, x)+ (4.1)

σ2F 2
1 (t, x)

2

∂2v

∂x2
(t, x) + U1(F2(t, x)) +mU3(x+ l(t)F3(t, x)) =

E

[
∫ T

t

∂Q

∂t
(s, t)U1(F2(s, X̄

t,x(s))) ds +

∫ T

t

∂q

∂t
(s, t)U3(Z̄

t,x(s)) ds + n
∂Q

∂t
(T, t)U2(X̄

t,x(T ))

]

,

with boundary condition v(T, x) = nU2(x), and the processes X̄ of (2.14), and Z̄t,x(s) ,

η(s)X̄t,x(s) + l(s)F3(s, X̄
t,x(s)).
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We now proceed to the second step. In view of function’s v concavity in variable x, and the
definition of (F1, F2, F3) (see (3.5)), the equation (4.1) can be re-written as

∂v

∂t
(t, x) + sup

ζ,c,p

[(

r + µζ − c− p+ i(t)

)

∂v

∂x
(t, x)+

1

2
σ2ζ2

∂2v

∂x2
(t, x) + U1(c) +mU3(η(t)x+ l(t)p)

]

= (4.2)

E

[
∫ T

t

∂Q

∂t
(s, t)U1(F2(s, X̄

t,x(s))) ds +

∫ T

t

∂q

∂t
(s, t)U3(Z̄

t,x(s)) ds + n
∂Q

∂t
(T, t)U2(X̄

t,x(T ))

]

.

We notice that

J(t, x, ζǫ, cǫ, pǫ)− J(t, x, ζ̄ , c̄, p̄) =

E

[
∫ t+ǫ

t

Q(s, t)[U1(c(s))− U1(F2(s,X
t,x(s)))] ds

]

+

E

[
∫ t+ǫ

t

q(s, t)[U3(Z
t,x(s))− U3(Z̄

t,x(s))] ds

]

+

E[v(t+ ǫ,Xt,x(t+ ǫ))− v(t+ ǫ, X̄t,x(t+ ǫ))]+

E

[
∫ T

t+ǫ

[Q(s, t)−Q(s, t− ǫ)][U1(F2(s, X̄
t,x(s)))− U1(F2(s,X

t,x(s)))] ds

]

+

E

[
∫ T

t+ǫ

[q(s, t)− q(s, t− ǫ)][U3(Z
t,x(s))− U3(Z̄

t,x(s))] ds

]

+

E
[

n[Q(T, t)−Q(T, t− ǫ)][U2(X
t,x(T ))− U2(X̄

t,x(T ))]
]

.

The RHS of this equation has six terms and we will treat each of these terms separately:
1. In the light of inequality (2.6) and the Lebesgue Dominated Convergence Theorem

lim
ǫ↓0

E

[

∫ t+ǫ

t
Q(s, t)[U1(c(s)) − U1(F2(s,X

t,x(s)))] ds

]

ǫ

= [U1(c(t))− U1(F2(t, x))].

2. In the light of inequality (2.6) and the Lebesgue Dominated Convergence Theorem

lim
ǫ↓0

E

[

∫ t+ǫ

t
q(s, t)[U3(Z

t,x(s))− U3(Z̄
t,x(s))] ds

]

ǫ
= m[U3(x+ p(t)l(t))− U3(x+ F3(t, x)l(t))].

3. One has

11



E[v(t+ ǫ, X̄t,x(t+ ǫ))− v(t+ ǫ,Xt,x(t+ ǫ))] =

E[v(t+ ǫ, X̄t,x(t+ ǫ))− v(t, x)]− E[v(t+ ǫ,Xt,x(t+ ǫ)− v(t, x)].

Moreover

E[v(t+ ǫ, X̄t,x(t+ ǫ))− v(t, x)] = E

∫ t+ǫ

t

d[v(u, X̄t,x(u))].

Itô’s formula yields

lim
ǫ↓0

E
∫ t+ǫ

t
d[v(u, X̄t,x(u))]

ǫ
=

[

∂v

∂t
(t, x) +

(

rx+ µF1(t, x)− F2(t, x)− F3(t, x) + i(t)

)

∂v

∂x
(t, x) +

σ2F 2
1 (t, x)

2

∂2v

∂x2
(t, x)

]

.

Similarly

lim
ǫ↓0

E[v(t+ ǫ,Xt,x(t+ ǫ))− v(t, x)]

ǫ
= lim

ǫ↓0

E
∫ t+ǫ

t
d[v(u,Xt,x(u))]

ǫ
=

[

∂v

∂t
(t, x) +

(

r + µζ(t)− c(t) − p(t) + i(t)

)

∂v

∂x
(t, x) +

1

2
σ2ζ2(t)

∂2v

∂x2
(t, x)

]

.

4. In the light of inequality (2.6) and the Lebesgue Dominated Convergence Theorem it
follows that

lim
ǫ↓0

E

[

∫ T

t+ǫ
[Q(s, t)−Q(s, t− ǫ)][U1(F2(s, X̄

t,x(s)))− U1(F2(s,X
t,x(s)))] ds

]

ǫ
= 0.

5. Similarly

lim
ǫ↓0

E

[

∫ T

t+ǫ
[q(s, t)− q(s, t− ǫ)][U3(Z

t,x(s))− U3(Z̄
t,x(s))] ds

]

ǫ
= 0.

6. Finally, by the same token

lim
ǫ↓0

E
[

n[Q(T, t)−Q(T, t− ǫ)][U2(X
t,x(T ))− U2(X̄

t,x(T ))]
]

ǫ
= 0.

Therefore

lim
ǫ↓0

J(t, x, ζ̄, c̄, p̄)− J(t, x, ζǫ, cǫ, pǫ)

ǫ
=

[

∂v

∂t
(t, x) +

(

rx+ µF1(t, x)− F2(t, x)− F3(t, x) + i(t)

)

∂v

∂x
(t, x)+

12



σ2F 2
1 (t, x)

2

∂2v

∂x2
(t, x) + U1(F2(t, x))) +mU3(x+ l(t)F3(t, x))

]

−

[

∂v

∂t
(t, x) +

(

r + µζ(t)− c(t)− p(t) + i(t))

)

∂v

∂x
(t, x)+

1

2
σ2ζ2(t)

∂2v

∂x2
(t, x) + U1(c(t)) +mU3(x+ l(t)p(t))

]

≥ 0,

where the last inequality comes from (4.1) and (4).

�

5 CRRA Preferences

Finding a value function is a complicated problem. We are able to deal with the case of power
type utilities, that is (with some abuse of notations) U1(x) = U2(x) = U3(x) = Uγ(x) , xγ

γ
,

with γ < 1. In this case we search for the value function v of the form

v(t, x) = a(t)Uγ(x+ b(t)), (5.1)

where the functions a(t), b(t) are to be found. We consider here the case γ 6= 0 (the case of
logarithmic utility will be treated separately). In the light of equations (3.5) one gets

F1(t, x) =
µ(x+ b(t))

σ2(1− γ)
, F2(t, x) = [a(t)]

1
γ−1 (x+ b(t)), (5.2)

F3(t, x) =
1

l(t)

[

([
a(t)

m
]

1
γ−1 − η(t))x+ [

a(t)

m
]

1
γ−1 b(t))

]

. (5.3)

By (3.4) the associated wealth process has the following dynamics:

dX̄(s) =

[(

r +
η(s)

l(s)

)

X̄(s) +
µ2

σ2(1− γ)
(X̄(s) + b(s))

− (a(s))
1

γ−1

(

1 +
1

m
1

γ−1 l(s)

)

(X̄(s) + b(s))

]

ds

+i(s)ds +
µ(X̄(s) + b(s))

σ(1− γ)
dW (s).

