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Abstract

What input signals will lead to synchrony vs. desynchrony in a group of biological oscil-
lators? This question connects with both classical dynamical systems analyses of entrainment
and phase locking and with emerging studies of stimulation patterns for controlling neural
network activity. Here, we focus on the response of a population of uncoupled, elliptically
bursting neurons to a common pulsatile input. We extend a phase reduction from the lit-
erature to capture inputs of varied strength, leading to a circle map with discontinuities of
various orders. In a combined analytical and numerical approach, we apply our results to both
a normal form model for elliptic bursting and to a biophysically-based neuron model from the
basal ganglia. We find that, depending on the period and amplitude of inputs, the response
can either appear chaotic (with provably positive Lyaponov exponent for the associated circle
maps), or periodic with a broad range of phase-locked periods. Throughout, we discuss the
critical underlying mechanisms, including slow-passage effects through Hopf bifurcation, the
role and origin of discontinuities, and the impact of noise.

Keywords: elliptic bursting, circle maps, perturbed oscillators, synchrony, mathematical neuro-
science
AMS subject classification: 92B25, 92B20, 34C28

1 Introduction

Many types of physical and biological systems exhibit intrinsic bursting – rapid discharges of con-
secutive, fast dynamical events separated by periods of quiescence. In particular, bursting neurons
serve myriad functions in the nervous system; prominent among these is their role in central pattern
generators that create rhythmic neural activity [13, 18, 61, 15]. Bursting dynamics also feature in
pathological oscillations associated with disease conditions, as for basal ganglia networks in Parkin-
sons disease [56, 66, 7, 1, 39], where elevated synchrony and rhythmicity among neurons is linked
to motor symptoms.

Here, we focus on synchrony and desynchrony among bursting neurons in the simplest possible
setting: a population of uncoupled bursting neurons receiving a common input signal. We study
elliptic bursters [38, 57] – that is, non-linear oscillators with fast and slow variables, and for which
burst onset is caused by passage through a (subcritical) Hopf bifurcation in the fast subsystem and
burst offset follows from a saddle-node bifurcation of limit cycles (see Sect. 2 below). The driving
signals are periodic pulsatile inputs.
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We find that there is rich variety in the response to these inputs, depending on their strength
and frequency. An illustrative example is presented in Fig. 1, where we plot simulated voltage
traces of two bursting cells, both receiving a common pulsatile input I(t). In the left panel, the
cells’ bursting phases are initially well separated, but a pair of “strong” input pulses synchronizes
them. In the right panel, the cells’ phases are initially nearly synchronized, but a relatively “weak”
input drives them apart. As we will show, the outcome depends on pulse strength and on inter-pulse
timing in interesting ways that arise directly from the dynamics of elliptic bursting.
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Figure 1: Simulated voltage traces of two uncoupled cells receiving common inputs (from the
conductance-based neuron model of Eqn. (38); see Sect. 5). (a) A strong input synchronizes cells
that are initially out of phase. (b) A weak input desynchronizes cells with close by initial phases.

Our goal is to understand the mechanisms responsible for this and related phenomena. Specif-
ically, we ask whether or not cells will entrain or become separated under the driving effect of a
common periodic input signal. Our main goal is to develop and explain a general answer to this
question. We note two broad scientific motivations for doing so, although exploring the implica-
tions of our results for each largely remains for future work. First, entrainment of a population
of uncoupled cells to an input signal determines the “reliability” of a neuron’s response – that is,
the repeatability of a response to a fixed input signal on multiple trials in which the neuron is in a
different initial condition. Reliability is fundamental in understanding how neural dynamics encode,
e.g., sensory signals [11, 51, 35, 55, 50, 4]. Second, common input signals to populations of bursting
cells (of elliptic and other types) occur naturally in layered neural networks, as in the basal ganglia;
in this brain area, common, pulsatile electrical stimuli are also artificially applied as a therapy for
Parkinson’s disease [56, 66, 7]. We give a very brief application to this general setting in Sect. 6.

Throughout this paper, we use a normal form model for elliptic bursting developed by Izhikevich
[38]. It is the simplest system that captures the dynamical features of elliptic bursting and we show
that it accurately describes a more complex bursting neuron model derived from basal ganglia
physiology. Thus, we will often refer to the normal form model as describing a “cell.”

Building from, e.g. [7], we show that the dynamics of the normal form model under periodic,
pulsatile inputs admits an accurate reduction to a discontinuous circle map that can be analytically
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defined. This map forms the basis for our theoretical results, and correctly predicts synchrony
and desynchrony for the physiological model. Nevertheless, because our results are linked to the
normal form model, we note that our approach and results have potential applications in the study
of general slow/fast oscillators undergoing a delayed bifurcation, well beyond neuroscience.

The paper proceeds as follows. Section 2 deals with the analysis of elliptic bursting dynamics as
well as phase reduction to a discrete dynamical system on the circle. Section 3 presents an analysis of
the reduced dynamics and explores synchronizing and desynchronizing effects of common pulsatile
inputs. Next, in Section 4, we study the effect of noise, which has a non-trivial and interesting
impact on the circle map and resulting patterns of synchrony. In Section 5, we carry out a series
of numerical experiments that verify our reduced models. Finally, in Section 6, we show how the
circle map framework can be used to analyze the effect of multiple sequences of pulsatile inputs. As
a proof of concept, we present a brief example in which an input signal is designed to compete with
the effect of a global entraining drive synchronizing a population, as in the basal ganglia setting
described above. Our principal finding – unifying analyses of several models and settings – is that a
population of (elliptic) bursting cells will desynchronize in the presence of weak to moderately strong
common inputs, if these inputs have a frequency slightly slower than the natural burst frequency.

2 Geometry of forced elliptic bursters

In order to better understand the effect of a common stimulus on a population of bursters, we
first describe the dynamics of single cells. Dynamical models that capture bursting usually include
multiple timescales and are often called slow/fast systems. Indeed, most intrinsically bursting
solutions arise from the evolution of one or more slow variables that periodically steer fast variables
into distinct dynamical regimes – here, spiking and resting.

2.1 Timescale dissection and basic model

Slow/fast systems can be written in the form

ż = f(z, y, ε)

ẏ = εg(z, y, ε)
(1)

where z is a vector of fast variables, y is a vector of slow variables and ε is the slow/fast timescale
ratio. Such systems arise in many areas of mathematical modeling and can describe general multiple
timescale phenomena. In the singular limit, where ε → 0, one obtains an equation where the slow
variable(s) y can be considered as parameter(s) for the fast subsystem (z). This approach allows
one to investigate the dynamics of the fast subsystem and subsequently to construct solutions of
the full system by carefully reintroducing slow dynamics – i.e., by studying the perturbed system
(ε 6= 0). An elegant mathematical toolset known as geometric singular perturbation theory has
been developed to study such phenomena [17, 43].

The results brought forward in this paper relate to the effect of pulsatile perturbations on
slow/fast bursters in which a delayed Hopf bifurcation is central to the onset of rapidly varying
dynamics. One of the first systems of this type to be studied was a bursting phenomenon in the
Belousov-Zhabotinskii chemical reaction [59]. The mechanisms central to our study can be found
in many chemical, physical and biological systems.
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However, our main purpose is to better understand the effect of perturbations on conductance
based models of single neurons (i.e., models of Hodgkin-Huxley type) that possess such a separation
of timescales. In many cases, calcium concentration acts as a slow variable while voltage and
associated ionic currents evolve on the fast timescale. Rinzel and Lee first studied fast/slow solutions
to models of parabolic bursters in 1987 using singular perturbation methods [58]. Since then, much
effort has been invested in understanding bursting solutions arising in conductance-based neural
models and their reduced forms [64, 57]. In 2000, Izhikevich produced a classification of bursting
mechanisms [36], including all of the possible codimension one bifurcations of the fast subsystem
that could be responsible for the onset and termination of spiking dynamics.
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Figure 2: Elliptic bursting trajectory from model (2). (a) Trace of Re(z). (b) Trace of y. (c)
Projected into the (Re(z), y) plane, thicker black lines show y-parametrized fixed points and limit
cycles of the fast subsystem (i.e., from the singular limit). S is a family of fixed points (stable
for the solid line and unstable for dashed), U is a family of unstable orbits and P is a family of
stable orbits. Thin black line shows bursting trajectory, with red arrows indicating time evolution
direction.

We concentrate on cells characterized as (subcritical) elliptic bursters or type III bursters, in
which a subcritical Hopf bifurcation of the fast subsystem drives the onset of bursting and a saddle
node bifurcation of limit cycles is responsible for the return to silent state (see Fig. 2). This
type of intrinsic bursting is well understood in the absence of forcing (input). In particular, Su,
Rubin and Terman established existence and stability properties of elliptic bursting solutions in [63].
Izhikevich [38] presented a portrait of elliptic bursting dynamics by describing the fast subsystem via
the normal form of the (codimension two) Bautin bifurcation, and derived a closely-related model
of weakly coupled networks of these bursters [39]. Throughout this paper, we keep our analysis
as general as possible and often illustrate our results with a variation of Izhikevich’s normal form
model (see Eqn.(2)) to simplify mathematical manipulations. However, we stress that our analysis
can be carried out for any elliptically bursting model.
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The normal from model is

ż = (y + iw)z + 2z|z|2 − z|z|4 + I(t)

ẏ = ε(a− |z|2 − by)
(2)

where z ∈ C represents the fast variable and y ∈ R the slow variable. This is as found in [39], but
with the term by added to the slow variable dynamics in order to explore the effect or nonlinear
ramping in the delayed Hopf bifurcation, a feature that is found in many models for which bursting
dynamics are caused by slowly varying calcium concentration. We set w = 1 and ε = 0.01 for
the remainder of the paper and will consider distinct cases in which we vary a and b. Intrinsically
bursting solutions generally arise for parameter choices where ẏ is positive when z is at rest and
negative when z is spiking (oscillating).

Notice the forcing via the signal I(t) in the equation for the fast variable. We wish to model an
input signal that causes an instantaneous voltage response, so we set I(t) =

∑
nAnδ(t− tn) where

δ is a delta function and An ∈ R+. We will refer to these perturbations as tn-kicks of amplitude
An: a kick simply translates a solution at time tn by an amount An in the real “direction” of z. In
this paper, we focus on periodic kicks of fixed amplitude A = An and equal spacing τ = tn − tn−1
between kick times.

2.2 The elliptic bursting cycle

Figure 2 shows an elliptic bursting trajectory from numerically integrating Eqn. (2) with a = 0.8
and b = 0. As mentioned above, the standard approach is to think of the slow variable y as a
parameter that determines the fast dynamics (z). The fast subsystem undergoes a subcritical Hopf
bifurcation at yH = 0 and a saddle-node of limit cycle bifurcations at ySN = −1. When ε = 0, and
given a fixed y ∈ (ySN , yH), the fast subsystem is bistable and has a sink at z = 0 inside an unstable
periodic orbit, itself contained within a stable periodic orbit. These y-parametrized limit sets form
normally hyperbolic invariant manifolds that persist under small perturbations (1 >> ε > 0) [63].
We denote by S the family of equilibria (z = 0). These are stable when y lies to the left of yH
and unstable on the right, together forming the silent branch. P is the family of stable periodic
orbits and represents the spiking branch. For Eqn.(2), the radii of these orbits about S are given

by rP (y) =
√

1 +
√
y + 1 for y > ySN . Finally, U refers to the family of unstable orbits with radii

rU(y) =
√

1−
√
y + 1 for y ∈ (ySN , yH), acting as a separatrix between the stable side of S and P .

