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Abstract. We consider the one-dimensional propagation of electromagnetic waves in a weakly nonlinear

and low-contrast spatially inhomogeneous medium with no energy dissipation. We focus on the case of

a periodic medium, in which dispersion enters only through the (Floquet-Bloch) spectral band dispersion
associated with the periodic structure; chromatic dispersion ( time-nonlocality of the polarization) is ne-

glected. Numerical simulations show that for initial conditions of wave-packet type (a plane wave of fixed
carrier frequency multiplied by a slow varying, spatially localized function) very long-lived spatially localized

coherent soliton-like structures emerge, whose character is that of a slowly varying envelope of a train of

shocks. We call this structure an envelope carrier-shock train.
The structure of the solution violates the oft-assumed nearly monochromatic wave packet structure,

whose envelope is governed by the nonlinear coupled mode equations (NLCME). The inconsistency and

inaccuracy of NLCME lies in the neglect of all (infinitely many) resonances except for the principle resonance
induced by the initial carrier frequency. We derive, via a nonlinear geometrical optics expansion, a system of

nonlocal integro-differential equations governing the coupled evolution of backward and forward propagating

waves. These equations incorporate effects of all resonances. In a periodic medium, these equations may
be expressed as a system of infinitely many coupled mode equations, which we call the extended nonlinear

coupled mode system (xNLCME). Truncating xNLCME to include only the principle resonances leads to

the classical NLCME.
Numerical simulations of xNLCME demonstrate that it captures both large scale features, related to third

harmonic generation, and fine scale carrier shocks features of the nonlinear periodic Maxwell equations.
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1. Overview

Realized and potential applications of microstructured dielectric media motivate a thorough mathemat-
ical study of wave-propagation governed by nonlinear hyperbolic equations, e.g. Maxwell’s equations with
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periodic and nonlinear constituitive laws. This paper explores a class of nonlinear hyperbolic equations with
a spatially periodic flux function:

∂tv + ∂xf(x,v) = 0(1.1a)

f(x,0) = 0,(1.1b)

f(x+ 2π,v) = f(x,v).(1.1c)

In particular, we shall assume that periodic variations are weak (a low contrast structure) and study solutions,
whose amplitude is small and such that the effects of periodicity-induced dispersion and nonlinearity are in
balance.

Indeed, a non-trivial spatially periodic structure is dispersive. This can be seen by linearizing (1.1) about
the state v = 0, giving the linear system:

∂tV + ∂x (Dvf(x,0)V) = 0,(1.2)

which retains periodicity. Floquet-Bloch theory [7,38] implies that associated to the PDE (1.2) is a family of
band dispersion functions k 7→ ωj(k), k ∈

(
− 1

2 ,
1
2

]
. Wave propagation is dispersive since the group velocities,

ω′j(k), are typically non-zero. Thus, waves of different wavelengths travel with different speeds.
Dispersive properties, encoded in the functions ωj(·) and the associated Floquet-Bloch states, can be

manipulated by tuning the periodic structure through, for example, modification of the periodic lattice, the
maximum and minimum variations of Dvf(x,0) (material contrast), etc.

It is well-known that for general initial conditions, solutions of hyperbolic systems of conservation laws
with spatially homogeneous nonlinear fluxes:

(1.3) ∂tv + ∂xf(v) = 0

develop singularities (shocks) in finite time, [20,22].

Question 1: Is spectral band dispersion, due to a periodic structure, sufficient to arrest shock formation? 1

The ability to control or inhibit the formation of singularities in nonlinear wave propagation could have
significant impact in, for example, electromagnetics and elasticity. Strictly speaking, the answer to Question
1 is no. Indeed, for a system of the form (1.1), let us suppose that the flux function was periodically
piecewise constant. Finite propagation speed considerations imply that for appropriate initial data, which
are sufficiently localized within a uniform region, a shock will form. The dispersive character of the periodic
structure is manifested only on sufficiently large spatial and temporal scales. Thus, the problem of controlling
shock formation should be posed relative to some class of initial conditions.

A second motivation is the study and design of media which support the propagation of stable soliton-like
pulses. These have applications to optical devices which transfer store or, in general, process information
which is encoded as light pulses. Associated with dispersive wave-propagation at wavenumber k? is a dis-
persion length ∼ (ω′′(k?))−1. Soliton formation is possible on length scales where the dispersion length and
the characteristic length on which nonlinear effects act are comparable. Technological advances have made
it possible to fabricate microstructured media with specified dispersion lengths at specified wavelengths. For
a given dispersion length, a balance between dispersion and nonlinearity is achieved by tuning the strength
of the nonlinear effects through adjusting the field intensity (by an amount which is material dependent).
An example of this balance at work is gap soliton formation in periodic structures. These are experiments in
optical fiber periodic structures (gratings) involving highly intense (nonlinear) light with carrier wave-length
satisfying the Bragg (resonance) condition. The length-scale of such solitons is 10−2 meters [8].

Theory predicts the existence of gap solitons traveling at any speed, v, between zero and the speed of light,
c [1,3]. Experiments [8] demonstrate speeds as low as .3c to .5c. Potential applications of gap solitons, based
on the design of appropriate localized defects in a periodic structure, are all-optical storage devices [10].

1For example, though typical smooth initial data for the inviscid Burgers equation ∂tu+ u∂xu = 0 develop shocks in finite
time, the corresponding solutions of the Korteweg - de Vries (KdV) equation, ∂tu+ u∂xu+ ∂3xu = 0, a dispersive perturbation,

remain smooth for all time.
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Figure 1. A wavepacket (real part, <E0(z), of complex field) with carrier wave length
equal twice that of the waveguide refractive index (n(z)).

The term gap soliton is used due to frequency of the gap soliton envelope lying in the spectral gap of the
linearized system.

Physical predictions of gap solitons are based on explicit solutions of nonlinear coupled mode equations
(NLCME), given below in (2.9). NLCME has been formally derived in, for example, [4] from (1.4); see also
the discussion in Section 2. Rigorous derivations of NLCME, from models with appropriate dispersion have
been presented for the anharmonic Maxwell-Lorentz equations [11] and other nonlinear dispersive equations;
see e.g. [12, 34,35,40,41].

Within the approximation of a small amplitude wave field as a wave-packet with slowly varying envelope
and single carrier frequency, propagating through a low contrast periodic structure near the Bragg resonance
( see scaling in Figure 1) ), NLCME is argued to govern the principle forward and backward slowly varying
envelopes of carrier waves; see [4] and references therein.

As discussed in [11] and in section 2, if the only source of dispersion is the spatial dispersion of the
periodic medium (e.g. negligible chromatic dispersion) for weakly nonlinear waves in low contrast media all
nonlinearity-generated harmonics are resonant and therefore all mode amplitudes are coupled at leading order.
The correct mathematical description would appear to require infinitely many interacting modes. Thus, the
classical NLCME are not a mathematically consistent approximation. NLCME may however be satisfactory
physical description, for some purposes.t Indeed, the soliton wave form prediction based on NLCME appears
to describe some features of experiment. 2

Question 2: Do nonlinear periodic hyperbolic systems have stable coherent structures, and can one develop
a mathematical theory? How are the classical NLCME related to this theory? See the discussion in section
6.

2Physicists argue in two ways that the coupling to higher harmonics is argued to be negligible : (i) The material systems
considered are dissipative at higher wave numbers. Higher wave numbers are damped and therefore these mode amplitudes can
be ignored, and (ii) Chromatic dispersion (arising due to the finite time response of the medium to the field) causes nonlinearly

generated harmonics to be off-resonance. Therefore, an initial condition exciting the principle modes will not appreciable excite
higher harmonics. These rationales are somewhat ad hoc since the precise damping mechanisms are not well-understood and
chromatic dispersion is a much weaker effect than photonic band dispersion for weak periodic structures.
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Figure 2. On the left is a simulation of the Maxwell equations. On the right is the
simulation of a truncated asymptotic system, resolving the first and third harmonics. Both
simulations were initiated with the same initial conditions. The two side pulses about the
main wave appear to be the result of third harmonic generation.