Let us define the process Y (s) , X̄(s) + b(s) which has the dynamics

dY (s) =

[

(r +
η(s)

l(s)
)Y (s) +

µ2

σ2(1− γ)
Y (s)− [a(s)]

1
γ−1

(

1 +
1

m
1

γ−1 l(s)

)

Y (s) (5.4)

+i(s) + b′(s)− (r +
η(s)

l(s)
)b(s)

]

ds +
µY (s)

σ(1 − γ)
dW (s).

13



For considerations that will become clear later on we choose b(s) such that

i(s) + b′(s)− (r +
η(s)

l(s)
)b(s) = 0, and b(T ) = 0.

By solving this ODE we get

b(s) =

∫ T

s

i(u)e
−
∫ s

u

(

r+
η(x)
l(x)

)

dx
du. (5.5)

Solving for the process Y (s) we get

Y (s) = Y (t) exp

(
∫ s

t

(

r +
µ2

2σ2(1− γ)2
+

η(u)

l(u)
− (a(u))

1
γ−1

(

1 +
1

m
1

γ−1 l(u)

))

du

+
µ(W (s)−W (t))

σ(1− γ)

)

Therefore

X̄t,x(T ) = x exp

(
∫ T

t

(

r +
µ2

2σ2(1− γ)2
+

η(u)

l(u)
− (a(u))

1
γ−1

(

1 +
1

m
1

γ−1 l(u)

))

du

+
µ(W (T )−W (t))

σ(1− γ)

)

.

By plugging v of (5.1) ( with (F1, F2, F3) of (5.2), (5.3)) into (3.1) and (3.4), we obtain the
following integral equation (IE) for a(t)

a(t) =

∫ T

t

[Q(s, t) + q(s, t)](a(s))
γ

γ−1 e
K(s−t)+

(

∫ s

t

γη(z)
l(z)

−γ(a(z))
1

γ−1

(

1+ 1

m

1
γ−1 l(z)

)

dz

)

ds (5.6)

+ nQ(T, t)e
K(T−t)+

(

∫ T

t

γη(z)
l(z)

−γ(a(z))
1

γ−1

(

1+ 1

m

1
γ−1 l(z)

)

dz

)

, a(T ) = n.

with

K , γ

(

r +
µ2

2(1 − γ)σ2

)

. (5.7)

Let us summarize this finding:

Lemma 5.1 Let a(t) be a solution of the fixed-point problem (5.6). Define b(t) by (5.5). Then
v(t, x) = a(t)Uγ(x+ b(t)) is a value function.
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We turn our attention to the integral equation (5.6). Set

M(z) , 1 +
1

m
1

γ−1 l(z)
(5.8)

Assumption 5.2 We require that:

min
t∈[0,T ]

(1− γM(t) + λ(t)) ≥ 0. (5.9)

The Assumption 5.2 is met if γ ≤ 0. If m = 1 and l(t) = 1
λ(t) , then Assumption 5.2 is also

satisfied (this is the situation considered by [28]). In the case when mint∈[0,T ](1−γM(t)+λ(t)) <
0 it can happen that a(t) reaches 0 which leads to unbounded consumption.

The following Proposition is proved in Appendix C.

Proposition 5.3 If Assumption 5.2 is satisfied, then there exists a unique global C1 solution
of the integral equation (5.6).

In other words, for the problem under consideration, there always exists a value function
of the special type v(t, x) = a(t)Uγ(x + b(t)) (note that there may be others as well). We now
proceed to deduce the existence of policies.

Theorem 5.4 Let v be the value function of Lemma 5.1. Then, {ζ̄(s), c̄(s), p̄(s)}s∈[t,T ] given by
(3.2) is a policy.

The proof follows from Theorem 4.1, Lemma 5.1 and Proposition 5.3 as long as we prove that
{ζ̄(s), c̄(s), p̄(s)}s∈[t,T ] is an admissible strategy and Assumption 3.2 is met. The first claim
follows if one establishes (2.6). Taking into account the special form of v, Uγ , and X̄(s) + b(s),
(see (5.4)) then Burkholder Davis Gundy inequality yields (2.6). Next, to show that Assumption
3.2 holds true boils down to construct a C1,2 solution to some PDEs. Again by exploiting the
special structure, one can construct solutions (for the PDEs of Assumption 3.2) of the form
l(t)Uγ(x+ b(t)), with l(t) being the solution of some ODE.

5.1 The Case of Logarithmic Utility

In this special case we can solve the integral equation (5.6) in closed form. Indeed with γ = 0
(the case of logarithmic utility) we follow the ansatz

v(t, x) = a(t)Uγ(x+ b(t)) + d(t). (5.10)

Then (5.6) becomes

a(t) =

∫ T

t

[Q(s, t) + q(s, t)] ds + nQ(T, t), (5.11)
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with b(t) given in (5.5) and an appropriate choice of function d(t). The equilibrium policy is
then given through (3.5) which becomes

F1(t, x) =
µ(x+ b(t))

σ2
, F2(t, x) = [a(t)]−1(x+ b(t)), (5.12)

F3(t, x) =
1

l(t)

[

([
a(t)

m
]−1 − η(t))x + [

a(t)

m
]−1b(t))

]

. (5.13)

Remark 5.5 Let us notice that the amount invested in the stock is the same as in the case
of the standard Merton problem with exponential discounting. This somehow surprising result
is explained by constant return and volatility for the stock. We conjecture that in a stochastic
volatility model these amounts will be different. The consumption and insurance policies differ
from the optimal ones except for the case of exponential discounting. In fact, this is the topic of
the next subsection.

5.2 The Classical Merton Problem

The case of exponential discounting, h(t) = ĥ(t) = e−ρt and constant Pareto weight m(t) =
m, deserves special consideration. In that case, the equation (4.1) becomes the classical HJB
equation given by dynamic programming

− (λ(t) + ρ)v(t, x) +
∂v

∂t
(t, x) +

(

rx+ µF1(t, x)− F2(t, x)− F3(t, x) + i(t)

)

∂v

∂x
(t, x)+

σ2F 2
1 (t, x)

2

∂2v

∂x2
(t, x) + Uγ(F2(t, x)) +mUγ(η(t)x + l(t)F3(t, x)) = 0, (5.14)

with the boundary condition v(T, x) = nUγ(x), and (F1, F2, F3) given through (3.5). Therefore
for the case of exponential discounting the optimal strategy given by dynamic programming
coincides with the policy (given through (3.1), (3.4) (3.5)). This non-linear equation can be
linearized by Fenchel-Legendre transform and therefore it can be shown that it has a unique
solution. Moreover, it can be computed by the ansatz (5.1). The function a(t) solves an ODE
which can be solved explicitly to yield

a(t) =

[

n
1

1−γ e
∫ T

t

K+
γη(s)
l(s)

−ρ−λ(s)

1−γ
ds

+

∫ T

t

(

1 + λ(u)− γM(u)

1− γ

)

e
∫ u

t

K+
γη(s)
l(s)

−ρ−λ(s)

1−γ
ds
du

]1−γ

,

with K given by (5.7) and M(z) given by (5.8).

