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Abstract

A general procedure for constructing conservative numerical integra-
tors for time dependent partial differential equations is presented. In
particular, linearly implicit methods preserving a time discretised version
of the invariant is developed for systems of partial differential equations
with polynomial nonlinearities. The framework is rather general and al-
lows for an arbitrary number of dependent and independent variables with
derivatives of any order. It is proved formally that second order conver-
gence is obtained. The procedure is applied to a test case and numerical
experiments are provided.

1 Introduction

Schemes that conserve geometric structure have been shown to be useful when
studying the long time behaviour of dynamical systems. Such schemes are
sometimes called geometric or structure preserving integrators [18, 19]. In this
paper we shall mostly be concerned with the conservation of first integrals.

Even if a presumption in this work is that the development of new and better
integral preserving schemes is useful, we would still like to mention some situ-
ations where schemes with such properties are of importance. In the literature
one finds several examples where stability of a numerical method is proved by
directly using its conservative property, one example is the scheme developed
for the cubic Schrödinger equation in [11]. Another application where the exact
preservation of first integrals plays an important role is in the study of orbital
stability of soliton solutions to certain Hamiltonian partial differential equations
(PDEs) as discussed by Benjamin and coauthors [1, 2].

For ordinary differential equations (ODEs) it is common to devise relatively
general frameworks for structure preservation. This is somewhat to the contrary
of the usual practice with partial differential equations where each equation un-
der consideration normally requires a dedicated scheme. But there exist certain
fairly general methodologies that can be used for developing geometric schemes
also for PDEs. For example, through space discretisation of a Hamiltonian PDE
one may obtain a system of Hamiltonian ODEs to which a geometric integrator
may be applied. Another approach is to formulate the PDE in multi-symplectic
form, and then apply a scheme which preserves a discrete version of this form,
see [4] for a review of this approach.
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In this paper we consider methods for PDEs that are based on the discrete
gradient method for ODEs. The discrete gradient method was perhaps first
treated in a systematic way by Gonzalez [16], see also [18, 25]. For PDEs one
may derive discrete gradients either for the abstract Cauchy problem, where
the solution at any time is considered as an element of some infinite dimen-
sional space, or one may semidiscretise the equations in space and then derive
the corresponding discrete gradient for the resulting ODE system. This last
procedure has been elegantly presented in several articles by Furihata, Matsuo
and collaborators, see e.g. [12, 13, 14, 21, 22, 23, 24], using the concept of dis-
crete variational derivatives. See also the monograph [15]. The first part of this
paper develops a similar framework that is rather general and allows for an ar-
bitrary number of dependent and independent variables with derivatives of any
order. The suggested approach does not require the equations to be discretised
in space.

We consider a class of conservative schemes which are linearly implicit. By
linearly implicit we mean schemes which require the solution of precisely one
linear system of equations in each time step. This is opposed to fully implicit
schemes for which one typically applies an iterative solver that may require a
linear system to be solved in every iteration. For standard fully implicit schemes
one would typically balance the iteration error in solving the nonlinear system
with the local truncation error. However, for conservative schemes the situation
is different since exact conservation of the invariant requires that the nonlinear
system is solved to machine precision. This work can be seen as a generalisation
of ideas introduced in [22, Section 6].

It may not, in general, be an easy task to quantify exactly what can be
expected of gain in computational cost, if any, when replacing a fully implicit
scheme with a linearly implicit one. For illustration we present an example
where the KdV equation

ut + uxxx + (u2)x = 0 (1.1)

is solved on a periodic domain using a fully implicit scheme

Un+1 − Un
∆t

+
Un+1
xxx + Unxxx

2
+

(
(Un+1)2 + Un+1Un + (Un)2

3

)
x

= 0, (1.2)

and a linearly implicit scheme

Un+2 − Un
2∆t

+
Un+2
xxx + Unxxx

2
+

(
Un+1U

n+2 + Un+1 + Un

3

)
x

= 0, (1.3)

where Un(x) ≈ u(x, tn) = u(x, t0 + n∆t).
These schemes are derived in Section 6. For space discretisation centered

differences are used for both schemes. Note that the linearly implicit scheme
(1.3) has a multistep nature, but should not be confused with standard linear
multistep methods. Furihata et al. sometimes use the term ”multiple points
linearly implicit schemes” to emphasise this fact.

The schemes are both second order in time, but in our example the linearly
implicit multistep scheme has an error constant which is about 3-4 times larger
than the fully implicit one-step scheme. In Figure 1.1 we plot the global error
versus the number of linear solves for the two schemes. The linearly implicit
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Figure 1.1: The global error versus the number of linear solves for the two
schemes (1.2) (FI cons) and (1.3) (LI cons).

scheme solves one linear system in each time step. The fully implicit scheme,
on the other hand, solves a linear system for each Newton iteration which is
repeated to machine precision in each time step. For the largest time step in
our experiment this amounts to 561 linear solves per time step. The linear
systems in each of the two cases have the same matrix structure, they are both
penta-diagonal, and we therefore assume that the cost of solving the linear
system is approximately the same for both methods. The x-axis in Figure 1.1
can thus be interpreted as a measure of the computational cost in each scheme.
The plot shows that for a given global error the linearly implicit scheme is
computationally cheaper than the fully implicit scheme.