A bursting solution occurs when the slow dynamics of y steer the fast subsystem rightward along
the silent branch S, until the Hopf point yH is reached. The solution then keeps moving rightward,
sticking close to S for some transient period even though the equilibria forming S are now unstable,
but is eventually attracted to P when y reaches yJ , where spiking begins. The y dynamics then pull
the oscillating fast subsystem leftward along P , until the latter vanishes at ySN , where the solution
is attracted back to S and another cycle begins.

Of particular interest is the slow passage effect through the Hopf point yH , in which the solution
does not immediately jump up into spiking when S looses stability (yJ 6= yH). This delayed
bifurcation phenomenon as been previously studied [3, 2, 63] and its implications in the context of
pulsatile perturbations will be established in Sect. 2.4. Importantly, several authors have shown that
noise can sharply diminish this slow passage effect [48, 47, 2, 63]. While we first treat the noiseless
case, we study the effect of stochastic terms on the phase reduction and response dynamics in
Sect. 4.
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2.3 Phase reduction

There is a substantial body of literature concerning phase reduction of oscillators and their behavior
under noise, forcing, or coupling [24, 40, 10, 16, 30, 53, 65, 23]. The general idea is simply to associate
the endpoints of a periodic solution’s cycle and to parametrize the movement along this solution
with a phase θ ∈ S1. Although the point θ = 0 is arbitrary, it is often chosen to correspond to a
distinguishable event within the periodic orbit, such as the apex of an action potential in a model of
a spiking cell. This reduction becomes useful when the limit cycle has some stability properties and
one can track the phase response of the solution following a perturbation: specifically, by computing
the phase difference on S1 between the unperturbed solution and the perturbed one, as t→∞ and
the latter contracts back to the limit cycle. When well defined, this one-dimensional description has
the advantage of being analytically tractable while preserving the behavior of an oscillator subject
to perturbations.

For systems with asymptotically stable limit cycles, phase reduction can be carried out rigorously
as long as the effect of forcing translates the solution to a point in the cycle’s basin of attraction.
This basin is foliated by the strong stable manifolds of each point on the limit cycle. By knowing
on which manifold – or isochron – the solution lands following a perturbation, we know exactly to
which phase it will be attracted in the limit as t→∞ [24, 68, 31, 52, 16, 37].

We next describe a phase reduction for elliptic bursters. As we will discuss further, the bursting
trajectories are not stable limit cycles, and so we cannot directly compute isochrons. Nevertheless,
the difference between the timescale of the burst period and the timescale of attraction normal to
the (singular limit) solution enables us to proceed. We closely follow Best et al. [7], who derive
circle dynamics for an elliptic burster receiving periodic inputs from a model excitatory neuron. In
their work, each excitatory kick always transitions a solution from the resting to the spiking state
– i.e., to the branch of periodic orbits P in Fig. 2, if it is not already following that branch. Best
et al. also use an approximation of linearity for the slow trajectories (i.e., ẏ is piecewise constant).
Here, we relax both of these assumptions, in particular while studying the response to weaker kicks
that do not necessarily generate a burst. As we will see, it is these weaker kicks that will lead to
desynchrony; that is, dynamics that appear chaotic or are phase locked at high period.

In [63], the authors use Fenichel theory to show that there exist O(ε) neighborhoods NS and
NP around S and P such that – if a solution enters either the left side of NS or the right side of
NP and the slow dynamics behave as mentioned above – then the solution will transition between
the two neighborhoods in a periodic, bursting fashion. Furthermore, they use averaging techniques
to show that the period of such a cycle can be approximated up to O(ε) by the sum of the passage
times TS and TP along the respective manifolds.

Although it is not clear whether or not there exists a single periodic solution of the full system,
[63] shows that such dynamics are at least metastable. That is, NS and NP are locally attracting
and any bursting solutions must live in these sets. Furthermore, solutions starting outside the two
attracting sets are quickly attracted back to them.

Numerically obtained solutions of Eqn. (2) do not trace back exactly the same path from
cycle to cycle but have periods that vary minimally, as expected [63]. Specifically, we numerically
integrated a solution in order to obtain 150 burst cycles and computed the coefficient of variation
(CV = standard deviation

mean
) of the cycle durations. We found CV = O(10−3) for parameter choices

yielding bursting solution in Eqn. (2) (numerical methods as in Sect. 5). Whether there is a
periodic solution with a much longer period than the bursting cycle, or whether solutions are
instead quasiperiodic or aperiodic remains an open question.
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The small CV (indicating a robust cycle period), along with the metastability described above,
motivate an approximate reduction to dynamics on the circle, as in [7]. We will revisit the notion
of uncertainty in cycle periods in Sect. 4. However, for what follows, we use the singular limit
assumption that a bursting trajectory evolves along S and P with well defined passage times TS
and TP , and will use this trajectory to compute phase reduced dynamics.

Saddle Node
Hopf

spiking

silent
jump down 
burst 

Jump up point

Figure 3: Schematic presentation of phase reduction. We associate endpoints of a bursting cycle
(where y = ySN), and map the trajectory onto the unit circle.

As illustrated in Fig. 3, we represent bursting solutions by a phase variable θ(t) ∈ S1 = R/Z.
We let θ = 0 ' 1 correspond to the “jump down point” on the bursting trajectory, where solutions
transfer from spiking to resting. We choose this reference point because the spiking to resting
transition is fast and is associated with a constant value of the slow variable, y = ySN (unlike, as we
will see, the transition to spiking following a pulsatile input). Essentially, the phase θ of a bursting
cycle is given by time rescaled by the period (θ = t

TS+TP
) where at t = 0, y = ySN . Note that

the first portion of the unit circle following θ = 0 represents the silent branch S and the remaining
portion represents the spiking branch P .

2.4 The kick map

We now study phase dynamics of bursters receiving pulsatile inputs (kicks). Specifically, we derive
a phase translation mapping FA(θ), such that if θ is the phase of a cell when a kick of strength
A arrives, FA(θ) is the phase of the kicked solution – relative to the unperturbed solution – after
it relaxes back to the burst cycle. We will refer to this as the kick map. In [7], a similar map
for elliptic bursters is derived, and this idea inspired the present work. However, there are two
differences with the map we derive here. First, the phase of trajectories in [7] is defined relative to
the period of pulsatile inputs; in our case, phase is defined relative to the (unperturbed) period of a
burst trajectory. This latter construction has been previously used in the context of integrate and
fire cells with soft reset [5], and we find that this makes it easier to visualize the role of changing kick
amplitude and period on the structure of the map. Second, in [7], only “strong” kicks are considered;
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as we will see, the map develops additional features, including discontinuity and expansion, in the
case of weaker kicks.

As discussed in Sect. 2.3, we assume that unperturbed elliptic bursting solutions have fixed
times spent in silent (TS) and spiking phases (TP ). When computing a map for a given system as
done in Sect. 2.5, it is best to work with unscaled time and later (implicitly) normalize the time
variable by the burst period (TS + TP ) so that our phase variable θ remains between zero and one.
In this section however, we derive the kick map for an arbitrary elliptic bursting model and assume
that the period is already unitary (TS + TP = 1) for simplicity. The rest of the notation follows
that of system (2) but the reader should keep in mind that z and y represent general fast and slow
variables.

Our computations are intimately linked to the evolution of the slow variable y along the branches
S and P . Recall that y spans [ySN , yJ ] when z travels along S or P . To better track the variable
y, we label its dynamics along S by y(t) = hS(t) and along P by y(t) = hP (t).

Thus, for a burst trajectory that starts at y = ySN when t = 0, we have

y(t) =

{
hS(t) if 0 ≤ t < TS
hP (t) if TS ≤ t < 1

(3)

where hS(0) = ySN = hP (1) and hS(TS) = yJ = hP (TS). Here, hS and hP are functions with ranges
[ySN , yJ ] and respective domains [0, TS] and [TS, 1]. We assume hS is an increasing function while
hP is decreasing. We now define the phase θ of a bursting solution (z(t), y(t)) by

θ =

{
h−1S (y(t)) if silent (z(t) ∈ S)
h−1P (y(t)) if spiking (z(t) ∈ P ).

(4)

For unperturbed solutions, θ = t mod 1. In general, expressions for hS and hP can be hard to find.
As in standard approaches, one can integrate the dynamics of y by restricting the fast variable to the
invariant manifolds S and P , and using the averaged motion of z on those manifolds [57, 23, 2, 63].
These calculations yield explicit formulas for the normal form system (2), as we demonstrate in
Sect. 2.5.

We are now equipped to define the kick map. Our first assumption is that a kick that arrives
during the spiking regime has no effect on θ(t). Due to the separation of timescales, trajectories
are attracted back to the stable limit cycles that form P in a vanishingly short time (with respect
to the timescale over which the phase evolves). On the other hand, a kick while the cell is silent
(z near S) may have distinct outcomes. If y(t) ∈ [yH , yJ ] (sticking to the unstable part of S), any
kick will send the cell to the spiking state since the trajectory is highly sensitive to perturbations.
However, if y(t) ∈ [ySN , yH ], one of two things can happen. If the kick is strong enough to translate
the solution past the separatrix U , then the cell jumps to the spiking state (Fig. 4 (b)). If on the
other hand, the kick is not strong enough, the solution will attract back to S (Fig. 4 (a)).

θw(A) = h−1S (yw(A)). (5)

From now on, we refer to a kick as strong if A > rU(y) for all y ∈ [ySN , yH ] where, rU(y) is
the distance between S and U at y, in the direction of the kick. In other words, a strong kick will
immediately result in spiking independently of the cell’s phase. In contrast, we define a weak kick
as one with an amplitude A < rU(y) for values of y in some subinterval of [ySN , yH ], so that the
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Figure 4: Weakly kicked (A = 0.5) trajectories from (2). Top to bottom: Re(z) trace, y trace and
y − Re(z) solution curve (red) truncated at t = 200 for clarity. Star indicates a kick and dashed
blue line the kick’s amplitude A. (a) Kick received at t = 80 and does not clear separatrix. (b)
Kick received at t = 110 and clears separatrix.

kick does not always immediately cause a cell to spike. (Note that a weak kick will result in spiking
for any value of y outside this interval.)

For the strong kick case, the kick map is

FA(θ) =

{
h−1P ◦ hS(θ) if θ ∈ [0, TS]
θ if θ ∈ [TS, 1].

(6)

While in silent phase, θ ∈ [0, TS], y increases according to hS(t); when spiking is induced by a
kick, the value of y is left unchanged but its dynamics are “reversed” and it starts decreasing via
hP (t). The cell will then spike until y reaches ySN , which takes less time since we started closer
ySN . Thus the impact of the kick is to advance the phase. This explains the first line of Eqn. (6),
and is sketched in the panel (a) of Fig. 5. As already discussed, the kick has no effect when the cell
is spiking, as expressed in the second line of Eqn. (6).

