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QUICKEST DETECTION IN COUPLED SYSTEMS∗

HONGZHONG ZHANG † , OLYMPIA HADJILIADIS ‡ , TOBIAS SCHÄFER § , AND

H. VINCENT POOR ¶

Abstract. This work considers the problem of quickest detection of signals in a coupled system
of N sensors, which receive continuous sequential observations from the environment. It is assumed
that the signals, which are modeled by general Itô processes, are coupled across sensors, but that
their onset times may differ from sensor to sensor. Two main cases are considered; in the first
one signal strengths are the same across sensors while in the second one they differ by a constant.
The objective is the optimal detection of the first time at which any sensor in the system receives a
signal. The problem is formulated as a stochastic optimization problem in which an extended minimal
Kullback-Leibler divergence criterion is used as a measure of detection delay, with a constraint on the
mean time to the first false alarm. The case in which the sensors employ cumulative sum (CUSUM)
strategies is considered, and it is proved that the minimum of N CUSUMs is asymptotically optimal
as the mean time to the first false alarm increases without bound. In particular, in the case of equal
signal strengths across sensors, it is seen that the difference in detection delay of the N-CUSUM
stopping rule and the unknown optimal stopping scheme tends to a constant related to the number
of sensors as the mean time to the first false alarm increases without bound. Alternatively, in the
case of unequal signal strengths, it is seen that this difference tends to zero.
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1. Introduction. We are interested in the problem of quickest detection of the
onset of a signal in a system of N sensors. We consider the situation in which,
although the observations in one sensor can affect the observations in another, the
onset of a signal can occur at different times (i.e., change points) in each of the N
sensors; that is, the change points differ from sensor to sensor. As an example in which
this situation arises consider a system of sensors monitoring the health of a physical
structure in which fault conditions are manifested by vibrations in the structure.
Before a change affects a given sensor, we have only noise in that sensor. Then, after
a change, the system is vibrating and thus the signal received in any location reflects
a vibrating system. Thus, observations at any given sensor are coupled with those
received in other locations. The change points observed at different sensors can occur
at different times because the source of the vibrations (i.e., the excitation) may arrive
at different structural elements at different times. Relevant literature related to such
models includes, for example, [1, 2, 3, 7, 14, 15, 24].
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2 Quickest detection

We assume that, after re-scaling by a constant factor, the probability law of
the observations is the same across sensors. This assumption, although seemingly
restrictive, is realistic in view of the fact that the system of sensors is coupled. The
constant then reflects the fact that signal strength can differ in different locations in
the system of sensors. We model the signals through continuous-time Itô processes.
The advantage of such models is the fact that they can capture complex dependencies
in the observations. For example, an autoregressive process is a special case of the
discrete-time equivalent of an Ornstein-Uhlenbeck process, which in turn, is a special
case of an Itô process. Other special cases of this model include Markovian models,
and linear state-space systems commonly used in vibration-based structural analysis
and health monitoring problems [1, 2, 3, 7, 14, 15, 24]. It is important to stress that
the fact that the system of N sensors is coupled makes the probabilistic treatment of
the problem equivalent to the one in which all observations become available in one
location. The reason is that one integrated information flow is sufficient for describing
such a system.

Our objective is to detect the first onset of a signal in such a system. In other
words, we wish to detect the first change point in the system of sensors described
above. Our problem is thus concerned with on-line change detection. We assume
that the change points are unknown constants and adopt a min-max approach to the
detection of the minimal one. We set up the problem as a stochastic optimization
problem in which the objective is to minimize an extended Kullback-Leibler distance
which serves as a detection delay subject to a lower bound in the mean time to the
first false alarm. So far, of the min-max type of a set-up only the case of an uncoupled
system of observations has been considered and only in the case that the signals across
sensors are modeled as independent Brownian motions with constant drifts [13].1 Our
problem is also similar to the one discussed in [5] which is concerned with the detection
of the minimum of two Poisson disorder times, but in which a Bayesian approach to
modeling the change points is taken. Another interesting filtering approach to change-
point detection is developed in a Bayesian framework in [30]. Recently the case was
also considered of change points that propagate in a sensor array [26]. However,
in this configuration the propagation of the change points depends on the unknown
identity of the first sensor affected and considers a restricted Markovian mechanism of
propagation of the change. For a summary of the latest work on the topic of quickest
detection, please consult [25].

In this paper we consider the case in which the change points can be different and
do not propagate in any specific configuration. The objective is to detect the minimum
(i.e., the first) of the change points. We demonstrate that, in the situation described
above, at least asymptotically, the minimum of N cumulative sums (CUSUMs) [22,
29], is asymptotically optimal in detecting the minimum of the N different change
points, as the mean time to the first false alarm tends to infinity, with respect to an
appropriately extended Kullback-Leibler divergence criterion [21] that incorporates
the possibility of N different change points. The results in this paper generalize those
of [13] in that the minimum of N CUSUMs is asymptotically optimal not only in the
case in which the observations across sensors are independent but also in the case in
which they are coupled. In fact in this paper we not only generalize the asymptotic
optimality of the N -CUSUM stopping rule to a coupled system of observations but
also to more general Itô dynamics rather than the restricted Brownian motion model
of observations.

1The situation with correlated Brownian motions is studied in [31, 32].
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In the next section we formulate the problem and identify the quantities of inter-
est. In §3 we analyze the properties of the proposed N -CUSUM stopping rule. In §4,
we provide asymptotic expansions of the quantities of interest as the threshold pa-
rameters of the N -CUSUM stopping rule tend to infinity. In §5, we demonstrate that
the minimum of N CUSUM stopping rules is asymptotically optimal in an extended
Kullback-Leibler sense both in the case of equal and in the case of unequal signal
strengths. The proofs of lemmas and propositions that are omitted can be found in
appendices. Throughout the paper, we denote by R = (−∞,∞), R+ = [0,∞) and
R+ = [0,∞].

2. Mathematical formulation. We sequentially observe the processes {Z(i)
t }t≥0

for all i ∈ {1, . . . , N}. In order to formalize this problem we consider filtered proba-

bility space (Ω,F,P) with filtration F = {Ft}t≥0 and Ft = σ{(Z(1)
s , . . . , Z

(N)
s ); s ≤ t}.

The processes {Z(i)
t }t≥0 for all i ∈ {1, . . . , N} are Itô processes satisfying:

dZ
(i)
t =

{

dw
(i)
t t ≤ τi

α
(i)
t dt+ dw

(i)
t t > τi,

(2.1)

where {w(i)
t }t≥0’s are independent standard Brownian motions, and τ ′is ∈ R+ denote

the times of change-points, which are assumed to be deterministic constants but
otherwise unknown. Throughout, we will denote the minimum of τi’s by,

2

τ̃ := min
1≤i≤N

{τi}.

Finally, we assume that α
(i)
t = αi(t;Z

(1)
· , . . . , Z

(N)
· ) for some predictable real-valued

function αi on R+ × (C(R+))
N , satisfying the Lipschitz condition and linear growth

condition (see for example, Theorem 2.9 on page 289 of [16], or Theorem 2.1 on page
375 of [28]).

The case considered in this paper is that in which there exist constants {ci}1≤i≤N

such that the drift processes after τi’s are proportional to one another. More specifi-
cally, without loss of generality, we assume that:

Assumption 1. There exist 1 = c1 ≤ |c2| ≤ . . . ≤ |cN | such that the processes

|α(1)
t |, |c2α(2)

t |, . . ., |cNα
(N)
t | are modifications of one another under P.

In particular, we examine two cases that are treated separately in the sequel; the
first one corresponds to signal-strength symmetry across sensors and the second one
corresponds to across sensors. The former is described mathematically by assuming
|ci| = 1 for all i ∈ {1, . . . , N} and the latter, can be captured mathematically by
assuming max2≤i≤N |ci| > 1.

Although Assumption 1 is mathematically necessary for the main results of this

paper, in most applications the nature of α
(i)
t ’s is the same across i. In fact, in

most applications the signal observed across all sensors i is the same but can be felt
at different strengths (the constants ci represent the different strengths) in different
sensors. Our formulation treats the general case in which the signal can arrive at
different points in time in different sensors.

In what follows we describe an example of two sensors each meant to capture two
coupled waves that are emitted as one seismic signal after the onset of an earthquake,
namely the S wave and the T-wave (see, for instance, the discussion following page

2As a convention, if τi = ∞ for all i ∈ {1, . . . , N}, we let τ̃ = ∞.
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392 in [4]). These waves are not only buried in noise but have the tendency to interact
with each other making the detection of their onset particularly difficult and giving
obvious rise to a coupled system. These waves in practice may actually have different

onsets as discussed in [4]. Let us now represent by Z
(1)
t and Z

(2)
t the observations

received in the sensors meant to detect the onset of the earthquake. Before the
onset of the earthquake both observations are simply noise. After the onset of the
earthquake a signal will be emitted but may be received at different points in time
in the different sensors. The models used to capture signals are often autoregressive
[4] whose continuous-time equivalents are Ornstein-Uhlenbeck processes. Thus we

need to allow for α
(i)
t to depend on Z

(i)
t . Of course more general models would be

necessary in order to capture dependence on past oservations as well. This is the

reason that in our model (2.1), α
(i)
t are generalized to depend on the whole of the

path of the observations Z
(i)
t up to time t. Moreover, a stronger intensity in one of the

two waves is known to result in a stronger intensity in the other [4]. This could then

be modeled by allowing both α
(1)
t and α

(2)
t to have a positive dependence on Z

(2)
t and

Z
(1)
t respectively (note that this dependence does not have to be linear and could in

general cases depend on prior observations too-not just the ones at the current time).
Even though the two waves are different, they do give rise to the same signal which
may be felt with a different strength in each of the sensors and thus the restriction

c2α
(2)
t = α

(1)
t with c2 > 0, although may appear restrictive, is in fact not far from

modeling reality. We notice of course that in this example we do not have to impose

the absolute value condition as both α
(1)
t and α

(2)
t will have the same sign.

Another application is that of a vibrating mechanical system where each sensor
may be monitoring a different location on the structure. The signal causing the
vibration can be felt at different times in different locations and also with different
strengths ci. Let Z

(i)
t represent the observations at sensor i. At first there is no signal

and the sensors only observe noise. After the onset of the signal, which may be felt at
different times in different sensors, a signal arrives. A signal causing a vibration in one
location may also affect the observations received in another. This leads to feedback

[1]-[3], which can then be modeled by allowing α
(i)
t to depend on the observations

received at all sensors. Also the signal may be more pronounced in one sensor than
in another depending on the location of the sensor. This can be captured by allowing
the ci’s to be different across sensors. In fact, by allowing the ci’s to have different
signs we are able to capture the situation in which the sensors are hit by the signal
from opposite directions.

