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GLOBAL CLASSICAL SOLUTIONS TO THE COMPRESSIBLE

EULER-MAXWELL EQUATIONS

JIANG XU∗

Abstract. In this paper, we consider the compressible Euler-Maxwell equations arising in semi-
conductor physics, which take the form of Euler equations for the conservation laws of mass density
and current density for electrons, coupled to Maxwell’s equations for self-consistent electromagnetic
field. We study the global well-posedness in critical spaces and the limit to zero of some physical
parameters in the scaled Euler-Maxwell equations. More precisely, using high- and low-frequency
decomposition methods, we first construct uniform (global) classical solutions (around constant equi-
librium) to the Cauchy problem of Euler-Maxwell equations in Chemin-Lerner’s spaces with critical
regularity. Furthermore, based on Aubin-Lions compactness lemma, it is justified that the (scaled)
classical solutions converge globally in time to the solutions of compressible Euler-Poisson equations
in the process of non-relativistic limit and to that of drift-diffusion equations under the relaxation
limit or the combined non-relativistic and relaxation limits.

Key words. Euler-Maxwell equations, classical solutions, Chemin-Lerner’s spaces, non-relativistic
limit, relaxation limit
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1. Introduction and main results. The increasing demand on semiconductor
devices has led to the necessity of a deep and detailed understanding on the mathe-
matical theory of various charge-carrier transport models. Of these important mod-
els, the classical hydrodynamic model (also named as the Euler-Poisson equations),
which treats the propagation of electrons in semiconductor devices as the flow of a
compressible charged fluid in an electric field, has received increasing attention. For
the cases of high electric field and submicronic devices, the Euler-Poisson equations
of fluid dynamical form can represent a reasonable comprise between physical accu-
racy and reduction of computational cost in real applications, the reader is referred
to [22] for more explanations. When semiconductor devices are operated under some
high frequency conditions (such as photoconductive switches, electro-optics, semicon-
ductor lasers and high-speed computers), magnetic fields are generated by moving
electrons inside devices, then the electrons transport interacts with the propagating
electromagnetic waves. In this case, the transport process is typically governed by the
Euler-Maxwell equations, which is more accurate than the Euler-Poisson equations,
since the electromagnetic field obeys Maxwell’s equations instead of Poisson equation
for the electric field only.

After some appropriate re-scaling, the compressible Euler-Maxwell equations are
written, in nondimensional form, as





∂tn+∇ · (nu) = 0,
∂t(nu) +∇ · (nu⊗ u) +∇P (n) = −n(E+ εu×B)− nu

τ ,
ελ2∂tE−∇×B = εnu,
ε∂tB+∇×E = 0,
λ2∇ · E = n̄− n, ∇ ·B = 0,

(1.1)

for (t, x) ∈ [0,+∞)×RN(N ≥ 2). Here the unknowns n,u = (u1, u2, · · ·, uN )⊤, E =
(E1, E2, · · ·, EN )⊤, B = (B1, B2, · · ·, BN )⊤(⊤ transpose) denote the electron density,
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electron velocity, electric field and magnetic field, respectively. The pressure P (n)
satisfies the usual γ-law

P (n) = P0n
γ(γ ≥ 1),(1.2)

where P0 > 0 is some physical constant. The system (1.1) is called isentropic if
γ > 1 and isothermal if γ = 1. τ, λ > 0 are the (scaled) constants for the momentum-

relaxation time and the Debye length. c = (ǫ0υ0)
− 1

2 > 0 is the speed of light, where ǫ0
and υ0 are the vacuum permittivity and permeability. Setting ε = 1

c . The independent
parameters τ, λ and ε which arise from nondimensionalization, are assumed to be very
small compared to the reference physical size. The symbols ∇, ·, × and ⊗ are the
gradient operator, the scalar products, the vector products and the tensor products
of two vectors, respectively. n̄ > 0 is the doping profile, which stands for the density
of positively charged background ions.

It is not difficult to see that the above Euler-Maxwell equations consist of a
quasi-linear hyperbolic system, the main feature of which is the finite time blowup
of classical solutions even when the initial data are smooth and small. Hence, the
qualitative study and device simulation of (1.1) are far to be trivial. In this paper,
our main aim is to establish the global well-posedness and justify some singular limits
for the Cauchy problem. For this purpose, the Euler-Maxwell equations (1.1) are
equipped with the following initial conditions for n,u,E and B:

(n,u,E,B)(x, 0) = (n0,u0,E0,B0)(x), x ∈ RN ,(1.3)

which satisfies the compatible conditions

λ2∇ · E0 = n̄− n0, ∇ ·B0 = 0, x ∈ RN .(1.4)

1.1. Singular limit analysis. It is convenient to state previous works and main
results of this paper, we first introduce some singular limits in the scaled Euler-
Maxwell equations at the formal level, including the non-relativistic limit, relaxation
limit as well as combined non-relativistic and relaxation limits.

Firstly, we observe the non-relativistic limit (i.e. ε → 0). Let τ = 1 = λ and
(nε,uε,Eε,Bε) be the solution of the following equations





∂tn
ε +∇ · (nεuε) = 0,

∂t(n
εuε) +∇ · (nεuε ⊗ uε) +∇P (nε)

= −nε(Eε + εuε ×Bε)− nεuε,

ε∂tE
ε −∇×Bε = εnεuε,

ε∂tB
ε +∇×Eε = 0,

∇ · Eε = n̄− nε, ∇ ·Bε = 0.