In this article we report on progress on Questions 1 and 2 in the context of the one-dimensional, nonlinear
Maxwell equations governing the electric (E) and magnetic (B) fields:

∂tD = ∂zB,(1.4a)

∂tB = ∂zE.(1.4b)

with constitutive law

D = ε(z, E) E ≡
(
n2(z) + χE2

)
E(1.5)

n(z) = n0 + εN(z)(1.6)

n(z) is a linear refractive index, consisting of a nonzero background average part, n0, and a fluctuating (e.g.
periodic) part εN(z). The nonlinear term χE2 is the nonlinear refractive index, arising from the Kerr effect;
in regions of high intensity the refractive index is higher. The consituitive law (1.5), prescribes D as a a
local function of E. Thus chromatic dispersion, which arises due a time-nonlocal relation between D and E
has been neglected. For simplicity, we assume n0 = 1, which can be arranged by a simple scaling.

1.1. Summary of results.

(1) In section 3 we present numerical simulations of the nonlinear periodic Maxwell equations, (1.4), for
initial data obtained from the explicit NLCME soliton. Under this time-evolution there is robust
spatially localized structure on the scale of the NLCME soliton envelope. The persistence of a
localized structure and speed of propagation are consistent with that of the NLCME soliton. There
is, however, a deviation from the NLCME soliton related to third harmonic generation; these are the
two accessory pulses around the principle wave in Figure 2 (a).

(2) On the microscopic scale of the carrier there is nonlinear steepening and shock formation. Therefore,
the solution does not evolve as a slowly varying envelope of a single frequency carrier wave. The long-
lived and spatially localized coherent structure which emerges has the character of a slowly varying
envelope of a train of shocks. We call this an envelope carrier-shock train. Figure 3 illustrates the
shock-like small spatial scale behavior under slowly varying envelope.

(3) Numerical solution of the nonlinear Maxwell equation (1.4) is non-trivial due to the cubic nonlin-
earity. As a hyperbolic system, it is neither genuinely nonlinear nor linearly degenerate [23, 29, 44].
To solve by finite volume methods, as we do, an explicit solution of the Riemann problem must be
constructed. Details of this are given in Appendix B.

The appropriate entropy condition could, in principle be derived from physical regularization
mechanisms, which play the role of viscosity in gas dynamics. However, these mechanisms are not
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Figure 3. On the left is a simulation of the Maxwell equations. On the right is the
simulation of a truncated asymptotic system. Both simulations were initiated with the same
initial conditions. There is an indication of shock formation in the left. On the right, we
see that once sufficiently many harmonics are included, the Gibbs effect appears, confirming
shock formation.

well understood. However, such mechanisms and the appropriate notion of weak solution would
respect thermodynamic principles, which are built into our numerical scheme.

(4) Using a nonlinear geometric optics expansion [6,13–16,21,30], systematically keeping all resonances,
we obtain nonlocal equations governing the interaction of all forward and backward propagating
modes. Our asymptotic nonlocal system captures the slowly varying envelope of carrier-shock struc-
tures described above; see below.

Specifically, we introduce the general wave-form (much more general than a slowly varying enve-
lope of a nearly monochromatic carrier plane wave), which includes all harmonics

(1.7) E(z, t) = ε1/2
(
E+(z − t, εz, εt) + E−(z + t, εz, εt) + O(ε)

)
.

Let

φ± = z ∓ t, εt = T, and εz = Z .

At leading order, the slow evolution of backward and forward components is governed by the coupled
integro-differential equations:

∂TE
+ + ∂ZE

+ = ∂φ
〈
N(φ+ + s)E−(φ+ + 2s, Z, T )

〉
s

+ Γ∂φ

[
1

3

(
E+
)3

+ E+
〈(
E−
)2〉]

,
(1.8a)

∂TE
− − ∂ZE− = −∂φ

〈
N(φ− − s)E+(φ− − 2s, Z, T )

〉
s

− Γ∂φ

[〈(
E+
)2〉

E− +
1

3

(
E−
)3]

.
(1.8b)

Here 〈·〉 is an averaging operation in the φ argument;

(1.9) 〈 f 〉 ≡ lim
T→∞

1

T

∫ T

0

f(s) ds;

see also section 4. Equations (1.8) arise as a constraint on E±(φ±, Z, T ) ensuring that the O(ε) error
term (1.7) in remains small on large time scales: T = O(1) or equivalently t = O(ε−1).

Spatial variations in the refractive index, N(z), give rise to a coupling of backward and forward
waves. Indeed, if N(z) ≡ 0 and one specifies data for the system (1.8) at t = 0 with non-zero forward
components (E+ 6= 0) and, no backward components (E− = 0) then, formally, E− remains zero for

5
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Figure 4. Truncating (1.10) to odd harmonics |p| ≤ 16, we simulate the initial value
problem an NLCME soliton in the first harmonic, and the others zero. The above time
series of the energy associated with each harmonic, ep, shows that most of the energy
continues to reside in the first harmonic.

all time, i.e. no backward waves are generated. Continuing with this assumption of N = 0 and
E−0 = 0, if we let V (φ, T ) = E+(φ,Z0 − T, T ), with Z0 arbitrary, then V satisfies

∂TV = Γ
3 ∂φ(V 3).

This generalized Burger’s equation will gives rise to a finite time singularity. We revisit this obser-
vation in the discussion, section 6, when considering how singularities might appear when the linear
coupling between backwards and forwards waves is restored, N 6= 0.

(5) The nonlocal equations may also be written as an infinite system of coupled mode equations. In the
case where E± is 2π− periodic in φ±, the integro-differential equation (1.8) reduces to an infinite
system of coupled mode equations for the Fourier coefficients

{
E±p (Z, T ) : p ∈ Z

}
:

∂TE
+
p + ∂ZE

+
p = ipN2pE

−
p + ip

Γ

3

[∑
E+
q E

+
r E

+
p−q−r

+3
(∑∣∣E−q ∣∣2)E+

p

]
,

(1.10a)

∂TE
−
p − ∂ZE−p = ipN̄2pE

+
p + ip

Γ

3

[∑
E−q E

−
r E
−
p−q−r

+3
(∑∣∣E+

q

∣∣2)E−p ] .(1.10b)

We call this system the extended nonlinear coupled mode equations (xNLCME). xNLCME reduces
to the classical NLCME if we neglect higher harmonics.

(6) Simulations of successively higher dimensional mode truncations of (1.10) show improved resolution
of the carrier shocks under a slowly varying envelope, whose scale is captured by a comparatively low
order truncation. Indeed, Figure 2 (b) shows that inclusion of the third harmonic in the asymptotic
system resolves the large scale feature, while inclusion of additional harmonics in Figure 3 (b) shows
the Gibbs effect, expected for a finite Fourier representation of a discontinuous function. This
demonstrates that our asymptotic analysis leads to equations capturing the essential features of
nonlinear Maxwell. However, if we consider how energy, initially only in the first harmonic, is
redistributed in time, we see in Figure 4 that most of the energy persists in the first harmonic. This
reflects the partial success of NLCME as a model for periodic nonlinear Maxwell.

are
Relation to previous work: Some of the earliest examinations on optical shocks can be found in Rosen, [39],
and, DeMartini et al. [5]. In these works, the authors applied the method of characteristics to a unidicretional
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model. Kinsler and Kinsler et al. have continued to examine this problem, and have developed an algorithm
for detecting the onset of shock formation, [18, 19]. Carrier shocks were also examined by Flesch, Moloney,
& Mlejnek, [9], for spatially homogeneous Maxwell system with chromatic dispersion, modeled via a time-
nonlocal Lorentzian polarization response. Ranka, Windeler, & Stentz have found experimental evidence of
optical shocks, [37]. In their work, a monochromatic pulse with sufficient power steepened and generated a
broadband optical continuum.