The filtration F is the filtration generated by the observations received by all

sensors. Thus by requiring that α
(i)
t be Ft-measurable for all i , we have managed to

capture the coupled nature of the system. In particular, in the special case in which,

say, α
(1)
t = −r

∑N
i=1 Z

(i)
t , (2.1) describes a process that displays an autoregressive (or

its continuous equivalent [23]) behavior in {Z(1)
t }t≥0, while still being coupled with

the observations received by the other sensors. More specifically, the magnitude of

each increment of the process {Z(1)
t }t≥0 at each instant t is not only affected by Z

(1)
t

but also by Z
(i)
t , i = 2, . . . , N , the observations at sensors 2, . . . , N . This couples

the observations received in sensor 1 with those received in sensors 2, . . . , N at each
instant t and results in a system of interdependent sensors. We notice that the special
case described above can also be written in the form of a linear state-space model as
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follows:

dZ
(i)
t = −r1{t>τi}

( N
∑

j=1

Z
(j)
t

)

dt+ dw
(i)
t , i ∈ {1, . . . , N}.(2.2)

Autoregressive models and, more generally, linear state space models have been used
to capture seismic signals, navigation systems, vibrating mechanical systems, etc [4].
The generality of (2.1) however is much greater than the special case described above.

This is seen in the fact that α
(i)
t at each instant t can depend on the totality of the

observed paths of each of the signals received up to time t. Notice that this linear
model clearly satisfies both the Lipschitz condition and the linear growth condition.
To incorporate the different signal strength in each of the sensor observations, we
could update the present model in (2.2) by having different constants in each row of
the second N ×N matrix appearing in the equation of the linear system above.

To formulate our problem mathematically, we will work with the canonical space
(C(R+))

N endowed with the filtration B = {Bt}t≥0, where Bt = σ(ω(s); s ≤ t) is the
Borel σ-algebra generated by the the joint coordinate mapping ω = (ω1, . . . , ωN): for

Z
(i)
s (ω) = ωi(s), s ≥ 0, i ∈ {1, . . . , N}.

We introduce a family of probability measures on ((C(R+))
N ,B): {Pt}t∈(R+)N ,

where Pt for a fixed t = (τ1, . . . , τN ) ∈ (R+)
N corresponds to the measure generated

on (C(R+))
N by the N -dimensional process {(Z(1)

t , . . . , Z
(N)
t )}t≥0 when the change in

Z
(i)
· occurs at time point τi, for all i ∈ {1, . . . , N}. In particular, the case that τi = ∞

for all i ∈ {1, . . . , N} corresponds to no change regime, where (Z
(1)
t , . . . , Z

(N)
t )t≥0 is

a N -dimensional Brownian motion; and the measure generated on (C(R+))
N is the

the N -dimensional Wiener measure, which we denote by Pt∞ for t∞ := (∞, . . . ,∞).
Now we can restate Assumption 1 as the following:

Assumption 2. There exist 1 = c1 ≤ |c2| ≤ . . . ≤ |cN | such that the processes
|α1(t;ω)|, |c2α2(t;ω)|, . . ., |cNαN (t;ω)| are modifications of one another under Pt for
all t ∈ (R+)

N .

We will also assume the drift functions αi(·; ·) satisfy the Novikov condition:

Assumption 3. For all t ∈ R+, we have

(2.3) Et∞

{

exp

(

1

2

∫ t

0

N
∑

i=1

(αi(s;ω))
2ds

)}

< ∞.

By Theorem 1.10 on page 371 of [28], we know that, if the change-points satisfy
0 ≤ τ1 < τ2 < min2<i≤N{τi}, we have

dP(τ1,τ2,...,τN)

dP(∞,∞,...,∞)

∣

∣

∣

∣

Bt

=
dP(τ1,∞,...,∞)

dP(∞,∞,...,∞)

∣

∣

∣

∣

Bt

= exp(u1(t)− u1(t ∧ τ1)), ∀t ∈ [0, τ2], and

dP(τ1,τ2,τ3,...,τN)

dP(τ1,∞,∞,...,∞)

∣

∣

∣

∣

Bt

=
dP(τ1,τ2,∞,...,∞)

dP(τ1,∞,∞,...,∞)

∣

∣

∣

∣

Bt

= exp(u2(t)− u2(τ2)), ∀t ∈ [τ2, min
2<i≤N

{τi}],

and so on, where, for all i ∈ {1, . . . , N},

(2.4) ui(t) :=

∫ t

0

αi(s;ω)dωi(s)−
∫ t

0

1

2
(αi(s;ω))

2ds.
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In general, for all t = (τ1, . . . , τN ) ∈ (R+)
N we have that,

(2.5)
dPt

dPt∞

∣

∣

∣

∣

Bt

= exp

( N
∑

i=1

(ui(t)− ui(t ∧ τi))

)

, ∀t ∈ R+.

Our objective is to find an B-stopping rule T that balances the trade-off between
a small detection delay subject to a lower bound on the mean-time to the first false
alarm and will ultimately detect τ̃ .

To this effect, we propose a generalization of the JKL of [21], namely

J
(N)
KL (T ) := sup

t=(τ1,...,τN)∈(R+)N

τ̃<∞

essup Et

{

1{T>τ̃}

∫ T

τ̃

1

2
(α1(s;ω))

2ds|Bτ̃

}

,(2.6)

where the supremum over t = (τ1, . . . , τN ) is taken over the set in which τ̃ < ∞.
That is, we consider the worst detection delay over all possible realizations of paths of

the N -tuple of stochastic processes {(Z(1)
t , . . . , Z

(N)
t )}t≥0 up to τ̃ and then consider

the worst detection delay over all possible N -tuples t = (τ1, . . . , τN ) over a set in
which at least one of them is forced to take a finite value. This is because T is a
stopping rule meant to detect the minimum of the N change points and therefore
if one of the N processes undergoes a regime change, any unit of time by which T
delays in reacting, should be counted towards the detection delay. This gives rise to
the following stochastic optimization problem:

(2.7)
infT∈Bγ

J
(N)
KL (T )

with Bγ = {B-stopping rule T : Et∞{
∫ T

0
1
2 (c

−1
N α1(s;ω))

2ds} ≥ γ}
,

The constraint in the above optimization problem is a measure on the first time to

the first false alarm. To see this, one can recognize the functional
∫ t

0
1
2 (α

(i)
s )2ds as

a measure of accumulation of energy of the signal [18] up to time t. The above
constraint involves the expected value of this functional under the regime of no signal
up to the time of stopping and is thus a measure of a mean time to the first false
alarm [18, 21, 25]. Similarly, the criterion (2.6) captures the accumulation of energy
of the signal after the first instance at which a signal becomes available. It is possible
to motivate this criterion through a Kullback-Leibler distance. To be more specific,
for any bounded stopping rule T such that

c2i

∫ T

0

αi(s;ω)
2ds =

∫ T

0

α1(s;ω)
2ds < ∞, Pt-a.s., ∀t = (τ1, . . . , τN ) ∈ (R+)

N ,

we can apply (2.5) to obtain that

Et

{

log
dPt

dPt∞

∣

∣

∣

∣

BT

|Bτ̃

}

= Et

{ N
∑

i=1

(ui(T )− ui(T ∧ τi))|Bτ̃

}

=
N
∑

i=1

Et

{

1{T>τi}

(
∫ T

τi

αi(s;ω)dωi(s)−
∫ T

τi

1

2
(αi(s;ω))

2ds

)

|Bτ̃

}

=

N
∑

i=1

Et

{

1{T>τi}

∫ T

τi

1

2
(αi(s;ω))

2ds|Bτ̃

}

,
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giving rise to the criterion

J (T ) := sup
t=(τ1,...,τN )∈(R+)N

τ̃<∞

essup

N
∑

i=1

Et

{

1{T>τi}

∫ T

τi

1

2
(αi(s;ω))

2ds|Bτ̃

}

,

which can be upper bounded by the criterion in (2.6) as follows:

J (T ) ≤ sup
t=(τ1,...,τN )∈(R+)N

τ̃<∞

N
∑

i=1

essupEt

{

1{T>τi}

∫ T

τi

1

2
(αi(s;ω))

2ds|Bτ̃

}

(2.8)

= sup
t=(τ1,...,τN )∈(R+)N

τ̃<∞

N
∑

i=1

essupEt

{

1{T>τi}(ci)
−2

∫ T

τi

1

2
(α1(s;ω))

2ds|Bτ̃

}

≤N sup
t=(τ1,...,τN )∈(R+)N

τ̃<∞

essupEt

{

1{T>τi}

∫ T

τi

1

2
(α1(s;ω))

2ds|Bτ̃

}

≤NJ
(N)
KL (T ).

Similarly, for the false alarms we notice that

Et∞

{ N
∑

i=1

∫ T

0

1

2
(αi(s;ω))

2ds

}

≥N min
1≤i≤N

Et∞

{
∫ T

0

1

2
(αi(s;ω))

2ds

}

(2.9)

=NEt∞

{
∫ T

0

1

2
(c−1

N α1(s;ω))
2ds

}

.

Dividing the upper bound in (2.8) and the lower bound in (2.9) by the number of
sensors N results in the optimization problem given in (2.7).

Inspired by the optimality of equalizer rules as seen in [13, 31], we will examine
the performance under (2.6), of an (almost) equalizer rule T which reacts at exactly
the same time regardless of which change takes place first. To be more specific, let us
define

J
(N)
j (T ) := sup

t=(τ1,...,τN )∈(R+)N

τj=τ̃<∞

essupEt

{

1{T>τj}

∫ T

τj

1

2
(α1(s;ω))

2ds|Bτj

}

,(2.10)

for all j ∈ {1, . . . , N}. That is, J (N)
j (T ) is the detection delay of the stopping rule T

when τj = τ̃ is the first change-point. Then for all stopping rules T ∈ Bγ ,

J
(N)
KL (T ) = max

{

J
(N)
1 (T ), J

(N)
2 (T ), . . . , J

(N)
N (T )

}

.(2.11)

We will restrict our attention to stopping rules T ∈ Bγ that achieve the false alarm
constraint with equality [20, 21]:

(2.12) Et∞

{
∫ T

0

1

2
(c−1

N α1(s;ω))
2ds

}

= γ,
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and the “equalizer rule” condition:

(2.13) J
(N)
j (T ) = J

(N)
1 (T ) + o(1), ∀j ∈ {1, 2, . . . , N},

as γ → ∞. Clearly, from (2.11) we know that, for such stopping rules we may simplify

the performance index J
(N)
KL (T ) as

J
(N)
KL (T ) = J

(N)
1 (T ) + o(1),

as γ → ∞. While, given the complexity due to the dimensionality of the problem,
it seems a formidable task to determine the exactly optimal stopping rule for (2.7),
asymptotic expansions like (2.13) will make it possible to find an asymptotically op-
timal stopping rule for our problem (2.7).