5.3 The Merton Problem with Hyperbolic Discounting

In this section we assume that the decision-maker gets no income (i(t) = 0), he/she does not buy
life insurance and there is no possibility of him/her dying before T. Moreover, we assume that
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discounting is hyperbolic, i.e., h(t) = (1 + k1t)
−

k2
k1 , with k1, k2 positive. In [21] it is shown that

CRRA type utilities and hyperbolic or exponential discounting exhibit the common difference
effect. Due to this effect, people are more sensitive to a given time delay if it occurs earlier than
later. More precisely, if a person is indifferent between receiving x > 0 immediately, and y > x
at some later time s, then he or she will strictly prefer the better outcome if both outcomes are
postponed by some time t :

U(x) = h(s)U(y), implies that U(x)h(t) < h(t+ s)U(y).

Furthermore, they assume that the delay needed to compensate for the larger outcome is a linear
function of time, that is

U(x) = h(s)U(y), implies that U(x)h(t) = h(kt+ s)U(y),

for some constant k. They show that the only solution of this functional equation is U(x) = xγ

γ
.

We pay special attention to this case because it explains the consumption puzzle; there is a
satiation in the consumption rate before maturity and exponential discounting can not capture
it (in fact with exponential discounting the optimal consumption rate is either increasing or
decreasing at all times depending on the relationship between the discount rate and the interest
rate). Moreover, it says that optimal strategies and policies are not observationally equivalent.
In the following we illustrate this point by a numerical experiment.

We consider one stock following a geometric Brownian motion with drift α = 0.12, volatility
σ = 0.2, interest rate r = 0.05, and the horizon T = 4. This set of parameters is chosen for

illustration. Inspired by [20] let the discount function h(x) = (1 + k1x)
−

k2
k1 be one of the three

choices of hyperbolic discount: case 1. k1 = 5; case 2. k2 = 10; case 3. k3 = 15; and b is chosen
such that h(1) = 0.3. We set γ = −1 (this choice reflects risk aversion). Let us consider three
cases: n = 1, 10, 30. We apply the numerical scheme developed in the Numerical Results Section.

As we see from these graphs, the consumption rate policy is increasing up to a satiation point
after which it is decreasing. This phenomena is observed from the data (people are consuming
more and more up to some age (around 60 years) after which the consumption is decreasing).
This may be explained by a drop in income. As the parameter n gets higher (when the agents
get more utility from terminal wealth) the satiation point comes earlier.

Lemma 5.6 shows that consumption rate policy is not always monotone.

Lemma 5.6 One can find a hyperbolic discount function such that the consumption rate policy
is neither increasing nor decreasing in time.

Appendix D proves this Lemma.
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5.4 The Stationary Case

Let us now consider the stationary problem. The coefficients in the model are assumed constant
taking their stationary value, i.e., n = 0, m(t) = m, l(t) = l, λ(t) = λ, i(t) = i, η(t) = η, and
T = ∞. For simplicity we assume that

q(s, t) = mλ exp{−(λ+ r1)(s− t)}, Q(s, t) = exp{−(λ+ r2)(s− t)},

for some r1 and r2 positive. Before engaging into the formal definition, let us point the following
key fact. For an admissible time homogeneous (stationary) policy process {ζ(t), c(t), p(t)}t∈[0,∞)

and its corresponding wealth process {X(t)}t∈[0,∞) (see (2.1)) the expected utility functional
J(t, x, ζ, c) is time homogeneous, i.e.,

J(t, x, ζ, c, p) = J(0, x, ζ, c, p)

, E

[
∫ ∞

0
exp{−(λ+ r2)s}U(c(s)) ds +

∫ ∞

0
mλ exp{−(λ+ r1)s}U(Z0,x(s)) ds

]

.

The intuition is that the clock can be reset so that the expected utility criterion takes zero as
the starting point. We have a similar definition for policies as in the case of finite horizon.

Definition 5.7 An admissible trading strategy {ζ̄(s), c̄(s), p̄(s)}s∈[0,∞] is a policy if there exists
a map F = (F1, F2, F3) : R → R× [0,∞)× R such that for any x > 0

lim inf
ǫ↓0

J(0, x, ζ̄ , c̄, p̄)− J(0, x, ζǫ, cǫ, pǫ)

ǫ
≥ 0, (5.15)

where

ζ̄(s) = F1(X̄(s)), c̄(s) = F2(X̄(s)), p̄(s) = F3(X̄(s)) (5.16)

and the wealth process {X̄(s)}s∈[0,∞] is a solution of the stochastic differential equation (SDE)

dX̄(s) = [rX̄(s) + µF1(X̄(s))− F2(X̄(s))− F3(X̄(s)) + i(s)]ds + σF1(X̄(s))dW (s). (5.17)

Moreover, the process {ζǫ(s), cǫ(s), pǫ(s)}s∈[0,∞] is another investment-consumption strategy
defined by

ζǫ(s) =

{

ζ̄(s), s ∈ [0,∞]\Eǫ

ζ(s), s ∈ Eǫ,
(5.18)

cǫ(s) =

{

c̄(s), s ∈ [0,∞]\Eǫ

c(s), s ∈ Eǫ,
(5.19)

pǫ(s) =

{

p̄(s), s ∈ [0,∞]\Eǫ

p(s), s ∈ Eǫ,
(5.20)

with Eǫ = [0, ǫ], and {ζ(s), c(s), p(s)}s∈Eǫ is any strategy for which {ζǫ(s), cǫ(s), pǫ(s)}s∈[0,∞] is
an admissible policy.
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Similarly we define the value function.

Definition 5.8 A function v : R → R is a value function if it solves the following system of
equations

v(x) = J(0, x, ζ̄ , c̄, p̄) (5.21)

ζ̄(s) = F1(X̄(s)), c̄(s) = F2(X̄(s)), p̄(s) = F3(X̄(s)),

dX̄(s) = [rX̄(s) + µF1(X̄(s))− F2(X̄(s))− F3(X̄(s)) + i(s)]ds + σF1(X̄(s))dW (s), (5.22)

F1(x) = −
µv′(x)

σ2v′′(x)
, F2(x) =

(

v′(x))
)

1
γ−1 , F3(x) =

1

l

[

(

1

m
v′(x)

)
1

γ−1

− ηx

]

. (5.23)

Let us look for the value function of the form

v(x) = aUγ(x+ b), (5.24)

for some constants a and b. By solving (3.4), we get b = i
r+ η

l

. Let β = 1 + m
1

1−γ

l
and K be

given by (5.7). The constant a should solve the following equation

a =
a

γ

γ−1

λ+ r1 −K − γη
l
+ γβa

1
γ−1

+mλ
( a
m
)

γ

γ−1

λ+ r2 −K − γη
l
+ γβa

1
γ−1

(5.25)

with the transversality conditions

λ+ rj −K −
γη

l
+ γβa

1
γ−1 > 0 j = 1, 2. (5.26)

Lemma 5.9 There is a unique solution of (5.25) and (5.26).