There are situations in which the results from this example may be less
relevant. For instance, the iteration method used in a fully implicit schemes
may use approximate versions of the Jacobian for which faster solvers can be
applied, therefore the cost of a linear solve may not be the same for the two
types of schemes. For large time steps, both types of schemes are likely to en-
counter difficulties, but for slightly different reasons. The fully implicit scheme
may experience slow or no convergence at all of the iteration scheme, whereas
the linearly implicit scheme may become unstable for time steps over a certain
threshold [9]. For instance, in the case of the stiff ODE considered by Gonzales
and Simo [17] one will observe that the stability properties of the linearly im-
plicit schemes will be completely lost whereas fully implicit conservative schemes
behave remarkably well. For large-scale problems, one may have situations in
which iterative linear solvers are required and where one cannot afford to solve
these systems to machine accuracy, in such cases the linearly implicit schemes
are less useful. In conlusion, we believe that which of the two types of schemes
that is preferable depends on the PDE and the circumstances under which it is
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to be solved.
The two schemes used in the example above have slightly different conser-

vation properties. The first one (1.2) conserves the exact Hamiltonian

H[Un] =

∫
Ω

(
1

2
(Unx )2 − 1

3
(Un)3

)
dx,

whereas the second scheme (1.3) conserves what we will define as the polarised
Hamiltonian

H[Un, Un+1] =

∫
Ω

(
1

4

(
(Unx )2 + (Un+1

x )2
)
− 1

6

(
(Un)2Un+1 + (Un+1)2Un

))
dx.

Both of these functions are approximations to the true Hamiltonian, the first is a
spatial approximation for a fixed time, and the second also includes an averaging
over time. The intention is that in both cases one can see the methods as exactly
preserving a slightly perturbed first integral over very long times. That this
seems to work for the chosen example is clearly seen in the first plot in Figure
1.2 where we plot the error in H as a function of the solution obtained by the
linearly implicit scheme (1.3). We integrate to t = 1000 and the error is plotted
from t = 980 to t = 1000. Notice that in this example there is no drift in the
energy error. The corresponding error plots for H as a function of the solution
of (1.2) and H as a function of the solution of (1.3) are omitted since they are
both preserved up to round-off error, and thus not that interesting. The second
plot in Figure 1.2 shows how the error in H at the endpoint depends on ∆t.
Empirically, we have the relation

H[Un] = H[U0] + C(∆t)2,

where C is a constant that depends on the solution, but not on n. See Section
6 for another example that tests the long time structure preserving properties
of these schemes.

This and similar examples show that there are situations where linearly
implicit schemes can be a better choice than their fully implicit counterparts.
Figure 1.1 shows that the linearly implicit scheme is cheaper, while Figure 1.2
shows that both solutions have similar long-term behaviour. Similar favourable
behaviour of linearly implicit schemes can be found in the literature. For the
cubic Schrödinger equation there are such conservative schemes based on time
averaged versions of the Hamiltonian by Fei et al. [11] and by Besse [3]. Exam-
ples of methods for other PDEs can be found in the monograph [15] and the
papers [20] and [29].

In the next section we define the PDE framework that we use. Then, in
Section 3 we consider discrete gradient methods and how they can be applied
to PDEs. We study in particular the average vector field method by Quispel
and McLaren [27] and the discrete variational derivative method by Furihata,
Matsuo and coauthors [12, 13, 21, 22, 23, 24]. We develop a framework that
works for a rather general class of equations.

The key tools for developing linearly implicit methods for polynomial Hamil-
tonians are treated in Section 4, introducing the concept of polarisation. There
is some freedom in this procedure, and we show through a rather general exam-
ple term how the choice may significantly affect the stability of the scheme.
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Figure 1.2: The error in H as a function of the solution obtained by the linearly
implicit scheme 1.3 as a function of t (top) and ∆t (bottom). The dotted line
is a reference line C̃(∆t)2.

We defer the introduction of spatial discretisation until Section 5. This is
done mostly in order to keep a simpler notation, but also because our approach
concerns conservative time discretisations and is essentially independent of the
choice of spatial discretisation. The last section offers some more details on
the procedure for constructing schemes and we give some indication through
numerical tests on the long term behaviour of the schemes.

2 Notation and preliminaries

We consider integral preserving PDEs written in the form

ut = D δH
δu

, (2.1)

where

H[u] =

∫
Ω

G[u] dx =

∫
Ω

G((uαJ )) dx, Ω ⊆ Rd, (2.2)

is the preserved quantity and D is a skew-symmetric operator that may depend
on u. We write dx = dx1 · · · dxd. We remark in passing that the class of PDEs
which can be written in the form (2.1) contains the class of Hamiltonian PDEs,
however we do not make the additional assumption that D satisfies the Jacobi
identity [26]. By (uαJ ) we mean u itself, which may be a vector u = (uα) ∈
Rm, and all its partial derivatives with respect to all independent variables,
(x1, . . . , xd), up to and including some degree ν. Thus, J is a multi-index, we
let J = (j1, . . . , jr), where r = |J | the number of components in J , and

uαJ =
∂ruα

∂xj1 · · · ∂xjr , 0 ≤ r ≤ ν.
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As in [26], the square brackets in (2.2) are used to indicate that a function
depends also on the derivatives of its arguments with respect to the independent
variables. In one dimension d = 1 and m = 1, for example, we have

G[u] = G ((uJ)) = G
(
u,
∂u

∂x
, . . . ,

∂νu

∂xν

)
.

The variational derivative δH
δu is an m-vector depending on uαJ for |J | ≤ ν′ where

ν′ ≥ ν. It may be defined through the relation [26, p. 245]∫
Ω

δH
δu
· ϕdx =

∂

∂ε

∣∣∣∣
ε=0

H[u+ εϕ], (2.3)

for any sufficiently smooth m-vector of functions ϕ(x). One may calculate δH
δu

by applying the Euler operator to G[u], the α-component is given as(
δH
δu

)α
= EαG[u], (2.4)

where

Eα =
∑
|J|≤ν

(−1)|J|DJ
∂

∂uαJ
(2.5)

so that the sum ranges over all J corresponding to derivatives uαJ featuring in
G. We have used total derivative operators,

DJ = Dj1 . . . Djk , Di =
∑
α,J

∂uαJ
∂xi

∂

∂uαJ
.