To construct such a candidate stopping for problem (2.7), recall that in the case
of N = 1, the drift, α1(t;ω1), is measurable with respect to the filtration generated by

the coordinate mapping Z
(1)
t (ω) = ω1(t), t ≥ 0, which we denote by G

(1) = {G(1)
t }t≥0.

Then it is known from [21] that the problem in (2.7), when N = 1, is solved by the
so-called CUSUM stopping rule:

S(1)
ν = inf{t ≥ 0 : y(t) = ν}, with y(t) = sup

0≤s≤t
log

dPs

dP∞

∣

∣

∣

∣

G
(1)
t

.(2.14)

where Ps is the measures generated by {Z1
t }t≥0 on C(R+), when the change-point

τ1 = s; and P∞ is the Wiener measure on C(R+). The threshold ν > 0 in (2.14) is

chosen so that E∞{
∫ S(1)

ν

0
1
2 (α(s;ω1))

2ds} = γ. Furthermore, with

(2.15) g(ν) := eν − ν − 1,

the threshold ν is the unique positive solution to g(ν) = γ, and the optimal detection
delay is given by

J
(1)
KL(S

(1)
ν ) = E0

{
∫ S(1)

ν

0

1

2
(α1(s;ω1))

2ds

}

= g(−ν).

In the proof in [21] that proves the optimality of the CUSUM stopping rule
(2.14) to the one-dimensional equivalent of (2.7), one vital assumption is necessary
for the finiteness (see Theorem 1 of [21]) of the CUSUM stopping rule (2.14) and the
martingale properties of stochastic integrals, i.e., for τ1 ∈ {0,∞}, and any t ∈ R+,

Pτ1

(
∫ ∞

0

1

2
(α1(s;ω1))

2ds = ∞
)

= Pτ1

(
∫ t

0

1

2
(α1(s;ω1))

2ds < ∞
)

= 1.

Intuitively, a physical interpretation of the above assumption is that the signal over
the whole positive real line has infinite energy, and thus the CUSUM stopping rule

S
(1)
ν in (2.14) will goes off in finite time with probability 1.

In this work, we will thus assume analogous conditions:
Assumption 4. For all τi ∈ {0,∞}, i ∈ {1, . . . , N}, and any t ∈ R+,

P(τ1,...,τN)

(
∫ ∞

0

1

2
(α1(s;ω))

2ds = ∞
)

= 1,(2.16)

P(τ1,...,τN )

(
∫ t

0

1

2
(α1(s;ω))

2ds < ∞
)

= 1.(2.17)



Quickest detection 9

We comment that (2.17) is implied by (2.3), since the measures Pτ1,...,τN |Bt
are all

equivalent under (2.3).
A class of functions αi(·; ·)’s that satisfy (2.3), (2.16) and (2.17) are the uniformly

bounded Lipschitz continuous functions that are also uniformly bounded away from
0. It can be easily shown that linear state space models of the form (2.2) also satisfy
(2.3), (2.16) and (2.17).

Lemma 2.1. If α1(t;ω) =
∑N

i=1 βiωi(t), and αj(t;ω) = cjα1(t;ω) for some real

constants βi, cj such that
∑N

i=1 β
2
i > 0 and |cN | ≥ . . . ≥ |c2| ≥ c1 = 1, then (2.3),

(2.16) and (2.17) hold.
The optimality of the CUSUM stopping rule in the presence of only one obser-

vation process suggests that a CUSUM type of stopping rule might display similar
optimality properties in the case of multiple observation processes. In particular, an
intuitively appealing rule, when the detection of τ̃ = mini{τi} is of interest, is the

N -dimensional variant of the CUSUM stopping rule T~ = mini{T (i)
hi

}, where T
(i)
hi

is

the CUSUM stopping rule for the process {Z(i)
t }t≥0 for i ∈ {1, . . . , N}. That is, we

use what is known as a multi-chart CUSUM stopping rule [22], which can be written
as

T~ = inf

{

t ≥ 0 : max

{

y1(t)

h1
, . . . ,

yN (t)

hN

}

≥ 1

}

.(2.18)

Here for any i ∈ {1, . . . , N}, hi > 0 is the threshold for process {yi(t)}t≥0, and
{yi(t)}t≥0 is defined as (see (2.4)-(2.5)):

yi(t) := sup
0≤s≤t

log
dP(∞,...,s,...,∞)

dPt∞

∣

∣

∣

∣

Bt

= sup
0≤s≤t

{ui(t)− ui(s)} = ui(t)−mi(t)(2.19)

=

∫ t

0

αi(s;ω)dωi(s)−
1

2

∫ t

0

(αi(s;ω))
2ds−mi(t),

where P(∞,...,s,...,∞) is corresponding to the change-points τj = ∞ for all j 6= i and
τi = s, ui(t) is given in (2.4) and mi(t) := inf0≤s≤t ui(s). For any fixed large γ > 0,
the N -dimensional threshold vector ~ = (h1, . . . , hN ) ∈ (R+)

N is to be determined so
that both (2.12) and (2.13) hold.

We will give an analytical characterization of the stopping rule T~ in the next
section.

3. Multi-chart CUSUM stopping rule T~. In this section, we study several
property of the multi-chart CUSUM stopping rule T~ defined in (2.18). First, we
show its a.s. finiteness, and compute the Kulback-Leibler detection and false-alarm

divergence of T~. We then establish an upper bound for infT∈Bγ
J
(N)
KL (T ), which will

be used in Section 5 for asymptotic analysis. Throughout this section, we will denote
by Y (t) := (y1(t), . . . , yN(t)) for yi(t)’s defined in (2.19).

Let us begin by introducing a class of functions that will be used in the main
results. For any fixed vectors S = (S1, . . . ,SN ) ∈ {±1}N and ~ ∈ (R+)

N , we define
fS,~(·) as a C2 function on D~ := [0, h1]× . . .× [0, hN ], satisfying the following PDE:























N
∑

i=1

1

c2i

∂2fS,~

∂y2i
+

N
∑

i=1

Si

c2i

∂fS,~

∂yi
= −1, ∀(y1, . . . , yN ) ∈ D~,(3.1a)

∂fS,~

∂yi

∣

∣

∣

∣

yi=0

= fS,~|yi=hi
= 0.(3.1b)
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Using Feynman-Kac representation of fS,~, we obtain the following useful mono-
tonicity properties:

Lemma 3.1. For any S = (S1, . . . ,SN ) ∈ {±1}N , the function fS,~ defined in
(3.1a)-(3.1b) are decreasing in yi for each i. If S ′ = (S ′

1, . . .S ′
N ) ∈ {±1}N such that

S ′
i ≤ Si for any i = 1, . . . , N , then for all (y1, . . . , yN) ∈ D~,

(3.2) 0 ≤ fS,~(y1, . . . , yN ) ≤ fS′,~(y1, . . . , yN ) ≤ fS′,~(0, . . . , 0) < ∞.

Moreover, fS,~(0, . . . , 0) is strictly increasing in hi for each i.
The following technical lemma will also be useful for localization argument later.
Lemma 3.2. For any fixed τ, τ ′ ∈ R+, and a fixed t = (τ1, . . . , τN ) ∈ (R+)

N , we
have

Pt

(
∫ ∞

τ

1

2
(α1(s;ω))

2ds = ∞|Bτ ′

)

= 1.

Theorem 3.3. For any fixed vector ~ ∈ RN
+ , t = (τ1, . . . , τN ) ∈ R

N

+ such that
τ̃ = mini{τi} < ∞, the multi-chart CUSUM stopping rule T~ is a.s. finite:

Pt(T~ < ∞|Bτ̃ ) = 1, Pt-a.s.(3.3)

Define S(t; s) := (ϕ(τ1, s), . . . , ϕ(τN , s)) ∈ {±1}N with ϕ(τ, s) := 1{τ<s} − 1{τ≥s} for

τ ∈ R+ and s ∈ R+. Let us relabel (without repetition) the change-points τ1, . . . , τN
in increasing order: for some l ∈ {1, . . . , N − 1},

τ̃ = τ(1) < τ(2) < . . . < τ(l) < ∞ = τ(l+1).

Then we have

(3.4) Et

{

1{T~≥τ̃}

∫ T~

τ̃

1

2
(α1(s;ω))

2ds|Bτ̃

}

= 1{T~≥τ̃}

l
∑

j=1

Et{[fS(t;τ(j)),~(Y (τ(j) ∧ T~))− fS(t;τ(j)),~(Y (τ(j+1) ∧ T~))]|Bτ̃}.

Similarly, for a fixed t ∈ R+, we have

Pt∞(T~ < ∞|Bt) = 1, Pt∞ -a.s.(3.5)

Et∞

{

1{T~≥t}

∫ T~

t

1

2
(α1(s;ω))

2ds|Bt

}

= fS(t∞;t),~(y1(t), . . . , yN(t))1{T~≥t}.(3.6)

Proof. From Lemma 3.2, the stopping rules defined as

tn := inf

{

t ≥ τ̃ :

∫ t

τ̃

1

2
(α1(s;ω))

2ds ≥ n

}

, n ≥ 1,

are Pt-a.s. finite, and so is T n
~
:= T~ ∧ tn.

Let us apply Itô’s lemma to {fS(t;τ(j)),~(Y (t))}τ(j)∧Tn
~
≤t<τ(j+1)∧Tn

~
for any j ∈

{1, . . . , l}. Using (3.1a) we have that,

Et{fS(t;τ(j)),~(Y (τ(j+1) ∧ T n
~
))− fS(t;τ(j)),~(Y (τ(j) ∧ T n

~
))|Bτ̃}1{Tn

~
≥τ̃}

(3.7)

=Et

{
∫ τ(j+1)∧Tn

~

τ(j)∧Tn
~

N
∑

i=1

[
∂fS(t;τ(j)),~

∂yi
dyi(s) +

1

2

∂2fS(t;τ(j)),~

∂y2i
(αi(s;ω))

2ds]|Bτ̃

}

1{Tn
~
≥τ̃}.
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From (2.1), (2.4) and (2.19) we know that, for all i ∈ {1, . . . , N}, dyi(t) = dui(t) −
dmi(t) and

dui(s) = αi(s;ω)dBi(s) +
1

2
ϕ(τi, s)(αi(s;ω))

2ds,

where Bi(t) = ωi(t) − 1{t>τi}

∫ t

τi
αi(s;ω)ds, t ≥ 0, is a B-standard Brownian motion

under Pt. On the other hand, from Assumption 2, we have for all i ∈ {1, . . . , N} that

dui(s) = αi(s;ω)dBi(s) +
1

2
ϕ(τi, s)(c

−1
i α1(s;ω))

2ds.