Coherent structures in nonlinear and periodic media have also been studied by LeVeque, LeVeque &
Yong, and Ketcheson [17, 25, 26] in a model for heterogeneous nonlinear elastic media. They considered
order one solutions in high contrast, rapidly varying, periodic structures. Their simulations yielded localized
structures on the scale of many periods with oscillations on the scale of the period. For piecewise constant
(discontinuous) periodic structures, they have a discontinuous carrier shock-like character on the scale of
the period, though this is due to discontinuities in the medium, the fluxes remain continuous. A two-
scale (homogenization) expansion yields a nonlinear dispersive equation, with solitary waves, similar to the
computed solution envelope. In their physical regime, the variations in the properties of the media and the
nonlinearity are O(1). In contrast, we consider an asymptotic regime where the constrast of the periodic
structure and nonlinearity are of the same order, O(ε). Furthermore, the initial condition has two scales
(envelope and carrier scales), where the carrier wave length is of the same order, indeed in resonance with,
the periodic structure. These different scalings lead to different asymptotic descriptions. An early example
of the interactions between nonlinearity and a periodic structure was in atmospheric science, studied by
Majda et al., [31]. In this work, a model of the interaction of equatorial waves with topography gives rise to
nonsmooth profiles (in this case, solitary waves with corner singularities).

Finally, systems of coupled modes have also been examined in prior works, though the work is typically
limited two just two harmonics, such as a first and second harmonic system or a first and third harmonic sys-
tem. Such a system was studied by Tasgal, Band, & Malomed [46], who were able to find stable polychromatic
solitons in a first and third harmonic system.

An outline of this paper is as follows. In Section 2, we review how NLCME arises as an approximation of
nonlinear Maxwell. Results of Maxwell Simulations, showing the coherent structures and shocks, are given
presented in Section 3. We then present our derivation of xNLCME in Section 4, followed by simulations of
this system in Section 5. We discuss all of these results in Section 6.

Acknowledgements: The authors would like to thank R.R. Rosales for discussions during the early
stages of this work on the use nonlinear geometrical optics. We also thank M. Pugh, D. Ketcheson, R.J.
LeVeque, and C. Sulem for helpful discussions. GS was supported in part by NSF-IGERT grant DGE-02-
21041, NSF-CMG grant DMS-05-30853, and NSERC. MIW was supported in part by NSF grants DMS-07-
07850 and DMS-10-08855. MIW would also like to acknowledge the hospitality of the Courant Institute of
Mathematical Sciences, where he was on sabbatical during the preparation of this article.

2. Nonlinear Maxwell and NLCME

In this section we briefly review how NLCME arises from nonlinear Maxwell with a periodically varying
index of refraction. We also identify the mathematical inconsistency of NLCME as a description of the
wave-envelope.

First, we write the nonlinear Maxwell equation (1.4) as

(2.1) ∂2
t

(
n(z)2E + χE3

)
= ∂2

zE

with index of refraction

(2.2) n(z) = 1 + εN(z), 0 < ε� 1,

where N(z) is 2π periodic with mean zero and Fourier series:

(2.3) N(z) =
∑

p∈Z\{0}
Npe

ipz.

We shall seek solutions which incorporate (i) slow variations in time and space, due to the weak modulation
about a constant refractive index; (ii) a scaling of the wave-field which seeks solutions in which the effects
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of dispersion and nonlinearity are in balance:

(2.4) Eε(z, t) = ε
1
2 Eε(z, t;Z, T ), Z = εz, T = εt.

Rewriting (2.1) in terms of new variables dependent Eε and independent (z, t, Z, T ) variables, we obtain:(
∂2
t − ∂2

z

)
Eε + ε

(
2∂t∂TEε − 2∂z∂ZEε + 2N(z)Eε + χ (Eε)3

)
+ O(ε3) = 0.

Formally expanding Eε as

Eε(z, t, Z, T ) = E0(z, t, Z, T ) + ε E1(z, t, Z, T ) + . . .

we obtain the following hierarchy for Ej(z, t, Z, T ), j ≥ 0:

O(ε0)
(
∂2
t − ∂2

z

)
E0 = 0

O(ε1)
(
∂2
t − ∂2

z

)
E1 = −2∂t∂TE0 + 2∂z∂ZE0 − 2N(z)E0 − χ (E0)

3

...

O(εj)
(
∂2
t − ∂2

z

)
Ej = expressions in terms of El, 0 ≤ l ≤ j − 1

...

(2.5)

Solving the O(ε0) equation yields:

(2.6) E0(z, t, Z, T ) = E+(Z, T )ei(z−t) + E−(Z, T )e−i(z+t) + c.c.

Thus, the leading order consists of backward and forward propagating waves, modulated by the slow envelope
amplitude functions E±(Z, T ), which are to be determined.

Substitution of (2.6) into the O(ε1) equation for E1 yields the equation:(
∂2
t − ∂2

z

)
E1

=
[
2i∂TE+ − 2i∂ZE+ − 2N2E− − 3χ

(∣∣E+
∣∣2 + 2

∣∣E−∣∣2) E+
]
ei(z−t)

+
[
2i∂TE− − 2i∂ZE+ − 2N̄2E+ − 3χ

(∣∣E−∣∣2 + 2
∣∣E+

∣∣2) E−] e−i(z+t)
+
(
E+
)3
e3i(z−t) +

(
E−
)3
e−3i(z+t) + c.c.+ non-resonant terms

(2.7)

We have used that N0 = 0 and

N(z)(E+ei(z−t) + E−e−i(z+t))
= N−2E+e−i(z+t) +N2E−ei(z−t) + c.c.+ non-resonant terms.

(2.8)

Each term, explicitly written on the right hand side of (2.7), is resonant with the kernel of
(
∂2
t − ∂2

z

)
. It

follows that the coefficients of all harmonic plane waves: e±iq(z−t) and e±iq(z+t), q ∈ Z must vanish for E1
to be bounded in t.

The vanishing of the coefficients of ei(z−t) and e−i(z+t) yields the nonlinear coupled mode equations
(NLCME):

∂TE+ + ∂ZE+ = iN2E− + iΓ
(∣∣E+

∣∣2 + 2
∣∣E−∣∣2) E+,(2.9a)

∂TE− − ∂ZE− = iN̄2E+ + iΓ
(∣∣E−∣∣2 + 2

∣∣E+
∣∣2) E−,(2.9b)

where Γ ≡ 3
2χ and N̄2 = N−2. The initial value problem for (2.9) is well-posed [11]. NLCME also has

explicit family of gap-soliton solutions; see Appendix A.
However, requiring E± to satisfy (2.9) removes only the lowest harmonic resonances. This is the approxi-

mation invoked in the physics literature; see the survey [4] and references cited therein.
Note however that the remaining explicitly displayed terms on the right hand side of (2.7) are resonant as

well and induce linear in time growth. If we choose to remove the resonant terms proportional to e3i(z−t) and
e−3i(z+t) by including slow modulations of these plane waves at O(ε0), nonlinearity and parametric forcing
through N(z) will generate yet other resonant harmonics.

8



A leading order solution which does not generate resonant terms at higher order must contain all harmon-
ics. Thus, NLCME is mathematically inconsistent. In section 4 we derive an integro-differential equation,
which consistently incorporates all resonances. As seen from our numerical and asymptotic studies, this non-
local nonlinear geometrical optics equation more accurately capture features on both small and large spatial
scales, e.g. changes in the envelope due to higher harmonic generation, as well as carrier shock formation.

3. Simulations of nonlinear periodic Maxwell

In this section we discuss the results of numerical simulations, based on the algorithms of Appendix B, of
the nonlinear and periodic Maxwell equations (2.1).

• In section 3.1 we show that for Cauchy initial data derived from the classical NLCME soliton, there
evolve spatially localized soliton-like states which persist on long time scales. We discuss aspects of
the large scale (envelope) structure of such states, which are consistent with the NLCME soliton, as
well as significant deviations.

• In section 3.2 we show that smoothness breaks down in finite time. In particular, we observe shock
formation on the fast spatial scale of the carrier wave, while a slowly varying envelope evolves
smoothly.