(1.5)

Formally, we see that the limits n0,u0,E0 of nε,uε,Eε as ε→ 0 satisfy




∂tn
0 +∇ · (n0u0) = 0,

∂t(n
0u0) +∇ · (n0u0 ⊗ u0) +∇P (n0) = −n0E0 − n0u0,

∇ ·E0 = n̄− n0, ∇×E0 = 0,
(1.6)

which is the well-known Euler-Poisson equations for semiconductors. The irrotational-
ity of E0 implies the existence of a potential function Φ0 such that E0 = −∇Φ0. Then
using the Green’s formulation, (1.6) can be reduced to the form of the conservation
law with a non-local source term, e.g., see [13].
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Secondly, we justify the relaxation limit (i.e. τ → 0) in the Euler-Maxwell equa-
tions (1.1). The diffusion limit was first introduced by Marcati and Natalini [21] for
the Euler-Poisson equations (1.6). Set ε = 1 = λ. To do this, as in [21], we define the
following scaled transform

(nτ ,uτ ,Eτ ,Bτ )(t, x) =
(
n,

1

τ
u,E,B

)( t
τ
, x
)
.(1.7)

Then the new variable (nτ ,uτ ,Eτ ,Bτ ) satisfies





∂tn
τ +∇ · (nτuτ ) = 0,

τ2∂t(n
τuτ ) + τ2∇ · (nτuτ ⊗ uτ ) +∇P (nτ )

= −nτ (Eτ + τuτ ×Bτ )− nτuτ ,
τ∂tE

τ −∇×Bτ = τnτuτ ,
τ∂tB

τ +∇×Eτ = 0,
∇ ·Eτ = n̄− nτ , ∇ ·Bτ = 0.

(1.8)

Formally, the limits N , E of nτ ,Eτ as τ → 0 satisfy the so-called drift-diffusion equa-
tions





∂tN = ∇ · (∇P (N ) +NE),
∇ · E = n̄−N , ∇× E = 0,
N (0, x) = n0,

(1.9)

which is a system of diffusion equations for the electron density, and maintains the
parabolic-elliptic character.

Lastly, we study the combined non-relativistic and relaxation limits in the Euler-
Maxwell equations (1.1) (i.e. ε, τ → 0). Set λ = 1. From the “O(1/τ) time scale” in

(1.7), where the superscript τ is replaced by (τ, ε), the new variable (n(τ,ε),u(τ,ε),E(τ,ε),

B(τ,ε)) satisfies





∂tn
(τ,ε) +∇ · (n(τ,ε)u(τ,ε)) = 0,

τ2∂t(n
(τ,ε)u(τ,ε)) + τ2∇ · (n(τ,ε)u(τ,ε) ⊗ u(τ,ε)) +∇P (n(τ,ε))

= −n(τ,ε)
(
E(τ,ε) + τεu(τ,ε) ×B(τ,ε)

)
− n(τ,ε)u(τ,ε),

τε∂tE
(τ,ε) −∇×B(τ,ε) = τεn(τ,ε)u(τ,ε),

τε∂tB
(τ,ε) +∇×E(τ,ε) = 0,

∇ · E(τ,ε) = n̄− n(τ,ε), ∇ ·B(τ,ε) = 0.

(1.10)

Obviously, in the process of combined limits τ, ε → 0, the limits N , E of n(τ,ε),E(τ,ε)

also satisfy the drift-diffusion equations (1.9).

1.2. Main results. In the past ten years, the Euler-Poisson equations (1.6) have
attracted much attention. There are many contributions in mathematical analysis,
such as the well-posedness of steady-state solutions, global existence of classical or
entropy weak solutions, large time behavior of classical solutions, relaxation limit
problems and so on, the reader is referred to [2, 8, 11, 12, 13, 14, 15, 19, 21] and
the references therein, also including ourselves [10, 27, 28], while the Euler-Maxwell
equations are much more intricate than the Euler-Poisson equations, not only because
of Maxwell’s equations, but also because of the complicated coupling of the Lorentz
force (E+u×B). In contrast, not so many works have been devoted to the study of
Euler-Maxwell equations. Up to now, only partial results are available.
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Using the Godunov scheme with the fractional step and the compensated com-
pactness theory, Chen, Jerome and Wang [6] constructed the existence of a global
weak solution to the initial boundary value problem for arbitrarily large initial data
in L∞(R). In [16], assuming initial data in Sobolev spaces Hs(R3) with higher regu-
larity (s > 5/2), a local existence theory of smooth solutions for the Cauchy problem
of non-isentropic Euler-Maxwell equations, where the pressure-density function (1.2)
is replaced with the energy equation, was established by modificating the classical
semigroup-resolvent approach of Kato [17]. In [23, 24, 25], based on the existence
theory of Kato and Majda [17, 20], Peng and Wang justified the non-relativistic limit
(ε → 0), the quasi-neutral limit (λ → 0) and the combined non-relativistic and
quasi-neutral limits (ε = λ → 0) for the Euler-Maxwell equations (1.1) in virtue of
the analysis of asymptotic expansions. Their results show that the Euler-Maxwell
equations converge towards the Euler-Poisson equations, e-MHD system and incom-
pressible Euler equations in some time-interval independent of the parameters ε and
λ, respectively.