By substituting the above formula into (3.7), we obtain

Et

{
∫ τ(j+1)∧Tn

~

τ(j)∧Tn
~

[
1

2

N
∑

i=1

(
ϕ(τi, τ(j))

c2i

∂fS(t;τ(j)),~

∂yi
+

1

c2i

∂2fS(t;τ(j)),~

∂y2i
)(α1(s;ω))

2ds(3.8)

+

N
∑

i=1

(
∂fS(t;τ(j)),~

∂yi
αi(s;ω)dBi(s)−

∂fS(t;τ(j)),~

∂yi
dmi(s))]|Bτ̃

}

1{Tn
~
≥τ̃}

=Et

{
∫ τ(j+1)∧Tn

~

τ(j)∧Tn
~

[
1

2
(α1(s;ω))

2ds

+

N
∑

i=1

(
∂fS(t;τ(j)),~

∂yi
αi(s;ω)dBi(s)−

∂fS(t;τ(j)),~

∂yi
dmi(s))]|Bτ̃

}

1{Tn
~
≥τ̃},

where we used (3.1a) in the equality. Notice that on the event {T n
~

< τ(j)}, the
integral inside the above expectation is 0; and on the event {T n

~
≥ τ̃}∩{T n

~
≥ τ(j)} =

{T n
~
≥ τ(j)}, we have

Et

{
∫ τ(j+1)∧Tn

~

τ(j)∧Tn
~

(αi(s;ω))
2

(

∂fS(t;τ(j)),~

∂yi

)2

ds|Bτ̃

}

= c−2
i Et

{
∫ τ(j+1)∧Tn

~

τ(j)∧Tn
~

(α1(s;ω))
2

(

∂fS(t;τ(j)),~

∂yi

)2

ds|Bτ̃

}

≤ c−2
i n max

1≤k≤l
‖fS(t;τ(k)),~‖2,

which is finite. Here ‖f‖ := max1≤i≤N supy∈D~
| ∂f∂yi

| for any f ∈ C1(D~). We have

that the conditional expectation of the stochastic integral in (3.8) is 0. Moreover, since
fS(t;τ(j)),~(·) satisfies the Neumann condition (3.1b), and the measure dmi(s) = 0 off

the random set {s : yi(s) = 0}, we have that
∫ τ(j+1)∧Tn

~

τ(j)∧Tn
~

∂fS(t;τ(j)),~

∂yi
dmi(s) = 0, Pt-a.s.

for any i ∈ {1, . . . , N}. Therefore, from (3.7) and (3.8) we have

(3.9) Et{fS(t;τ(j)),~(Y (τ(j+1) ∧ T n
~ ))− fS(t;τ(j)),~(Y (τ(j) ∧ T n

~ ))|Bτ̃}1{Tn
~
≥τ̃}

= −Et

{
∫ τ(j+1)∧Tn

~

τ(j)∧Tn
~

1

2
(α1(s;ω))

2ds|Bτ̃

}

1{Tn
~
≥τ̃}.

From Lemma 3.1 we know that 0 ≤ fS(t;τ(j)),~(y1, . . . , yN )’s are decreasing in yi and
fS(t;τ(j)),~|yi=hi

= 0 for each i ∈ {1, . . . , N}, we have that

Et

{
∫ τ(j+1)∧Tn

~

τ(j)∧T~

1

2
(α1(s;ω))

2ds|Bτ̃

}

1{Tn
~
≥τ̃}

= Et{fS(t;τ(j)),~(Y (τ(j) ∧ T n
~
))− fS(t;τ(j)),~(Y (τ(j+1) ∧ T n

~
))|Bτ̃}1{Tn

~
≥τ̃}

≤ Et{fS(t;τ(j)),~(Y (τ(j) ∧ T n
~
))|Bτ̃} ≤ fS(t;τ(j)),~(0, . . . , 0) < ∞.
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As n → ∞, tn tends to ∞ and T n
~
tends to T~, Pt-a.s. Using the bounded convergence

theorem we have that

∞ > fS(t;τ(l)),~(0, . . . , 0) ≥Et

{
∫ T~

τ(l)∧T~

1

2
(α1(s;ω))

2ds|Bτ̃

}

1{T~≥τ̃}

≥Et

{

1{T~=∞}

∫ ∞

τ(l)

1

2
(α1(s;ω))

2ds|Bτ̃

}

.

We now claim that Pt(T~ = ∞|Bτ̃ ) = 0. This is because, otherwise, from the above
inequality we would have

∫ ∞

τ(l)

(α1(s;ω))
2ds = 0, Pt-a.s. on {T~ = ∞},

which contradicts Lemma 3.2. This proves (3.3).

Finally, using the bounded convergence theorem and (3.3), we can obtain (3.4)
from (3.9).

Using similar arguments we can prove (3.5) and (3.6).

Using Lemma 3.1 and Theorem 3.3, we can explicitly compute the J
(N)
KL index

for the multi-chart CUSUM stopping rule T~. To this end, we introduce S(j) =

(S(j)
1 , . . . ,S(j)

N ) with S
(j)
i = 1{i=j} − 1{i6=j}, for any i = 1, . . . , N and j = 0, 1, . . . , N .

We then have

Proposition 3.4. For the multi-chart stopping rule T~, we have that

J
(N)
j (T~) = fS(j),~(0, . . . , 0), j ∈ {1, . . . , N},(3.10)

where J
(N)
j is defined in (2.10).

Proof. First recall from (2.10) that, for all j ∈ {1, . . . , N},

J
(N)
j (T~) = sup

t=(τ1,...,τN)∈(R+)N

τj=τ̃<∞

essup Et

{

1{T~≥τj}

∫ T~

τj

1

2
(α1(s;ω))

2ds|Bτj

}

.

Without loss of generality, we give the proof for the case N = 2. The argument can
be easily generalized to treat a general N . Notice that for N = 2, we have for j = 1, 2
that,

J
(2)
j (T~) = sup

t=(τ1,τ2)∈(R+)2

τj=τ̃<∞

essupEt

{

1{T~≥τj}

∫ T~

τj

1

2
(α1(s;ω))

2ds|Bτj

}

.(3.11)

We assume without loss of generality that τ1 = τ̃ . To prove the claim in the proposi-
tion, we first show that, for any fixed t = (τ1, τ2) such that τ1 ∈ R+ and τ1 = τ̃ , we
have that

Et

{

1{T~≥τ1}

∫ T~

τ1

1

2
(α1(s;ω))

2ds|Bτ1

}

≤ f(1,−1),~(0, 0), Pt-a.s.(3.12)
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To show this, we use Theorem 3.3 to obtain

Et

{
∫ T~

τ1

1

2
(α1(s;ω))

2ds|Bτ1

}

1{T~≥τ1}

=Et

{
∫ T~∧τ2

τ1

1

2
(α1(s;ω))

2ds+

∫ T~

T~∧τ2

1

2
(α1(s;ω))

2ds|Bτ1

}

1{T~≥τ1}

=1{T~≥τ1}

(

E(τ1,∞){1{T~≥τ2}[f(1,−1),~(Y (τ1))− f(1,−1),~(Y (τ2))]|Bτ1}
+ E(τ1,∞){1{T~≥τ2}f(1,1),~(Y (τ2))|Bτ1}+ E(τ1,∞){1{T~<τ2}f(1,−1),~(Y (τ1))|Bτ1}

)

.

Using Lemma 3.1, we have that

f(1,1),~(Y (τ2))1{T~≥τ2} ≤ f(1,−1),~(Y (τ2))1{T~≥τ2} ≤ f(1,−1),~(0, 0)1{T~≥τ2}, P(τ1,∞)-a.s.

from which we obtain (3.12). On the other hand, apply Theorem 3.3 to (τ1, τ2) =
(0,∞), we have

E0,∞

{

1

2

∫ T~

0

(α1(s;ω))
2ds

}

= f(1,−1),~(0, 0).

This suggests that (from (3.11)),

J
(2)
1 (T~) = f(1,−1),~(0, 0).

Therefore, (3.10) holds for j = 1 and and N = 2.

We now establish a upper bound for infT∈Bγ
J
(N)
KL (T ) using the N -CUSUM rule.

First, let us define

H(γ) = {~ ∈ (R+)
N : fS(0),~(0, . . . , 0) ≥ (cN )2γ}.

The asymptotic analysis in the next section will show that H(γ) 6= ∅. From (3.6) in
Theorem 3.3, we know that for any ~ ∈ H(γ),

Et∞

{
∫ T~

0

1

2
(c−1

N α1(s;ω))
2ds

}

=
1

(cN )2
fS(0),~(0, . . . , 0) ≥ γ.

Hence, T~ ∈ Bγ for any ~ ∈ H(γ), and we trivially have

J
(N)
KL (T~) ≥ inf

T∈Bγ

J
(N)
KL (T ), ∀~ ∈ H(γ).(3.13)

From (2.13) and Proposition 3.4, we will look for a vector ~ ∈ H(γ) for the multi-chart
CUSUM stopping rule (18) so that

fS(1),~(0, . . . , 0) = fS(j),~(0, . . . , 0) + o(1), ∀j ∈ {1, 2, . . . , N},(3.14)

as γ → ∞.
While it is not clear whether or not there is a ~ ∈ H(γ) such that (3.14) holds and

fS(0),~(0, . . . , 0) = (cN )2γ, we will give an explicit linear constraint on all coordinates
of ~, namely, (5.13), under which (3.14) holds asymptotically as ~ → ∞. The stopping

rule chosen in this way gives us an easily computable upper bound for infT∈Bγ
J
(N)
KL (T ).

We will also prove in later sections that this stopping rule is asymptotically optimal
as γ → ∞.
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4. Asymptotic analysis. In this section we will analyze the asymptotic behav-
ior of fS(j),~(0, . . . , 0), as all hi’s tend to ∞. As a byproduct, we show that the set
H(γ) 6= ∅. The key analysis is based on the following integral representation of fS(j),~.

Lemma 4.1. For any ~ ∈ (0,∞)N , and any yi ∈ [0, hi] for all i ∈ {1, . . . , N}, we
have

fS,~(y1, . . . , yN) =

∫ ∞

0

N
∏

i=1

KSi,ǫi

(

ǫit

c2i
,
yi
hi

)

dt,

where ǫi := 1
hi

and KSi,ǫi(t, z) is the C2 function on [0, 1] satisfying the following
PDE: for any z ∈ [0, 1),















∂KSi,ǫi

∂t
= ǫi

∂2KSi,ǫi

∂z2
+ Si

∂KSi,ǫi

∂z
,(4.1a)

KSi,ǫi|t=0 =
∂KSi,ǫi

∂z

∣

∣

∣

∣

z=0

= KSi,ǫi |z=1 = 0.(4.1b)

Moreover, for any c, ǫ > 0, K±1,ǫ(t, 0) is a decreasing function, bounded between 0
and 1, and satisfies

(4.2)

∫ ∞

0

K+1,ǫ(c
−2ǫt, 0)dt = c2

(

1

ǫ
− 1 + e−1/ǫ

)

.