In parts of the paper we refer to Hamiltonians as polynomial, or specifically
quadratic. By this we mean that H is of a form such that G is a multivariate
polynomial in the indeterminates uαJ , which in the quadratic case is of degree at
most two. For example, the KdV equation (1.1) has a polynomial Hamiltonian
of degree 3

H[u] =

∫
Ω

(
1

2
u2
x −

1

3
u3

)
dx.

In this case G = G(u, ux) and thus m = d = ν = 1, and we get

δH
δu

= EG((uJ)) =
∂G
∂u
− ∂

∂x

∂G
∂ux

(2.6)

= −u2 − uxx. (2.7)

We always assume sufficient regularity in the solution and that the boundary
conditions on Ω are such that the boundary terms vanish when doing integration
by parts, for example periodic boundary conditions. The operator D should be
skew-symmetric with respect to the L2 inner product∫

Ω

(Dv)w dx = −
∫

Ω

v(Dw) dx ∀ u,w. (2.8)

For the KdV case we simply have D = ∂
∂x .
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Furthermore, to be a true Hamiltonian system it should induce a Poisson
bracket on the space of functionals as described e.g. in [26, Ch 7.1], meaning
that the Jacobi identity must be satisfied. However, the approach presented here
only requires D to be skew-symmetric so that the functional H is a conserved
quantity. In the case that the PDE has more than one Hamiltonian formulation,
we may make a choice of which of the integrals to preserve. Our approach does
not in general allow for the preservation of more than one Hamiltonian at the
same time, for this see the upcoming paper [10].

PDEs such as the wave equation are typically written with utt appearing on
the left hand side, in such cases we double the dimension of u in order to apply
the stated framework. For complex equations one may do something similar,
splitting either into a real and an imaginary part, or adding in the complex
conjugate as a separate variable.

3 Discrete gradient and variational derivative
methods

Discrete gradient methods for ODEs were introduced by Gonzalez [16]. See also
[6], [7], [25], and [18, Chapter V.5]. Recently this idea has been applied to PDEs
in the form of the average vector field (AVF) method [5] and in a somewhat
more general setting, the discrete variational derivative (DVD) method.

We recall the definition of a discrete gradient as presented for ODEs. If
H : RM → R, a discrete gradient is a continuous map ∇ : RM × RM → RM
such that for every u and v in RM

H(u)−H(v) = ∇H(v,u) · (u− v),

∇H(u,u) = ∇H(u).

Since an ODE system preserving H can be written in the form

dy

dt
= S(y)∇H(y)

for some skew-symmetric matrix S(y), one obtains a conservative method simply
by defining approximations yn ≈ y(tn) = y(t0 + n∆t) through the formula

yn+1 − yn

∆t
= S̃∇H(yn,yn+1),

where S̃, typically allowed to depend on yn and yn+1, is some skew-symmetric
matrix approximating the original S.

There are many possible choices of discrete gradients for a function H, see
for instance [18, 25]. A particular example is the one used in the AVF method
defined as

∇AVFH(v,u) =

∫ 1

0

∇H(ξu + (1− ξ)v) dξ.

When applying this approach to PDEs the obvious strategy is to discretise the
HamiltonianH[u] in space, replacing each derivative by a suitable approximation
like e.g. finite differences, to obtain a HamiltonianHd(u) as for ODEs. Similarly,
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the skew-symmetric operator D is replaced by a skew-symmetric M×M -matrix
Dd to yield the scheme

un+1 − un

∆t
= Dd∇Hd(un,un+1) (3.1)

for advancing the numerical solution un at time tn to un+1 at time tn+1. Ex-
amples are worked out for several PDEs in [5].

Furihata, Matsuo and coauthors present a whole framework for discretis-
ing PDEs in the variational setting in a series of papers, providing a discrete
analogue of the continuous calculus, see for instance [12]. They discretise G to
obtain Gd using difference operators, and then the integral in H is approximated
by a sum to yield Hd. Then they derive a discrete counterpart to the variational
derivative, and finally state the difference scheme in a form which is a perfect
analogue to the Hamiltonian PDE system (2.1), letting

un+1 − un

∆t
= Dd

δHd
δ(un,un+1)

.

The use of integration by parts in deriving the Euler operator is mimicked
by similar summation by part formulas for the discrete case. Their discrete
variational derivative is in fact rather similar to a discrete gradient, as it satisfies
the relation

Hd(u)−Hd(v) = 〈 δHd
δ(v,u)

,u− v〉 (3.2)

for the discrete L2 inner product.
In the present paper, we focus on the time dimension in most of what follows,

thus we shall defer the steps in which H and thereby G are discretised in space.
But (3.2) makes perfect sense after removing the subscript d, replacing u and v
by functions u and v, and the discrete L2 inner product by the continuous one.
A discrete variational derivative (DVD) is here defined to be any continuous
function δH

δ(v,u) of (u(ν), v(ν)) satisfying

H[u]−H[v] =

∫
Ω

δH
δ(v, u)

(u− v) dx, (3.3)

δH
δ(u, u)

=
δH
δu

. (3.4)

The integrator yields a continuous function Un := Un(x) ≈ u(x, tn) for each tn

Un+1 − Un
∆t

= D δH
δ(Un, Un+1)

. (3.5)

By combining (3.3) and (3.5) we see that the method preserves H.
The AVF scheme can of course also be interpreted as a discrete variational

derivative method where

δHAVF

δ(v, u)
=

∫ 1

0

δH
δu

[ξu+ (1− ξ)v] dξ. (3.6)

The fact that (3.6) verifies the condition (3.3) is seen from the elementary iden-
tity

H[u]−H[v] =

∫ 1

0

d

dξ
H[ξu+ (1− ξ)v] dξ. (3.7)
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The derivative under the integral is written

d

dξ
H[ξu+ (1− ξ)v] =

d

dε

∣∣∣∣
ε=0

H[v + (ξ + ε)(u− v)]

=

∫
Ω

δH
δu

[ξu+ (1− ξ)v](u− v) dx.