We begin by expressing (2.1) as a first order system:

(3.1) ∂t

(
n(z)2E + χE3

B

)
+ ∂z

(
−B
−E

)
= 0.

We introduce the scaling (E,B,D)T = ε1/2(Ẽ, B̃, D̃), and expressing the equations in terms of the variables:

(D̃, B̃) coordinates. Dropping tildes, this is

(3.2) ∂t

(
D
B

)
+ ∂z

(
−B

−E(D, z)

)
= 0.

where E(D, z) is the unique real solution of

(3.3) D = n(z)2E + εχE3

3.1. Soliton-like coherent structures. As is well known [1,3] NLCME has spatially localized gap soliton
solutions. We use the analytical expression for the gap soliton to generate Cauchy initial data, E(z, 0), ∂tE(z, 0)
for (2.1) and numerically simulate the evolution.

Using (2.6) and the leading order approximation for the magnetic field B±1 = ∓E±1 , NLCME soliton data
(see (A.1) in Appendix A) can be seeded into Maxwell using

E = E+(εz, εt)ei(z−t) + E−(εz, εt)e−i(z+t) + c.c.,(3.4a)

B = −E+(εz, εt)ei(z−t) + E+(εz, εt)ei(z−t) + c.c.(3.4b)

We obtain D via (3.3) and evaluate at t = 0 to get the initial condition.
For a spatially varying index of refraction, we take

(3.5) N(z) = 4
π cos(2z), i .e. N2 = N−2 = 2

π , Np = 0, |p| 6= 2,

ε = 0.0625, and χ = 1 (Γ = 3
2 ). The results of our simulations appear in a - d of Figures 5 and 6. While there

is attenuation in amplitude and some dispersive spreading of energy, the solution remains spatially localized
over long time intervals. Not only is there a persistence of the localization (with the periodic medium), but
also there is good pointwise agreement with the NLCME approximation; see Figure 7.

Frames e - h of Figures 5 and 6 display the corresponding results in the absence of a periodic structure,
i.e. N(z) ≡ 0. The delocalization, dispersive spreading and attenuation of the wave amplitude is greatly
enhanced. To understand this heuristically, note that a gap soliton is a localized state whose frequency lies in
the spectral gap of the linearized PDE at the zero solution. A focusing nonlinearity adds a (self-consistent)
potential well, creating a (nonlinear) defect mode with frequency lying in this spectral gap. If N(z) ≡ 0 then
the linearization at the zero state has no spectral gap. Thus, a oscillating with the gap soliton frequency
would couple to radiation modes and dispersively spread and attenuate. This mechanism is discussed, for
example, in [45].
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Simulations with varying refractive index, (3.5):
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Simulations with constant refractive index, N(z) = 0:
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Figure 5. Rescaled Maxwell equation, (3.2), time-evolution for data generated by the
NLCME soliton with parameters v = .9 and δ = .9; see (A.1). The solutions are computed
with 20000 grid points on the domain [−500, 500].
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Simulations with varying refractive index, (3.5):
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Simulations with constant refractive index, N(z) = 0:
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Figure 6. Solution of rescaled nonlinear periodic Maxwell equation, (3.2), for initial data
generated by the NLCME soliton with parameters v = 0 and δ = π/2; see (A.1).The
solutions are computed with 20000 grid points on the domain [−500, 500].
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(a) (b)

(c) (d)

Figure 7. Comparison of the solution appearing in Figure 5 a - d, with the exact NLCME soliton.

We note that it is also essential that the data be properly prepared to see a persistence of localization.
For the initial condition

D = 0.5 cos(z)sech(εz),(3.6a)

B = −D,(3.6b)

we see in Figure 8 substantial spreading. This data mimics the gap soliton’s amplitude, slowly varying
envelope, and carrier wave, but is apparently too far outside the basin of attraction to converge to a localized
state. Similar results were observed with Gaussian wave packet initial conditions.

3.2. Envelope carrier-shock trains. Although ther the slowly varying NLCME envelope shape is robust,
for the nonlinear Maxwell time-evolution, there is evidence of nonlinear steepening and shock formation on
the short (carrier) microstructure spatial scale. Thus, the nearly monochromatic slowly varying envelope
approximation of NLCME is violated.

Figure 9 displays the time-evolution for (a) moving and (b) stationary NLCME - gap soliton data. For
each initial condition, the nonlinear Maxwell evolution is simulated for different grid spacings. As we increase
the number of grid points, sharp features are better resolved by the shock capturing algorithm. One can
also examine the Fourier transform of the output to see that we obtain an algebraically decaying solution in
wave number, with peaks at the integer wave number values.

In summary, our observations support the emergence of an envelope carrier-shock train; persistence of
coherent, slowly varying, wave envelope and shock formation on the carrier scale.
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Figure 8. Solution of rescaled nonlinear periodic Maxwell equation, (3.2) with periodic
refractive index (3.5), for initial data (3.6) . In contrast to the NLCME soliton data, the
shape of the solution does not persist. The solution is computed with 20000 grid points on
the domain [−500, 500].

(a) v = .9, δ = .9 (b) v = 0, δ = π/2

Figure 9. Increasing the number of grids points better resolves the shocks in the carrier
wave. For NLCME soliton data with the indicated v and δ (see (A.1)), with index of
refraction N(z) given by (3.5)).
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4. Resonant nonlinear geometrical optics and nonlinear spatially inhomogeneous
Maxwell equations

In this section we derive a system of equations, which incorporates all wave-resonances and which our
numerical simulations show, captures the key features of the nonlinear Maxwell time-evolution, in par-
ticular, the presence of robust envelope carrier-shock train solutions. We derive this system, for general
non-homogeneous media, using a nonlinear geometrical optics expansion; see, for example, [13, 14, 30]. The
equations obtained are the general integro-differential equations (1.8). In the case of a periodic medium,
they reduce to an infinite set of local equations, which we call the extended nonlinear coupled mode equations
(xNLCME). If, in xNLCME, we neglect all but principle resonances, xNLCME reduces to NLCME.

As we shall see, in our numerical simulations of increasing high dimensional truncations of xNLCME (sec-
tion 5), this theory appears to accommodate the observed carrier shocks and large scale coherent structures.

4.1. Nonlinear geometric optics expansion. In contrast to the ansatz of Section 2, we assume the more
general form

(4.1) u(z, t) = u(0)(z, t, Z, T ) + εu(1)(z, t, Z, T ) + ε2u(2)(z, t, Z, T ) + . . . .

where u = (E,B)T and Z = εz, T = εt. Inserting (4.1) into (3.2), (3.3), the first order system

∂t

(
n(z)2E + εχE3

B

)
+ ∂z

(
−B
−E

)
= 0.

we expand to get, (
∂t +B(0)∂z

)
u(0) + ε

[(
∂t +B(0)∂z

)
u(1) +

(
∂T +B(0)∂Z

)
u(0)

+A(1)(z,u)∂tu
(0)
]

= O(ε2)

with matrices

(4.2) B(0) =

(
0 −1
−1 0

)
, A(1) =

(
2N(z) + 3χE2 0

0 0

)
At O(ε0),

(4.3)
(
∂t +B(0)∂z

)
u(0) = 0.

Solving this as the generalized Eigenvalue problem,(
B(0) − λI

)
r = 0

the solutions are:

(4.4) λ± = ±1, r± =

(
1
∓1

)
.