To examine the asymptotic behavior of KSi,ǫi(c
−2
i ǫit, 0) as hi =

1
ǫi

→ ∞ or ǫi ↓ 0,
we transform (4.1a) to a heat equation and then obtain an expansion of KSi,ǫi(t, 0)
using the eigenfunctions of the associated Sturm-Liouville problem. Details of this
expansion are given in the appendix. Using the asymptotic expansion, we obtain an
estimate for fS(0),~(0, . . . , 0) as the hi’s tend to ∞.

Proposition 4.2. As hi =
1
ǫi

→ ∞, we have

∣

∣

∣

∣

fS(0),~(0, . . . , 0)−
1

∑N
i=1 c

−2
i e−hi

∣

∣

∣

∣

≤ O(1/ǫmax),(4.3)

where ǫmax = maxi{ǫi}. Clearly, the estimate in (4.3) tends to ∞ as the hi’s tend
to ∞, hence we have H(γ) 6= ∅.

Similarly, using Lemma 4.1 for S = S(j), j = 1, . . . , N , we have

fS(j),~(0, . . . , 0) =

∫ ∞

0

K+1,ǫj(c
−2
j ǫjt, 0) ·

(

∏

i6=j

K−1,ǫi(c
−2
i ǫit, 0)

)

dt .

In the limit for ǫj → 0, ǫi → 0, the value of the integral is governed by the integral of
the function K+1,ǫj(c

−2
j ǫjt, 0) in the sense that

fS(j),~(0, . . . , 0) =

∫ ∞

0

K+1,ǫj(c
−2
j ǫjt, 0)dt+ o(1) = c2j(hj − 1) + o(1).

More precisely, we have the following result.
Proposition 4.3. As hi =

1
ǫi

→ ∞, we have

|fS(j),~(0, . . . , 0)− c2j(hj − 1)| ≤ O
(

1

ǫ2j

N
∑

i=1

e−1/ǫi

)

.(4.4)
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5. Asymptotic optimality of the N-CUSUM rule. In this section we prove
the asymptotic optimality of the N -CUSUM rule as γ → ∞. This is accomplished by

establishing a lower bound for infT∈Bγ
J
(N)
KL (T ), and then showing that the difference

between this lower bound and the upper bound in (3.13) is bounded as γ → ∞.

Proposition 5.1. For any stopping rule T ∈ Bγ, we have J
(N)
KL (T ) ≥ g(−ν⋆),

where ν⋆ is the unique positive solution to g(ν⋆) = (cN )2γ and the function g is as
defined in equation (2.15).

Proof. We begin by defining an auxiliary performance measure

J
(N,1)
KL (T ) = sup

τ<∞
essup E(τ,∞,...,∞)

{

1{T≥τ}

∫ T

τ

1

2
(α1(s;ω))

2ds|Bτ

}

,(5.1)

where T is an arbitrary B-stopping rule. Notice that, for any F-stopping rule T ∈ Bγ ,
by construction, we have that

J
(N)
KL (T ) ≥ J

(N,1)
KL (T ).

Now let T
(1)
ν be the first passage time of y1 to some threshold ν > 0

T (1)
ν := inf{t ≥ 0 : y1(t) ≥ ν}.

Then trivially, we have Tν := T ∧ T
(1)
ν ≤ T , and that

J
(N,1)
KL (T ) ≥ J

(N,1)
KL (Tν).

To finish the proof, we will show that for any fixed ǫ > 0, there exists a ν > 0 such
that

J
(N,1)
KL (Tν) ≥ g(−ν⋆)− ǫ.(5.2)

To that end, we use similar arguments as in Theorem 3.3, for τ1 = τ < ∞ =
τ2, . . . , τN , by applying Itô’s lemma to {g(−y1(t))}τ∧Tν≤t<Tν

to obtain that Tν < ∞,
P(τ,∞,...,∞)-a.s., and on the event {Tν > τ},
(5.3)

E(τ,∞,...,∞)

{
∫ Tν

τ

1

2
(α1(s;ω))

2ds|Bτ

}

= E(τ,∞,...,∞){g(−y1(Tν))− g(−y1(τ))|Bτ}.

Using Girsanov’s theorem at the finite stopping rule Tν ∧ n for some n > τ , we have
that,

1{Tν≥τ} = 1{Tν≥τ}Et∞{eu1(Tν∧n)−u1(τ)|Bτ},(5.4)

and

(5.5) 1{Tν≥τ}E(τ,∞,...,∞){g(−y1(Tν ∧ n)− g(−y1(τ))|Bτ}
= 1{Tν≥τ}Et∞{eu1(Tν∧n)−u1(τ)[g(−y1(Tν ∧ n))− g(−y1(τ))]|Bτ}.

Notice that g(−y) is increasing, y1(t ∧ Tν) ∈ [0, ν] and u1(Tν ∧ n)− u1(τ) ≤ u1(Tν ∧
n)−m1(Tν ∧ n) = y1(Tν ∧ n) ≤ ν, we have that

eu1(Tν∧n)−u1(τ) ≤ eν < ∞,

|g(−y1(Tν ∧ n))− g(−y1(τ))| ≤ 2g(−ν) < ∞.
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Using the bounded convergence theorem to (5.4)-(5.5) as n → ∞, we obtain that, on
the event {Tν ≥ τ},

1 =Et∞{eu1(Tν)−u1(τ)|Bτ}, and

E(τ,∞,...,∞){g(−y1(Tν))−g(−y1(τ))|Bτ}
=Et∞{eu1(Tν)−u1(τ)[g(−y1(Tν)) − g(−y1(τ))]|Bτ}.

In view of (5.1) and (5.3), we have that (by substituting s = τ)

(5.6) J
(N,1)
KL (Tν)Et∞{eu1(Tν)−u1(s)|Bs}1{Tν≥s}

≥ Et∞{eu1(Tν)−u1(s)[g(−y1(Tν))− g(−y1(s))]|Bs}1{Tν≥s}.

Following the same arguments as in Theorem 2 of [21], we integrate both sides of
the above inequality with respect to (−dm1(s)) for all s ∈ [0, Tν], then take the
expectation under Pt∞ . We obtain that

J
(N,1)
KL (Tν)Et∞

{

eu1(Tν)

∫ Tν

0

e−u1(s)(−dm1(s))

}

≥ Et∞

{

eu1(Tν)

∫ Tν

0

e−u1(s)[g(−y1(Tν))− g(−y1(s))](−dm1(s))

}

Using the fact that dm1(s) = 0 off {s : y1(s) = 0} = {s : u1(s) = m1(s)}, and
g(0) = 0, we obtain that

J
(N,1)
KL (Tν)Et∞{ey1(Tν) − eu1(Tν)} ≥ Et∞{[ey1(Tν) − eu1(Tν)]g(−y1(Tν))}.

On the other hand, let s = 0 in (5.6) we have that

J
(N,1)
KL (Tν)Et∞{eu1(Tν)} ≥ Et∞{eu1(Tν)g(−y1(Tν))}.

Combining the above two inequalities, we have

J
(N,1)
KL (Tν)Et∞{ey1(Tν)} ≥ Et∞{ey1(Tν)g(−y1(Tν))}.(5.7)

Similarly, by applying Itô’s lemma to {g(y1(t))}0≤t<Tν
, we obtain that Pt∞(Tν <

∞|Bs) = 1 for any fixed s ∈ R+, and

Et∞

{
∫ Tν

0

1

2
(α1(s;ω))

2ds

}

= Et∞{g(y1(Tν))}.

On the other hand, using monotone convergence theorem, as ν → ∞, we have Tν ↑ T ,
and

lim
ν→∞

Et∞

{
∫ Tν

0

1

2
(α1(s;ω))

2ds

}

= Et∞

{
∫ T

0

1

2
(α1(s;ω))

2ds

}

≥ (cN )2γ.

As a result, there exists a ν large enough, such that

Et∞{g(y1(Tν))} = Et∞

{
∫ Tν

0

1

2
(α1(s;ω))

2ds

}

≥ (cN )2γ − ǫ
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Now let us consider the non-negative function p(y) := ey[g(−y)−g(−ν⋆)]−g(y)+
g(ν⋆). We trivially have that Et∞{p(y1(Tν))} ≥ 0, which implies that

Et∞{ey1(Tν)g(−y1(Tν))} ≥ Et∞{ey1(Tν)}g(−ν⋆) + Et∞{g(y1(Tν))} − g(ν⋆)

=Et∞{ey1(Tν)}g(−ν⋆) + Et∞{g(y1(Tν))} − (cN )2γ ≥ Et∞{ey1(Tν)}g(−ν⋆)− ǫ

≥Et∞{ey1(Tν)}[g(−ν⋆)− ǫ],

since Et∞{ey1(Tν)} ≥ 1. The above inequality and (5.7) together imply (5.2). This
completes the proof.

In view of (2.11), (3.13), Proposition 3.4 and Proposition 5.1, we have the follow-
ing inequalities:
(5.8)

max{fS(1),~(0, . . . , 0), . . . , fS(N),~(0, . . . , 0)} = J
(N)
KL (T~) ≥ inf

T∈Bγ

JKL(T ) ≥ g(−ν⋆),

where ~ satisfies (5.13) and

(5.9) fS(0),~(0, . . . , 0) = (cN )2γ,

and ν⋆ solves

g(ν) = (cN )2γ.(5.10)

In the sequel we will establish asymptotic optimality of T~ by examining the rate at
which the lower and upper bounds in (5.8) approach each other as γ → ∞ [10, 13, 12].
To this end, we will need to derive the asymptotic behavior of the quantity in (5.8)
and (5.9). This is done in the following section.

We will distinguish two cases; the first case is the one of signal-strength symmetry
and the second one is the one of signal-strength asymmetry.

5.1. Signal-strength symmetry. We capture the signal strength symmetric
case by assuming that |ci| = 1 for all i ∈ {1, . . . , N}. In this case, it is natural to
consider a simplification of (2.18), namely the one in which h1 = . . . = hN , since
such a choice satisfies (3.14). For a large fixed γ, let us denote by h(γ) the common
threshold determined by (5.9). The asymptotic analysis in the last section ensures the
existence of h(γ). The uniqueness of this h(γ) follows from Lemma 3.1. Throughout
this subsection, we will slightly abuse our notation to use h(γ) to denote the vector
(h(γ), . . . , h(γ)) in this subsection.