Now substitute this into (3.7) and interchange the integrals to obtain (3.3).
In most of the cited papers by Furihata, Matsuo and coauthors, the notion

of a DVD method is less general than what we just presented, in the sense that
the relation (3.2) is not actually used as the defining equation for a discrete
variational derivative. Instead the authors present a relatively general format
that can be used for discretisingH, this format is depending on the class of PDEs
under consideration, and they work out the explicit expression for a particular
discrete variational derivative. To give an idea of how the format may look
like, we briefly review some points from [12] where PDEs of the form (2.2) are
considered with d = m = ν = 1 such that G = G(u, ux). G is assumed to be
written as a finite sum

G(u, ux) =
∑
`

α`f`(u)g`(ux). (3.8)

where f` and g` are differentiable functions. 1 The form (3.3) is then derived
through

f`(u)g`(ux)− f`(v)g`(vx) =
f`(u)− f`(v)

u− v
g`(ux) + g`(vx)

2
(u− v)

+
g`(ux)− g`(vx)

ux − vx
f`(u) + f`(v)

2
(ux − vx)

followed by an integration by part on the second term. This technique can be
extended in any number of ways to allow for more general classes of PDEs. For
instance, one may allow for more factors in (3.8), like

G[u] =
∑
`

α`
∏
J

g`,J(∂Ju)

and repeated application of the formula ab−cd = a+c
2 (b−d)+ b+d

2 (a−c) to this
equation combined with integration by parts will result in a discrete variational
derivative.

Schemes which are built on this particular type of discrete variational deriva-
tive will be called the Furihata methods in the sequel since it was first intro-
duced in [12]. Matsuo et al. extend the method to complex equations in [22],
while [13, 21] derive methods for equations with second order time derivatives.
Other papers using the discrete variational derivative approach include [14],
[24], and [30].

The lack of a general formalism in the papers just mentioned, makes it
somewhat difficult to compare the approach to the AVF method and characterise

1In [12] the expression is discretised in space and g`(ux) is replaced by a product
g+` (δ+k Uk)g−` (δ−k Uk) where δ+k and δ−k are forward and backward divided differences respec-
tively.
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in which cases they lead to the same scheme. Taking for instance the KdV
equation (1.1) one easily finds that both approaches lead to the scheme (1.2),
however, considering for instance the Hamiltonian

H[u] =

∫
Ω

uu2
x dx

one would obtain two different types of discrete variational derivative in the Fu-
rihata method and the AVF method, that is δHF

δ(v,u) 6= δHAVF

δ(v,u) . In some important

cases, the Furihata method and the AVF method lead to the same scheme.

Theorem 3.1. Suppose that the Hamiltonian H[u] is a linear combination of
terms of either of the types

1.
∫

Ω
∂Ju · ∂Kudx for multi-indices J and K, or

2.
∫

Ω
g(∂Ju) dx for differentiable g : R→ R.

Then the AVF and the Furihata methods yield the same scheme

Proof. It suffices to check one general term of each type.

1. We find the variational derivative using (2.3)

δH
δu

=
(

(−1)|J| + (−1)|K|
)
∂J+Ku.

Inserting the variational derivative into (3.6) gives

δHAVF

δ(v, u)
=
(

(−1)|J| + (−1)|K|
)
∂J+K

(
u+ v

2

)
.

To find the discrete variational derivative of the Furihata method we com-
pute

H[u]−H[v] =

∫
Ω

∂Ju · ∂Ku− ∂Jv · ∂Kv dx

=
1

2

∫
Ω

(∂Ju− ∂Jv) · (∂Ku+ ∂Kv) + (∂Ju+ ∂Jv) · (∂Ku− ∂Kv) dx.

After integration by parts we get

δHF
δ(v, u)

=
(

(−1)|J| + (−1)|K|
)
∂J+K

(
u+ v

2

)
,

and we see that
δHAVF

δ(v, u)
=

δHF
δ(v, u)

.

2. In this case we get
δH
δu

= (−1)|J|∂Jg
′(∂Ju),

so that

δHAVF

δ(v, u)
= (−1)|J|

∫ 1

0

∂Jg
′(∂J(ξu+ (1− ξ)v)) dξ

= (−1)|J|∂J

(
g(∂Ju)− g(∂Jv)

∂Ju− ∂Jv

)
.

10



For the Furihata method one would here just compute

H[u]−H[v] =

∫
Ω

g(∂Ju)− g(∂Jv)

∂Ju− ∂Jv
(∂Ju− ∂Jv) dx

and integration by parts yields
δHF
δ(v, u)

=
δHAVF

δ(v, u)
.

4 Linearly Implicit Difference Schemes

4.1 Polarisation

The key to constructing conservative linearly implicit schemes will be to portion
out the nonlinearity over consecutive time steps. In effect, this means that we
replace the original Hamiltonian H with an approximate one H. We shall call
H a polarisation of H since its definition resembles the way an inner product is
derived from a quadratic form. We shall see that the difference scheme resulting
from such a polarised Hamiltonian will be a multistep method. This method
will now preserve exactly H, as opposed to H for the methods in the previous
section. The requirements on H are given in the following definition.

Definition 4.1 (The polarised Hamiltonian). Given a Hamiltonian H[u] the
polarised Hamiltonian H depends on k arguments, and is:

• Consistent
H[u, u, . . . , u] = H[u]. (4.1)

• Invariant under any cyclic permutation of the arguments

H[w1, w2, . . . , wk] = H[w2, . . . , wk, w1]. (4.2)

Polarisations exist for any Hamiltonian, this is asserted by the example

H[w1, w2, . . . , wk] =
1

k
(H[w1] +H[w2] + · · ·+H[wk]) .