Appendix E proves this Lemma.

We are ready to state the main result of this section.

Theorem 5.10 Let v be defined by (5.24) with a the solution of (5.25). The function (F1, F2, F3)
of (5.23) defines a policy through (5.17) and (5.16).
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Proof: The proof for the most part parallels Theorem 4.1. The only part which requires
more analysis is showing that

lim
ǫ↓0

E

[
∫ ∞

ǫ

exp{−(λ+ ri)s}[Uγ(F2(X̄
0,x(s)))− Uγ(F2(X

0,x(s)))] ds

]

= 0, i = 1, 2.

which is equivalent to

lim
ǫ↓0

E

[
∫ ∞

ǫ

exp{−(λ+ ri)s}[(X̄
0,x(s) + b)γ − (X0,x(s) + b)γ ] ds

]

= 0, , i = 1, 2.

The result follows from Lebesque Dominated Convergence Theorem if we prove that

E

[
∫ ∞

0
exp{−(λ+ ri)s}[(X̄

0,x(s) + b)γ + (X0,x(s) + b)γ ] ds

]

< ∞, i = 1, 2. (5.27)

Notice that from the transversality conditions (5.26) one gets

E

[
∫ ∞

0
exp{−(λ+ ri)s}(X̄

0,x(s) + b)γ
]

< ∞, i = 1, 2.

Moreover, if s ∈ [ǫ,∞] then

(

X0,x(s) + b

X̄0,x(s) + b

)γ

=

(

X0,x(ǫ) + b

X̄0,x(ǫ) + b

)γ

, R(ǫ),

and R(ǫ) and X̄0,x(s) are independent. Thus, Holder inequality and a standard argument yields

E

[
∫ ∞

0
exp{−(λ+ ri)s}(X

0,x(s) + b)γ
]

< ∞, i = 1, 2,

so (5.27) holds true.

�

6 Numerical Results

We provide a numerical scheme to approximate the integral equation (5.6). For simplicity we
assume that η(t) = 1. In a first step let us discretize the interval [0, T ] by introducing the points
tn = T + nh , where ǫ = − T

N
; recall that with K given by (5.7) and M(·) of (5.8), the equation

(5.6) becomes in a differential form
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a′(t) = (γM(t)− λ(t)− 1)(a(t))
γ

γ−1 +

(

λ(t)−
h′(T − t)

h(T − t)
−K −

γ

l(t)

)

a(t) (6.1)

+

∫ T

t

L(s, t)(a(s))
γ

γ−1

(

A(s)

A(t)

)

ds,

where

A(s) , exp(

∫ T

s

γ(a(z))
1

γ−1M(z)dz)

and

L(s, t) ,

[(

h′(T − t)

h(T − t)
−

h′(s− t

h(s − t)

)

Q(s, t) +

(

h′(T − t)

h(T − t)
−

h̄′(s− t)

h̄(s− t)

)

q(s, t)

]

e
∫ s

t
K+ γ

l(u)
du
.

From the definition of A(s), it follows that

A′(s) = −γa(s))
1

γ−1M(s)A(s).

Our approximation scheme is done in three steps. In a first step, we construct the sequence
a1n and A1

n recursively by

a1n+1 , a1n + ǫa′(tn), A1
n+1 , A1

n + ǫA′(tn).

Lemma 6.1 If a1n and A1
n, n = 0 · · ·N are defined by a10 = 1, A1

0 = 1 and















a1n+1 = a1n + ǫ
(

(γM(tn)− λ(tn)− 1)(a1n)
γ

γ−1 +
(

λ(tn)−
h′(T−tn)
h(T−tn)

−K − γ
l(tn)

)

a1n

+
∫ T

tn
L(s, tn)(a(s))

γ

γ−1

(

A(s)
A(tn)

)

ds

A1
n+1 = A1

n − γǫ(a(tn))
1

γ−1M(tn)A
1
n

Then there exists a constant C such that

|a1n − a(tn)| ≤ C|ǫ| and |A1
n −A(tn)| ≤ C|ǫ|, ∀n ∈ 0, 1, · · · , N.

Appendix F proves this Lemma.

In a second step we discretize the integral
∫ T

tn
L(s, tn)(a(s))

γ

γ−1

(

A(s)
A(tn)

)

ds. This will lead to

the following Lemma.

Lemma 6.2 If a2n and A2
n, n = 0 · · ·N are defined by a20 = 1, A2

0 = 1 and
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













a2n+1 = a2n + ǫ(γM(tn)− λ(tn)− 1)(a2n)
γ

γ−1 + ǫ
(

λ(tn)−
h′(T−tn)
h(T−tn)

−K − γ
l(tn)

)

a2n

− ǫ2
∑n−1

j=0 L(tj , tn)(a(tj))
γ

γ−1

(

A(tj)
A(tn)

)

A2
n+1 = A2

n − γǫ(a2n)
1

γ−1M(tn)A
2
n

Then there exists a constant C such that

|a2n − a1n)| ≤ C|ǫ| and |A2
n −A1

n| ≤ C|ǫ|, ∀n ∈ 0, 1, · · · , N.

Appendix G proves this Lemma.

In a third step we introduce an explicit scheme.

Lemma 6.3 If a3n and A3
n, n = 0 · · ·N are defined by a30 = 1, A3

0 = 1 and



















a3n+1 = a3n + ǫ(γM(tn)− λ(tn)− 1)(a3n)
γ

γ−1 + ǫ
(

λ(tn)−
h′(T−tn)
h(T−tn)

−K − γ
l(tn)

)

a3n

− ǫ2
∑n−1

j=0 L(tj , tn)(a
3
j )

γ

γ−1

(

A3
j

A3
n

)

A3
n+1 = A3

n − γǫ(a3n)
1

γ−1M(tn)A
3
n

Then there exists a constant C such that

|a3n − a2n)| ≤ C|ǫ| and |A3
n −A2

n| ≤ C|ǫ|, ∀n ∈ 0, 1, · · · , N.

Appendix H proves this Lemma.

By using the preceding lemmas and Lipschitz continuity of function a(t) we summarize the
results of this section by the following Theorem.

Theorem 6.4 Let aN (t) be the function obtained by the linear interpolation of the points
(tn = T − nT

N
, a3n). Then

|aN (t)− a(t)| ≤ C|ǫ|, ∀t ∈ [0, T ] ,

for some positive constant C independent of N.