However, the well-posedness and singular limits for the Euler-Maxwell equations
(1.1) in several dimensions are still far from well-known, in particular, in the frame-
work of critical spaces. In the present paper, we shall answer this problem. More
concretely speaking, we shall consider a small perturbation near the constant equilib-
rium state (n̄,0,0,B) which is a particular solution of the Cauchy problem (1.1)-(1.3),
and obtain the global existence and uniqueness of classical solutions. We choose the
critical Besov spaces in space-variable x as the basic functional setting, where the
regularity index (σ = 1 + N/2) is just the limit case of classical existence theory of
Kato and Majda [17, 20]. Although this idea has been used to study the compressible
Euler-Poisson equations (1.6) in [10, 27, 28] recently, it should be pointed out that
the Euler-Maxwell equations are essentially different from (1.6). In comparison with
the methods in [10, 27, 28], we have to face with several technical difficulties arising
in the uniform a priori estimates of classical solutions in critical spaces. The first one
is lack of the low-frequency estimate of magnetic field B, which does not lead to the
exponential decay near equilibrium in view of the standard definition of norm of Besov
spaces. Another one is that the nonlinear terms (pressure, Lorentz field, etc.) will
hinder us establishing the uniform estimates with respect to the singular parameter
couple (τ, ε). To overcome these difficulties, we add the new content in the proof of
the local existence and (uniform) global existence of classical solutions. Actually, the

Chemin-Lerner’s spaces L̃ρ
T (B

s
p,r) in [4] are introduced, which is a refinement of the

usual spaces Lρ
T (B

s
p,r), and some uniform frequency-localization estimates in Chemin-

Lerner’s spaces with critical regularity are established, for details, see Lemmas 3.3-3.4
and Lemmas 3.6-3.7. Based on the uniform estimates, we further rigorously justify the
singular limit problems for (1.1)-(1.3) in Sect. 1.1 by the standard weak convergence
methods and the application of compactness theorem in [26].

Throughout this paper, the regularity index σ = 1+N/2. First of all, we state a
local existence and uniqueness theorem of classical solutions to the Cauchy problem
(1.1)-(1.3) away from the vacuum.

Theorem 1.1. Let n̄ > 0 be a constant reference density and B ∈ RN be any
given constant. Suppose that n0−n̄,u0,E0 and B0−B ∈ Bσ

2,1(R
N ) satisfy n0 > 0 and

the compatible conditions (1.4), then there exist a time T0 > 0 and a unique solution
(n,u,E,B) of the system (1.1)-(1.3) such that

(n,u,E,B) ∈ C1([0, T0]×RN) with n > 0 for all t ∈ [0, T0]
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and

(n− n̄,u,E,B−B) ∈ C̃T0
(Bσ

2,1) ∩ C̃1
T0
(Bσ−1

2,1 ).

Remark 1.1. To avoid excessive commutators arising from the nonlinear pres-
sure term by using Fourier frequency-localization method, we introduce a function
transform in Sect. 3.1 such that the Euler-Maxwell equations (1.1) is reduced to a
symmetric hyperbolic system. Based on the previous effort in [10], we obtain the
local existence of classical solutions in the Chemin-Lerner’s space with critical regu-
larity (Proposition 3.1). Theorem 1.1 follows from Proposition 3.1 and Remark 3.1
readily. As a matter of fact, the new result is applicable to generally symmetrizable
hyperbolic systems, which enriches and develops the classical existence theory of Kato
and Majda [17, 20].

In small amplitude regime, we get the uniform global well-posedness of classical
solutions to the Cauchy problem (1.1)-(1.3) in critical spaces. From now on, we set
the scaled Debye length to be one (λ ≡ 1).

Theorem 1.2. Let n̄ > 0 be a constant reference density and B ∈ RN be
any given constant. Suppose that n0 − n̄,u0,E0 and B0 − B ∈ Bσ

2,1(R
N ) satisfy

the compatible conditions (1.4). There exists a positive constant δ0 independent of
singular parameter couple (τ, ε), such that if

‖(n0 − n̄,u0,E0,B0 −B)‖Bσ
2,1

≤ δ0,

then there exists a unique global solution (n,u,E,B) of the system (1.1)-(1.3) satis-
fying

(n,u,E,B) ∈ C1([0,∞)×RN )

and

(n− n̄,u,E,B−B) ∈ C̃(Bσ
2,1(R

N )) ∩ C̃1(Bσ−1
2,1 (RN )).

Moreover, the uniform energy estimate holds:

‖(n− n̄,u,E,B−B)‖
L̃∞(Bσ

2,1
)

+µ0

{∥∥∥
(√

τ (n− n̄),
1√
τ
u,

√
τεE

)∥∥∥
L̃2(Bσ

2,1
)
+
∥∥∥ 1√

ε
∇B

∥∥∥
L̃2(Bσ−1

2,1
)

}

≤ C0‖(n0 − n̄,u0,E0,B0 −B)‖Bσ
2,1

(1.11)

for 0 < τ, ε ≤ 1, where the positive constants µ0, C0 are independent of (τ, ε).
Remark 1.2. Together with Theorem 1.1, Theorem 1.2 directly follows from the

standard continuation argument and the crucial energy estimate (1.11) which presents
the dissipation rates of all the components in the solution. Noticing that the coupled
electromagnetic field (E,B) appears in the nonlinear source terms of Euler system,
which indeed does not affect the character of corresponding linearized form, so we
can take the full advantage of “Shizuta-Kawashima” skew-symmetry condition which
was well developed for general hyperbolic systems of balance laws [18, 29] to capture
the dissipation rate of density function, see Lemma 3.4. On the other hand, from
the proof of Lemmas 3.6-3.7, we see that the electromagnetic field generated by the
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compressible electron flow exhibits a weak dissipation property, which is essentially
different from the pure Maxwell’s equations, although the low-frequency estimate of
dissipation rate of B is absent. In addition, we track the singular parameters τ and ε
in the proof of (1.11), which plays a key role in the study of related limit problems.