For weak kicks, the situation is more complex. Recall that the branches U and P meet at ySN
(rU(ySN) = rP (ySN)), and U vanishes at yH (rU(yH) = 0); we assume that rU is a non-increasing,
continuous function. As a result, for rU(ySN) > A > 0, we can find yw(A) such that A = rU(yw(A))
and A < rU(y) for all y ∈ [ySN , yw(A)]. If the cell is in silent phase, yw(A) is essentially a cutoff
point before which a weak kick will not elicit immediate spiking, as illustrated in Fig. 4(a). A weak
kick delivered at any other point through the burst cycle will result in instantaneous spiking, as in
the strong kick case. We recast this condition in phase coordinates, obtaining the cutoff phase

What happens to a cell’s phase when a weak kick does not evoke spiking (θ ∈ [0, θw(A)])? The
trajectory is attracted back toward S but jumps up into spiking before it reaches yJ , as if it retained
a memory of this past weak kick (Fig. 4 (a)). To better understand this phenomenon, we first need
expressions for slow passage times through Hopf points. We use results for delayed bifurcations
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derived in [3] in order to predict points of transition between silent and active states.
Let λ(y) be the extremal eigenvalue of the fast subsystem linearized about the equilibrium points

z0(y), for some chosen value of y ∈ [ySN , yJ ]. (Recall that this collection of points forms the manifold
S = {z0(y)|y ∈ [ySN , yJ ]}.) Points on S to the left of yH are sinks with Re(λ(y)) < 0, whereas

to the right, they are sources and Re(λ(y)) > 0. Assume dλ(y)
dy
|y=yH 6= 0. As a solution is pulled

to the right by the slow dynamics, y crosses yH , Re(λ(y)) changes sign and solutions switch from
being attracted to being repelled by S. However, this repulsion is not immediately apparent: the
difference in time scales of our slow/fast system induces a discrepancy in spatial scales. As y varies,
z is attracted to S for y < yH and repelled for y > yH , both at an exponential rates (proportional
to Re(λ(y))) on the fast timescale.

The length of the slow passage (also called delay) to the right of yH depends on the dynamics
of y along S. Borrowing notation from [3], suppose we can write

y(t) = yi + g(εt) (7)

where we assume g is a non-decreasing function and g(0) = 0. In this context, hS(t) = ySN + g(εt).
If the system’s full solution starts at (zi, yi) such that yi ∈ [ySN , yH ] and zi is far enough from z0(yi)
but is still in its basin of attraction, then the jump up point yj can be implicitly computed via

0 =

∫ yj

yi

(
d

dy
g−1(y − yi))Re(λ(y))dy (8)

where g−1 is the inverse of g. In the unperturbed case, the point yJ can be derived using yi = ySN
in (8); this is sometimes called the memory effect for elliptic bursters [58]. We refer the reader to
the appendix of [3] for the derivation of this integral condition.

(a) (b)

Figure 5: Schematic representation of the kick map θ → FA(θ) on the unit circle. (a) Strong kick
map (6). (b) Weak kick map of Eq. (9). The solid arrows represent instantaneous change of phase
while the dotted arrow indicates the evolution of the phase along the circle in time.

If a weak kick does not elicit instantaneous spiking, we find that the “memory” starts anew at
the time of the kick; in other words, if the kick is administered when y ∈ [ySN , yw(A)], then we set
yi = y in Eqn. (8), and denote the associated jump up point by ỹj(y). In phase coordinates, if the
cell is kicked at θ ∈ [0, θw(A)], y is given by hS(θ). The onset of spiking happens at yj = ỹj(hS(θ)),

10



or equivalently at θj = h−1S (ỹj(hS(θ))). We capture this via:

FA(θ) =


θ + h−1P (ỹj(hS(θ)))− h−1S (ỹj(hS(θ))) if θ ∈ [0, θw(A))
h−1P ◦ hS(θ) if θ ∈ [θw(A), TS]
θ if θ ∈ [TS, 1].

(9)

The first conditional definition maps the slow variable to its jump up value yj = ỹj(hS(θ)), and then
applies the strong kick map h−1P ◦ hS(θ), and finally translates back by the phase −h−1S (ỹj(hS(θ)))
to account for the time taken in “slow passage” from yi = hS(θ) to yj = ỹj(hS(θ)). This mapping is
sketched in the right panel of Fig. 5; note that it is only valid if the cell does not receive additional
kicks before it enters the spiking state.

This construction implies that the shape of a kick map does not vary continuously with the
strength of a kick. Moreover, the only criterion which dictates the qualitative shape of the map is
the value of θw(A) (we sometimes drop the A and write θw). Other than determining the threshold
θw, the perturbative role of A is dimensionless since a kick acts on the fast variable as opposed to
the phase which is defined over the slow timescale. That is, if two kicks of distinct amplitudes yield
the same strong (resp. weak) outcome, the discrepancies between the times needed to attract close
to the unperturbed trajectories are negligible. We emphasize that θw decreases as A increases: for
strong kicks with A > rU(ySN), θw is always zero and the map does not change shape as A increases
further. We use Eqn. (9) as the general expression for our kick map.

We stress that there is a fundamental difference between the maps induced by strong and weak
kicks. A weak kick always induces expansion in the kick map, as long as it speeds passage (ỹj 6= yJ)
through the Hopf point. Indeed, notice that by construction, h−1P (y) > h−1S (y) for any y ∈ (ySN , yJ)
and h−1P (y) = h−1S (y) when y = ySN , yJ . From expression (9), we see that FA(θ) > θ on (0, θw)
and FA(0) = 0. It follows from the mean value theorem that dFA

dθ
> 1 on some region contained in

[0, θw). We also note that when hP and hS have similar shapes, it generally implies expansion of FA
on the whole interval [0, θw). To better illustrate this and other features, we compute expressions
of this map for system (2).

2.5 Computing the kick map for the normal form model

In this section, we derive an analytical approximation of the kick map for the elliptic bursting normal
form model. The task at hand is simple: use Eqn. (2) to compute the ingredients of expression (9):

hS(θ), h
(−1)
S (θ), h−1P (θ), ỹj(y) and θw(A).

We first turn to hS and hP , which are essentially the y components of a solution to Eqn.
(2), in silent and spiking modes respectively. In contrast with the previous section, we carry out
computations using unscaled time which implies a full burst period T 6= 1. One can still think of t
as θ in what follows, but the expression of the final map has to be rescaled.

We exploit the separation of timescales in our equation and make the assumption, as in the
singular limit, that z evolves exactly on the manifolds S and P . Notice that the y dynamics depend
linearly on |z|2. By substituting |z|2 = 0 for hS, and |z|2 = rP (y) for hP , we obtain two scalar
O.D.E.s

ẏ = ε(a− by) when z is on S (10)

ẏ = ε(a− rP (y)2 − by) when z is on P . (11)
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Bursting occurs when the right hand sides of (10) and (11) are respectively positive and negative,
steering the fast dynamics in the required directions along S and P . Here we concentrate on
parameter values a > 0 and b ≥ 0 which satisfy this condition. As we will shortly see, b > 0 implies
that the evolution of y along S follows a saturating exponential ramp while b = 0 implies a linear
ramp. Both scenarios are found in biological systems, and – as we now show – the resulting kick
maps have common characteristics which unify their response to pulsatile perturbations.

For Eqn. (10), we can easily solve and get

hS(t) = εat+ CS b = 0 (12)

hS(t) =
a

b
+ CSe

−εbt b > 0 (13)

where CS is an integrating constant. Setting y = ySN(=−1) at t = 0, it is easy to see that CS = ySN
for d = 0 and CS = ySN − a

b
for b > 0. In turn, we have

h−1S (y) =
y − ySN
εa

b = 0 (14)

h−1S (y) = − 1

εb
ln(ε[a− by]) +

1

εb
ln(ε[a− bySN ]) b > 0. (15)

For Eqn. (11), recall that rP (y) =
√

1 +
√
y + 1 when y > ySN . Solving this O.D.E. is not as

straightforward; fortunately, we only need the inverse h−1P (which is a proxy for t in this context)
to compute our map. This can be obtained directly via integration:

h−1P (y) = −2

ε
[(a− 1) ln(−a+

√
y + 1 + 1) +

√
y + 1] + CP b = 0

h−1P (y) =
1

εb

2 tan−1
(

2b
√
y+1+1√

−4(a−1)b−4b2−1

)
√
−4(a− 1)b− 4b2 − 1

− ln(−a+ by +
√
y + 1 + 1)

+ CP b > 0.

Using (14), (15) it is straightforward to compute the time (TS) it takes for hS(t) to reach yJ , and
then derive values for CP such that h−1P (yJ) = TS as required by our definition of hp.

To compute the jump up point yJ , we derive an expression for ỹj(yi) which is also needed in the
definition of our kick map. In order to use the integral condition (8), we must first write expressions
for the y dynamics in the form of Eqn. (7). Here we substitute ySN by yi in the expression of CS
for (12) and (13) to allow for arbitrary initial conditions and get

y(t) = yi + aεt b = 0

y(t) = yi + (1− e−bεt)(a
b
− yi) b > 0

which yields

g(εt) = aεt b = 0 (16)

g(εt) = (1− e−bεt)(a
b
− yi) b > 0 (17)
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which in turn give

g−1(y) =
y

a
b = 0 (18)

g−1(y) = −
ln(1 + y

yi−a/b)

b
b > 0. (19)

It is easy to compute the extremal eigenvalue for the linearization about z = 0 of the fast
subsystem in Eqn. (2) : λ = y ± iw and therefore Re(λ(y)) = y. Turning now to the integral
condition (8), when b = 0 we use (18) and write

0 =

∫ yj

yi

y

a
dy

by which we can deduce that

yj = ỹj(yi) = −yi b = 0. (20)

In other words, when the slow variable follows a linear ramp along the silent branch S (see (16)),
the jump up point yj is symmetric to the initial point yi about yH = 0. This can be seen from Fig.
2 where ySN = −1 and yJ = 1.

In the case where b > 0, y follows a saturating exponential ramp along S (see (17)) which implies
that y decelerates as it moves rightwards and thus shortens the slow passage. Using (19) in the
integral condition (8), we get

0 =

∫ yj

yi

y

b(1 + y−yi
yi−a/b)(a/b− yi)

dy

which gives

0 =

[
−1

b

a ln(by − a)

b
+ y

]yj
y=yi

thus implying the relation

yi − yj =
a

b
ln(

byj − a
byi − a

).

We then isolate yj to get

yj = ỹj(yi) =
a

b
[W (−1

a
e
b
a
yi−1(a− byi)) + 1] b > 0 (21)

where W is the Lambert W function (product logarithm function).
The last ingredient we need is an expression for the cutoff value yw(A); recall that this marks the y

boundary below which a given kick will not clear the separatrix U with radius rU(y) =
√

1−
√
y + 1.

This quantity does not depend on the slow dynamics and is therefore the same for both our cases.
For a kick amplitude A, yw(A) = (1−A2)2 − 1 if A ∈ [0, 1] (a weak kick). When A > 1, the kick is
strong and we set yw = ySN = −1.