In the following we perform a numerical experiment. Let T = 4, r = 0.05, µ = 0.07, σ =
0.2, p = −1, N = 1000, ρ = 0.8, λ(t) = 1

200 + 9
8000 t, l(t) =

1
λ(t) , η(t) = 1, The discount function is

exponential h(t) = ĥ(t) = exp(−ρt) with ρ = 0.8. The Pareto weight is m(t) = log(T+ǫ−t
ǫ

) with
ǫ = 10−15. We choose this set of parameters for illustration. As people get older, perhaps they
weigh more their heirs utility; so a time decreasing aggregation rate seems the natural choice. It
is for this reason that we consider a decreasing function m. We plot the maps F2 and F3 which
lead to the policies. Furthermore, we plot the difference in F3 when m is variable as opposed to
m is constant. The results show that higher utility weight m leads to higher amount spent on
life insurance.
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7 Conclusion and future research

We have studied the portfolio management problem in which an agent invests in a risky asset,
consumes, and buys life insurance in order to maximize utility of his/her and heirs. Different
discount rates for the agent and heirs lead to time inconsistency. Moreover a time changing
aggregation weight will lead to time inconsistency as well. The way we deal with this predicament
is by looking for subgame perfect Nash equilibrium strategies that we call policies. We find them
in special cases. Our model is rich enough to capture different aspects in portfolio theory. We
perform numerical experiments in order to explain the effect of discounting in one hand and the
effect of aggregation on a different hand. Hyperbolic discounting is emphasized in a Merton type
problem (for simplicity we shut off some parameters). The surprising result is that the policies
and optimal strategies are not always observationally equivalent. For example, in certain cases,
watching one’s consumption rate we can infer (from its time monotonicity) wether or not is a
optimal or a equilibrium one. Indeed, a non monotone consumption rate can not be optimal for
the case of exponential discounting. The consumption rate policy exhibit a satiation point (it
has a hump shaped behaviour) and this may explain the consumption puzzle. A time varying
aggregation rate is benchmarked to a constant one. Our numerical experiment comes to support
the intuition that the more the manager cares for his/her heirs, the more he/she will pay on life
insurance.

We have introduced a system of equations: the integral equation (3.1) together with the
SDE (3.4) and PDE (3.5). Their validity has been established in the case when the utility
function and the bequest function are of (CRRA) type, but we think that it extends to any
concave utilities, as in the deterministic case. This paper can be seen as a first step in the
general direction of extending stochastic control away from the optimization paradigm towards
time-consistent strategies. The mathematical difficulties are considerable: we have no general
existence nor uniqueness theory for the equations (3.1) or (4.1), which replace the classical HJB
equation of optimal control. In the present paper we sidestep the difficulty by using an Ansatz,
but we hope that future work, by ourselves or others, will solve these problems.

We conclude by pointing out that most portfolios are not managed by an individual, but by
a group, either a professional management team, or the investor himself and his family. As we
mentioned in the introduction, we should then introduce one utility function, one psychological
discount rate, and one Pareto weight for each member of the group. Consider for instance a
group with two members (husband and wife). Member i (for i = 1, 2) has utility ui (c1, c2),
where c1 is the consumption of the husband and c2 is the consumption of the wife, and discount
factor hi (t), so the utility derived at time t by member i from the couple consuming (c1, c2) at
time s > t is hi (s− t)ui (c1, c2). The utilities of the husband and the wife have to be aggregated
by Pareto weights. If for instance we assume that, as is the case in most couples, one member
specializes in long-term decisions and the other in short-term ones, we find that there should
exist some decreasing function µ (t), with 0 ≤ µ (t) ≤ 1, such that the behaviour of the couple
between t and T is adequately described by maximising the intertemporal criterion:

∫ T

t

[µ (s− t) h1 (s− t)u1 (c1 (s) , c2 (s)) + (1− µ (s− t))h2 (s− t) u2 (c1 (s) , c2 (s))] ds
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plus some terminal criterion (legacy) at time T . Even in the case when both members of the
group have a constant psychological discount rate, so that hi (t) = exp (−rit), and even if r1 = r2,
the group will exhibit time-inconsistency.

Our model covers the particular case when u1 = u2 = U. This group is time-inconsistent:
their expected intertemporal utility is:

J(t, x, ζ, c1, c2) = E

[
∫ T

t

h1(s− t)U(c1(s)) ds+

∫ T

t

m(s− t) h2(s− t)U(c2(s)) ds

+ h1(T − t)U(Xζ,c1,c2(T ))

]

,

which falls within our model. Assuming that the function m(·) is decreasing with m(0) ≃ ∞,
and m(T ) ≃ 0 would capture the situation when one member plans for short time and the other
plans for long time.

The more general case when u1 6= u2 together with other macroeconomic problems with
heterogeneous agents will be the subject of future research.

8 Appendix

Appendix A: Proof of Lemma 2.3: We first establish that

E

[
∫ T∧τ

t

h(s − t)U1(c(s)) ds

]

= E

[
∫ T

t

Q(s, t)U1(c(s)) ds

]

(8.1)

In the light of equations (2.2), (2.3) and the random variable τ being independent of Brownian
motion W it follows that

E

[
∫ T∧τ

t

h(s− t)U1(c(s)) ds

]

= E

[

exp{−

∫ T

t

λ(z) dz}

∫ T

t

h(s − t)U1(c(s)) ds+

∫ T

t

λ(u) exp{−

∫ u

t

λ(z) dz}

∫ u

t

h(s− t)U1(c(s)) dsdu

]

.

Moreover

E

[
∫ T

t

λ(u) exp{−

∫ u

t

λ(z) dz}

∫ u

t

h(s − t)U1(c(s)) dsdu

]

=

−E

[

∂

∂u

(

exp{−

∫ u

t

λ(z) dz}

)
∫ u

t

h(s − t)U1(c(s)) dsdu

]

,

and integration by parts will lead to (8.1). It is easy to see that

E

[

h̄(τ − t)U3(Z
t,x(τ))1{τ≤T |τ>t} = E

[
∫ T

t

q(s, t)U3(Z
t,x(s)) ds

]

. (8.2)

24



Finally let us prove that

E

[

nh(τ − t)U2(X
t,x(T ))1{τ>T |τ>t}

]

= E

[

nQ(T, t)U2(X
t,x(T ))

]

. (8.3)

This follows from (2.3). In the light of (8.1) (8.2) and (8.3), it follows that (2.8) holds true.

�

Appendix B: Proof of Lemma 4.2: Let the functions (t, x) → f i(t, ·, x) satisfy the following
PDEs:

∂f i

∂t
+ (rx+ µF1(t, x)− F2(t, x)− F3(t, x) + i(t))

∂f i

∂x
+

σ2F 2
1 (t, x)

2

∂2f i

∂x2
= 0, i = 1, 2, 3. (8.4)

with the boundary conditions

f1(t, s, x) = U1(F2(s, x)), f2(t, s, x) = U3(η(s)x+ l(s)F2(s, x)), f3(t, T, x) = U2(x).

In the light of Assumption 3.2, these PDEs have C1,2 solutions. According to the Feyman-Kac’s
formula

f1(t, s, x) = E[U1(F2(s, X̄
t,x(s)))], f2(t, s, x) = E[U3(Z̄

t,x(s))], f3(t, T, x) = E[U2(X̄
t,x(T ))].