We may impose the polarisation directly on the density G((uαJ )), letting

H[w1, w2, . . . , wk] =

∫
Ω

G[w1, w2, . . . , wk] dx.

The conditions (4.1), (4.2) are then inherited as

G(u, u, . . . , u) = G(u), G[w1, w2, . . . , wk] = G[w2, . . . , wk, w1].

In Section 4.2 we will discuss local order of consistency, it will then be conve-
nient to make the stronger assumption that H and H are at least twice Fréchet
differentiable. To distinguish from the weaker notion of variational (Gâteaux)
derivative, we replace δ by ∂, noting that the first derivative in the two defi-
nitions are the same when they both exist. We then find from (4.1) and (4.2)
that the Fréchet derivatives satisfy the relation

∂H
∂u

[u] = k
∂H

∂w1
[u, . . . , u]. (4.3)

11



For the second derivatives, we find the identity

∂2H

∂w1∂wj
[u, . . . , u] =

∂2H

∂w1∂wk+2−j
[u, . . . , u], j = 2, . . . , bk/2c+ 1, (4.4)

which is used to compute

∂2H
∂u2

[u] =


k

∂2H

∂w2
1

+ 2

k+1
2∑
`=2

∂2H

∂w1∂w`

, k odd,

k

∂2H

∂w2
1

+ 2

k
2∑
`=2

∂2H

∂w1∂w`
+

∂2H

∂w1∂w k
2 +1

, k even,

(4.5)

all second derivatives on the right being evaluated at [u, . . . , u].

4.1.1 Polynomial Hamiltonians

The polarisation of polynomial Hamiltonians will be key to constructing linearly
implicit schemes. We will now explain in detail how to do this, and we begin
with an example term in the integrand G[u] = G(∂αJ u) depending on just one
scalar indeterminate, namely G(z) = zp where z = ∂Ju

α for some (J, α) and
where p ≤ 4. This example is important not only as a simple illustration of
the procedure, but also because terms of this type are common in many of the
Hamiltonians found in physics. As we will see in the next section, it will be
natural to use two arguments, k = 2, in the polarised Hamiltonian. In fact, we
need to restrict ourself to cases with polynomial Hamiltonians for our technique
to yield linearly implicit schemes. Then, by using k ≥ dp/2e, we can obtain
polarised Hamiltonians which are at most quadratic in each argument. We call
these quadratic polarisations. We see that if k = 2 then cyclic is the same
as symmetric G(u, v) = G(v, u), and the possible quadratic polarisations for
p = 2, 3, 4 are respectively,

p = 2 : G(u, v) = θ
u2 + v2

2
+ (1− θ)uv , θ ∈ [0, 1], (4.6)

p = 3 : G(u, v) = uv
u+ v

2
, (4.7)

p = 4 : G(u, v) = u2v2. (4.8)

Note that for these monomials both the third and fourth degree case are uniquely
given, but the second degree case is not. In Section 4.3 we will consider how
the choice of θ influences the stability of the scheme for a term which appears
frequently in PDEs.

We now consider the general case when G[u] is a multivariate polynomial
in Nν variables of degree p. It suffices in fact to let G((uαJ )) be a monomial
since each term can be treated separately, for u ∈ RNν . For a convenient
notation, we rename the vector of indeterminates (uαJ ) by using a single index
i.e. u = (u1, . . . , uNν ) and write

G(u) = ui1ui2 . . . uip . (4.9)

One may use the following procedure for obtaining a quadratic polarisation from
(4.9)

12



1. Group the factors of the right hand side of (4.9) into pairs zr = ui2r−1
ui2r

and if p is odd zk = uip . Set

K(z1, . . . , zk) = z1 · · · zk.

Note that there are potentially many ways of ordering the factors in (4.9)
which give rise to different polarisations.

2. Symmetrise K with respect to the cyclic subgroup of permutations. Let-
ting the left shift permutation σ be defined through σK(z1, . . . , zk) =
K(z2, . . . , zk, z1), we set

G(z1, . . . , zk) =
1

k

k∑
k=1

σk−1K(z1, . . . , zk).

The resulting G is now both consistent (4.1) and cyclic (4.2).

4.2 Linearly Implicit Methods

We may now define the discrete variational derivative for this polarised Hamil-
tonian as a generalisation of (3.3) and (3.4). We let

δH

δ(w1, . . . , wk+1)

be a continuous function of k + 1 arguments, satisfying

H[w2, . . . , wk+1]−H[w1, . . . , wk] =

∫
Ω

δH

δ(w1, . . . , wk+1)
(wk+1−w1) dx, (4.10)

k
δH

δ(u, . . . , u)
=
δH
δu

. (4.11)

Our standard example will be a generalisation of the AVF discrete variational
derivative, which we define as

δHAVF

δ(w1, . . . , wk+1)
=

∫ 1

0

δH

δw1
[ξwk+1 + (1− ξ)w1, w2, . . . , wk] dξ. (4.12)

Here the variational derivative on the right hand side, δH
δw1

is defined as before,
considering H as a function of its first argument only, leaving the others fixed.
Similar discrete variational derivatives could be derived in a number of different
ways. In particular one finds that when the function H is quadratic in all its
arguments, the approach used in deriving the Furihata methods would lead to
a discrete variational derivative which is identical to that of the AVF-method.

Now we define the polarised discrete variational derivative scheme and prove
that, under some assumptions, this scheme is conservative, linearly implicit and
has formal order of consistency two.

Definition 4.2. For a Hamiltonian PDE of the form (2.1), let H be a polarised
Hamiltonian of k arguments, satisfying (4.1) and (4.2), and suppose that ap-
proximations U j to u(j∆t, ·) are given for j = 0, . . . , k − 1.