Using the expressions above we can build our kick map by using (9) and rescaling time by the
period of a full cycle. To find the period for a given set of parameters, we use h−1S and h−1P to derive
the silent and active passage times TS and TP . We reiterate that the only dependence on a kick’s
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Figure 6: Analytically (solid lines) and numerically computed (markers) kick maps FA(θ) for three
values of kick amplitude A. (a) Model parameters: {ε = 0.01, w = 1, a = 0.8, b = 0}. (b) Model
parameters: {ε = 0.01, w = 1, a = 0.4, b = 0.5}.

amplitude A is implicitly contained in the expression for θw = h−1S (yw(A)). As mentioned above,
whenever A > 1, the kicks are strong (θw = 0) and the resulting maps have a fixed shape. On the
other hand, as A decreases below 1, the weak kick effect progressively uncovers the left branch of
the map (θw 6= 0).

To verify our derivation of the kick map, we choose 3 prototypical kick amplitudes: one strong
(A = 1.5) and two weak (A = 0.5 and A = 0.1). We then plot the associated maps for two distinct
set of model parameters: {ε = 0.01, w = 1, a = 0.8, b = 0} and {ε = 0.01, w = 1, a = 0.4, b = 0.5}
in order to better visualize the effects of linear (b = 0) and saturating exponential (b > 0) ramps
for the y dynamics.

In Fig. 6, we plot numerically and analytically computed maps, rescaled to the unit circle.
Observe that we get very good agreement between the two and that the main features of weak
kicks are captured by our phase reduction model. However, numerically computed maps have fine,
plateau-like segments. As argued in [7], there are as many of these plateaus as there are spikes in
a burst. They appear since a kick can induce bursts with spike counts ranging from one to the
number seen in an unperturbed cycle. Since these numbers are integers and we numerically identify
phase zero with the last spike of a burst, these plateaus are formed by phases that induce the same
number of spikes following a kick. This is not captured by our analytical derivation of the kick map,
which is computed from averaged conditions on the fast variable. However, we will see in Sect. 4
that the presence of noise in the system tends to diminish these plateaus, and in Sect. 5 that key
aspects of synchrony and desynchrony for the original ODEs are predicted by our derived kick map.

We close this section with some remarks concerning the generality of features found in the kick
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map. We use the normal form model (2) for its analytical tractability but the general mechanism
responsible for bursting, and hence the associated kick map, have characteristics that span across
models. For example, for both linear (b = 0) and saturating exponential (b > 0) slow dynamics –
which imply distinct interactions between the slow and fast subsystems – the maps are qualitatively
identical. Specifically, at the end of Sect. 2.4, we noted that region of expansion in the left part of
the weak kick map is a general feature of elliptic bursters with slow passage effects. The fact that
the right branch follows the identity is another general attribute.

The shape of the middle branch (read left branch for strong kick map) is, however, more model
dependent. Notice that both of our strong kick maps (for A = 1.5) have a left branch that steepens
as we move leftwards. This is due to the dependence of h−1P on r2P (y), which grows as

√
y. As a

result, for A sufficiently large, dFA(θ)
dθ

< −1 for θ ∈ (0, θc) where θc is the root of

d

dθ
h−1P ◦ hS(θc) + 1 = 0. (22)

For our parameter set with b = 0, θc ' 0.0968 while for the second set with b > 0, θc ' 0.0619.
This curvature shrinks as we decrease the parameter a in (2) and the silent phase lengthens.

In general, this branch depends on the slow dynamics and the ratio of silent to spiking times
TS/TP , which impose the following constraint: by construction, a strong kick implies FA(0) = 1
and FA(TS) = TS. If we were to approximate the y dynamics by constant velocities (as done in [7]),
this map branch would be linear and hence contractive, whenever TS > TP . In general, as long as
the latter is true and the functions hS, hP (desribing y dynamics) have small total variation, we
can expect this branch to be mostly contractive, as for both cases explored above. We note that
we obtain such contraction for the biophysical systems we study in Sect. 5.2, meant to model GPe
neurons in the Parkinsonian state; [7] draws an interesting contrast with cases having TS < TP .
The generality of these features motivate the analysis of dynamics induced by the kick map as we
show in the next section.

In light of these remarks and in the interest of clarity, we use the maps computed above for
the parameter set with b = 0 to carry out our analysis for the rest of the paper. We stress that
the arguments that will follow hold true for other parameter sets of system (2) and any elliptical
bursting system having the features described above.

3 Dynamics of the kick map

Now that we have an understanding of an elliptic burster’s response to input kicks of various
strengths A, we turn to the other input parameter of relevance – the period between these kicks τ
– and study the iterated dynamics of the map for various combinations of A and τ .

3.1 Iterative framework

We now use the kick map to build an iterative dynamical system capturing the evolution of cells
subject to periodic stimulation. Let

FA,τ (θ) ≡ FA(θ) + τ (mod 1) (23)
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which returns the phase of a kicked cell right before the next kick, τ time units later. The parameter
τ translates the map vertically as illustrated in Fig. 7. For a chosen pair (A, τ) and some initial
phase θ0, an orbit is defined by θn+1 = FA,τ (θn−1) = F n

A,τ (θ0).
We note that, in contrast with the map of [7], our kick map does not become rescaled as τ is

varied, but is rather translated around the circle (as in related studies [5, 28]). Another difference
is the presence of sustained expansion even though TS > TP (see above), due to accelerated slow
passage effects induced by weak kicks; we will show that this expansion leads to positive Lyapunov
exponents for certain values of τ . This phenomenon has been exploited in simpler dynamical systems
with slow passage through a supercritical Hopf bifurcation in the context of chaos control [54].

0 0.5 1
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0.2

0.4

0.6

0.8

1

Figure 7: Effect of kick period τ( mod 1) on the kick map. Original kick map FA(θ) in black and
τ induced kick map FA,τ (θ) in red. τ simply translates the map vertically.

Equation (23) assumes that a kick acts on cells located on unperturbed trajectories. As also
noted above, the separation of timescales for elliptic bursters implies very fast attraction back to
steady state trajectories following a kick, so that this assumption is generally valid. Moreover, the
iterated dynamics for small values of τ are relevant in any case, as they can be accessed by longer,
equivalent kick periods modulo one.

We next use Eqn. (23) to study the response of a population of identical elliptic bursters with
different initial conditions to a common, pulsatile signal. For example, globally stable fixed points
or periodic orbits represent phase locking regimes towards which the long term behavior of any cell
will converge. On the other hand, maps that yield sensitivity to initial conditions and complex
orbits are representative of desynchronizing inputs, when delivered to a population. To further
explore population behavior, we need to define a metric by which we quantify synchrony of phase
points on S1. We call this our “synchrony measure” and describe it next.

3.2 Assessing synchrony

There are many ways one can quantify how closely N points are distributed on S1. Two natural
choices are the binned entropy H and order parameter R (also known as vector strength) :

H(θ1, ..., θN) =
1

log(1/N)

N∑
j=1

pj log(pj)

R(θ1, ..., θN) = | 1
N

N∑
j=1

ei2πθj |.
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For H, we divide S1 into N equal length subintervals, or bins, and take pj to be the number of
phases in bin j over N (using the convention 0 log 0 = 0). H takes its maximal value one when
there is a phase spread into each bin and its minimum value zero when all are concentrated into a
single bin. On the other hand, R takes its minimum value zero when phases are evenly distributed,
and one when they are all equal.

Each measure has strengths and weaknesses as a metric of synchrony. For example, R can be
zero if the phases are split into two equal, antipodal groups on S1 – this is hardly an asynchronous
state. For a large N , H can take relatively large values even if cells are distributed in close by bins.
By taking

W (θ1, ..., θN) =
1

2
[R(θ1, ..., θN) + (1−H(θ1, ..., θN))].

to be the average of R and 1 − H, we can be assured that low measures of W correspond to
cases where cells are well distributed across bins and that these bins are broadly spread around S1.
Specifically, we assess synchronization properties of a given map by taking N cells {θn}1≤n≤N with
some initial distribution on S1, pushing these states forward through m iterates, and computing W̄
as the average over the last k out of these m iterates:

W̄ =
1

k

m∑
i=m−k

W (F i(θ1), ..., F
i(θN)). (24)

Throughout the paper, we take m ≥ 100 and k = 20, having found empirically that values change
little with larger values of either.

3.3 High period orbits and positive Lyapunov exponents

We next investigate how iterations of our kick maps act on a population of cells for the three
prototypical cases of strong (A = 1.5) and weak kick maps (A =0.5, 0.1), plotted in panel (a)
of Fig. 6. We note that, while smooth maps on the circle are well characterized [62, 44], the
discontinuities in our map introduce a number of distinct phenomena – such as border collision
bifurcations with period adding at all orders, and “sharp” transitions to chaos. There is an ongoing
effort to build a theory to better understand such systems [6, 8, 34, 41].

We first plot orbit diagrams with respect to the parameter τ for each of the three maps at hand
(Fig. 8). Specifically, we select 100 cells uniformly distributed on S1; for various τ ∈ [0, 1], we
compute the positions of these cells after 150 iterates of FA,τ (θ) and “vertically” plot the result.
Directly below these orbit diagrams, we plot the synchrony measure W̄ of these end states, together
with numerically computed Lyapunov exponents λ for each τ , averaged over all trajectories. Finally
we compute approximations of invariant measures for each τ , using a variation of Ulam’s method
developed in [22] (this produces a discretized approximation of fixed densities for a map’s Perron-
Frobenius operator). The results are plotted in the bottom panels of Fig. 8.

We begin by describing results for the strong kick map (A = 1.5). Recall that the leftmost part
of the strong kick map ,when θ ∈ (0, θc) (θc '0.0968, derived in Eq. (22)) has a derivative greater
than one in absolute value. The derivative is less then or equal to one in absolute value everywhere
else. It is easy to see that the map has a fixed point for any τ . If the map intersects the identity at
θ ∈ (0, θc), the fixed point is unstable and we find that complex dynamics emerge. We can witness
this by looking at the orbit diagram of this map for small τ . Nevertheless, we see that cells tend to
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Figure 8: Orbit diagrams and related measures for kick maps (Eqn. (9)). Top to bottom: orbit
diagrams of 100 cells after 150 iterations; synchrony measure W̄ (red) and averaged Lyapunov
exponent λ (blue); invariant measure approximates. Left to right: strong kick with A = 1.5; weak
kick with A = 0.5; weak kick with A = 0.1. Marked values for τC below which Lemma 1 applies.

cluster in small regions and hence are relatively synchronized. For any other τ 6= 0, we have stable
fixed points, implying phase locking of cells to the input kicks. Note that for all maps, τ = 0 implies
a continuum of neutrally stable fixed points, as the right branches of the maps align perfectly with
the identity.

For the weak kick maps (A = 0.5, 0.1), some values of τ yield stable, discrete attractors as
well: fixed points and periodic orbits. More interesting are values of τ which produce thick, chaotic
attractor-like objects. These are associated with what appears to be locally absolutely continuous
invariant measures and positive Lyapunov exponents. It is in these regimes that our synchrony
measures show a greater spread of cells. This is indicative of chaos, the presence of which is
consistent with expansive regions of weak kick maps. Interestingly, these regions appear wether a
map has a gap or not, as we show below.