Therefore

v(t, x) =

∫ T

t

(Q(s, t)f1(t, s, x) + q(s, t)f2(t, s, x)) ds + nQ(T, t)f3(t, T, x) (8.5)

By differentiating under the integral sign in (8.5) we obtain

∂v

∂t
(t, x) =

∫ T

t

(Q(s, t)
∂f1

∂t
(t, s, x) + q(s, t)

∂f2

∂t
(t, s, x)) ds + nQ(T, t)

∂f3

∂t
(t, T, x) (8.6)

+ (Q(t, t)f1(t, t, x) + q(t, t)f2(t, t, x))

+

∫ T

t

(
∂Q

∂t
(s, t)f1(t, s, x) +

∂q

∂t
(s, t)f2(t, s, x)) ds + n

∂Q

∂t
(T, t)f3(t, T, x),

∂v

∂x
(t, x) =

∫ T

t

(Q(s, t)
∂f1

∂x
(t, s, x) + q(s, t)

∂f2

∂x
(t, s, x)) ds + nQ(T, t)

∂f3

∂x
(t, T, x), (8.7)

and

∂2v

∂x2
(t, x) =

∫ T

t

(Q(s, t)
∂2f1

∂x2
(t, s, x) + q(s, t)

∂2f2

∂x2
(t, s, x)) ds + nQ(T, t)

∂2f3

∂x2
(t, T, x) (8.8)

By combining (8.6), (8.7), (8.8) and (8.4), we obtain (4.1).
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Appendix C: Proof of Proposition 5.3. We proceed in a couple of steps. In a first step,
we obtain lower and upper bounds for a(t). The second step shows that for the case of discount
functions being a linear combination of exponentials the equation becomes an ODE system for
which we have local existence. The local solution together with the bounds obtained in the first
step will lead to global existence. In a last step, we approximate the discount functions by linear
combination of exponentials and the solution is constructed by the limit of the ODE systems
solutions. In the following, we will go over step one only since the second step follow as in [10]
and the last step follows from a density argument. For simplicity we assume that η(t) = 1. Now,
let us define

ā(t) = a(t)e

[

K(t−T )+
∫ T

t

(

− γ

l(z)
+γa(z)

1
γ−1 M(z)

)

dz

]

.

It follows that

ā(t) =

∫ T

t

[Q(s, t) + q(s, t)] [a(s)]
γ

γ−1 e

[

K(s−T )−
∫ T

s

(

γ

l(z)
+γ(a(z))

1
γ−1 M(z)dz

)]

ds+ nQ(T, t)

Consequently

ā′(t) = −(Q(t, t) + q(t, t))(a(t))
γ

γ−1 e

[

K(t−T )−
∫ T

t

(

γ
l(z)

+γ(a(z))
1

γ−1 M(z)

)

dz

]

ds+ n
∂

∂t
Q(T, t)

+

∫ T

t

∂

∂t
[Q(s, t) + q(s, t)] (a(s))

γ

γ−1 e

[

K(s−T )+
∫ T

s

(

γ

l(z)
+γ(a(z))

1
γ−1 M(z)

)

dz

]

ds

From direct calculations

∂

∂t
Q(T, t) = (λ(t)h(T − t)− h′(T − t))exp

[

−

∫ T

t

λ(z)dz

]

= (λ(t) −
h′

h
(T − t))Q(T, t)

and

∂

∂t
[Q(s, t) + q(s, t)] = (λ(t)h(s − t)− h′(s− t))exp

[

−

∫ s

t

λ(z)dz

]

+ λ(s)(λ(t)h̄(s− t)− h̄′(s− t))exp

[

−

∫ s

t

λ(z)dz

]

.

Therefore

∂

∂t
[Q(s, t) + q(s, t)] =

(

λ(t)−
h′(s− t)

h(s− t)
(s− t)

)

Q(s, t) +

(

λ(t)−
h̄′(s− t)

h̄(s− t)

)

q(s, t)
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Thus

ā′(t) = −(λ(t) + 1)(a(t))
γ

γ−1 e

[

K(t−T )−
∫ T

t

(

γ
l(z)

+γ[a(z)]
1

γ−1 M(z)

)

dz

]

ds

+ n

(

λ(t)−
h′(T − t)

h(T − t)

)

Q(T, t)

+

∫ T

t

[(

λ(t)−
h′(s− t)

h(s− t)

)

Q(s, t) +

(

λ(t)−
h̄′(s − t)

h̄(s− t)

)

q(s, t)

]

× (a(s))
γ

γ−1 e

[

K(s−T )+
∫ T

s

(

γ

l(z)
+γ(a(z))

1
γ−1 M(z)

)

dz

]

ds

Hence

(

(a′(t) + (K +
γ

l(t)
− γ(a(t))

1
γ−1M(t))a(t)

)

e

[

−
∫ T

t

(

K+ γ

l(z)

)

dz+
∫ T

t
γ(a(z))

1
γ−1 M(z)dz

]

= −(λ(t) + 1)(a(t))
γ

γ−1 e

[

−
∫ T

t

(

K+ γ

l(z)

)

dz+
∫ T

t
γ(a(z))

1
γ−1 M(z)dz

]

+ n

(

λ(t)−
h′(T − t)

h(T − t)
)

)

Q(T, t)

+

∫ T

t

[(

λ(t)−
h′(s− t)

h(s− t)

)

Q(s, t) +

(

λ(t)−
h̄′(s− t)

h̄(s− t)

)

q(s, t)

]

× (a(s))
γ

γ−1 e

[

−
∫ T

s

(

K+ γ

l(z)

)

dz+
∫ T

s
γ(a(z))

1
γ−1 M(z)dz

]

ds

Consequently

[

(a′(t) + (K +
γ

l(t)
− γ(a(t))

1
γ−1M(t))a(t)

]

=

−(λ(t) + 1)(a(t))
γ

γ−1 + n

(

λ(t)−
h′(T − t)

h(T − t)

)

Q(T, t)e

[

∫ T

t
K+ γ

l(z)
dz−

∫ T

t
γ(a(z))

1
γ−1 M(z)dz

]

ds+

∫ T

t

[(

λ(t)−
h′(s− t)

h(s− t)

)

Q(s, t) +

(

λ(t)−
h̄′(s − t)

h̄(s− t)

)

q(s, t)

]

(a(s))
γ

γ−1 e

[

∫ s

t

(

K+ γ

l(z)

)

dz+
∫ t

s
γ(a(z))

1
γ−1 M(z)dz

]

ds

From the definition of a(t) we get that

[

(a′(t) + (K +
γ

l(t)
− γ(a(t))

1
γ−1M(t))a(t)

]

= −(λ(t) + 1)(a(t))
γ

γ−1 + λ(t)a(t)−
h′(T − t)

h(T − t)
a(t)

(8.9)

27



+

∫ T

t

(

h′(T − t

h(T − t
)
(

Q(s, t) + q(s, t)
)

−
h′(s− t)

h(s− t)
(Q(s, t)−

h̄′(s− t)

h̄(s− t)
)q(s, t)

)

(a(s))
γ

γ−1 e

[

K(s−t)+
∫ t

s
γ[a(z)]

1
γ−1 M(z)dz

]

ds

Since −ρ ≤ h′

h
(z) ≤ ρ and −ρ ≤ h̄′

h̄
(z) ≤ ρ and −ρ′ ≤ γ

l(z) ≤ ρ′ for 0 ≤ z ≤ T the equation

(8.9) leads to

a′(t) ≤ −(1 + λ(t)− γM(t))(a(t))
γ

γ−1 + (λ(t) + 3ρ−K + ρ′)a(t) (8.10)

and

a′(t) ≥ −(1 + λ(t))(a(t))
γ

γ−1 − (K + λ(t) + 3ρ− ρ′)a(t) (8.11)

Let us denote

C1 , min
t∈[0,T ]

(1− γM(t) + λ(t)), C0 , max
t∈[0,T ]

(λ(t) + 3ρ−K + ρ′)

D0 , max
t∈[0,T ]

(K + λ(t) + 3ρ), D1 , max
t∈[0,T ]

(1 + λ(t))

so that equations (8.10) and (8.11) will become

a′(t) ≤ −C1(a(t))
γ

γ−1 + C0a(t) (8.12)

and
a′(t) ≥ −D1(a(t))

γ
γ−1 −D0a(t) (8.13)

Now, C0,D1,D0 > 0 and by assumption 5.2, it follows that C1 > 0. Consequently, we get
lower and upper bounds on a(t) by integrating (8.12) and (8.13) as in [10].