13



• The polarised DVD (PDVD) scheme is given as

Un+k − Un
k∆t

= kD
δH

δ(Un, . . . , Un+k)
, n ≥ 0. (4.13)

• D is a skew-symmetric operator approximating D. In (4.13), D may de-
pend on Un+j, 1 ≤ j ≤ k − 1 2, and be consistent

D[u, . . . , u] = D[u]. (4.14)

D is called cyclic if

D[w1, w2, . . . , wk−1] = D[w2, . . . , wk−1, w1]. (4.15)

• If the discrete variational derivative is given by (4.12), then the scheme is
called the polarised AVF (PAVF) scheme.

Theorem 4.3. The scheme (4.13) is conservative in the sense that

H[Un+1, . . . , Un+k] = H[U0, . . . , Uk], ∀n ≥ 1.

for any polarised Hamiltonian function H.

Proof. By induction, this is an immediate consequence of (4.10)

In a framework as general as the one presented here, it is not possible to
present a general analysis for convergence or the order of the truncation error.
However, it seems plausible that a necessary condition to obtain a prescribed
order of convergence can be derived through a formal Taylor expansion of the
local truncation error, we denote this the formal order of consistency.

Theorem 4.4.

• The PAVF scheme has formal order of consistency one for any polarised
Hamiltonian, and skew-symmetric operator D satisfying (4.14).

• If in addition (4.15) is satisfied, the scheme has formal order of consistency
two.

Proof. We show that when the exact solution is substituted into (4.13) where
the discrete variational derivative is given by (4.12), then the residual is O(∆t2).
Throughout the proof we assume the existence of Fréchet derivatives. Writing,
for any j, uj = u(·, tj) for the exact local solution at t = tj , we get for the left
hand side

un+k − un
k∆t

= ∂tu
n +

k∆t

2
∂2
t u

n +O(∆t2) = D∂H
∂u

∣∣∣∣
un

+
k∆t

2

(
∂D
∂u

(∂tu
n)
∂H
∂u

+D∂
2H
∂u2

(·, ∂tun)

)∣∣∣∣
un

+O(∆t2). (4.16)

2D should not depend on Un+k since otherwise the method would no longer be linearly
implicit.
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Next we expand (4.12) to get

δHAVF

δ(un, . . . , un+k)
=

∫ 1

0

δH

δw1
(ξun+k + (1− ξ)un, un+1, . . . , un+k−1) dξ

=
∂H

∂w1

∣∣∣∣
u

+

k
2

∂2H

∂w2
1

∣∣∣∣
u

+ ∆t

k∑
j=2

(j − 1)
∂2H

∂w1∂wj

∣∣∣∣
u

 (·, ∂tun) +O(∆t2)

where u = (un, . . . , un). Using first (4.4) and then (4.3), (4.5) we find

δHAVF

δ(un, . . . , un+k)
=

1

k

∂H
∂u

∣∣∣∣
un

+
∆t

2

∂2H
∂u2

∣∣∣∣
un

(·, ∂tun) +O(∆t2). (4.17)

Expanding D we get

D[un+1, . . . , un+k−1] = D[un] + ∆t

k−1∑
j=1

j
∂D

∂wj

∣∣∣∣
u

(∂tu
n) +O(∆t2). (4.18)

If the cyclicity condition (4.15) holds for D, we can simplify (4.18) to obtain

D[un+1, . . . , un+k−1] = D[un] +
k(k − 1)∆t

2

∂D

∂w1

∣∣∣∣
u

(∂tu
n) +O(∆t2)

= D[un] +
k∆t

2

∂D
∂u

∣∣∣∣
un

(∂tun) +O(∆t2). (4.19)

By substituting into (4.13) the expressions (4.16), (4.17) and (4.19), all terms
of zeroth and first order cancel and we are left with O

(
(∆t2)

)
.

Theorem 4.5. Suppose that the polarised Hamiltonian H is a quadratic poly-
nomial in each of its arguments, then the PAVF scheme is linearly implicit

Proof. Since H is at most quadratic in the first argument, it follows from (2.5)
that δH

δw1
is of degree at most 1 in its first argument, and so we see from (4.12)

that
δH

δ(Un, . . . , Un+k)

is linear in Un+k. Since D does not depend on Un+k we conclude that the
scheme (4.13) is linearly implicit.

In some cases one wishes to have time-symmetric numerical schemes, see for
example [18]. The numerical scheme (4.13) will in general not be symmetric,
however it is not hard to modify the procedure to yield symmetric schemes.
One needs to polarise H such that H is invariant also when the order of its
arguments is reversed, it turns out that this can be achieved by symmetrising
over the dihedral group rather than just the cyclic one. A similar adjustment
must be made for D.

We remark that one can construct explicit schemes by using p time steps (as
opposed to k) in H such that H becomes p-linear (as opposed to k-quadratic).
The rest of the procedure for the explicit case is the same as for the linearly
implicit case. Clearly, one expects that explicit schemes will have more severe
stability restrictions than the linearly implicit ones.
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Since these multistep schemes need the k previous values, it is not self-
starting. We have to provide the starting-values U1, . . . , Uk in addition to the
initial value U0. Usually these are computed using another sufficiently accurate
conservative scheme, such as for example the AVF scheme. Another possibility
is to use any integrator and integrate to machine precision.

4.3 Stability

In [9] we studied linearly implicit schemes for the cubic Schrödinger equation,
and found that two-step schemes can develop a two-periodic instability in time.
We also saw that this can be remedied by choosing a different polarisation of
the Hamiltonian.