As a direct consequence of Theorem 1.2, we can obtain the large-time asymptotic
behavior of global solutions near the equilibrium (n̄,0,0,B) in some Besov spaces.

Corollary 1.3. Let (n,u,E,B) be the solution in Theorem 1.2, it holds that

‖n(·, t)− n̄,u(·, t),E(·, t)‖
Bσ−ε′

2,1
(RN )

→ 0, ‖B(·, t)−B‖
Bσ−1−ε′

p,1
(RN )

→ 0,

as the time variable t→ +∞, where p = 2N
N−2 (N > 2) and ε′ > 0.

Remark 1.3. Recalling the proof of Corollary 5.1 in [9], Corollary 1.3 is followed
by a minor revision. The definite convergence rate to the equilibrium (n̄,0,0,B) will
be studied in the future work.

Next, we state the non-relativistic limit of uniform global solutions to (1.1)-(1.3)
for any fixed momentum relaxation time τ > 0.

Theorem 1.4 (Non-relativistic limit). Let τ = 1 and (nε,uε,Eε,Bε) be the
global solution of (1.1)-(1.3) given by Theorem 1.2. Then there exists some function
(n0,u0,E0) which is a global solution to the Euler-Poisson equations (1.6) satisfying
(n0 − n̄,u0,E0) ∈ C([0,∞), Bσ

2,1(R
N )) such that as ε→ 0, it holds that

(nε,uε,
√
εEε) → (n0,u0,0) strongly in C([0, T ], (Bσ−δ

2,1 (RN ))loc),

∇Bε → 0 strongly in L2
T (B

σ−1
2,1 (RN )),

(Eε,Bε)⇀ (E0,B) weakly⋆ in L∞
T (Bσ

2,1(R
N )),

for any T > 0 and δ ∈ (0, 1). Moreover, it yields

‖(n0 − n̄,u0,E0)(t, ·)‖Bσ
2,1

(RN )

≤ C1‖(n0 − n̄,u0,E0,B0 −B)‖Bσ
2,1

(RN ), t ≥ 0,(1.12)

where C1 > 0 is a uniform constant independent of ε.
Secondly, we justify the relaxation limit for the Euler-Maxwell equations (1.1).

To this end, we consider the Cauchy problem for the re-scaled system (1.8) subject
to the initial data

(nτ ,uτ ,Eτ ,Bτ )(0, x) =
(
n0,

1

τ
u0,E0,B0

)
(x).(1.13)

It follows from Theorem 1.2 and the “O(1/τ) time scale” (1.7) that there exists a
unique global in-time classical solution (nτ ,uτ ,Eτ ,Bτ ) to the system (1.8) and (1.13).
Then, we have

Theorem 1.5 (Relaxation limit). Let ε = 1 and (nτ ,uτ ,Eτ ,Bτ ) be the global
solution of (1.8) and (1.13) obtained from Theorem 1.2. Then, there exists a function
(N ,U , E) which is a global solution to the drift-diffusion equations (1.9) satisfying

(N ,U , E) ∈ C([0,∞), Bσ
2,1(R

N ))× L2([0,∞), Bσ
2,1(R

N ))× C([0,∞), Bσ
2,1(R

N ))
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such that as τ → 0, it holds that

(nτ , τ2uτ ,
√
τEτ ) → (N ,0,0) strongly in C([0, T ], (Bσ−δ

2,1 (RN ))loc),

uτ ⇀ U weakly in L2
T (B

σ
2,1(R

N)),

∇Bτ → 0 strongly in L2
T (B

σ−1
2,1 (RN )),

(Eτ ,Bτ )⇀ (E ,B) weakly⋆ in L∞
T (Bσ

2,1(R
N )),

for any T > 0 and δ ∈ (0, 1). Moreover, it yields

‖(N − n̄, E)(t, ·)‖Bσ
2,1

(RN )

≤ C2‖(n0 − n̄,u0,E0,B0 −B)‖Bσ
2,1

(RN ), t ≥ 0,(1.14)

where C2 > 0 is a uniform constant independent of τ .
Finally, what left is the combined non-relativistic and relaxation limits for (1.1).

From Theorem 1.2 and (1.13) where the superscript τ is replaced by (τ, ε), it is shown
that there exists a unique global in-time classical solution (n(τ,ε),u(τ,ε),E(τ,ε),B(τ,ε))
to the system (1.10) and (1.13). Furthermore, we get

Theorem 1.6 (Combined non-relativistic and relaxation limits). Let
(n(τ,ε),u(τ,ε),E(τ,ε),B(τ,ε)) be the global solution of (1.10) and (1.13) obtained from
Theorem 1.2. Then, there exists a function (N ,U , E) which is a global solution to the
drift-diffusion equations (1.9) satisfying

(N ,U , E) ∈ C([0,∞), Bσ
2,1(R

N ))× L2([0,∞), Bσ
2,1(R

N ))× C([0,∞), Bσ
2,1(R

N ))

such that as τ → 0 and ε→ 0 simultaneously, it holds that

(n(τ,ε), τ2u(τ,ε),
√
τεE(τ,ε)) → (N ,0,0) strongly in C([0, T ], (Bσ−δ

2,1 (RN ))loc),

u(τ,ε) ⇀ U weakly in L2
T (B

σ
2,1(R

N )),

∇B(τ,ε) → 0 strongly in L2
T (B

σ−1
2,1 (RN )),

(E(τ,ε),B(τ,ε))⇀ (E ,B) weakly⋆ in L∞
T (Bσ

2,1(R
N)),

for any T > 0 and δ ∈ (0, 1). Moreover, it yields

‖(N − n̄, E)(t, ·)‖Bσ
2,1

(RN )