First we notice that (5.9) simplifies to

fS(0),h(γ)(0, . . . , 0) = γ,(5.11)

and (5.8) simplifies to

fS(1),h(γ)(0, . . . , 0) ≥ inf
T∈Bγ

J
(N)
KL (T ) ≥ g(−ν⋆).(5.12)

We will demonstrate that the difference between the upper and lower bounds in
(5.12) is bounded by a constant as γ → ∞, with h(γ) and ν⋆ satisfying (5.11) and
(5.10), respectively.

Proposition 5.2. As γ → ∞,

fS(1),h(γ)(0, . . . , 0) = log γ + logN − 1 + o(1).
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Proof. Using (4.3) and (4.4), the result follows.
As a result, we have the following result.

Theorem 5.3. The difference in the optimal detection delay infT∈Bγ
J
(N)
KL (T )

and the detection delay of Th(γ) of (2.18) with h(γ) satisfying (5.11) is bounded above
by logN , as γ → ∞.

Proof. From g(ν⋆) = γ it is easily seen that

g(−ν⋆) = log γ − 1 + o(1).

The result follows from (5.12) and Proposition 5.2.
Remark 1. The asymptotic optimality of the N -CUSUM stopping rule in The-

orem 5.3 is of the same strength as the one of Theorem 1 in [13]. In other words,
the difference in the performance of the unknown optimal stopping rule and the N -
CUSUM stopping rule is bounded above by a constant as γ → ∞.

5.2. Signal-strength asymmetry. In this section we treat the general case
maxi≥2 |ci| > 1. Without loss of generality we can assume that 1 = c1 = |c2| = . . . =
|cK | for some K < N and minK<i≤N |ci| > 1.

Recall that the optimal multi-chart CUSUM thresholds must satisfy (3.14). While
it seems a formidable task to solve for ~ = (h1, . . . , hN) explicitly from this constraint
and (5.9), thanks to the asymptotic analysis in Section 4, we can give a simple explicit
linear constraint on hi’s, which will lead to (3.14) asymptotically as hi’s tend to ∞.

Proposition 5.4. For ~ = (h1, . . . , hN ) such that

c21(h1 − 1) = c22(h2 − 1) = . . . = c2N (hN − 1),(5.13)

the condition (3.14) holds asymptotically as h1 → ∞. Moreover,

J
(N)
KL (T~) = h1 − 1 + o(1),(5.14)

as h1 → ∞.
Proof. This is a mere consequence of (4.4).
Remark 2. Proposition 5.4 is similar to the result obtained in Lemma 2 of [13].

More specifically, the result in (5.13) is similar to the one obtained in Lemma 2 of
[13] with c2i = 2

µ2
i

for i = 1, 2, . . . , N and that of (27) in [13] is the same as that of

(5.14) for c21 = 2
µ2
1
and c1 = 1. Please notice that the detection delay criterion J

(N)
KL

of (2.6) incorporates the different signal strengths by including a maximization over
all i ∈ {1, . . . , N}.

It now follows that we have the following result.
Proposition 5.5. For ~ satisfying (5.9) and (5.13), we have

J
(N)
KL (T~) = log γ + 2 log |cN |+ logK − 1 + o(1),(5.15)

as γ → ∞.
Proof. The existence and uniqueness of the ~ determined by (5.9) and (5.13) can

be seem from Lemma 3.1 and (4.3). We can obtain (5.15) from Proposition 5.4 and
(4.3).

We notice that in the special case in which K = 1, Proposition 5.5 implies that

J
(N)
KL (T~) = log γ + 2 log |cN | − 1 + o(1).(5.16)
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As a result of Proposition 5.5, we obtain the following two theorems that assert
the asymptotic optimality of T~ of (2.18).

Theorem 5.6. Suppose that min2≤i≤N |ci| > 1 and that ~ satisfies (5.9) and

(5.13). Then the optimal detection delay infT∈Bγ
J
(N)
KL (T ) and the detection delay of

T~, J
(N)
KL (T~) of (2.18) converges to 0 as γ → ∞.

Proof. The asymptotic lower bound in (5.8) is g(−ν⋆) with g(ν⋆) = (cN )2γ, which
implies that

g(−ν⋆) = log γ + 2 log |cN | − 1 + o(1).(5.17)

From (5.8) and (5.16) we obtain

J
(N)
KL (T~)− inf

T∈Bγ

J
(N)
KL (T ) ≤ o(1),

as γ → ∞.

Theorem 5.7. Suppose that minK<i≤N |ci| > |c1| = . . . = |cK | = 1 and that ~

satisfies (5.9) and (5.13). Then the optimal detection delay infT∈Bγ
J
(N)
KL (T ) and the

detection delay of T~, J
(N)
KL (T~) of (2.18) are bounded above by logK, as γ → ∞.

Proof. The asymptotic lower bound in (5.8) is g(−ν⋆). From (5.8), (5.17) and
Proposition 5.5 we obtain

J
(N)
KL (T~)− inf

T∈Bγ

J
(N)
KL (T ) ≤ logK + o(1),

as γ → ∞.

Remark 3. The results of Theorems 5.6 and 5.7 show the same strength in
asymptotic optimality of the N -CUSUM rule (2.18) for c21 = 2

µ2
1
and c1 = 1 as that of

the proposed rule in [13].

6. Conclusion. In this paper we have established asymptotic optimality of the
N -CUSUM stopping rule (2.18) as the solution to the stochastic optimization problem
of (2.7). This asymptotic optimality is summarized in Theorems 5.3, 5.6 and 5.7. The
resemblance of these results to the results of [13] are mathematically not surprising
since the Kullback-Leibler information number is included in the criterion and thus
does not appear in the formulas for the detection delay of T~. Yet, the problem in
this paper is strikingly more general than the one treated in [13]. In particular, the
processes that are treated in this paper are general Itô processes which can capture
signals of general dependencies. More importantly however, in this set-up the pro-
cesses are allowed to be coupled with each other, which provides a natural way in
which to capture most systems since it is the case that signals received in one sensor
can affect what is seen by another. The results in this work are yet another case
[8, 9, 10, 11], which captures the robustness of the N -CUSUM stopping rule in the
problem of quickest detection.

Appendix A. Proof of Lemma 2.1. Since α
(i)
t ’s are linear functions of Z

(j)
t ’s,

we know that α
(i)
t ’s satisfy the Novikov condition (2.3) from the discussion on page

234 of [17].

To show that (2.16) holds, we introduce a new process Yt := α
(1)
t . An important

observation is that {Yt}t≥0 is a Ornstein-Uhlenbeck process under under any fixed
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Pτ1,...,τN , τi ∈ {0,∞}:

(A.1) dYt = λYt dt+ σ dWt, λ =

( N
∑

i=1

1{τi=0}ciβi

)

∈ R, σ =

√

√

√

√

N
∑

i=1

β2
i ∈ R+,

where {Wt}t≥0 is a standard Brownian motion under P:

Wt =
1

√

∑N
i=1 β

2
i

N
∑

i=1

βiw
(i)
t .

To facilitate later calculation, let us denote by Q(λ) the law of Yt in (A.1), by EQ(λ)

the expectation under Q(λ), and FY
t = σ(Ys ; s ≤ t). It is then sufficient to obtain

(2.16) from

(A.2) Q(λ)

(
∫ t

0

Y 2
s ds < ∞

)

= 1 = Q(λ)

(
∫ ∞

0

Y 2
s ds = ∞

)

, ∀t ∈ R+.

In the sequel we prove that (A.2) holds.

Using Girsanov theorem, for any t ∈ R+ and q > 3λ2

2σ2 ,

EQ(λ)

{

exp

(

− q

∫ t

0

Y 2
s ds

)}

(A.3)

=EQ(0)

{

exp

(

− q

∫ t

0

Y 2
s ds

)

dQ(λ)

dQ(0)

∣

∣

∣

∣

FY
t

}

=EQ(0)

{

exp

(

−
(

q +
1

2

λ2

σ2

)
∫ t

0

Y 2
s ds+

λ

σ2

∫ t

0

YsdYs

)}

=e
λ

σ2 Y 2
0 −λtEQ(0)

{

exp

(

−
(

q +
1

2

λ2

σ2

)
∫ t

0

Y 2
s ds+

λ

σ2
Y 2
t

)}

=e
λ

σ2 Y 2
0 −λt 1

√

cosh(bt)− 2λ
b sinh(bt)

exp

(

− Y 2
0

2σ2

1− 2λ
b coth(bt)

coth(bt)− 2λ
b

)

< ∞,

where b :=
√

2qσ2 + λ2. Here we used (2.1) on page 18 of [19]. Therefore, the first
equality of (A.2) holds. Moreover, let t → ∞ in (A.3) and apply bounded convergence
theorem, we have that

EQ(λ)

{

exp

(

− q

∫ ∞

0

Y 2
s ds

)}

= 0

Hence, the second equality in (A.2) also holds.

Appendix B. Proof of Lemma 3.1. To prove Lemma 3.1, the following result
will be useful.

Lemma B.1. Suppose X and Y are two independent random variables, and
Supp(X) = R+. Then P (X < Y ) < 1.
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Proof. Since Supp(X) = R+, for any c ∈ R+, we have P (X < c) < 1. Let us
denote by FY (y) = P (Y ≤ y), then

P (X < Y ) =

∫ ∞

0+

P (X < y)dFY (y)

=

∫ c−

0

P (X < y)dFY (y) +

∫ ∞

c

P (X < y)dFY (y)

≤ P (X < c)P (Y < c) + P (Y ≥ c) < 1.

This completes the proof.
We are ready to give the proof of Lemma 3.1. Without loss of generality, we prove

the lemma for N = 2.
The main tool we will use in this proof is Feynman-Kac representation of the so-

lution to an elliptic PDE. In particular, fix a filtered probability space (Ω, (Ft)t≥0, P )

with two independent standard Brownian motions {B(1)
t }t≥0 and {B(2)

t }t≥0. For any
S = (S1,S2) ∈ {±1}2, c2 6= 0, consider two independent reflected Brownian motions
defined as

XS1
t := X0 + S1t+

√
2B

(1)
t − inf

0≤s≤t
{(X0 + S1s+

√
2B(1)

s ) ∧ 0},

Y S2
t = Y0 + S2c

−2
2 t+

√
2|c2|−1B

(2)
t − inf

0≤s≤t
{(Y0 + S2c

−2
2 s+

√
2|c2|−1B(2)

s ) ∧ 0}.

We denote their first passage times by

TXS1

a = inf{t ≥ 0 : XS1
t ≥ a}, ∀a ∈ R

T Y S2

b = inf{t ≥ 0 : Y S2
t ≥ b}, ∀b ∈ R.

For convenience, we will also denote by

P x,·( · ) = P ( · |X0 = x), P ·,y( · ) = P ( · |Y0 = x), P x,y( · ) = P ( · |X0 = x, Y0 = y).