The corresponding left eigenvectors are

(4.5) l± = 1
2

(
1 ∓1

)
With this normalization, liA

(0)rj = δi,j . The leading order fields are then

u(0) = E+(φ+, Z, T )r+ + E−(φ−, Z, T )r−,(4.6a)

E(0) = E+(φ+, Z, T ) + E−(φ−, Z, T ),(4.6b)

φ± = z ∓ t.(4.6c)

This expression is much more general than (2.6) used in the derivation of NLCME.
At O(ε), the equation is(

∂t +B(0)∂z

)
u(1) = −

(
∂T +B(0)∂Z

)
u(0) −A(1)(z,u(0))∂tu

(0)(4.7)

If we assume

(4.8) u(1)(z, t) = m+(z, t)r+ +m−(z, t)r−,
14



and substitute into (4.7), then left multiply by l+ and then by l−, we get the two equations

−
(
∂tm

+ + ∂zm
+
)

= ∂TE
+ + ∂ZE

+ + l+A
(1)(u(0))×(

−∂φ+
E+r+ + ∂φ−E

−r−
)
,(4.9)

−
(
∂tm

− − ∂zm−
)

= ∂TE
− − ∂ZE− + l−A

(1)(u(0))×(
−∂φ+E

+r+ + ∂φ−E
−r−

)
.(4.10)

The last term is the same in both equations,

l±A
(1)(u(0))

(
−∂φ+E

+r+ + ∂φ−E
−r−

)
= 1

2

(
2N(z) + 3χE(0)2

) (
−∂φ+E

+ + ∂φ−E
−)

= N(z)
(
−∂φ+E

+ + ∂φ−E
−)

+ 3
2χ
(
E+ + E−

)2 (−∂φ+
E+ + ∂φ−E

−) .
(4.11)

Integration of (4.9) along the characteristic ∂tz+ = 1 from t = 0 to t = L, yields

−
(
m+(z+(L), L)−m+(z+(0), 0)

)
=∫ L

0

∂TE
+(Z, T, z+(0)) + ∂ZE

+(Z, T, z+(0))ds

−
∫ L

0

N(z+(s))∂φ+
E+(Z, T, z+(0))ds

+

∫ L

0

N(z+(s))∂φ−E
−(Z, T, z+(s) + s)ds

−
∫ L

0

[
3
2χ
(
E+(Z, T, z+(0))− E−(Z, T, z+(s) + s)

)2
×∂φ+

E+(Z, T, z+(0))
]
ds

+

∫ L

0

[
3
2χ
(
E+(Z, T, z+(0))− E−(Z, T, z+(s) + s)

)2
×∂φ−E

−(Z, T, z+(s) + s)
]
ds.

(4.12)

Similarly, integration of (4.10) along the characteristic ∂tz− = −1, yields

−
(
m−(z−(L), L)−m−(z−(0), 0)

)
=∫ L

0

∂TE
−(Z, T, z+(0))− ∂ZE−(Z, T, z+(0))ds

−
∫ L

0

N(z−(s))∂φ+
E+(Z, T, z−(s)− s)ds

+

∫ L

0

N(z−(s))∂φ−E
−(Z, T, z−(0))ds

−
∫ L

0

[
3
2χ
(
E+(Z, T, z−(s)− s)− E−(Z, T, z−(0))

)2
×∂φ+

E+(Z, T, z−(s)− s)
]
ds

+

∫ L

0

[
3
2χ
(
E+(Z, T, z−(s)− s)− E−(Z, T, z−(0))

)2
×∂φ−E

−(Z, T, z−(0))
]
ds.

(4.13)
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Necessary conditions for m± to grow sublinearly in t as t→∞ are the solvability conditions:

∂TE
+(Z, T, z+(0)) + ∂ZE

+(Z, T, z+(0)) =

− lim
L→∞

1

L

∫ L

0

N(z+(s))∂z+(0)E
−(Z, T, z+(s) + s)ds

+ lim
L→∞

1

L

∫ L

0

[
3
2χ
(
E+(Z, T, z+(0)) + E−(Z, T, z+(s) + s)

)2
×∂z+(0)E

+(Z, T, z+(0))
]
ds,

(4.14a)

(4.14b)

∂TE
−(Z, T, z−(0))− ∂ZE−(Z, T, z−(0)) =

lim
L→∞

1

L

∫ t

0

N(z−(s))∂z−(0)E
+(Z, T, z−(s)− s)ds

− lim
L→∞

1

L

∫ L

0

[
3
2χ
(
E+(Z, T, z−(s)− s)− E−(Z, T, z−(0))

)2
∂z−(0)E

−(Z, T, z−(0))
]
ds.

(4.14c)

Given (z, t), z+(0) = z − t = φ+ and z−(0) = z + t = φ−. Defining

(4.15) 〈f〉 = lim
L→∞

1

L

∫ L

0

f(s)ds

the equations may be compactly expressed as:

∂TE
+ + ∂ZE

+ = −
〈
N(φ+ + s)∂φE

−(φ+ + 2s
〉
s

+ 3
2χ
((
E+
)2

+ 2E+
〈
E−
〉

+
〈(
E−
)2〉)

∂φE
+,

(4.16a)

∂TE
− − ∂ZE− =

〈
N(φ− − s)∂φE+(φ− − 2s)

〉
s

− 3
2χ
((
E−
)2

+ 2E−
〈
E+
〉

+
〈(
E+
)2〉)

∂φE
−.

(4.16b)

It is important to recognize that the arguments of the fields in (4.16a) are φ+ = z − t, Z, and T , while in
(4.16b), they are φ− = z + t, Z, and T . As in our derivation of NLCME in Section 2, Γ ≡ 3

2χ. With this
notation, (4.16) can be rewritten, after an integration by parts, in conservation law form,

∂TE
+ + ∂ZE

+ = ∂φ
〈
n1(φ+ + s)E−(φ+ + 2s

〉
s

+ Γ∂φ

[
1

3

(
E+
)3

+
(
E+
)2 〈

E−
〉

+ E+
〈(
E−
)2〉]

,
(4.17a)

∂TE
− − ∂ZE− = −∂φ

〈
n1(φ− − s)E+(φ− − 2s)

〉
s

− Γ∂φ

[〈(
E+
)2〉

E− +
〈
E+
〉 (
E−
)2

+
1

3

(
E−
)3]

.
(4.17b)

Equations (4.17) corresponds to the integro-differential equations of the introduction, if we omit the 〈E±〉
terms. Since 〈E±〉 is time-invariant (see section 4.3) by choosing initial conditions for which 〈E±〉 (T = 0) =
0, these terms can be dropped from (4.17). Finally, note that (4.16) are applicable to a general heterogeneous
dielectric material with the appropriate scalings.

4.2. Periodic Media and xNLCME. We now specialize to the periodic case. Assume now that N(z +
2π) = N(z). Then (4.17) is invariant under the discrete translation: φ 7→ φ+ 2π, i.e.

E+(φ,Z, T ) 7→ E+(φ+ 2π, Z, T )(4.18a)

E−(φ,Z, T ) 7→ E−(φ+ 2π, Z, T ) .(4.18b)

Thus, under the assumption of existence and uniqueness of solutions to (4.17), if the initial data are 2π in
the φ argument, then the solutions remain 2π periodic in φ. In the periodic setting, the averaging operator,
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(4.15), simplifies to

〈f〉 =
1

2π

∫ 2π

0

f(s)ds.

We now expand N(z) and E± in Fourier series,

N(z) =
∑
p∈Z

Npe
ipz,(4.19)

E±(φ,Z, T ) =
∑
p

E±p (Z, T )e±ipφ,(4.20)

where N̄p = N−p and Ē±p = E±−p since N and E± are real valued. In this case, the system of Fourier

coefficients {E±p (Z, T ) : p ∈ Z} satisfy the infinite system of extended nonlinear coupled mode equations
(xNLCME):

∂TE
+
p + ∂ZE

+
p = ipN2pE

−
p + ip

Γ

3

[∑
q,r

E+
q E

+
r E

+
p−q−r

+3E−0
∑
q

E+
q E

+
p−q + 3

(∑
q

∣∣E−q ∣∣2
)
E+
p

]
,

(4.21a)

∂TE
−
p − ∂ZE−p = ipN̄2pE

+
p + ip

Γ

3

[∑
q,r

E−q E
−
r E
−
p−q−r

+3E+
0

∑
q

E−q E
−
p−q + 3

(∑
q

∣∣E+
q

∣∣2)E−p
]
.