As it turns out, a common case is when the Hamiltonian is a univariate poly-
nomial of degree 4 or less. If we polarise this Hamiltonian using two time-steps,
we get three linearly independent H, corresponding to (4.6), (4.7), and (4.8).
The third and fourth degree Hamiltonians are uniquely given. However, in the
second degree case we can choose θ ∈ [0, 1] such that the scheme becomes un-
stable. Since Hamiltonians of the type (4.6) appear in many important PDEs
it may be useful to determine which θ ∈ [0, 1] lead to unstable schemes.

We choose to study the test equation with Hamiltonian

H[u] =
1

2

∫
Ω

u2
x dx,

and a skew-symmetric operator D which satisfies the eigenvalue equation

Deikx = iλkeikx, λk ∈ R

for all integers k. The Airy equation

ut + uxxx = 0

is of this type with D = −∂x and λk = −k. Other equations which have such
terms in the Hamiltonian include the nonlinear Schrödinger equation, the linear
wave equation, the KdV equation, and the Kadomtsev-Petviashvili equation.

Rewriting (4.6) gives

H[v, u] =
1

2

∫ (
θ
u2
x + v2

x

2
+ (1− θ)uxvx

)
dx.

And the numerical scheme is

Un+2 − Un
2∆t

= −D
(
θ
Un+2
xx + Unxx

2
+ (1− θ)Un+1

xx

)
. (4.20)

Since this is a linear equation we can use von Neumann stability analysis [8].
We insert the ansatz

Un(x) = ζneikx

to obtain the quadratic equation

(1− θτ i)ζ2 − 2(1− θ)τ iζ − (1 + θτ i) = 0, τ = λk∆tk2. (4.21)
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Figure 4.1: The numerical solution of the Airy equation with two different values
of θ. The two solutions are shown after n = 106 time steps (θ = 0.5) and n = 115
time steps (θ = 0.49).

A necessary condition for stability is |ζ| ≤ 1 which implies

θ ≥ 1

2
− 1

2τ2
.

Assuming that {λkk2}k∈Z is unbounded, we must require that θ is chosen
greater than or equal 1

2 . This is exactly the condition found in [9] for the cubic
Schrödinger equation. When θ ≥ 1

2 the roots of (4.21) satisfy |ζ1| = |ζ2| = 1.
In Figure 4.1 we solve the Airy equation with the scheme (4.20) using θ = 0.5

and θ = 0.49. We use the initial value u(x, 0) = sin(x), which, in the exact case,
yields the traveling wave solution u(x, t) = sin(x + t). The θ = 0.49 solution
blows up in few time steps, while the θ = 0.50 solution shows no signs of
instability. Doing a discrete Fourier transform of the unstable solution we see
that the instability starts at high frequencies, that is large k, which corresponds
to the results shown above.

There might be cases where the scheme develop instabilities due to spurious
modes no matter what polarisation one chooses. A full stability analysis of
either the fully or linearly implicit schemes is to our knowledge not been done.
Standard linearisation techniques will usually lead to the conclusion that the
schemes are neutrally stable. The nonlinear effects, however small, may still
cause the scheme to be unstable. The tests we have done on a wide range of
PDEs seem to indicate that the stability usually is very good, future work may
shed a light on this issue.
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5 Space discretisation

Until now we have mostly considered the situation where the PDE is discretised
in time while remaining continuous in space. The methodology developed in
the previous sections apply equally well to systems of ODEs. Arguably, the
most straightforward approach is simply to discretise the space derivatives in
the Hamiltonian, for instance by finite differences. This leads to

H(u) −→ Hd(u).

One also needs to replace the skew-symmetric operator D by a skew-symmetric
matrix Dd. The fully implicit method reviewed in Section 3 is then just the
discrete gradient method (3.1), which conserves the discretised Hamiltonian
Hd(u) in every time step.

We consider now finite difference approximations. The function space to
which the solution u belongs, is replaced by a finite dimensional space with
functions on a grid indexed by Ig ⊂ Zd. We use boldface symbols for these
functions. Let there be Nr grid points in the space direction r so that N =
N1 · · ·Nd is the total number of grid points. We denote by uα the approximation
to uα on such a grid, and by u the vector consisting of (u1, . . . ,um). We will
replace each derivative uαJ by a finite difference approximation δJuα, and replace
the integral by a quadrature rule. We then let

Hd(u) =
∑
i∈Ig

bi(Gd((δJu)))i ∆x. (5.1)

Here ∆x is the volume (length, area) of a grid cell and b = (bi)i∈Ig are the
weights in the quadrature rule. The discretised Gd has the same number of
arguments as G, and each input argument as well as the output are vectors in
RN . We have here approximated the function uαJ by a difference approximation
δJuα, where δJ : RN → RN is a linear map. As in the continuous case, we
use square brackets, say F [u], as shorthand for a list of arguments involving
difference operators F [u] = F (u, δJ1u, . . . , δJqu). We compute

Hd[u]−Hd[v] =∑
i∈Ig

bi
∑
J,α

∫ 1

0

(
∂Gd
∂δJuα

)
i

[ξu + (1− ξ)v]dξ(δJ(uα − vα)) ∆x

= 〈 δHd
δ(v,u)

,u− v〉 (5.2)

where
δHd
δ(v,u)

=
∑
J,α

δTJ B

(∫ 1

0

∂Gd
∂uJ

[ξuα + (1− ξ)vα] dξ

)
,

B is the diagonal linear map B = diag(bi), i ∈ Ig, and the discrete inner product
used in (5.2) is

〈u,v〉 =
∑
α,i∈Ig

uαi vαi .

Notice the resemblance between the operator acting on Gd in (5.2) and the
continuous Euler operator in (2.5). Alternatively, suppose that
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1. The spatially continuous method (3.5) (using (3.6)) is discretised in space,
using a skew-symmetric Dd and a selected set of difference quotients δJ
for each derivative ∂J .

2. Considering (2.4) and (2.5), the choice of discretisation operators δJ used
in ∂G/∂uαJ [u] is arbitrary, but the corresponding DJ is replaced by the
transpose δTJ .