Then by Feynman-Kac theorem, for any (x, y) ∈ [0, h1]× [0, h2],

0 ≤ Ex,y{TXS1

h1
∧ T Y S2

h2
} = fS,~(x, y),

where fS,~ solves (3.1a)-(3.1b). So it suffices to prove that, for (x′, y′) ∈ [0, x]× [0, y],
0 < h′

1 < h1, 0 < h′
2 < h2, and S ′

i ≤ Si, i = 1, 2,

Ex,y{TXS1

h1
∧ T Y S2

h2
} ≤ Ex′,y′{TXS1

h1
∧ T Y S2

h2
} ∧ Ex,y{TXS

′
1

h1
∧ T Y S

′
2

h2
},(B.1)

E0,0{TXS1

h1
∧ T Y S2

h2
} > E0,0{TXS1

h′

1
∧ T Y S2

h2
} ∨ E0,0{TXS1

h1
∧ T Y S2

h′

2
}.(B.2)

In the sequel we will prove (B.1) and (B.2) hold.
Using continuity of the sample path and Markov shifting operator, we have

TXS1

h1
= TXS1

x + TXS1

h1
◦ θ(TXS1

x ) ≥ TXS1

h1
◦ θ(TXS1

x ), P x′,·-a.s.

T Y S2

h2
= T Y S2

y + T Y S2

h2
◦ θ(T Y S2

y ) ≥ T Y S2

h1
◦ θ(T Y S2

y ), P ·,y′

-a.s.

Hence we have the first inequality in (B.1). Similarly, for any y′′ ∈ [0, h2),

TXS1

h1
∧ T Y S2

h2
> TXS1

h′

1
∧ T Y S2

h2
= 0, P h′

1,y
′′

-a.s.
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Thus,

Eh′

1,y
′′{TXS1

h1
∧ T Y S2

h2
} > 0.

Using Lemma B.1 we know that P 0,0(TXS1

h′

1
< T Y S2

h2
) > 0. It follows that

E0,0{TXS1

h1
∧ T Y S2

h2
}

=E0,0{TXS1

h′

1
∧ T Y S2

h2
}+

∫ h2

0

P 0,0(TXS1

h′

1
< T Y S2

h2
, Y S2

TXS1

h′
1

∈ dy′′)Eh′

1,y
′′{TXS1

h1
∧ T Y S2

h2
}

>E0,0{TXS1

h′

1
∧ T Y S2

h2
}.

This proves (B.2).
Finally, using Lemma 3 of [10], we have,

X
S′

1
t ≤ XS1

t , Y
S′

2
t ≤ Y S2

t , ∀t ≥ 0, P -a.s.

Hence,

TXS1

h1
≤ TXS

′
1

h1
, T Y S2

h2
≤ T Y S

′
2

h2
, P -a.s.

which implies the second inequality in (B.1). The finiteness of fS,~(0, 0) follows from

that of E0,·{TXS1

h1
}. The latter can be easily shown to be equal to g(−S1h1) < ∞

(see for example, [21]).

Appendix C. Proof of Lemma 3.2. From (2.16) we have that, for any fixed
τ < ∞ and t = (τ1, . . . , τN ) ∈ {0,∞}N ,

∫∞

τ
1
2 (α1(s;ω))

2ds = ∞,

Pt

(
∫ ∞

τ

1

2
(α1(s;ω))

2ds = ∞
)

= 1.

Now without loss of generality, assume that 0 ≤ τ1, . . . , τr < ∞ and τr+1 = . . . =
τN = ∞, we have from (2.5) that

dPτ1,...,τr,τr+1,...τN

dP0,...,0,∞,...,∞

∣

∣

∣

∣

Bt

= exp

(

−
r

∑

i=1

ui(t ∧ τi)

)

> 0, ∀t ∈ R+.

Hence, Pt(
∫∞

t
1
2 (α1(s;ω))

2ds = ∞) = 1 for any t = (τ1, . . . , τN ) ∈ (R+)
N . Moreover,

for any fixed τ ′ < ∞,

1 = Pt

(
∫ ∞

t

1

2
(α1(s;ω))

2ds = ∞
)

= Et

{

Pt

(
∫ ∞

t

1

2
(α1(s;ω))

2ds = ∞|Bτ ′

)}

,

there must be that Pt(
∫∞

t
1
2 (α1(s;ω))

2ds = ∞|Bτ ′) = 1.

Appendix D. Proof of Lemma 4.1. Without loss of generality, we prove the
lemma for N = 2.

Using notations in the proof of Lemma 3.1, we have that

fS,~(x, y) = Ex,y{TXS1

h1
∧ T Y S2

h2
} =

∫ ∞

0

P x,y(TXS1

h1
> t, T Y S2

h2
> t) dt

=

∫ ∞

0

P x,·(TXS1

h1
> t) · P ·,y(T Y S2

h2
> t) dt.
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Hence, it suffices to show that

P x,·(TXS1

h1
> t) = KS1,

1
h1

(

c−2
1 t

h1
,
x

h1

)

,

P ·,y(T Y S2

h2
> t) = KS2,

1
h2

(

c−2
2 t

h2
,
y

h2

)

.

However, it is easily seen that both sides of the above equations satisfy the backward
Kolmogorov equation (4.1a) and boundary condition (4.1b). The assertion now follows
from uniqueness theorem for partial differential equations.

Finally,

∫ ∞

0

K+1, 1
h1

(

c−2
1 t

h1
, 0

)

dt =

∫ ∞

0

P 0,·(TX+1

h1
> t)dt = E0,·{TX+1

h1
} = g(−h1).

Hence, (4.2) holds for i = 1. The general case can be similarly proven.

Appendix E. Proofs of Propositions 4.2 and 4.3. We now prove the asymp-
totic results in Propositions 4.2 and 4.3. To this end, we transform the function
K±,ǫ(t, z) defined in (4.1a)-(4.1b)

to the solution of a heat equation. Using Sturm-Liouville theory, we are able to
express K±1,ǫ(t, z) as series. From these series, all necessary asymptotic expansions
can be derived directly.

Theorem E.1. Let 0 < ǫ < 1/2 and let K−1,ǫ be the solution to (4.1a)-(4.1b)
for Si = −1 and ǫi = ǫ > 0. Then, for t > 0,

K−1,ǫ(t, 0) = K0
−1,ǫ(t) +Hǫ(t), Hǫ(t) :=

∞
∑

n=1

Kn
−1,ǫ(t),(E.1)

and the functions K0
−1,ǫ,K

1
−1,ǫ, . . ., are explicitly given by

K0
−1,ǫ(t) = A0

ǫ e
(ω2ǫ− 1

4ǫ )t,(E.2)

A0
ǫ =

1
1−e−4ω

2ω − 2e−2ω

(

1− e−2ω
)2 1

ω + 1
2ǫ

eω−1/(2ǫ),(E.3)

Kn
−1,ǫ(t) = An

ǫ e
−1/(2ǫ) sinωn

ωn
e−(ω2

nǫ+
1
4ǫ ) t , n = 1, 2, . . .

An
ǫ =

8ǫ2ω2
n

4ǫ2ω2
n + 1− 2ǫ

,

where ω and ωn’s are respectively the positive solutions to the transcendental equations

tanhω = 2ǫω,(E.4)

tanωn = 2ǫωn.(E.5)

Proof. We begin by transforming (4.1a) to the heat equation: direct calculation
shows that the solution K−1,ǫ can be written as

K−1,ǫ(t, z) = e
1
2ǫ z−

1
4ǫ tu(t, z),
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where u is the solution of














∂u

∂t
= ǫ

∂2u

∂z2
,(E.6a)

u(0, z) = e−
1
2ǫ z ,

(

1

2ǫ
u+

∂u

∂z

)∣

∣

∣

∣

z=0

= u|z=1 = 0.(E.6b)

The problem (E.6a)-(E.6b) can be solved using Sturm-Liouville theory [6, 27]. More

specifically, consider the ordinary differential equation −ǫ d
2û

dz2 = λû, supplemented
with the separated boundary conditions û(1) = 0 and û(0)/(2ǫ) + û′(0) = 0. Clearly,
the problem is a regular Sturm-Liouville problem, such that the corresponding nor-
malized eigenfunctions form an orthonormal basis of the Hilbert space L2([0, 1]) (see
for example, Theorem 12 on page 204 of [27]). Hence, u defined in (E.6a)-(E.6b) can
be written as

(E.7) u(t, z) =
∞
∑

n=0

ane
−λnǫtφn(z),

where the φn’s are the orthonormal eigenfunctions of the operator L := d2/dx2 with
the specified boundary conditions on L2([0, 1]) and the an’s are given as projections
of the initial conditions via

(E.8) an =

∫ 1

0

φn(z)e
−z/(2ǫ)dz.

It will be shown below that L has exactly one positive eigenvalue ω2 given by the
transcendental equation (E.4) and negative eigenvalues −ω2

n given by the correspond-
ing equations (E.5). After computing the eigenfunctions explicitly, the an’s can be
obtained directly.

We now proceed to compute the positive eigenvalue. To this end, we solve
d2φ0/dz

2 = ω2φ0 with the Dirichlet boundary condition at z = 1 and the mixed
boundary condition φ0/(2ǫ) + (dφ0/dz) = 0 at z = 0. Clearly, we can write the
solution of φ0 as

φ0(z) = Aeωz +Be−ωz ,

and then use the boundary conditions to find the constants A,B and ω. This yields
the relations

(E.9) A = −Be−2ω, tanhω = 2ǫω.

It can be easily seen that, for ǫ < 1/2, we have

d

dω
(tanhω − 2ǫω) =

1

cosh2 ω
− 2ǫ,

which monotonically decreases from 1 − 2ǫ > 0 to −2ǫ as ω increases from 0 to ∞.
Hence, the transcendental equation in (E.9) has a unique positive solution, which is
also the unique positive eigenvalue of L. The corresponding eigenfunction φ is then
given by

(E.10) φ0(z) = A
(

e−ωz − e−2ωeωz
)

,
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and the constant A is fixed by the normalization requirement

∫ 1

0

φ0(z)
2 dz = 1

yielding after straightforward algebra

(E.11) A =
1

√

1−e−4ω

2ω − 2e−2ω

,

Using (E.7), (E.8), (E.10) and (E.11), the formulas for K0
−1,ǫ and A0

ǫ in (E.2) and
(E.3) follow directly. The calculations for the eigenfunctions corresponding to the
negative eigenvalues are similar, and we omit it.

Using a similar argument as in the proof of Theorem E.1, we can obtain the
following result.