(4.21b)

4.3. Conservation Laws and Hamiltonian Structure. Equation (4.17), and alternatively (4.21), have
two conservation laws:

Proposition 4.1. Assume that E± is a sufficiently smooth and sufficiently Z− decaying solution of (4.17)
and that {Ep(Z, T )}p∈Z is the corresponding solution of xNLCME. Then,

d

dT

∫ 〈
E+(·, T )

〉
dZ =

d

dT

∫
E+

0 (·, T ) dZ = 0(4.22a)

d

dT

∫ 〈
E+(·, T )

〉
dZ =

d

dT

∫
E−0 (·, T ) dZ = 0(4.22b)

d

dT

∫ 〈
(E+)2(·, T )

〉
+
〈
(E−)2(·, T )

〉
dZ(4.22c)

=
d

dT

∑
p

∫ ∣∣E+
p (·, T )

∣∣2 +
∣∣E−p (·, T )

∣∣2 dZ = 0 .(4.22d)

Proof. Setting p = 0 in (4.21),

∂TE
+
0 + ∂ZE

+
0 = 0,

∂TE
−
0 − ∂ZE−0 = 0.

Integrating in Z establishes the first two conservation laws in terms of the Fourier modes. Integrating (4.20)
in φ over [0, 2π) relates 〈E±〉 to E±0 .
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Multiplying (4.21a) by Ē+
p , summing over p, and adding its complex conjugate,

∑
∂T
∣∣E+

p

∣∣2 + ∂Z
∣∣E+

p

∣∣2 =
∑
p

ipN2pE
−
p Ē

+
p +

Γ

3

∑
p

ip

[∑
q,r

E+
q E

+
r E

+
−pE

+
p−q−r

+ 3E−0
∑
q

E+
q E

+
p−qE

+
−p

+3

(∑
q

∣∣E−q ∣∣2
) ∣∣E+

p

∣∣2 ]+ c.c.

The quartic terms will all vanish. Consider the first quartic term, and note that∑
p,q,r

pE+
q E

+
r E

+
−pE

+
p−q−r =

∑
k1+k2+k3+k4=0

k1E
+
k1
E+
k2
E+
k3
E+
k4

=
∑

k1+k2+k3+k4=0

k2E
+
k1
E+
k2
E+
k3
E+
k4

=
∑

k1+k2+k3+k4=0

k3E
+
k1
E+
k2
E+
k3
E+
k4

=
∑

k1+k2+k3+k4=0

k4E
+
k1
E+
k2
E+
k3
E+
k4

(4.23)

Hence, ∑
p,q,r

pE+
q E

+
r E

+
−pE

+
p−q−r

=
1

4

∑
k1+k2+k3+k4=0

(k1 + k2 + k3 + k4)E+
k1
E+
k2
E+
k3
E+
k4

= 0
(4.24)

The second quartic term vanishes using a similar analysis. The last quartic term,

(4.25)
∑
p

p

(∑
q

∣∣E−q ∣∣2
)∣∣E+

p

∣∣2
will vanish because the p and −p terms will cancel one another. Similar analysis holds for (4.21b), leaving
us with the two equations∑

∂T
∣∣E+

p

∣∣2 + ∂Z
∣∣E+

p

∣∣2 =
∑

ipN2pE
−
p Ē

+
p − ipN̄2pĒ

−
p E

+
p ,(4.26) ∑

∂T
∣∣E−p ∣∣2 − ∂Z ∣∣E−p ∣∣2 =

∑
ipN̄2pĒ

−
p E

+
p − ipN2pE

−
p Ē

+
p .(4.27)

Summing these two, and integrating in Z gives the L2 conservation law. �

To simplify our analysis we assume E±0 are initially zero from here on. The equations reduce
to

∂TE
+ + ∂ZE

+ = ∂φ
〈
N(φ+ + s)E−(φ+ + 2s

〉
s

+ Γ∂φ

[
1

3

(
E+
)3

+ E+
〈(
E−
)2〉]

,
(4.28a)

∂TE
− − ∂ZE− = −∂φ

〈
N(φ− − s)E+(φ− − 2s)

〉
s

− Γ∂φ

[〈(
E+
)2〉

E− +
1

3

(
E−
)3]

.
(4.28b)
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and

∂TE
+
p + ∂ZE

+
p = ipN2pE

−
p + ip

Γ

3

[∑
E+
q E

+
r E

+
p−q−r

+3
(∑∣∣E−q ∣∣2)E+

p

]
,

(4.29a)

∂TE
−
p − ∂ZE−p = ipN̄2pE

+
p + ip

Γ

3

[∑
E−q E

−
r E
−
p−q−r

+3
(∑∣∣E+

q

∣∣2)E−p ] .(4.29b)

These are equations (1.8) and (1.10) from the introduction. Truncating (4.29) to just mode E±±1, recovers

the NLCME, subject to the identification of E± with E±1 .
Another time-invariant functional is a consequence of the Hamiltonian structure given in the following

result, which is straightforward to verify:

Proposition 4.2. The system (4.29) is a Hamiltonian system:

(4.30) ∂TE
+
p = −ip

δH

δE
+

p

, ∂TE
−
p = −ip

δH

δE
−
p

,

where with time-invariant Hamiltonian

H[E±, E±] =

∫
H(·, T )

and Hamiltonian density

H(Z, T ) =
i

2

∞∑
p1=1

1

p1

(
E+
p1∂ZĒ

+
p1 − E−p1∂ZĒ−p1

)
−
∞∑
p1=1

N2p1Ē
+
p1E

−
p1

− Γ

3

1

2

1

4

∑
p1+p2+p3+p4=0

E+
p1E

+
p2E

+
p3E

+
p4 + E−p1E

−
p2E

−
p3E

−
p4

− Γ
1

2

1

2

(∑
p1

∣∣E+
p1

∣∣2)(∑
p1

∣∣E−p1∣∣2
)

+ c.c. .

(4.31)

5. Simulations of the Truncated xNLCME

In this section we simulate truncations of the infinite dimensional xNLCME system, performed pseudo-
spectrally with fourth order Runge-Kutta time stepping. These simulations suggest that

• xNLCME has its own localized soliton-like structures which better capture the dynamics of the
nonlinear periodic Maxwell equation for our class of initial conditions than NLCME and

• xNLCME has singular solutions, {E±p (Z, T )} with a cascade of energy to higher wave numbers, p.
The physical electric field

E(z, t) ≈ ε 1
2

(
E+(z − t, , εz, εt) + E−(z + t, , εz, εt)

)
= ε

1
2

∑
p∈Z\0

(
E+
p (Z, T )eip(Z−T )/ε + E−p (Z, T )e−ip(Z+T )/ε

)
+ c.c.

develops a carrier-shock train structure.

As we saw in Section 3.1, particularly Figure 6, though the NLCME soliton data appeared robust, there
was some escape of energy. This can be accounted for in the xNLCME through the inclusion of additional
modes.

Starting with the same initial conditions, we simulate the NLCME soliton of E±±1 with soliton parameters
v = 0 and δ = π

2 , and material parameters

Γ = 1, N±2 = 2
π , Nj 6=±2 = 0
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Figure 10. Evolution of an NLCME soliton in the xNLCME, resolving odd modes |p| ≤ 4.
Computed with 4096 grid points in the Z coordinate. Compare with Figure 6.

in (4.29) resolving only a finite number of harmonics. The primitive electric field is reconstructed from these
simulations as

(5.1) E =

pmax∑
p=−pmax

E+
p (Z, T )eip(Z−T )/ε + E−p (Z, T )e−ip(Z+T )/ε + c.c.

E is plotted in Figures 10, and 11, which resolve odd modes up to 3 and 15, respectively. Comparing with
Figure 6, we infer that the two smaller pulses symmetrically expelled from the main wave were transferred
into E±±3, since these clearly appear in Figure 10. This addresses the macroscopic discrepancy between
NLCME and Maxwell.

Including the additional modes also suggests shock formation by re-examining Figure 9. The sharper,
shock like features, can only be resolved by the inclusion of the the higher harmonics. The contrast between
different truncations is shown in Figure 12. Indeed, we see the Gibbs phenomenon that would be expected
from taking a truncated Fourier representation of a discontinuous function.