Rigorously assessing the presence of chaos is, however, not a simple task. This was accomplished
for related piecewise smooth maps [9, 14, 45, 12] where various definitions of chaos were used, de-
pending on context. For example, Keener [45] showed that piecewise, surjective and non-decreasing
maps with overlap have rotation numbers spanning a non-empty interval, an indication of chaos for
circle maps. Unfortunately, our weak kick maps sometimes fail to have surjectivity (e.g. A=0.5)
and always fail to be non-decreasing. One can also try to define trapping regions and a family of
intervals for which interval images cover at least one other interval and the image of at least one
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interval covers at least two others. This constructs an shift on a space of sequences, which can
characterize a chaotic system. However, building such an interval family for the weak kick map
proves to be quite complex as intervals get flipped by decreasing parts of the map and severed
by discontinuities. Thus, we do not aim at a complete characterization of the complex dynamics
produced by our weak kick maps. However, we next show that, for some τ values, there is a positive
lower bound on (sustained) Lyapunov exponents of any trajectory.

In Fig. 8, we see that some values of τ (0 < τ . 0.2) induce dynamics that appear chaotic for
both of our weak kick maps. Thus motivated, we state the following lemma:

Lemma 1 Consider a piecewise defined map F (θ) on the circle which is smooth on three non-
intersecting intervals I1, I2 and I3 with Ī1

⋃
Ī2
⋃
Ī3 = S1. Suppose |dF

dθ
|I1| ≥ a > 1, |dF

dθ
|I2| ≥ b > 0

– such that ln(a) > | ln(b)| – and additionally that dF
dθ
|I3 = 1. Then if F (I2) ⊂ I3, F (I3)

⋂
I2 = ∅

and F (I3) 6= I3, the Lyapunov exponent associated with the orbit of almost any initial condition
θ0 ∈ S1, if well defined, will be strictly greater than zero (λ(θ0) > 0).

Proof: Given θ0 and its forward orbit {θn}n=0,1..., the local Lyapunov exponent can be written

as λ(θ0) = limN→∞
1
N

∑N
n=0 ln | d

dθ
F (θn)|. The derivative is defined everywhere in S1 except the

4 border points of the intervals I1, I2, I3, which is obviously a measure zero set. The condition
F (I2) ⊂ I3 imply that any point in I2 is sent to I3. Since F is smooth on I3 and dF

dθ
|I3 = 1,

the condition F (I3) 6= I3 implies that any point in I3 must eventually exit it. Let C = maxθ{n =
minm{m |Fm(θ) /∈ I3} | θ ∈ I3}. Then any element of I3 stays in I3 at most C iterates. Furthermore,
F (I3)

⋂
I2 = ∅ implies that elements of I3 are eventually sent to I1. When an orbit point visits

I1, it contributes at least ln(a) > 0 to the sum in λ(θ0), at least ln(b) (possibly< 0) if it visits I2
and 0 when it passes by I3. By tracking which intervals an orbit visits, any admissible subsequence
featuring I2 must contain I2 → I3. The sequence that contributes the least to λ(θ0) is therefore
I2 → I3 → ... → I3 → I1 where I3 is repeated C times. It follows that for almost every θ0,
λ(θ0) ≥ 1

2+C
(ln(a) + ln(b) + 0 + ...+ 0) > 0. �

We note that weaker conditions could be stated under which a positive Lyapunov exponent
results, but the above are sufficient for the map at hand, as we now show. In particular, we show
that Lemma 1 can be applied to the weak kick maps for certain values of τ . Clearly, the intervals
(0, θw), (θw, TS) and (TS, 1) will play the roles of I1,I2 and I3. For our prototypical weak kick maps,

we have |dFA,τ
dθ
|(0,θw)| ≥ 2.7, |dFA,τ

dθ
|(θw,TS)| ≥ 0.65 and

dFA,τ
dθ
|(TS ,1) = 1 which fulfills the derivative

criteria. It remains to show that the intersection requirements for interval images are met; we take
a graphical approach which leads to conditions on τ . In Fig. 9, panels (b) and (c) show the map for
A = 0.5 along with the marked intervals for two distinct values of τ and cobweb diagrams of sample
trajectories. One can verify that the Lemma’s assumptions are respected as long as the leftmost
tip of the middle branch stays smaller than one and the rightmost tip is greater than the identity
(panel (c)). This happens when 0 < τ < τC where

τC = 1− lim
θ→θ+w

FA,0(θ). (25)

Although we do not explicitly graph it, the same argument holds for A ∈ (0, 1). We analytically
compute these upper bounds for τ and get τC ' 0.205 for A = .05 and τC ' 0.26 for A = 0.1.
As expected, these are close to 0.2, the rough higher bound we predicted earlier from Fig. 8. In
addition to positive Lyapunov exponents, τ < τC imposes a cyclic structure where trajectories visit
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a large portion of all three intervals in finite time, which is necessary for the population to become
widely distributed around S1.

For τ > τC , various dynamics can be observed. Figure 8 shows that positive Lyapunov expo-
nents can still be found sporadically but the regions on which the trajectories accumulate can be
considerably smaller. Periodic orbits of various periods are also present; in particular, high τ values
seem to be associated with stable fixed points. This motivates a separation of the (A, τ)–space into
three regions: I, where Lemma 1 applies; II, where dynamics are complex and transitions between
what appears to be periodic orbits and smaller chaotic regions can be seen; III, stable fixed points
(1:1 phase locking). Panel (a) in Fig. 9 shows these regions. We stress that further analysis of region
II might yield additional structure but the complexity of our map (circular domain, increasing and
decreasing parts, transitions from gaps to discontinuity points, etc.) renders a complete analysis
outside of this article’s scope.

From what was described above, we see that region I is given by

I : {(A, τ)|0 < τ < τC(A) = 1− lim
θ→θw(A)+

FA,0(θ)}

where we have written the expression for τC to highlight its dependence on the kick amplitude A.
As A increases, θw decreases and consequently, τC as well. Region I vanishes altogether when the
kick transitions from weak to strong – at A = 1, where τC = 0.

To define the boundary between regions II and III, we need to derive a condition under which
our maps have a stable fixed point. We begin by inquiring about when the middle branch of the
map intersects the identity. This happens when τC + θw < τ < 1. The stability of the resulting
fixed point depends on the derivative of the branch at the intersection point.

Again, as A increases and both θw and τC decrease, more of the middle branch of the map
is exposed. When τ = τC + θw, the leftmost tip of this branch intersects the identity. If A is
sufficiently large, the resulting fixed point will be unstable; recall that for the strong kick map
(A > 1), |dF

dθ
| > 1 when θ ∈ (0, θc). It follows that if θw < θc, the first fixed points to appear

as τ increases are unstable. We include unstable fixed points in region II and get the following
definitions

II :{(A, τ)|τC(A) < τ < τC(A) + max{θw(A), θc}}
III :{(A, τ)|τC(A) + max{θw(A), θc} < τ < 1}.

What can be taken from our analysis thus far is that to desynchronize cells with a τ -periodic
input, the best strategy appears to be weak kicks with 0 < τ < τC (region I). To illustrate this,
panels (b) and (c) of Fig. 9 show sample trajectories for 50 cells under the action of the weak kick
map with A = 0.5 in both synchronizing (region III) and desynchronizing (region I) regimes. To
mimic a synchronous state, our initial phases are drawn from a uniform distribution on an interval
of width .01, around θ = 1/10. The first 50 iterates are taken with respect to the identity map,
reflecting a preliminary period with no pulsatile inputs. The next iterates are taken with respect
to the weak kick map with τ = 0.5 (region III, panel (b)) or τ = 0.1 (region I, panel (c)).

As expected, for τ = 0.5, every cell attracts to a single fixed point and the synchrony measure is
maximized. However, for τ = 0.1, the cells quickly become widely distributed. This was foreseeable
from the shape of the computed invariant measures at this value of τ . Importantly, the synchrony
measure drops substantially.

We close this section with an important remark concerning circle maps and phase locking. Here,
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our kick map can be seen as a A-perturbation of a τ -rotation. Typically, smooth perturbations
of rotations admit Arnold Tongues: well separated wedge like regions where phase locking with
rational rotation number occurs (see e.g. [67], Sect. 21.6). In our case, the loss of smoothness
introduces sustained region where chaotic dynamics prevail, hereby showing surprising effects of
discontinuous circle maps.

4 Effects of noise on kick map and synchrony

Up to this point, we developed a phase reduction framework to analyze the dynamics of periodically
forced bursters. We now ask: does the phase reduction remain valid in the presence of noise? If
so, what qualitative changes in the map occur, and what are the consequences for entrainment of
bursters? In this section, we develop answers through a blend of numerical results and analytical
approximations.

The effects of stochastic perturbation on elliptic bursters have been previously studied in various
contexts [2, 63, 48]. The unifying theme is the effect of noise on slow passage through a Hopf
bifurcation. Here, we build on these results to better understand the role of noise on burst responses
to periodic pulsatile inputs. We will comment further on prior results as we progress.

To this end, we introduce a stochastic perturbation in the fast variables of the normal form
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model, so that Eqn. (2) becomes

ż = (y + iw)z + 2z|z|2 − z|z|4 + I(t) + ηξ(t)

ẏ = ε(a− |z|2 − by).
(26)

where η ≥ 0 is a small, real, noise strength parameter and ξ(t) is a time-periodic train of discrete
small kicks with normally distributed amplitudes. That is, ξ(t) =

∑
i ξiδ(t− i∆t), where the ξi are

i.i.d. as N(0,
√

∆t) and the timestep ∆t controls the temporal resolution of the noisy perturbation.
We take ∆t = 0.05, the numerical solver’s maximal timestep, so that ξ(t) approximates white noise
(see Sect. 5 for more on numerical methods). Notice that the noise term only acts on the real part
of the fast variable z, which mimics a cell’s voltage variable.

In [2], the authors show that such noise terms diminish slow passage effects through supercritical
Hopf points (i.e., causing cells to jump to the spiking state closer to yH); in [63], a similar effects
was found for elliptic bursters [63, 48]. As we discuss below, there are cases where a phase reduction
can still be defined in the presence of such noise, with an interesting and tractable impact on the
kick map’s shape.

4.1 Effects of noise on the phase reduction of elliptic bursters

Our previously derived phase reduction relied on an important assumption: periodicity of the burst
cycle. As discussed in Sect. 2, elliptic bursters do not necessarily have periodic solutions, but rather
a metastability property which guarantees the constancy of cycle’s duration T , up to O(ε). This
regularity is what enables our phase reduction.

When noise is added to the fast subsystem, either regular or highly variable burst durations
can result, depending on noise strength and type [2, 63, 48]. Below, we will show that there is
a wide range of noise strengths that significantly impact the underlying dynamics, but maintain
regular burst durations. Specifically, for system (26) (ε = 0.01, w = 1, a = 0.8, b = 0) we compute
the coefficient of variation (CV) of these durations as described in Sect. 2.3, for noise strengths η
ranging from 10−17 to 10−1.