Theorem E.2. Let 0 < ǫ < 1/2 and let K+1,ǫ be the solution to (4.1a)-(4.1b).
Then, for t > 0,

(E.12) K+1,ǫ(t, 0) = e−
t
4ǫ

∞
∑

n=1

Kn
+1,ǫ(t),

and the functions Kn
+1,ǫ are explicitly given by

Kn
+1,ǫ(t) = e1/(2ǫ)

sinω′
n

ω′
n

8ǫ2(ω′
n)

2

4ǫ2(ω′
n)

2 + 1 + 2ǫ
e−(ω′

n)
2ǫ t ,

where the ω′
n are the positive solutions of the transcendental equation

tanω′
n = −2ǫω′

n.

Using Theorem E.1, it can be shown that the leading term of the asymptotic
expansion of the function K−1,ǫ for small ǫ is given by K0

−1,ǫ. In fact, we have:
Corollary E.3. Under the assumptions of Theorem E.1 we have

|Hǫ(t)| ≤ 2e−1/(2ǫ)
∞
∑

n=1

1

nπ
e−ǫn2π2t,

∫ ∞

0

|Hǫ(t)|dt ≤
2

ǫπ3
e−1/(2ǫ)ζ(3),

where ζ(3) is Apéry’s constant.
Proof. We verify this inequality by direct calculation. Using the explicit expansion

for Hǫ(t) in (E.1), we find that

|Hǫ(t)| ≤ e−1/(2ǫ)
∞
∑

n=1

An
ǫ

1

ωn
e−( 1

4ǫ+ǫω2
n)t ≤ 2e−1/(2ǫ)

∞
∑

n=1

1

nπ
e−ǫn2π2t,

where we have made use of the fact that ωn ∈ [nπ, nπ + π/2]. It follows that

∫ ∞

0

|Hǫ(t)| dt ≤ 2e−1/(2ǫ)
∞
∑

n=1

1

nπ

∫ ∞

0

e−ǫn2π2t dt =
2e−1/(2ǫ)

ǫπ3

∞
∑

n=1

1

n3
=

2e−1/(2ǫ)

ǫπ3
ζ(3).
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Similarly, the tail of the integral of K+1,ǫ(t, 0) is exponentially small as ǫ → 0+.

Corollary E.4. Under assumption of Theorem E.2, we have

∫ ∞

6

K+1,ǫ(t, 0)dt ≤
14

ǫπ3
e−1/ǫζ(3).

Proof. Using the explicit expansion for K+1,ǫ(t, 0) in (E.12), we find that

∫ ∞

6

K+1,ǫ(t, 0) dt ≤
∞
∑

n=1

e1/(2ǫ)
∣

∣

∣

∣

sinω′
n

ω′
n

∣

∣

∣

∣

8ǫ2(ω′
n)

2

4ǫ2(ω′
n)

2 + 1 + 2ǫ

∫ ∞

6

e−( 1
4ǫ+(ω′

n)
2ǫ)t dt

≤
∞
∑

n=1

2e1/(2ǫ)
1

ω′
n

4ǫ

1 + 4ǫ2(ω′
n)

2
e−( 3

2ǫ+6(ω′

n)
2ǫ)

<

∞
∑

n=1

2

ǫ
e−1/ǫ 1

(ω′
n)

3
≤ 2

ǫ
e−1/ǫ 1

π3

∞
∑

n=1

8

(2n− 1)3
=

14

ǫ
e−1/ǫ 1

π3
ζ(3),

where we have made use of the fact that ω′
n ∈ [nπ − π/2, nπ].

Lemma E.5. Let ω be the unique positive solution to tanhω = 2ǫω for 0 < ω < 1
2 .

Then there exits a constant C > 0 such that

∣

∣

∣

∣

ω − 1

2ǫ
+

1

ǫ
e−1/ǫ

∣

∣

∣

∣

≤ C

ǫ2
e−2/ǫ.

Proof. We begin by rewriting the equation that ω satisfies as

f(ω) = 0, where f(x) := x− 1

2ǫ
+

(

x+
1

2ǫ

)

e−2ǫ.

We then employ a Newton-Raphson iteration with an initial value x0 = 1
2ǫ , and define

{xn} recursively using

xn+1 = xn − f(xn)

f ′(xn)
, n = 0, 1, . . . .

The result now follows from the fact that |f ′′(x)/f ′(x)| is uniformly bounded on R+.

Proof of Proposition 4.2. We now use Theorem E.1 to prove Proposition 4.2.
To this end, let us introduce

f̃S(0),~ :=

∫ ∞

0

N
∏

i=1

K0
−1,ǫi(c

−2
i ǫit) dt.(E.13)

Using Corollary E.3, it can be shown that the leading term in the asymptotic expan-
sion of fS(0),~(0, . . . , 0) is f̃S(0),~, which can be computed using explicit formulas in
Theorem E.1.

Without lose of generality, we prove the results for the case N = 2.
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Using the fact that 0 ≤ K−1,ǫ(t, 0) ≤ 1 for all t, ǫ > 0, and that
∫

|a(t)b(t)|dt ≤
∫

|a(t)|dt ·
∫

|b(t)|dt for any integrable functions a(t) and b(t), we have

|fS(0),~(0, 0)− f̃S(0),~|

(E.14)

≤
∫ ∞

0

|K−1,ǫ1(c
−2
1 ǫ1t, 0) ·Hǫ2(c

−2
2 ǫ2t)|dt+

∫ ∞

0

|K−1,ǫ2(c
−2
2 ǫ2t, 0) ·Hǫ1(c

−2
1 ǫ1t)|dt

+

∫ ∞

0

|Hǫ1(c
−2
1 ǫ1t) ·Hǫ2(c

−2
2 ǫ2t)|dt

≤
∫ ∞

0

|Hǫ2(c
−2
2 ǫ2t)|dt+

∫ ∞

0

|Hǫ1(c
−2
1 ǫ1t)|dt+

∫ ∞

0

|Hǫ1(c
−2
1 ǫ1t) ·Hǫ2(c

−2
2 ǫ2t)|dt

≤
∫ ∞

0

|Hǫ2(c
−2
2 ǫ2t)|dt+

∫ ∞

0

|Hǫ1(c
−2
1 ǫ1t)|dt+

∫ ∞

0

|Hǫ1(c
−2
1 ǫ1t)|dt ·

∫ ∞

0

|Hǫ2(c
−2
2 ǫ2t)|dt

≤ 2c22
ǫ22π

3
ζ(3)e−

1
2ǫ2 +

2c21
ǫ21π

3
ζ(3)e−

1
2ǫ1 +

4(c1c2)
2

(ǫ1ǫ2)2π6
ζ2(3)e−

1
2ǫ1

− 1
2ǫ2 = O

(

1

ǫ4max

e−
1

ǫmax

)

,

where, we used Corollary E.3 in the last inequality.
On the other hand, let us denote by ω(i) the unique positive solution to transcen-

dental equation tanhω(i) = 2ǫiω
(i) for a fixed ǫi ∈ (0, 1

2 ). Using Newton-Raphson
iteration and Lemma E.5, we can write

(E.15) ω(i) =
1

2ǫi
− 1

ǫi
e−1/ǫi + ri, where |ri| ≤

Ci

ǫ2i
e−2/ǫi ,

for some constant Ci > 0. Using (E.15), straightforward algebra shows that the
coefficient A0

ǫi defined in (E.3) is exponentially close to 1: there exists a constant

C̃i > 0 such that

∣

∣A0
ǫi − 1

∣

∣ ≤ C̃i

ǫi
e−1/ǫi .

Similarly, using (E.15) we obtain the decay rate of function K0
−1,ǫ(t) defined in (E.2),

as ǫi → 0+,

ǫi

(

ω(i)
)2

− 1

4ǫi
= − 1

ǫi
e−1/ǫi + ri + 2e−1/ǫi + ǫir

2
i < 0.

Using (E.2) and the last equation, we obtain

K0
−1,ǫi(c

−2
i ǫit) = A0

ǫi exp
(

−c−2
i e−1/ǫit+ (ri + 2e−1/ǫi + ǫir

2
i )c

−2
i ǫit

)

,

With this representation, it follows directly that

f̃S(0),~ =

∫ ∞

0

K0
−1,ǫ1(c

−2
1 ǫ1t)K

0
−1,ǫ2(c

−2
2 ǫ2t)dt

(E.16)

=
A0

ǫ1 · A0
ǫ2

∑2
i=1[c

−2
i e−1/ǫi − (ri + 2e−1/ǫi + ǫir2i )c

−2
i ǫi]

=
1

∑2
i=1 c

−2
i e−1/ǫi

+O(1/ǫmax).

This result now follows from (E.14) and (E.16).
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Proof of Proposition 4.3. Below we use Theorems E.1 and E.2 to prove Propo-
sition 4.3.

Using Lemma 4.1, we have

|fS(j),~(0, 0)− c2j(hj − 1 + e−hj)|

(E.17)

=

∣

∣

∣

∣

∫ ∞

0

K+1,ǫj(c
−2
j ǫjt, 0) ·

(

∏

i6=1

K−1,ǫi(c
−2
i ǫit, 0)

)

dt−
∫ ∞

0

K+1,ǫj(c
−2
j ǫjt, 0)dt

∣

∣

∣

∣

≤
∫ 6c2j ǫ

−1
j

0

K+1,ǫj(c
−2
j ǫjt, 0)

∣

∣

∣

∣

∏

i6=j

K−1,ǫi(c
−2
i ǫit, 0)− 1

∣

∣

∣

∣

dt+ 2

∫ ∞

6c2
j
ǫ−1
j

K+1,ǫj (c
−2
j ǫjt, 0)dt

≤
∫ 6c2j ǫ

−1
j

0

K+1,ǫj(c
−2
j ǫjt, 0)

(

1−
∏

i6=j

K−1,ǫi(c
−2
i ǫit, 0)

)

dt+O(
1

ǫ2j
e−1/ǫj )

≤
6c2j
ǫj

(

1−
∏

i6=j

K−1,ǫi

(

6c−2
i ǫi

c−2
j ǫj

, 0

))

+O
(

1

ǫ2j
e−1/ǫj

)

,

where we used Corollary E.4 in the second inequality. The third inequality follows
from the fact that K−1,ǫi(t, 0) is bounded between 0 and 1, and it is decreasing in t.
To bound the first term in (E.17), we use Theorem E.1, Corollary E.3, (E.16) and the
inequality 1− e−|x| ≤ |x| to obtain that

∣

∣

∣

∣

1−
∏

i6=j

K−1,ǫi

(

6c−2
i ǫi

c−2
j ǫj

, 0

)
∣

∣

∣

∣

≤
∑

i6=j

6c−2
i e−1/ǫi

c−2
j ǫj

(1 + o(1)) = O
(

1

ǫj

∑

i6=j

e−1/ǫi

)

.

The result now follows.
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