Despite this, NLCME still gets certain leading order effects correct, such as the main structure in the
Maxwell simulations. The robustness of NLCME can also be seen by exploring how energy is partitioned
amongst the harmonics. Let

(5.2) ep ≡
∫ (∣∣E+

p

∣∣2 +
∣∣E+
−p
∣∣2 +

∣∣E−p ∣∣2 +
∣∣E−−p∣∣2) dZ, p = 1, 3, . . . pmax.

This is the energy associated with mode p. Their sum is conserved. Plotting this for the above simulations
in Figure 13, we see that most of the energy remains in mode one, some migrates into mode three, and less
in the subsequent modes.
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Figure 11. Evolution of an NLCME solition in the xNLCME, resolving odd modes |p| ≤ 16.
Computed with 16384 grid points in the Z coordinate. Compare with Figure 6.

6. Summary and discussion

We first numerically simulated the one-dimensional nonlinear Maxwell equations in the regime of weak
nonlinearity, low contrast periodic structure (weak dispersion) with wave-packet data satisfying a Bragg
resonance condition, i.e. carrier wavelength equal to twice the medium periodicity. We observe strong ev-
idence of the emergence of a coherent structure evolving as slowly varying envelope with a carrier-shock
train. This violates the nearly-monochromatic assumption underlying the classical nonlinear coupled mode
equations. We propose our nonlocal integro-differential equations governing coupled forward and backward
waves, derived via a nonlinear geometrical optics expansion, as the physically correct, mathematically con-
sistent description of waves governed by nonlinear Maxwell in a periodic structure with negligible chromatic
(nonlocal in time) dispersion. These equations are equivalent to an infinite dimensional system of couple first
order PDEs, the extended coupled mode system (xNLCME). The electric field, E, obtained from numerical
solution of successively higher truncations of xNLCME converges toward the envelope carrier-shock trains
observed in direct simulations of the nonlinear Maxwell equations.

Finally we mention that our methods could be applied to study the long time evolution of wave-packet
type initial conditions for the problem of quadratically nonlinear elastic media, consider in [17, 25, 26] We
obtain nonlocal equations of resonant nonlinear geometrical optics (or equivalently an infinite family of
nonlinear coupled mode equations), governing interacting forward and backward propagating waves [42]. A
difference between the quadratic and cubic case is that the smallest truncated system that retains nonlinear
interactions contains four modes, p = ±1,±2. Nonlinear effects occur through second harmonic generation,
a process well-known in nonlinear optics.
Open problems and conjectures: As our simulations show, there is agreement between finite mode
truncations of the integro-differential equations and the primitive Maxwell system. Assessing, and proving
the time of validity of this approximation is one upon problem.
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Figure 12. Comparison of the features that develop on the scale of the medium in different
truncations of the equations. Including additional harmonics better captures the shocks seen
in Figure 9.

Following up on assessing the time of validity, there is also the question of the time of existence and
the well-posedness of the equations. We expect that solutions of xNLCME for initial data having a finite
number of nonzero mode amplitudes, e.g. NLCME gap soliton data, will give rise to solutions of xNLCME
that develop singularities in finite time. The nature of this blowup is expected to occur via a cascade
to high mode amplitudes (higher index, p), corresponding to modes necessary to resolve the carrier shock
structure in the small scale. As we mentioned in the discussion, there is clearly singularity formation when
the heterogeneity is turned off (N = 0), and either E+ or E− is initially zero. It is an open problem as to
whether this particular mechanism for singularity formation will persist when coupling is restored.

As pointed out in the introduction, the success in modeling experiments with NLCME suggests that,
although there is such a (weakly turbulent) cascade, it is only a small part of the optical power that is
transferred to high wavenumbers and that this energy contributes mainly to resolving the small-scale shocks.
To explore this, one needs to simulate the xNLCME equations with many more harmonics. Plotting the
Fourier transform (in the Z coordinate) of the simulations in Section 5 in figure 14, we see that the spectral
support grows as we increase the number of resolved envelopes (the E±p ’s). A related question is whether or
not the primitive Maxwell system, the xNLCME system, or one of its truncations possess genuine coherent
structures. In [46], the authors found such solutions for a first and third harmonic system. This shall be
further explored in the forthcoming publication, [36].

Finally, our computations in Section 3 invoked of a gas-dynamics entropy condition. Such a condition is
necessary to use finite volume methods. Although thermodynamically consistent, we do not know whether
this is the correct regularizing mechanism of electrodynamics.
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Figure 13. Energy distribution, (5.2), for truncated xNLCME simulations with different
numbers of harmonics. In all cases, the energy initially residing in mode one tends to stay
there.
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| Ê+
5 |

| Ê+
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| Ê+
3 |

| Ê+
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Appendix A. The NLCME Soliton

Using the notation of [11], the NLCME soliton solution of (2.9) is given by:

E+(Z, T ) = sαeiη

√∣∣∣∣N2

2Γ

∣∣∣∣ 1

∆
sin δeisσsech(θ − isδ/2)(A.1a)

E−(Z, T ) = −αeiη

√∣∣∣∣N2

2Γ

∣∣∣∣∆ sin δeisσsech(θ + isδ/2)(A.1b)

θ = γN2 sin δ(Z − vT ), σ = γN2 cos δ(vZ − T )(A.1c)

eiη =

(
−e

2θ + e−isδ

e2θ + eisδ

)2v/(3−v2)

(A.1d)

γ = 1/
√

1− v2, ∆ =

(
1− v
1 + v

)1/4

(A.1e)

s = sign(N2Γ), α =

√
2(1− v2)

3− v2
, κ̃ = κN2(A.1f)

We assume that N2 ∈ R. There are two free parameters, |v| < 1 and δ ∈ R.
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Appendix B. Simulating the Nonlinear Maxwell Equations

In vector notation, the rescaled Maxwell system,(3.2), and constitutive law, (3.3), are expressed as

∂t

(
D
B

)
+ ∂z

(
−B

−E(D, z)

)
= 0

∂tv + ∂zf(v, z) = 0.

(B.1)

To simulate this system of conservation laws, we employ a shock capturing finite volume scheme with the
CLAWPACK software, [24, 25]. Furthermore, we employ the f-wave method to accommodate the spatially
varying flux function, [2, 25,26] .

To use finite volume methods we must provide the algorithm with a, possibly approximate, solution of the
Riemman problem. This introduces a subtlety as our system has a non-convex flux function. Non-convex
fluxes lead to interesting waves, including rightward (or leftward) traveling rarefaction and shockwaves
that are “glued” together. Such waves, sometimes called compound or composite waves, were discussed
in [27,28,47,48] and more recently in [33,49,50]. Examples are also give in the texts [25,44].

B.1. Finite Volume Methods for Maxwell. In finite volume numerical methods, at each time step, we
must solve a Riemann problem between adjacent grid cells:

vt + f(v; zj)z = 0 for zj−1/2 < z < zj+1/2,

vt + f(v; zj+1)z = 0 for zj+1/2 < z < zj+3/2,

v(z, t = tn) =

{
vnj for zj−1/2 < z < zj+1/2,

vnj+1 for zj+1/2 < z < zj+3/2.

(B.2)

zj+1/2 is the interface between the cell centered at zj and the cell centered at zj+1/2. The fluxes are assumed
to be constant in z within each computational cell. We aim to provide an exact solution to the Riemann
problem, in contrast to an approximate solutions such as the Roe average.