≤ C3‖(n0 − n̄,u0,E0,B0 −B)‖Bσ
2,1

(RN ), t ≥ 0,(1.15)

where C3 > 0 is a uniform constant independent of (τ, ε).
Remark 1.4. To the best of our knowledge, these limit results (Theorems 1.4-1.6)

show the convergence globally in time, which have not been appeared in the published
literatures. In comparison with that in [23, 24, 25], they hold true in the functional
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spaces with relatively lower regularity, which can be regarded as a supplement to the
theory of singular limits for the Euler-Maxwell equations (1.1). Let us mention that
the combined non-relativistic and relaxation limits obtained in Theorem 1.6 does not
require any (communication) restriction between τ and ε. That is, one can fix any of
the two parameters τ and ε and let the other tends to zero, which is the genuinely
combined limits.

Remark 1.5. It is worth noting that Chemin-Lerner’s spaces are first introduced to
establish the uniform a priori estimates with respect to (τ, ε) and justify the combined
limits. As a matter fact, this approach developed by the current paper can be applied
to study other limit problems with two (or more) independent singular parameters.

Remark 1.6. There is no additional conceptual difficulty in considering the tem-
perature effects and the corresponding balance equation (i.e. non-isentropic Euler-
Maxwell equations), although the estimates are quite tedious.

The rest of this paper unfolds as follows. In Sect. 2, we introduce the Littlewood-
Paley decomposition and recall the definitions and some useful results on Besov spaces
and Chemin-Lerner’s spaces. Sect. 3 is devoted to the proofs of main results, which
is divided into five subsections for clarity. In Sect. 3.1, we first rewrite the Euler-
Maxwell equations (1.1) as a symmetric hyperbolic system in order to obtain the
effective a priori estimate by using Fourier frequency localization. Furthermore, we
give the local existence of classical solutions in Chemin-Lerner’s spaces with critical
regularity. Then in Sect. 3.2, we deduce a new uniform a priori estimate under
some smallness assumption, which is used to achieve the (uniform) global existence
of classical solutions. Sect. 3.3, Sect. 3.4 and Sect. 3.5 are in turn dedicated to the
justification of the non-relativistic limit, relaxation limit as well as combined non-
relativistic and relaxation limits of Euler-Maxwell equations.

Notations. Throughout the paper, C stands for a uniform positive constant
with respect to (τ, ε). The notation f ≈ g means that f ≤ Cg and g ≤ Cf . Denote
by C([0, T ], X) (resp., C1([0, T ], X)) the space of continuous (resp., continuously dif-
ferentiable) functions on [0, T ] with values in a Banach space X . For simplicity, the
notation ‖(f, g, h, k)‖X means ‖f‖X + ‖g‖X + ‖h‖X + ‖k‖X , where f, g, h, k ∈ X . We
omit the space dependence, since all functional spaces (in x) are considered in RN .
Moreover, the integral

∫
RN fdx is labeled as

∫
f without any ambiguity.

2. Tools. The proofs of most of the results presented in this paper require a
dyadic decomposition of Fourier variable. Let us recall briefly the Littlewood-Paley
decomposition theory and the characterization of Besov spaces and Chemin-Lerner’s
spaces, see for instance [3, 7] for details.

Let (ϕ, χ) be a couple of smooth functions valued in [0, 1] such that ϕ is supported
in the shell C(0, 34 , 83 ) = {ξ ∈ RN | 34 ≤ |ξ| ≤ 8

3}, χ is supported in the ball B(0, 43 ) =
{ξ ∈ RN ||ξ| ≤ 4

3} and

χ(ξ) +

∞∑

q=0

ϕ(2−qξ) = 1, q ∈ Z, ξ ∈ RN .

Let S ′ be the dual space of the Schwartz class S. For f ∈ S ′, the nonhomogeneous
dyadic blocks are defined as follows

∆−1f := χ(D)f = h̃ ∗ f with h̃ = F−1χ,

∆qf := ϕ(2−qD)f = 2qd
∫
h(2qy)f(x− y)dy with h = F−1ϕ, if q ≥ 0.



Compressible Euler-Maxwell equations 9

Here ∗, F−1 represent the convolution operator and the inverse Fourier transform,
respectively. Note that h̃, h ∈ S. The nonhomogeneous Littlewood-Paley decomposi-
tion is

f =
∑

q≥−1

∆qf in S ′.

Define the low frequency cut-off by

Sqf :=
∑

p≤q−1

∆pf.

According to the above Littlewood-Paley decomposition, thus we introduce the ex-
plicit definition of Besov spaces.

Definition 2.1. Let 1 ≤ p ≤ ∞ and s ∈ R. For 1 ≤ r < ∞, the Besov spaces
Bs

p,r are defined by

f ∈ Bs
p,r ⇔

( ∑

q≥−1

(2qs‖∆qf‖Lp)r
) 1

r

<∞

and Bs
p,∞ are defined by

f ∈ Bs
p,∞ ⇔ sup

q≥−1
2qs‖∆qf‖Lp <∞.

Let us point out that the definition of Bs
p,r does not depend on the choice of the

Littlewood-Paley decomposition. Now, we state some classical conclusions, which
will be used in subsequent analysis. The first one is Bernstein’s inequality.