�

Appendix D: Proof of Lemma 5.6: We take n = 2 and the coefficients as in the numerical
experiment. In the light of the differential equation

a′(t) = −

[

h′(T − t)

h(T − t)
+K

]

a(t) + (γ − 1)(a(t))
γ

γ−1 (8.14)

+

∫ T

t

h(T − t)
∂

∂t

[

h(s − t)

h(T − t)

]

(a(s))
γ

γ−1 e
−

(

∫ s

t
γ(a(u))

1
γ−1 du

)

ds.

We notice that on [T − ǫ, T ]
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a′(t) ≈ −

[

h′(T − t)

h(T − t)
+K

]

a(t) + (γ − 1)(a(t))
γ

γ−1 +O(ǫ).

Consequently, for the choice of our parameters in the numerical experiment we get that
h′(T−t)
h(T−t) +K < −1 for small ǫ (keeping in mind that a(1) = 2) we see that a(t) is increasing on

[T − ǫ, T ]. For hyperbolic discounting it can be shown that ∂
∂t

[

h(s−t)
h(T−t)

]

< 0. It is obvious that

a(t) is decreasing in a neighborhood of 0 due to the negative contribution of the term

∫ T

t

h(T − t)
∂

∂t

[

h(s − t)

h(T − t)

]

(a(s))
γ

γ−1 e
−

(

∫ s

t
γ(a(u))

1
γ−1 du

)

ds.

In conclusion, the consumption rate policy, F2(t,x)
x

= [a(t)]
1

γ−1 , (see (5.2)) is neither increasing
nor decreasing in time.

�

Appendix E: Proof of Lemma 5.9: Let x , a
1

1−γ , αj , λ+ rj −K − γη
l
, j = 1, 2. Equation

(5.25) becomes

1

x
=

1

α1 + γβx
+

λm
1

1−γ

α2 + γβx
(8.15)

For the sake of simplicity, consider the case m = 1.
We want to find x > 0 which solves

γβ(1− γβ + λ)x2 + (α2(1− γβ) + α1(λ− γβ))x − α1α2 = 0 (8.16)

and transversality conditions (5.26) i.e

α1 + γβx > 0 α2 + γβx > 0 (8.17)

This can be done by splitting the analysis into 3 cases: γ ∈ (0, 1), γ = 0, and γ < 0. We omit
the details.

�

Appendix F: Proof of Lemma 6.1: Let a = inft∈[0,T ]a(t). Lemma 5.3 guarantees that
a > 0. We show that

a1n ≥
2A

3
∀n ∈ 0, 1, · · · , N, (8.18)

and this makes the recursive scheme well defined. We prove (8.18) by mathematical induc-
tion. Assume that
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a1k ≥
2A

3
∀k ∈ 0, 1, · · · , n, (8.19)

and prove that a1n+1 ≥
2a
3 . Let us define

en , a1n − a(tn), fn , A1
n −A(tn)

.
By considering a second order Taylor expansion of a(tn+1) at a(tn), we get

a(tn+1) = a(tn) + ǫa′(tn) + cnǫ
2

with cn a constant depending on a and bounded by c independently of n. Consequently

en+1 = a1n+1 − a(tn+1)

= a1n + ǫ
(

(γM(tn)− λ(tn)− 1)(a1n)
γ

γ−1

+

(

λ(tn)−
h′(T − tn)

h(T − tn)
−K

)

a1n +

∫ T

tn

L(s, tn)(a(s))
γ

γ−1

(

A(s)

A(tn)

)

ds

−

(

a(tn) + ǫ(γM(tn)− λ(tn)− 1)(a(tn))
γ

γ−1

+

(

λ(tn)−
h′(T − tn)

h(T − tn)
−K

)

a(tn)

+

∫ T

tn

L(s, tn)(a(s))
γ

γ−1

(

A(s)

A(tn)

)

ds+ cnǫ
2

)

= en + ǫ(γM(tn)− λ(tn)− 1)((a1n)
γ

γ−1 − (a(tn))
γ

γ−1 )

+ ǫ

(

λ(tn)−
h′(T − tn)

h(T − tn)
−K

)

en − cnǫ
2

By the mean value Theorem applied to the function x → x
γ

γ−1 , one gets that

|(a1k)
γ

γ−1 − (a(tk))
γ

γ−1 | ≤
γ

γ − 1

(

2a

3

)
1

γ−1

|a1k − a(tk)|.

Therefore there exists M > 0, such that

|ek+1| ≤ |ek|(1 +M |ǫ|) + cǫ2, ∀k ∈ 0, 1, · · · , n. (8.20)

By iterating (8.20) for k = 0 · · · n, one gets

|en+1| ≤ cǫ2
(1 +Mǫ)n+1 − 1

Mǫ
≤ |c|ǫ2

eMT − 1
MT
N

≤ C|ǫ|,

for some constant C independent of n. Therefore
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a1n+1 ≥ a(tn+1)− |en+1| ≥ a− C|ǫ| ≥ 2a/3

for |ǫ| small enough. This proves (8.18).
Moreover it follows that

|a1n − a(tn)| = |en| ≤ C|ǫ|, ∀n ∈ 0, 1, · · · , N.

Similar arguments show that

|A1
n −A(tn)| ≤ C|ǫ|, ∀n ∈ 0, 1, · · · , N.

�

Appendix G: Proof of Lemma 6.2: We show that

a2n ≥
a

2
∀n ∈ 0, 1, · · · , N, (8.21)

and this makes the recursive scheme well defined. We prove (8.21) by mathematical induc-
tion. Assume that

a2k ≥
a

2
∀k ∈ 0, 1, · · · , n, (8.22)

and prove that a2n+1 ≥
A
2 . Let rn , a2n − a1n, so

rn+1 = a2n+1 − a1n+1

= a2n + ǫ(γM(tn)− λ(tn)− 1)(a2n)
γ

γ−1 + ǫ

(

λ(tn)−
h′(T − tn)

h(T − tn)
−K

)

a2n

− ǫ2
n−1
∑

j=0

L(tj, tn)(a(tj))
γ

γ−1A(tj)− ǫ

∫ T

tn

L(s, tn)(a(s))
γ

γ−1

(

A(s)

A(tn)

)

ds

− a1n − ǫ(γM(tn)− λ(tn)− 1)(a1n)
γ

γ−1 − ǫ

(

λ(tn)−
h′(T − tn)

h(T − tn)
−K

)

a1n

= rn + ǫ(γM(tn)− λ(tn)− 1)
(

(a2n)
γ

γ−1 − (a1n)
γ

γ−1
)

+ ǫ

(

λ(tn)−
h′(T − tn)

h(T − tn)
−K

)

rn

+ ǫ
n−1
∑

j=0

[

−ǫL(tj , tn)(a(tj))
γ

γ−1

(

A(tj)