In the next few sections, we adopt the notation

vt + fl(v)z = 0 for z < 0

vt + fr(v)z = 0 for z > 0

v(z, 0) =

{
vl for z < 0

vr for z > 0

(B.3)

where fl(v) = f(v; zj), fr(v) = f(v; zj+1), and we take zj+1/2 = 0.
Given any point v in (D,B) phase space, we construct two, entropy condition (specified below) satisfying,

manifolds W1(v) and W2(v). These define the locus of points that can be joined to v by a left-going wave
in the former case and a right-going wave in the latter case. We parameterize them in the D component.
Given a state v0, Wj(D;v0) is the parametric curve such that:{(

D
Wj(D;v0)

)
, for D ∈ R

}
=Wj(v0) for j = 1, 2

Were the medium homogeneous, solving the Riemann corresponds to finding the state v? that is the
unique point in W1(vl)

⋂W2(vr). In terms of the parametric curves, this point solves the equation:

(B.4) W2

(
Dr;

(
D?

W1(D?;vl)

))
= Br

As the medium is not homogeneous, we match the flux at the interface. We seek vl? and vr? such that:

W1(D?
l ;vl) = B?l(B.5a)

fl(v
?
l ) = fr(v

?
r)(B.5b)

W2(Dr;v
?
r) = Br(B.5c)

v?l is the the entropy satisfying state immediately to the left of the interface and v?r is the entropy satisfying
state immediately to the right of the interface.
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For this problem, the flux matching condition is:

E(D?
l ; zl) = E(D?

r ; zr)(B.6a)

B?l = B?r(B.6b)

Defining transfer function, T , that, given zl, zr and a left state D?
l , the flux matched displacement is:

(B.7) T (D?
l ; zl, zr) = D?

r

With this function, (B.5) becomes

(B.8) W2

(
Dr;

(
T (D?

l ; zl; zr)
W1(D?

l ;vl)

))
= Br

D?
l is the unknown. Once we have this value, we recover E? and B? allowing us to compute the fluxes.

Subject to the specification of the phase space functions Wj are specified, this is a one-dimensional root
finding problem.

B.2. Non-Convex Fluxes and the Entropy Condition. It remains to specify the manifolds Wj . This
requires an additional, non-trivial, assumption on an entropy condition. While such a condition is readily
apparent in gas dynamics and elasticity, the appropriate condition for Maxwell is non-obvious.

In this work, we employ a diffusive entropy condition, akin to that found in gas dynamics. This was
suggested by Sjöberg [43], as part of an entropy-flux pair involving the Poynting vector. This is also a
physically consistent, as many dielectrics absorb the higher harmonics that would appear as the wave began
to shock.

In constructing the entropy satisfying Wj functions, we closely follow [27, 28, 32, 48] and particularly the
p-system example in [47]. Graphically, the Wj functions can be constructed by tracing an appropriate convex
hull of E(D; z). Shock waves occur when points are joined by chords, rarefaction waves when points are
joined along E(D; z), and composite waves when convex curve is a combination.

Throughout this section we suppress the z argument, and E′(D) = ∂DE(D, z).
Since the flux function is no longer uniformly convex, the Lax entropy condition may not be appropriate.

Instead, Liu entropy condition [27,32] may apply. Recall, that if

(B.9) σ(v0,v) ≡ −E(D) + E(D0)

B −B0

then:

• A shock joining v0 to v1 satisfies the Lax entropy condition if the system is convex and either

λ1(v1) < σ < λ1(v0), σ < 0(B.10a)

λ2(v1) < σ < λ2(v0), σ > 0(B.10b)

where λ1 < 0 < λ2 are the eigenvalues of(
0 −1

−E′(D) 0

)
.

• A shock joining v0 to v1 satisfies the Liu entropy condition if

(B.11) σ(v0,v1) ≤ σ(v0, ṽ)

for all points ṽ between the two points along the shock curve in phase space.

B.2.1. Left Traveling Waves. Given the state u0 = (D0, B0)T , we construct W1(D;u0). Since we have an
inflection point in E(D) at D = 0, we dissect all the possible configurations of D0, D and the inflection
point. Let D1 be the value of D at which the line tangent to (D1, E(D1)) intercepts (D0, E(D0)).

First, suppose that D < D0 < 0, as in Figure 15(a). In this region, there is no difficulty applying the Lax
entropy condition (B.10); there is no shock as

λ1(D) = −
√
E′(D) < λ1(D0) = −

√
E′(D0) < 0

Consequently,

B = B0 +

∫ D

D0

√
E′(s)ds
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Figure 15. Entropy satisfying leftward traveling waves when D0 < 0.

Still assuming that D0 < 0, if D0 < D < D1 the Lax condition continues to apply. D0 and D will satisfy
(B.10) and we can join the two with a shock, as in Figure 15(b);

B = B0 +
√
|E(D)− E0| |D −D0|

Once D > D1, the solution changes. It is no longer appropriate to apply the Lax condition as we lose
convexity here. Applying the Liu condition, (B.11), we see that there is no longer a shock. Indeed, we can
compute that were there shock solutions,

σ(v0,v) =
−E + E0

B −B0
= −

√∣∣∣∣E − E0

D −D0

∣∣∣∣
σ(v0,v1) =

−E1 + E0

B1 −B0
= −

√∣∣∣∣E1 − E0

D1 −D0

∣∣∣∣
Examining Figure 15(c),

E1 − E0

D1 −D0
<
E − E0

D −D0
< 0

implying

σ(v0,v1) < σ(v0,v)

which violates (B.11).
As a shock fails to connect the two states, we resort to joining the states by a compound wave. The

solution is a shock from D0 to D1 which continues into a rarefaction wave from D1 to D. Thus,

B = B0 +
√
|E(D1)− E0| |D1 −D0|+

∫ D

D1

√
E′(s)ds

At D0 = 0 the system is convex yielding leftward traveling rarefaction waves for all values of D:

B = B0 +

∫ D

D0

√
E′(s)ds

For D0 > 0, There are again several cases. For D < D1, we have the compound wave again, as in Figure
16(a):

B = B0 −
√
|E(D1)− E0| |D1 −D0|+

∫ D

D1

√
E′(s)ds

As D increases in value and D1 < D < D0, we have a shock solution

B = B0 −
√
|E(D)− E0| |D −D0|
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Figure 16. Entropy satisfying leftward traveling waves when D0 > 0.

See Figure 16(b) Lastly, for D > D0, we get a leftward traveling rarefaction:

B = B0 +

∫ D

D0

√
E′(s)ds

B.2.2. Right Traveling Waves. For right traveling waves, the structure is similar. Given our point D0, let
(D2, E2) be the point intercepted by the line tangent to (D0, E(D0)).

Again, we first treat D0 < 0. The different cases are diagrammed in Figure 17. For D < D0 < 0, there is
a shock,

B = B0 +
√
|E(D)− E0| |D −D0|.

For D0 < D < 0, this changes to a rarefaction wave,

B = B0 −
∫ D

D0

√
E′(s)ds.

Crossing the inflection point, 0 < D < D2, it becomes a compound wave which rarefacts to the point D?

followed by a shock,

B = B0 −
∫ D?

D0

√
E′(s)ds−

√
|E(D)− E?| |D −D?|.

D? is the point (D?, E?) on the curve whose tangent intercepts (D,E). Past D2, the compound wave reduces
to a shock, as the system now satisfies (B.11),

B = B0 −
√
|E(D)− E0| |D −D0|.

For D0 = 0, we have a shock in both directions,

B = B0 − sign(D)
√
|E(D)− E0| |D −D0|.

For D0 > 0, again, we must consider the different positions of D relative to the other points. These cases
appear in Figure 18. If D < D2 < 0, there is the shock solution satisfying (B.11),

B = B0 +
√
|E(D)− E0| |D −D0|.

For D2 < D < 0, this becomes a compound wave,

B = B0 −
∫ D?

D0

√
E′(s)ds+

√
|E(D)− E?| |D −D?|

D? is again the point on the curve whose tangent intercepts (D,E(D)). For 0 < D < D0, this becomes a
purely rarefactory wave,

B = B0 −
∫ D

D0

√
E′(s)ds.
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Figure 17. Entropy satisfying rightward traveling waves when D0 < 0.

Finally, for D > D0, we again have a shock,

B = B0 −
√
|E(D)− E0| |D −D0|.
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Figure 18. Entropy satisfying rightward traveling waves when D0 > 0.
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