In this case, using the same Dd, an identical set of difference operators in dis-
cretising H (5.1), and choosing all the quadrature weights bi = 1 the resulting
scheme would be the same as that given by procedure outlined in the two points
above. That is, one can get the same scheme by either discretising the Hamil-
tonian in space first (and then deriving the scheme) or discretising the scheme
in space first (and then deriving the conserved Hamiltonian).

Letting the rth canonical unit vector in Rd be denoted er, we define the
most used first order difference operators

(δ+
r u)i =

ui+er − ui

∆xr
,

(δ−r u)i =
ui − ui−er

∆xr
,

(δ〈1〉r u)i =
ui+er − ui−er

2∆xr
.

These difference operators are all commuting, but only the last one is skew-
symmetric. However, for the first two one has the useful identities

(δ+
r )T = −δ−r , (δ−r )T = −δ+

r .

Higher order difference operators δJ can generally be defined by taking compo-
sitions of these operators, in particular we shall consider examples in the next
section using the second and third derivative approximations

δ〈2〉r = δ+
r ◦ δ−r , δ〈3〉 = δ〈1〉 ◦ δ〈2〉.

We may now introduce numerical approximations Un representing the fully
discretised system, the scheme is

Un+1 −Un

∆t
= Dd

δHd
δ(Un,Un+1)

.

The conservative schemes based on polarisation are adapted in a straight-
forward manner, introducing a function Hd[w1, . . . ,wk] which is consistent and
cyclic as in (4.1), (4.2), and a skew-symmetric map Dd depending on at most
k − 1 arguments. The scheme is then

Un+k −Un

k∆t
= kDd

δHd

δ(Un, . . . ,Un+k)
. (5.3)

This scheme conserves the function Hd in the sense that

Hd[U
n+1, . . . ,Un+k] = Hd[U

0, . . . ,Uk−1], n ≥ 0.
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6 Examples

To illustrate the procedures for constructing conservative schemes presented in
this paper we consider as an example the generalised Korteweg-de Vries (gKdV)
equation

ut + uxxx + (up−1)x = 0

for an integer p ≥ 3, see for example [28]. The case p = 3 is the KdV equation
(1.1), the case p = 4 is known as the modified KdV equation, and p = 6
is sometimes referred to as the mass critical generalised KdV equation. The
gKdV can be written as (2.1) with

H[u] =

∫
Ω

(
1

2
u2
x −

1

p
up
)

dx, D =
∂

∂x
.

The AVF discrete variational derivative (3.6) gives rise to the fully implicit
scheme (3.5)

Un+1 − Un
∆t

+
Un+1
xxx + Unxxx

2
+

1

p

(
p−1∑
i=0

(Un+1)p−1−i(Un)i

)
x

= 0. (6.1)

After applying the polarising procedure of Section 4.1 to H =
∫

Ω
G dx we

get H =
∫

Ω
Gdx which depends on k = dp/2e arguments

G[w1, . . . , wk] =
1

2k

k∑
i=1

(wi)
2
x −

{
1
pk

(∏k
j=1 w

2
j

)(∑k
i=1

1
wi

)
, p odd,

1
p

∏k
j=1 w

2
j , p even.

After finding the AVF discrete variational derivative from (4.12) we get the
linearly implicit PAVF scheme (4.13)

Un+k − Un
k∆t

+
Un+k
xxx + Unxxx

2

+


1
p

[(∏k−1
j=1 (Un+j)2

)(∑k−1
i=1

Un+k+Un

Un+i + 1
)]

x
= 0, p odd,

1
2

[(∏k−1
j=1 (Un+j)2

) (
Un+k + Un

)]
x

= 0, p even.
(6.2)

Notice that Un+k is indeed only appearing as linear terms in this scheme. The
schemes (1.2) and (1.3) are found by setting p = 3 (k = 2) in (6.1) and (6.2),
respectively. Following the procedure of Section 5 one can get a fully discretised
scheme by replacing U by U and the first and third derivative operators by δ〈1〉

and δ〈3〉 respectively.
In the Figures 6.1 and 6.2 we compare the conservative methods (1.2) and

(1.3) with the fully implicit midpoint method

Un+1 − Un
∆t

+
Un+1
xxx + Unxxx

2
+

((
Un+1 + Un

2

)2
)
x

= 0 (6.3)

and a naive linearly implicit method

Un+1 − Un
∆t

+
Un+1
xxx + Unxxx

2
+
(
UnUn+1

)
x

= 0. (6.4)
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We test the four methods on a traveling wave solution

Φ(x− ct) =
3c

2
sech2

(
3
√
c

2
(x− ct)

)
, c > 0

using the parameters c = 1, x = (−5, 5), ∆x = 10
32 and ∆t = 0.1. As an

indication of the long time behaviour of the presented schemes we consider to
which extent the methods are able to preserve the shape and propagation speed
of a traveling wave solution. We define the two quantities

εshape = min
τ
‖Un − Φ(· − τ)‖22 (6.5)

and

εdistance = |argmin
τ
‖Un − Φ(· − τ)‖22 − ctn|. (6.6)

Thus εshape measures the shape error of the numerical solution, and εdistance

measures the error in the travelled distance of the numerical solution.
We see in Figure 6.1 the fully implicit schemes preserves the shape better

than the linearly implicit ones, and that the conservative schemes perform better
than the non-conservative ones. In Figure 6.2 we see that the linearly implicit
schemes have a more accurate phase speed than the fully implicit ones. Figure
6.3 shows the global error as a function of the time step. As expected the plot
shows that the four methods are second order and that the linearly implicit
schemes are inaccurate for large ∆t. In conclusion we see that the linearly
implicit conservative scheme performs comparably to the other methods while
being more efficient (the latter is shown in Figure 1.1).
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