Lemma 2.2. Let k ∈ N and 0 < R1 < R2. There exists a constant C, depending
only on R1, R2 and N , such that for all 1 ≤ a ≤ b ≤ ∞ and f ∈ La, we have

Supp Ff ⊂ B(0, R1λ) ⇒ sup
|α|=k

‖∂αf‖Lb ≤ Ck+1λk+N( 1
a
− 1

b
)‖f‖La;

Supp Ff ⊂ C(0, R1λ,R2λ) ⇒ C−k−1λk‖f‖La ≤ sup
|α|=k

‖∂αf‖La ≤ Ck+1λk‖f‖La,

where Ff represents the Fourier transform on f .
The second one is a compactness result for Besov spaces.
Proposition 2.3. Let 1 ≤ p, r ≤ ∞, s ∈ R and ε > 0. For all φ ∈ C∞

c , the
map f 7→ φf is compact from Bs+ε

p,r to Bs
p,r.

On the other hand, the study of non-stationary partial differential equations re-
quires spaces of type Lρ

T (X) := Lρ(0, T ;X) for appropriate Banach spaces X . In
our case, X is expected to be a Besov space, so the fundamental idea is to localize
the equations through the Littlewood-Paley decomposition. Then it is easy to obtain
Lρ
T (L

p) estimates for each dyadic block. Performing a (weighted) ℓr summation is the
most natural next step. But, in doing so, we get bounds in spaces which are not type
Lρ
T (B

s
p,r) (except if ρ = r). This leads to the definition of Chemin-Lerner’s spaces

first introduced by J.-Y. Chemin and N. Lerner [4], which is the refinement of the
spaces Lρ

T (B
s
p,r).

Definition 2.4. For T > 0, s ∈ R, 1 ≤ r, ρ ≤ ∞, set (with the usual convention
if r = ∞)

‖f‖
L̃ρ

T
(Bs

p,r)
:=
( ∑

q≥−1

(2qs‖∆qf‖Lρ

T
(Lp))

r
) 1

r

.
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Then we define the space L̃ρ
T (B

s
p,r) as the completion of S over (0, T ) × RN by the

above norm.
Furthermore, we define

C̃T (Bs
p,r) := L̃∞

T (Bs
p,r) ∩ C([0, T ], Bs

p,r)

and

C̃1
T (B

s
p,r) := {f ∈ C1([0, T ], Bs

p,r)|∂tf ∈ L̃∞
T (Bs

p,r)}.

The index T will be omitted when T = +∞. Let us emphasize that
Remark 2.1. According to Minkowski’s inequality, it holds that

‖f‖
L̃ρ

T
(Bs

p,r)
≤ ‖f‖Lρ

T
(Bs

p,r)
if r ≥ ρ, ‖f‖

L̃ρ

T
(Bs

p,r)
≥ ‖f‖Lρ

T
(Bs

p,r)
if r ≤ ρ.

Then, we state the property of continuity for product in Chemin-Lerner’s spaces
L̃ρ
T (B

s
p,r).

Proposition 2.5. The following estimate holds:

‖fg‖
L̃ρ

T
(Bs

p,r)
≤ C(‖f‖Lρ1

T
(L∞)‖g‖L̃ρ2

T
(Bs

p,r)
+ ‖g‖Lρ3

T
(L∞)‖f‖L̃ρ4

T
(Bs

p,r)
)

whenever s > 0, 1 ≤ p ≤ ∞, 1 ≤ ρ, ρ1, ρ2, ρ3, ρ4 ≤ ∞ and

1

ρ
=

1

ρ1
+

1

ρ2
=

1

ρ3
+

1

ρ4
.

As a direct corollary, one has

‖fg‖
L̃ρ

T
(Bs

p,r)
≤ C‖f‖

L̃
ρ1
T

(Bs
p,r)

‖g‖
L̃

ρ2
T

(Bs
p,r)

whenever s ≥ N/p, 1ρ = 1
ρ1

+ 1
ρ2
.

In addition, the estimates of commutators in L̃ρ
T (B

s
p,1) spaces are also frequently

used in the subsequent analysis. The indices s, p behave just as in the stationary case
[7, 10] whereas the time exponent ρ behaves according to Hölder inequality.

Lemma 2.6. Let 1 < p < ∞ and 1 ≤ ρ ≤ ∞, then the following inequalities are
true:

2qs‖[f,∆q]Ag‖Lρ

T
(Lp)

≤





Ccq‖f‖L̃ρ1
T

(Bs
p,1

)
‖g‖

L̃
ρ2
T

(Bs
p,1

)
, s = 1 +N/p,

Ccq‖f‖L̃ρ1
T

(Bs
p,1

)
‖g‖

L̃
ρ2
T

(Bs+1

p,1
)
, s = N/p,

Ccq‖f‖L̃ρ1
T

(Bs+1

p,1
)
‖g‖

L̃
ρ2
T

(Bs
p,1

)
, s = N/p,

where the commutator [·, ·] is defined by [f, g] = fg−gf , the operator A = div or ∇, C
is a harmless constant, and cq denotes a sequence such that ‖(cq)‖l1 ≤ 1, 1ρ = 1

ρ1
+ 1

ρ2
.

Finally, we state a continuity result for compositions (see [1]) to end up this
section.

Proposition 2.7. Let s > 0, 1 ≤ p, r, ρ ≤ ∞, F ∈ W
[s]+1,∞
loc (I;R) with F (0) =

0, T ∈ (0,∞] and v ∈ L̃ρ
T (B

s
p,r) ∩ L∞

T (L∞). Then

‖F (v)‖
L̃ρ

T
(Bs

p,r)
≤ C(1 + ‖v‖L∞

T
(L∞))

[s]+1‖v‖
L̃ρ

T
(Bs

p,r)
.
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3. The proofs of main results. In what follows, we focus on the proofs of
main results. For clarity, we divide them into several subsections, since the proofs are
a bit longer.