A(tn)

)

−

∫ tj

tj+1

L(s, tn)(a(s))
γ

γ−1

(

A(s)

A(tn)

)

ds

]
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Moreover

∣

∣− ǫL(tj , tn)(a(tj))
γ

γ−1

(

A(tj)

A(tn)

)

−

∫ tj

tj+1

L(s, tn)(a(s))
γ

γ−1

(

A(s)

A(tn)

)

ds
∣

∣

=
∣

∣

∫ tj

tj+1

(

L(tj , tn)(a(tj))
γ

γ−1

(

A(tj)

A(tn)

)

− L(s, tn)(a(s))
γ

γ−1

(

A(s)

A(tn)

))

ds
∣

∣

≤
1

A(tn)

∣

∣

∫ tj

tj+1

(

[L(tj, tn)(a(tj))
γ

γ−1A(tj)− L(s, tn)(a(tj))
γ

γ−1A(tj)] + [L(s, tn)(a(tj))
γ

γ−1A(tj)

− L(s, tn)(a(s))
γ

γ−1A(tj)] + [L(s, tn)(a(s))
γ

γ−1A(tj)− L(s, tn)(a(s))
γ

γ−1A(s)]

)

ds
∣

∣

≤
1

A(tn)

(

K0(tj − tj+1)
2 +K1(tj − tj+1)

2 +K2(tj − tj+1)
2
)

≤ K4ǫ
2,

for some positive constants K0,K1,K2,K4. The last inequalities follow from the boundedness
of a(t) ( see Lemma 5.3) and from the boundedness of coefficients. Arguing as in Lemma 6.1,
we can then find M > 0 such that

|rk+1| ≤ |rk|(1 +M |ǫ|) + cǫ2, ∀k ∈ 0, 1, · · · , n. (8.23)

By iterating (8.23) for k = 0 · · · n, one gets

|rn+1| ≤ cǫ2
(1 +Mǫ)n+1 − 1

Mǫ
≤ |c|ǫ2

eMT − 1
MT
N

≤ C|ǫ|,

for some constant C independent of n. Therefore

a2n+1 ≥ a1n+1 − |rn+1| ≥ 2a/3− C|ǫ| ≥ a/2

for |ǫ| small enough. This proves (8.21). Moreover it follows that

|a2n − a1n| = |rn| ≤ C|ǫ|, ∀n ∈ 0, 1, · · · , N.

Similar arguments show that

|A2
n −A1

n| ≤ C|ǫ|, ∀n ∈ 0, 1, · · · , N.

�

Appendix H: Proof of Lemma 6.3: We show that

a3n ≥
a

4
∀n ∈ 0, 1, · · · , N, (8.24)

and this makes the recursive scheme well defined. We prove (8.24) by mathematical induc-
tion. Assume that

a3k ≥
a

4
∀k ∈ 0, 1, · · · , n, (8.25)
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and prove that a3n+1 ≥
a
4 . Let us introduce un , a3n − a2n and vn , A3

n −A2
n. It follows that

un+1 = a3n+1 − a2n+1

= a3n + ǫ(γM(tn)− λ(tn)− 1)(a3n)
γ

γ−1 + ǫ

(

λ(tn)−
h′(T − tn)

h(T − tn)
−K

)

a3n

− ǫ2
n−1
∑

j=0

L(tj, tn)(a
3
j )

γ

γ−1A3
j − a2n − ǫ(γm(tn)− λ(tn)− 1)(a2n)

γ

γ−1

− ǫ

(

λ(tn)−
h′(T − tn)

h(T − tn)
−K

)

a2n + ǫ2
n−1
∑

j=0

L(tj , tn)(a(tj))
γ

γ−1A(tj)

= un + ǫ(γm(tn)− λ(tn)− 1)((a3n)
γ

γ−1 − (a2n)
γ

γ−1 )

+ ǫ

(

λ(tn)−
h′(T − tn)

h(T − tn)
−K

)

u3n − ǫ2
n−1
∑

j=0

L(tj , tn)rj,n,

where rj,n , (a3j )
γ

γ−1

(

A3
j

A3
n

)

− (a(tj))
γ

γ−1

(

A(tj )
A(tn)

)

. By triangle inequality it follows that

|rj,n| ≤ |(a3j )
γ

γ−1

(

A3
j

A3
n

)

− (a2j )
γ

γ−1

(

A3
j

A3
n

)

|+ |(a2j )
γ

γ−1

(

A3
j

A3
n

)

− (a2j )
γ

γ−1

(

A2
j

A3
n

)

|

+ |(a2j )
γ

γ−1

(

A2
j

A3
n

)

− (a2j )
γ

γ−1

(

A2
j

A2
n

)

|+ |(a2j )
γ

γ−1

(

A2
j

A2
n

)

− (a(tj))
γ

γ−1

(

A(tj)

A(tn)

)

|

≤ M1|uj|+M2|vj |+M3|vn|+M4|ǫ|,

for some positive constants M1,M2,M3,M4, where the last inequality from the boundedness
of a(t) ( see Lemma 5.3) and of other coefficients in our model. Arguing as in the previous
Lemmas one can find a positive constant C such that

|un+1| ≤ |un|+ C|ǫun|+ C|ǫ|(maxj∈0,··· ,n|uj |+maxj∈0,··· ,n|vj |) + Cǫ2. (8.26)

On the other hand

vn+1 = vn − γǫM(tn)
(

(a3n)
γ

γ−1 p3n − (a2n)
γ

γ−1 p2n
)

,

hence

|vn+1| ≤ |vn|+ |γǫM(tn)|
(

(a3n)
γ

γ−1 |A3
n −A2

n|+A2
n|(a

3
n)

γ

γ−1 − (a2n)
γ

γ−1 |
)

.

However this implies that

|vn+1| ≤ |vn|+M |ǫ|(|un|+ |vn|), (8.27)
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for some positive constant M. Let us define xn = maxj∈0,··· ,n|uj | and yn = maxj∈0,··· ,n|vj |
and zn = xn + yn. Inequalities (8.26) and (8.27) hold also for k ≤ n, i.e.,

|uk+1| ≤ |uk|+ C|ǫuk|+C|ǫ|(xk + yk) + Cǫ2, |vk+1| ≤ |vk|+M |ǫ|(|uk|+ |vk|).

By taking maximum over k ∈ 0, · · · , n in these inequalities one obtains

xn+1 ≤ xn + 2C|ǫ|xn +C|ǫ|yn + Cǫ2

and

yn+1 ≤ yn +M |ǫ|(xn + yn)

By adding these inequalities, it follows that

zn+1 ≤ zn + (2C +M)|ǫ|zn +Mǫ2.

This in turn yields that zn ≤ C|ǫ|, for some positive constant still denoted (with some abuse
of notations) C. Therefore

a3n+1 ≥ a2n+1 − |un+1| ≥ a/2−K|ǫ| ≥ a/4

for |ǫ| small enough. This proves (8.24). Moreover zn ≤ C|ǫ|,
implies that

|a3n − a2n| = |un| ≤ C|ǫ|, ∀n ∈ 0, 1, · · · , N.

and

|A3
n −A2

n| = |vn| ≤ C|ǫ|, ∀n ∈ 0, 1, · · · , N.

�
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