Panel (c) of Fig. 10 shows our findings. Although the mean period 〈T 〉 decreases with increasing
noise strength, the CV remains low – below 10−2 – for the range of noise strengths η ≤ 10−3 (recall
that CV ≈ 10−3 for the noiseless case). In other words, for a wide range of noise strengths, random
forcing does not introduce substantial variability to the burst period. This is consistent with results
from [63] where the authors show in a closely related setting that the silent and spiking times TS
and TP are related to the log of the noise amplitude.

Despite the fact that they preserve regular burst periods, noise strengths η ≤ 10−3 have a strong
impact on the slow passage effect. The integral condition (8) reflects cancellation of attraction to
S by and repulsion away from it; noise limits the extent of attraction and therefore the duration
required for repulsion. This is illustrated in panel (a) of Fig. 10, which shows that the jump up
point from silent to spiking regimes decreases as η increases within [0, 10−3]. In this regime, the
averaged y dynamics are relatively unaffected by this stochastic forcing, so that CV remains low.
Once η = 10−2, there is no slow passage and the solutions jump up to spiking as soon as y crosses
yH . For η > 10−2, the stochastic kicks have accumulated effects comparable to our forcing kicks and
we see solutions randomly jumping into spiking before y reaches yH , which explains the increasing
CV for this range of noise strengths [63].

We next pursue phase reduction to an approximate, deterministic circle map for the low CV
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cases (η ∈ [0, 10−3]).

4.2 Effect of noise on the kick map

For strong kicks – where responses are not determined by slow passage effects – adding noise does
not considerably change the shape of the kick map; the chief effect is that the region where |dFA

dθ
| > 1

shrinks (not shown). This similarity was expected since a strong kick instantaneously translates a
bursting solution to the active phase, where noise has little effect since fast dynamics follow large
amplitude trajectories.

For the remainder of this section, we concentrate on the considerable changes noise induces for
weak kick maps. In panel (b) of Fig. 10 we plot numerically computed maps for A = 0.5 and η =
10−15, 10−9, 10−3. Each marker represents the average response of a given initial phase to 10 distinct
realizations of stochastic forcing. In what follows, we derive approximations for these maps, plotted
in solid lines on the same figure. In order to proceed, we discuss key differences among numerical
maps of stochastic bursters with varying noise strength.
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Figure 10: (a) Slow passage effect shortens with increasing noise. (b) Numerically and analytically
computed kick maps ( from Eqn. (36)) for noise strengths η = 10−15, η = 10−9 and η = 10−3 (all
with kick amplitude A = 0.5). (c) CV of burst cycle period (computed using 150 cycles) against η
using a log-log scale. (d) Average burst cycle period 〈T 〉 (same sample as in (c)) against η using a
log-linear scale.

We can see that the maps are qualitatively similar in almost all aspects except the left branch,
which collapses on the identity as noise increases. Recall that the expansion in this branch is due
to altered slow passages due to weak perturbations on the stable part of the silent branch S. As
discussed above, noise shortens slow passages and one might expect the steepness of the expansive
part to decrease as noise increases. Surprisingly, it is not this steepness that changes but rather
the onset of the expansive ramp (θB defined below) which varies. To explain this phenomenon, we
must turn to the concept of buffer points for delayed bifurcations.

When deriving the analytical kick map (9), we relied on the integral condition (8) which dictates
that the further a solution starts (at yi) from the Hopf point yH , the longer the slow passage will
be. This is true for yi in a range before yH , up to a point beyond which this relation fails. In
fact, given some y dynamics, one observes that the length of the slow passage (yj − yH) saturates
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to a constant value for any initial yi far enough from yH . This is called the maximal delay. The
closest point to the “static” bifurcation point (yH) to generate a maximal delay is called the buffer
point of a delayed bifurcation [21]. The techniques used in [2, 63, 48, 3] to analyze deterministic
and stochastic slow passages assume that a solution always remains closer to the bifurcation than
the associated buffer point. This is also the case for the bursters we study in the absence of noise,
where the buffer point is to the left of ySN . Thus, it does not affect the dynamics, enabling us to
use condition (8).

For noisy bursters, the numerically derived weak kick maps in Fig. 10 show that the buffer point
can lie to the right of ySN , therefore exerting an important effect. If a weak kick is delivered when
yi is to the left of the buffer point, the trajectory retains no memory of the kick and the phase of
the cell is left unchanged by the kick. If it is delivered when yi is to the right of the buffer point,
the kick will shorten the slow passage, as for the noiseless case.

To our knowledge, there are no general results in the literature deriving buffer points for noisy
delay bifurcations. In what follows, we derive an approximation for them, in the context of weakly
kicked trajectories, that holds for Eqn. (26). We work in the small ∆t limit, so that the stochastic
forcing is white noise.

4.2.1 Buffer points and stochastic slow passage through the Hopf point

For a given noise strength η, define yB to be the buffer point for the delayed Hopf bifurcation in
Eqn. (26). That is, yB is the smallest initial value yi such that a weak kick delivered at yi will
induce a change in the jump up point yj. Naturally, yB < yH and judging by the shape of our weak
kick maps in Fig. 10, we can expect ySN < yB. We now derive a probabilistic criterion that gives
an accurate approximation for yB.

We begin by assuming that ∆t is sufficiently small in Eqn. (26) so that the noise term ηξ(t) can
be approximated by the white noise term ηdW (t)/dt, where W (t) is a real valued Wiener process.
We are interested in solutions following the silent branch S when y ∈ (ySN , yH). As done in Sect.
2.5, we make the singular limit assumption that z travels on S and therefore that |z| = 0. This
enables us to decouple the y dynamics and get an expression for y(t) = yi+g(εt), precisely as in the
deterministic case (see Eqns. (16),(17)). These assumptions hold in the limit that ε and η → 0, and
we will show that they give good approximations for the parameters used here (ε = 0.01, η ≤ 10−3).

Since we are interested in solutions near S, which is composed of fixed points of the fast subsys-
tem, we linearize the fast dynamics about z = 0. We write the resulting equation in real coordinates
x = (x1, x2)

T where z = x1 + ix2:

dx = J(t)xdt+BdW (t) (27)

where

J(t) =

(
y(t) −w
w y(t)

)
, B =

(
η 0
0 0

)
and W (t) is now a two dimensional real valued Wiener process. Notice that J(t) commutes with
itself (J(t)J(s) = J(s)J(t) ∀ t, s) which enables us to write the noise-free (η = 0) solution of (27)
as

x(t) = e
∫ t
0 J(s)dsxi

where x(0) = xi. Using this property, Ito’s formula yields explicit expressions for the mean µ(t)
and covariance matrix Σ(t) of the time dependent probability distribution for x governed by Eqn.
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(27):

µ(t) = e
∫ t
0 J(s)dsµi (28)

Σ(t) = e
∫ t
0 J(s)dsΣie

∫ t
0 J(s)

T ds +

∫ t

0

dt′e
∫ t
t′ J(s)dsBBT e

∫ t
t′ J(s)

T ds (29)

where µ(0) = µi and Σ(0) = Σi. See [26], Chap. 4 for details of this derivation. In particular, we
will suppose that we have an initial distribution for x that is Gaussian; then, the distribution of
x at any time t is fully determined by Eqns. (28) and (29), as a Gaussian distribution with mean
µ(t) and Σ(t). We introduce the following notation p̃(·) for this distribution, which makes clear
the dependence on the initial condition for y(0) = yi as well as the initial distribution of x and the
elapsed time t:

x ∼ p̃(x(t)|yi, µi,Σi) . (30)

We next study the distribution of our (linearized) fast variable x at the Hopf point yH when no
kick is delivered. This will give us a reference unkicked, or “natural” distribution pn(x) important
in computing the buffer point below. The trajectories of interest jump down from spiking when
y = yi = ySN and take g−1(yH − ySN)/ε time units to reach yH . We use Eqn. (30) to write the
resulting distribution as

pn(x) = p̃(x(g−1(yH − ySN)/ε)|ySN , (0, 0)T ,ΣSN) (31)

where

ΣSN =

(
rP (ySN)2 0

0 rP (ySN)2

)
and we have used Eqn. (7) to substitute in for time in Eqn. (31). The natural distribution is
therefore defined to have an initial variance equal to the squared radius of the periodic orbits on P
when they vanish at ySN , marking the end of the spiking phase. Due to the long timescale of the
slow dynamics, however, we find that the choice of initial variance has little effect on pn. We note
that pn(x) is centered at x = (0, 0)T with covariance depending on η.

Next, we ask whether a trajectory that has received a weak kick can be expected to undergo
comparable slow passage through the Hopf point as for the unkicked trajectories described by pn(x).
Note here that an unkicked trajectory admits a maximal delay going through the Hopf bifurcation,
and that some kicked trajectories will also have the same slow passage, as we expect ySN < yB.

If kicked trajectories typically pass through yH at locations x with high probability density
according to pn(x), we expect that they will have a comparable slow passage times as unkicked
trajectories. On the other hand, if these trajectories are typically found where pn(x) is low, this
indicates that they are further away from the branch of equilibria S. Thus, they will tend to escape
S (i.e., jump up) sooner than the unkicked solutions. We obtain an approximation for the buffer
point yB by asking when this distinction between kicked and unkicked trajectories at yH occurs.

To this end, we compute the “kicked” distributions of trajectories pk,y(x) for which a weak
kick of amplitude A is applied when y(t) = y. Upon their arrival at yH , we approximate these
distributions as

pk,y(x) = p̃(x(g−1(yH − y)/ε)|y, (A, 0)T ,Σn) (32)

where the mean trajectory is at (A, 0)T following the kick and Σn is the covariance matrix from pn(x),
under the assumption that the trajectory followed the natural burst cycle before the translation
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Figure 11: (a) Plot of d(y) with respect to y for η = 10−15, 10−9, 10−3. Dashed black line marks the
threshold dB determining the points yB at the intersections with the d(y) curve. (b) Plot of buffer
phase point θB with respect to noise strength η, marking the onset of expansion in the weak kick
map. Kick strength is A = 0.5, as in Fig. 10.

induced by the kick. We now assess to what extent pk,y and the natural distribution pn overlap.
We use the symmetrized Kullback-Leibler Divergence between the two distributions

d(y) =
1

2
(DKL[pn(x)‖pk,y(x)] +DKL[pk,y(x)‖pn(x)]) (33)

where

DKL[p‖q] =

∫
R2

p(x) ln
p(x)

q(x)
dx . (34)

For y sufficiently far from yH , the distribution pk,y has enough time to converge close to pn(x)
before y(t) reaches yH . As a consequence, d(y) will be close to zero. We define the A-dependent
buffer point yB to be the first value of y for which d(y) grows beyond a threshold dB. Since the
distributions pk,y and pn are sharply peaked Gaussians (with variance of order η2), d(y) quickly
explodes – to several orders of magnitude above one – when the two distributions fail to overlap.
Therefore, we choose dB = 101 as a good indication of separation among kicked vs. unkicked
trajectories, as illustrated in Fig. 11 (a).