3.1. Reformulation and local existence. In this section, we reformulate
(1.1)-(1.3) in order to obtain the effective a priori estimates by means of Fourier
frequency localization.

For the isentropic case (γ > 1), let us introduce the sound speed

ψ(n) =
√
P ′(n),

and set ψ̄ = ψ(n̄) corresponding to the sound speed at a background density n̄. Define

̺ =
2

γ − 1

(
ψ(n)− ψ̄

)
, F = B−B.(3.1)

Set

W := (̺,u,E,F)⊤.

Then the system (1.1) can be reduced to the symmetric hyperbolic system for smooth
solutions:





∂t̺+ ψ̄divu = −u · ∇̺− γ−1
2 ̺divu,

∂tu+ ψ̄∇̺+ u
τ = −u · ∇u− γ−1

2 ̺∇̺− (E+ εu× (F+B)),
∂tE− 1

ε∇× F = n̄u+ h(̺)u,
∂tF+ 1

ε∇×E = 0,
∇ ·E = −h(̺), ∇ · F = 0,

(3.2)

where h(̺) = {(P0γ)
− 1

2 (γ−1
2 ̺ + ψ̄)} 2

γ−1 − n̄ is a smooth function on the domain

{̺|γ−1
2 ̺+ ψ̄ > 0} satisfying h(0) = 0. The initial data (1.3) becomes into

W |t=0 = (̺0,u0,E0,F0)(3.3)

with

̺0 =
2

γ − 1

(
ψ(n0)− ψ̄

)
, F0 = B0 −B.

Under the symmetrization transform (3.1), the initial data (3.3) satisfies the corre-
sponding compatible conditions

∇ ·E0 = −h(̺0), ∇ ·F0 = 0, x ∈ RN .(3.4)

Remark 3.1. The variable change is from the open set {(n,u,E,B) ∈ (0,+∞)×
RN ×RN ×RN} to the open set {W ∈ R ×RN ×RN ×RN |γ−1

2 ̺+ ψ̄ > 0}. It is
easy to show that for classical solutions (n,u,E,B) away from vacuum, (1.1)-(1.3) is
equivalent to (3.2)-(3.3) with γ−1

2 ̺+ ψ̄ > 0.
For the isothermal case where γ = 1, the form of (3.2) is still valid with ψ̄ =

√
P0,

while the symmetrization transform depends on the following enthalpy variable change

̺ =
√
P0(lnn− ln n̄),(3.5)

for the details, see e.g. [10].
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Without loss of generality, we shall study the system (3.2)-(3.3) for γ > 1 and
prove main results, since the case of γ = 1 can be discussed in the same way.

In [17, 20], Kato and Majda established a local existence theory for generally
symmetric hyperbolic systems pertaining to data in the Sobolev spaces with higher
regularity. Recently, using the regularized means and compactness argument, we have
established a local existence in the framework critical Besov spaces for the Euler-
Poisson equations (1.6), see [10]. In the present paper, we further strengthen the
result such that it holds in Chemin-Lerner’s spaces with critical regularity. Our result
reads as follows.

Proposition 3.1. For any fixed 0 < τ, ε ≤ 1, assume that W0 ∈ Bσ
2,1 satisfying

γ−1
2 ̺0+ ψ̄ > 0 and (3.4), then there exist a time T0 > 0 (depending only on the initial

data) and a unique solution W to (3.2)-(3.3) such that W ∈ C1([0, T0] × RN) with
γ−1
2 ̺+ ψ̄ > 0 for all t ∈ [0, T0] and W ∈ C̃T0

(Bσ
2,1) ∩ C̃1

T0
(Bσ−1

2,1 ).
Proof. Let the assumptions of Proposition 3.1 be fulfilled. By a proper revision,

the local result in [10] can also be adapted to the Euler-Maxwell equations (3.2)-(3.3).
That is, there exist a time T0 > 0 (depending only on the initial data) and a unique
solution W to (3.2)-(3.3) such that W ∈ C1([0, T0] ×RN) with γ−1

2 ̺ + ψ̄ > 0 for all

t ∈ [0, T0] and W ∈ C([0, T0], Bσ
2,1) ∩ C1([0, T0], B

σ−1
2,1 ). In order to prove Proposition

3.1, it suffices to show that W ∈ L̃∞
T0
(Bσ

2,1) and Wt ∈ L̃∞
T0
(Bσ−1

2,1 ).
Indeed, applying the operator ∆q(q ≥ −1) to (3.2), we infer that (∆q̺,∆qu,∆qE,

∆qF) satisfies





∂t∆q̺+ ψ̄∆qdivu = −(u · ∇)∆q̺+ [u,∆q] · ∇̺− γ−1
2 ∆q(̺divu),

∂t∆qu+ ψ̄∆q∇̺+ 1
τ∆qu = −(u · ∇)∆qu+ [u,∆q] · ∇u

− γ−1
2 ∆q(̺∇̺)−∆qE− ε∆qu×B− ε∆q(u× F),

∂t∆qE− 1
ε∇×∆qF = n̄∆qu+∆q(h(̺)u),

∂t∆qF+ 1
ε∇×∆qE = 0,

(3.6)

where the commutator [·, ·] is defined by [f, g] = fg − gf .
Then multiplying the first equation of Eq. (3.6) by ∆q̺, the second one by ∆qu,

and adding the resulting equations together, after integrating it over RN , we have
the energy equality