Finally, we determine the phase point θB corresponding to yB, via (4):

θB =
h−1S (yB)

T
(35)

where T is the mean period of the unperturbed trajectory. This point marks the onset of expan-
sion for the associated kick map. We find excellent agreement of this prediction with numerically
computed kick maps, as seen from Figs. 11 (b) and 10 (b).

4.2.2 Deriving the kick map for noisy bursters

We next derive an approximate expression for the complete kick map in the presence of weak noise.
Our first step is to decouple the y dynamics from the (noisy) fast variables. This is guided by the
assumption that, due to weak noise, most trajectories closely follow S and P . We then proceed to
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derive hS, h−1S and h−1P as done in Sect. 2.4, with a single modified value: yJ . Indeed, as described
above, the jump up point yJ is closer to yH for noisy bursters and we numerically compute its value
for each noise strength η.

In the presence of a buffer point, a weak kick can now have two outcomes: either it has no effect
if it is received when 0 < y < yB as it does not alter slow passage, or it shortens slow passage as
in the deterministic case, when yB < y < yw. To capture the slow passage effects of weak kicks
(responsible for the expansion in our map) in the presence of noise, we still use integral condition (8).
Although this formula was derived for deterministic bursters, it relies in the linearization of the fast
dynamics about S, which we assume remains valid even in the noisy case. As a result, numerical
simulations show that ỹj(y) holds true for y ∈ (yB, yH) except in a short interval to the right of
yB where small errors are observed. Note that these errors diminish with smaller noise for which
ỹj(yB) is quite close to the numerically computed yJ . We proceed to write an expression for our
new kick map, which now contains an addition piecewise-defined section arising from the presence
of θB:

FA(θ) =


θ if θ ∈ [0, θB]
θ + h−1P (ỹj(hS(θ)))− h−1S (ỹj(hS(θ))) if θ ∈ [θB, θw)
h−1P ◦ hS(θ) if θ ∈ [θw, TS]
θ if θ ∈ [TS, 1].

(36)

We obtain excellent fits as shown in Fig. 10 (b). We end by noting that we get similar fits for
various kick strengths A as well as distinct parameters sets (i.e. b > 0) for the normal form model
(not shown).

4.3 Effect of noise on iterated dynamics

We now explore the dynamical properties of the kick maps computed in the presence of noise.
Figure 12 shows orbit diagrams, synchrony measures and averaged Lyapunov exponents three maps
(computed as for Fig. 8). For η = 10−5, 10−9, the maps retain some expansion and we see behavior
that appears chaotic for small positive values of τ . This range of τ values shrinks as the as the
expansive region of the map gives way to neutrality with increasing noise; at the same time, the
“support” of the orbit diagrams appears to decrease. Arguments similar Lemma 1 can be formulated
for these cases to show the existence of positive Lyapunov exponents (see also bottom panels of
Fig. 8).

For the map with η = 10−3, there is no expansive region: although there is still a slow passage
effect the kick’s amplitude A = 0.5 induces a cutoff θw small enough such that the system does not
retain memory of any kick (θw < θB). Thus, we cannot expect positive Lyapunov exponents (see
bottom panel in Fig. 12). However, the orbit diagram shows a broad spread of points for small
positive τ . These are stable, high period orbits, originating from border crossing bifurcations as τ
increases. This has been established by Bélair in the context of periodically forced integrate and fire
oscillators [5], where a very similar map is studied: he shows that as the map is shifted vertically,
stable periodic orbits of a wide range of periods can be found, following a Farey tree sequence.

In sum, small positive values of τ result in either positive Lyapunov exponents or high period
orbits for the weak kick maps, depending on the noise level η assumed in deriving the (deterministic)
map. In the first case, expansion directly desynchronizes cells; in the second, we will see that the
high period of orbits, coupled with additional variability due to the underlying noise, can have a
similar effect.

We now introduce stochastic terms into our discrete kick map dynamics to account for the
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Figure 12: Orbit diagrams and related measures for weak kick maps with A = 0.5, for various
noise strengths η (see Fig. 10). Top to bottom: orbit diagrams of 100 cells after 150 iterations;
synchrony measure W̄ (red) and averaged Lyapunov exponent λ (blue). Left to right: low noise
strength η = 10−15; medium noise strength η = 10−9; high noise strength η = 10−3.

variability in burst periods discussed above (i.e., CV 6= 0). If, for a given cycle, a cell has a
shorter/longer period than the one used to compute it’s kick map, its phase following a kick will
be slightly shifted from the phase given by the iteration of the map. To capture this, we introduce
jitters : additive stochastic terms acting on τ , independent for every cell. The goal is not to capture
the exact phase response of cells, but rather to give a qualitative account for the impact of period
variability on statistical metrics such as our synchrony measure. We proceed as follows:

Since the construction of our kick maps rescales the period of any burster to be 1, the CV can
be interpreted as the standard deviation of a burst cycle’s period. We define a jitter ζ to be random
variable drawn from a normal distribution with zero mean and standard deviation equal to the CV
of the case we are considering. Suppose we want to model the phase evolution of M cells subject
to a common, periodic kick train of period τ(mod 1), of amplitude A, subject to stochastic forcing
of strength η. The phase of the mth cell right before the n+ 1st kick can be written as follows

θmn+1 = FA,η,(τ+ζmn )(θ
m
n ) (37)

where ζmn ∼iid N(0, CVη). In other words, at every iteration, we draw a different jitter ζ for every
cell. Note that we modified our notation to emphasize the map’s dependence on noise strength η
(Fig. 10).

Using (37), we again iterate 100 cells 150 times with added jitters and plot the orbit diagrams
and synchrony measures in Fig. 13, for the same three levels of η as in the preceding figures.
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Jitters, as expected, “smear” orbit diagrams, with a greater effect for larger η. In particular, note
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Figure 13: Orbit diagrams and synchrony measure for weak kick maps with A = 0.5, for various
noise strengths η and added jitters ζ(CV ). Top to bottom: orbit diagrams of 100 cells after 150
iterations; synchrony measure W̄ . Left to right: low noise strength η = 10−15; medium noise
strength η = 10−9; high noise strength η = 10−3.

the smoothing of periodic points for small positive τ in the high noise case (η = 10−3). Interestingly,
the twin effects of noise in reducing expansion but increasing cell-to-cell jitter result in comparable
levels of the synchrony measure W̄ across the three cases.

We reiterate our main conclusion: although the underlying mechanisms differ across a wide
range of noise strengths η, pulsatile inputs in the “weak” kick regime – with an input frequency
slightly slower than (a multiple of) cells’ intrinsic frequencies – will result in desynchrony among a
population of recipient cells.

5 Validity of phase reduction, O.D.E. simulations, and a

neurobiological model

In this section, we explore the validity of our phase reductions in both deterministic and noisy cases
– and our analysis of the discrete kick map that follows – by numerically integrating the O.D.E.s
themselves. Rather than demonstrating a complete correspondence between the kick map and
solutions of the differential equations, we seek to verify that an informed choice of kick amplitude
and period, based on the kick maps, does indeed yield the predicted (de)synchrony behavior among
solutions to the O.D.E.s. Specifically, we show that small, positive values of τ (i.e., τ ∈ (0, τC)
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in the deterministic case) with amplitudes in the “weak” regime lead to the greatest desynchrony;
conversely, large values of τ synchronize cells.

We first consider the normal form system (2), and then turn to a biologically detailed neu-
ronal model for which our main findings persist. All numerical computations were carried out in
MATLAB. We use the stiff solver ode15s with both absolute and relative tolerances set to 10−6 to
integrate all differential equations; input kicks and additive noise are treated as non-autonomous
terms by the solver.

5.1 Normal form model

Here, we numerically integrate a population of N = 30 uncoupled cells governed by system (2) or
its stochastic counterpart Eqn. (26), taking the “large” noise value η = 10−3 studied above (with
{ε = 0.01, w = 1, a = 0.8, b = 0}). We concentrate on one weak kick amplitude, A = 0.5. In
each case, we implement periodic kicks that correspond to τ = 0.1 and τ = 0.8 for the kick map,
to illustrate desynchronizing and synchronizing behavior respectively. More precisely, we use a kick
period equal to (1 + τ)× T where T is the natural period of the O.D.E.’s burst cycle. This allows
trajectories at least one natural period to relax toward the unperturbed cycle in between kicks
(similar dynamics occur for periods T × (n + τ), n ∈ N). For η = 0, T ' 465 while for η = 10−3,
T ' 337 (Fig. 10(d)).

Figure 14 displays the results via raster plots: for each cell, a dot is placed at the moment
that spiking terminates (corresponding to phase θ = 0). We also plot a synchrony measure for the
simulated population. This is done by assigning phases to each cell relative to their most recent
spike termination event, as a fraction of elapsed time partitioned in bins of length T . To better
illustrate the desynchronizing effect of weak kicks with τ = 0.1, initial conditions are chosen at
random with phases at most 2% apart (i.e., an initially synchronized population); to illustrate the
synchronizing effect of kicks with τ = 0.8, initial phases are allowed to be more sparse. In all cases,
we let the cells evolve without inputs for a few burst cycles, and then begin to apply the pulsatile
inputs.

The results agree well with predictions from the kick map: a weak kick of A = 0.5 administered
at T × 1.1 successfully spreads cells apart while the same kick with period T × 1.8 synchronizes the
population. Note that we chose these values of τ only as informed guesses; other nearby values can
achieve similar results in both synchronizing and desynchronizing the population. Moreover, results
for various other kick amplitudes also agree well with the behavior predicted from the associated
kick maps (not shown).

5.2 GPe bursting neuron

We now investigate whether the mechanisms described above will persist for a more biologically
detailed model. Specifically, we study a 5-dimensional, Hodgkin-Huxley-type model of a neuron
from the GPe basal ganglia nucleus [66, 7]. This model produces elliptic bursting where the onset
of spiking is due to a subcritical Hopf bifurcation and a burst termination is due to a saddle node on
an invariant circle, in agreement with the normal form system (2). In detail, the fast variables are
the voltage V , potassium current gating variable n, sodium current gating variable h, and calcium
T-current gating variable r. The slow variable is calcium concentration Ca. The equations are as
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Figure 14: A population of 30 numerically integrated solutions of Eqn. (2) or (26), all receiving
a common, periodic weak kick input (A = 0.5). Left column: kick period T × 1.1 (equivalent
to τ = 0.1) results in population desynchrony. Right column: kick period T × 1.8 (equivalent
to τ = 0.8) synchronizes the population. Top row: no noise (η = 0). Bottom row: high noise
(η = 10−3). Black dots give the raster plot (see text); red curves plot the synchrony measure W̄ vs.
time (see text).

follows:

Cm
dV

dt
= −ICa + INa + IK + IL + IAHP + IT − Iapp + I(t) + ηξ(t)

dn

dt
= −φn(n− n∞)

τn
dh

dt
= −φh(h− h∞)

τh
dr

dt
= −φr(r − r∞)

τr
dCa

dt
= −ε(ICa + IT + kCaCa)

(38)

where the I terms represent membrane currents and are functions of the gating variables and the
voltage; all definitions and parameter values are as in [66]. Additionally, the terms I(t) and ηξ(t)
represent the pulsatile inputs and the noise term, entering as currents.

Figure 15(a) shows that the shape of action potentials and the timescales differ from those of
the normal form model (2); nevertheless, the dynamics have a very similar structure. In particular,
panel (c) shows a (projected) 3-dimensional plot of a bursting trajectory together with the skewed
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Figure 15: Plots from model (38). (a) Voltage trace. (b) Calcium trace. (c) Bursting solution in n,
V , Ca plane in red and separatrix U in blue. (d) Two numerically computed kick maps for model
(38) with high noise strength η = 10−3; strong kick (A = 30) in black and weak kick (A = 3) in red.

separatrix U , computed using the MATCONT package [20]. Figure 15(d) shows two numerically
computed kick maps for both strong and weak kick amplitudes (A = 30 and A = 3, respectively).
These maps were computed in the presence of noise with η = 10−3, which is the largest noise
strength that keeps CV at O(10−2) for the simulations; maps represent the average phase response
taken over ten runs with different noise realizations.

Overall, the structure of these maps is more complex than for the normal form model. In
particular, “small” plateaus and associated discontinuities are promienent. As for the normal form
model, there are as many plateaus as there are spikes in an unperturbed burst, and kicked solutions
that elicit a certain number of spikes in the subsequent burst accumulate in each plateau. However,
for this model, the slow variable (calcium concentration) varies more during a spike and creates
bigger gaps between plateaus. As a result, even for a strong kick, certain values of τ yield localized
stable periodic orbits, as opposed to only fixed points. These appear via border collision bifurcations
due to discontinuities between plateaus (not shown). However, the small amplitude of these periodic
orbits keeps the cells attracted to them quite synchronized.

Additionally, the shape of the left part of the weak kick map is also quite distorted compared with
maps derived from the normal form model. In particular, notice that there are large discontinuities
close to zero. This is due to the skewed cone shape of the separatrix U : since the neuron model
does not have the same symmetry as our normal form system, when the solution drops down from
spiking, it spirals towards the resting branch and some lobes of this spiral come very close to the
separatrix. When the solution is kicked, even weakly, on the upper part of a lobe, it passes the
separatrix and jumps to the spiking state; the same weak kick will not have this effect if it is
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Figure 16: A population of 30 numerically integrated solutions of Eqn. (38) with noise strength
η = 10−3, receiving a common periodic weak kick input (A = 3). Left column: T × 1.1 (equivalent
to τ = 0.1) results in population desynchrony. Right column: kick period T × 1.8 (equivalent to
τ = 0.8) synchronizes the population. Other plotting details also as for Fig. 14.

delivered only moments later. The resulting large gaps in the weak kick map add to the complexity
of the dynamics for low τ .

Apart from these differences, the prominent features observed in the kick map for the normal
form model remain: the neutral/expanding left branch for the weak kick map, and the contracting
middle branch and neutral right branch. We repeat the numerical experiment described in Sect.
5.1, this time only for the noisy case (η = 10−3), and plot the results in Fig. 16. We see the expected
synchronization and desynchronization from weak periodic kicks (A = 3) with periods equivalent
to τ = 0.8 and τ = 0.1 respectively. While cells do not appear to become as desynchronized for
the τ = 0.1 case as in the normal form model, it is reasonable to believe that a more detailed
analysis of the kick map for the neural model could identify (A, τ) combinations that would further
desynchronize cells.

6 Composition of multiple periodic inputs, and an applica-

tion to DBS

Above, we showed how weak, periodic inputs can lead to desynchronization for populations of
uncoupled bursting cells. But how well can such inputs compete with other, synchronizing effects?
The answer is important in varied applications. A prominent one is Deep Brain Stimulation (DBS)
therapy for Parkinson’s disease. Here, pathologically high levels of synchrony occur among bursting
cells in the basal ganglia. Synchrony in some basal ganglia areas is in large part driven by common,
periodic inputs from other areas (see [60] and references therein). A DBS electrode delivers pulsatile
electrical signals that are designed to mitigate the effects of this synchrony. Thus, two common
periodic inputs are received by bursting neurons, possibly with competing effect.

Using the normal form model (2), we undertake a brief demonstration of how our results could
be applied to this setting, for the GPe basal ganglia nucleus that contains neurons believed to be
elliptically bursting. We do not attempt detailed, biologically complete modeling or aim for direct
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clinical relevance, and as such note several limitations. First, the source of intrinsic entrainment
here is a purely common, periodic drive; lateral connections between bursting cells, believed to
be sparse and weak in Parkinsonian regime [60, 56], are neglected. Second, GPe is not the most
common target for DBS in practice, though it has been the focus of several emerging studies [42, 56].
Nevertheless, a better theoretical understanding of the interactions between intrinsic and applied
inputs to the GPe could, in the long term, contribute to the design of signals that desynchronize
bursting neurons by targeting key instabilities (cf. [33, 32, 19, 25]), taking inspiration from similar
findings for oscillatory neurons [19, 29, 46, 68, 49].

We suppose that a population of bursters receives a first sequence of synchronizing periodic
impulses with period τ1 and “strong” amplitude A1. The action of these inputs on burst phases is
given by the kick map FA1,τ1(θ). As throughout our paper, this returns the phase of a cell following
a kick, τ1 time units later. Aiming to counteract the synchrony due to the first kick sequence, we
introduce a second series of kicks of strength A2. We assume that these have the same period,
but are delayed by an amount τ2. That is, the cell receives a A2-kick τ2 time units following each
A1-kick. We wish to write the kick map that captures the effect of such doublets of kicks.

In this context, the shift-time following a A1-kick must be taken to represent the phase of cells
right before the A2-kick and the first application of the map must be FA1,τ2(θ). Similarly, we must
shift the A2 map by τ1− τ2 to retrieve the phase of a cell before the next A1-kick. Note that neither
τ2 nor τ1− τ2 should be too small for this map to be valid, specifically in the presence of weak kicks
when the cell must have time to enter its spiking phase before the following kick, for the map we
derive to remain valid. When this restriction is satisfied, the doublet map is given by

FA1A2,τ1τ2 = FA2,τ1−τ2 ◦ FA1,τ2 . (39)
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Figure 17: (a) Orbit diagram and synchrony measure for FA1A2,τ1τ2 while varying τ2. (b) Top
: cobweb diagram of FA1A2,τ1τ2 with τ2 indicated by the red arrow in (a). (b) Bottom : O.D.E.
simulation of 20 cells initially synchronized by a strong input and then desynchronized by competing
weak kicks (starting at red arrows).

An example is shown in Fig. 17. Suppose we start with an entraining input of strong kicks with
A1 = 1.5 and τ1 = 0.4. We seek to oppose this synchronizing effect with weak kicks of amplitude
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A2 = 0.5. We use the two first maps of panel (a) of Fig. 6 to build the resulting doublet map
FA1A2,τ1τ2 . In panel (a) of Fig. 17, we compute the orbit diagram of this map (as done in Sect. 3)
while treating τ2 as our variable parameter. Using this diagram, we select τ2 = .375 (marked by a
red arrow), associated with a low synchrony measure. We plot a cobweb diagram of a sample orbit
in the top of panel (b) of Fig. 17, which clearly demonstrates the destabilizing effects of expansive
regions in the doublet map.

We then verify the properties desynchronization predicted by the doublet map by numerically
solving the underlying O.D.E.s (2), for twenty model cells. We begin with initial conditions such
that the phases are desynchronized and apply strong kicks (A1 = 1.5) at 1.4 × T , where T is the
natural period of the bursters (i.e., corresponding to τ1 = 0.4). As predicted, the cells synchronize in
response; see the binned synchrony measure rising up to one in the bottom of panel (b) of Fig. 17,
or the raster plots above. After synchrony has developed (red arrows in panel (b)), we “switch
on” the sequence of weak kicks, leaving in place the original strong kick sequence. Weak kicks are
applied 0.375 × T time units following each strong kick (i.e., τ2 = 0.375). The desynchronizing
impact predicted by the doublet map is clear in both the scatter in raster plots and in the drop in
the synchrony metric W̄ that develops after the weak input begins to be applied.

7 Conclusion

We study the behavior of a population of identical elliptic bursters receiving a periodic sequence
of pulsatile inputs, or kicks. Our aim is to understand which input sequences will result in desyn-
chronized vs synchronized bursts across the population. Following and extending the approach in
[7], we first conduct a phase reduction of the burst dynamics to a circle map, using a slow/fast de-
composition. This “kick map” depends on two parameters – the kicks’ amplitude A and (relative)
period τ – and maps phases from their states just before one input pulse to their states just before
the next pulse arrives. We next study the effect of varying A and τ using a normal form model for
elliptic bursting (Eqn. (2)).

We find that for strong kicks – i.e., with A sufficiently large so that the cell will always be spiking
following an input – almost any choice of kick period τ resulted in 1 : 1 phase locking, and hence
synchrony across the population. For weaker kicks, we find a rich dynamical structure. In particular,
the interaction of a weak perturbation with the slow passage effect through a subcritical Hopf point
induces an expansive region in the kick map. By varying the kick period, we witness the appearance
of stable fixed points, periodic orbits and regimes with positive Lyapunov exponent. As expected,
this leads to desynchronization of the population. Overall, we divide the (A, τ) parameter space into
the three regions shown in Fig. 9(a), corresponding to unstable, desynchronizing dynamics, 1:1 phase
locking, and intermediate, complex behavior, The former, desynchronizing regime is associated with
relatively weak kicks of periods slightly slower than the natural burst period (0 < τ < τC , see
Eqn. (25)).

We also study the effect of stochastic perturbation via noise terms. We find that the phase
reduction retains its validity but the kick map changes shape, presenting less expansion as the
noise increased. Importantly, population desynchrony still results from weak kicks with comparable
values of τ in this case, but through a different mechanism than the instabilities that occur for the
noise free case. Here, desynchrony follows from a combination of high-period orbits and the noise
itself. Overall, this phenomenon is related to the discontinuous nature of the circle map at hand;
1:1 phase locking rather than the complex dynamics observed would be expected for small τ for
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many smooth maps [28, 27].
We then test the predictions of the reduced circle maps via numerical simulation of the original

O.D.E. system, finding qualitative agreement. Additionally, we simulate a more biologically realistic
model of a GPe neuron, and continue to find agreement with the general predictions of our maps.
Finally, we show that it is possible to use the kick map framework to study the effect of multiple
sequences of inputs to a cell population. We build an example showing that carefully timed weak
kicks can compete with an entraining strong input to successfully desynchronize a population of
bursting cells.

As a closing remark, we note that the kick map studied here can also capture the effect of
pulsatile input signals that are neither periodic, nor have a fixed kick amplitude. For any given
sequence {An, τm}, where An is the amplitude of the nth kick and τn is the delay between kicks
n and n + 1, the relevant system is the composition of the maps FAn,τn(θ). This gives rise to an
iterated function system (IFS) acting on S1. There is a growing body of literature dealing with these
objects and their application to this problem could eventually help us to understand the behavior
of bursting cells under arbitrary – and possibly stochastic – stimulation patterns.
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