1

2

d

dt

(
‖∆q̺‖2L2 + ‖∆qu‖2L2

)
+

1

τ
‖∆qu‖2L2

=
1

2

∫
divu(|∆q̺|2 + |∆qu|2) +

∫
([u,∆q] · ∇̺∆q̺+ [u,∆q] · ∇u∆qu)

+
γ − 1

2

∫
∆q̺(∇̺ ·∆qu)−

γ − 1

2

∫ (
[∆q, ̺]divu∆q̺+ [∆q, ̺]∇̺ ·∆qu

)

−
∫

∆qE ·∆qu− ε

∫
∆q(u× F) ·∆qu,(3.7)

where we have used the fact ε(∆qu×B) ·∆qu = 0.
On the other hand, multiplying the third equation of Eq. (3.6) by 1

n̄∆qE and
the last one by 1

n̄∆qF, integrating it over RN after adding the resulting equations
together implies

1

2n̄

d

dt

(
‖∆qE‖2L2 + ‖∆qF‖2L2

)
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=

∫
∆qu ·∆qE+

1

n̄
∆q(h(̺)u) ·∆qE,(3.8)

where we used the vector analysis formula ∇ · (f × g) = (∇× f) · g− (∇× g) · f .
Combining with the above identities (3.7)-(3.8), with the aid of Cauchy-Schwartz

inequality, we get

1

2

d

dt

(
‖∆q̺‖2L2 + ‖∆qu‖2L2 +

1

n̄
‖∆qE‖2L2 +

1

n̄
‖∆qF‖2L2

)
+

1

τ
‖∆qu‖2L2

≤ 1

2
‖∇u‖L∞(‖∆q̺‖2L2 + ‖∆qu‖2L2) +

γ − 1

2
‖∇̺‖L∞‖∆q̺‖L2‖∆qu‖L2

+‖[u,∆q]∇̺‖L2‖∆q̺‖L2 + ‖[u,∆q] · ∇u‖L2‖∆qu‖L2

+
γ − 1

2
‖[̺,∆q]∇̺‖L2‖∆qu‖L2 +

γ − 1

2
‖[̺,∆q]divu‖L2‖∆q̺‖L2

+ε‖∆q(u× F)‖L2‖∆qu‖L2 +
1

n̄
‖∆q(h(̺)u)‖L2‖∆qE‖L2, t ∈ [0, T0].(3.9)

Next, we may neglect the effect of relaxation term 1
τ ‖∆qu‖2L2 , since it is only re-

sponsible for the large time behavior of solutions to (3.2)-(3.3). Dividing (3.9) by

{(‖∆q̺‖2L2 + ‖∆qu‖2L2 +
1
n̄‖∆qE‖2L2 +

1
n̄‖∆qF‖2L2) + ǫ} 1

2 (ǫ > 0 a small quantity), we
obtain

1

2

d

dt

{(
‖∆q̺‖2L2 + ‖∆qu‖2L2 +

1

n̄
‖∆qE‖2L2 +

1

n̄
‖∆qF‖2L2

)
+ ǫ
}1/2

≤ 1

2
‖∇u‖L∞(‖∆q̺‖L2 + ‖∆qu‖L2) +

γ − 1

2
‖∇̺‖L∞‖∆qu‖L2

+‖[u,∆q]∇̺‖L2 + ‖[u,∆q] · ∇u‖L2 +
γ − 1

2
‖[̺,∆q]∇̺‖L2

+
γ − 1

2
‖[̺,∆q]divu‖L2 + ε‖∆q(u× F)‖L2 +

1

n̄
‖∆q(h(̺)u)‖L2(3.10)

for t ∈ [0, T0]. Integrating (3.10) with respect to the variable t, then taking ǫ → 0,
and using the estimates of commutators and continuity for the composition in the
stationary case, see [10], we arrive at

2qσ‖∆qW‖L∞

t (L2)

≤ C2qσ‖∆qW0‖L2 + C

∫ t

0

cq(ς)‖(̺,u,F)‖2Bσ
2,1
dς

+C

∫ t

0

2qσ‖(∇̺,∇u)‖L∞‖(∆q̺,∆qu)‖L2dς,(3.11)

where ‖cq(t)‖ℓ1 ≤ 1, for all t ∈ [0, T0]. Next, summing up (3.11) on q ≥ −1 gives

‖W‖
L̃∞

t
(Bσ

2,1
)
≤ C‖W0‖Bσ

2,1
+ C

∫ t

0

‖W (·, ς)‖2Bσ
2,1
dς, t ∈ [0, T0].(3.12)

Then it follows from Remark 2.1 and Gronwall’s inequality that

W ∈ L̃∞
T0
(Bσ

2,1).(3.13)

Furthermore, it is just a matter of using the equations (3.2) and Proposition 2.5, we
deduce that

Wt ∈ L̃∞
T0
(Bσ−1

2,1 ).(3.14)

Hence, the proof of Proposition 3.1 is complete.
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3.2. Uniform a priori estimate and global existence. In this section, our
central task is to derive a crucial (uniform) a priori estimate, which enables us to
achieve the global existence of classical solutions to (3.2)-(3.3).

Proposition 3.2. If W ∈ C̃T (Bσ
2,1) ∩ C̃1

T (B
σ−1
2,1 ) is a solution of (3.2)-(3.3) for

any T > 0 and 0 < τ, ε ≤ 1. There exist some positive constants δ1, µ1 and C1

independent of (τ, ε) such that for any T > 0, if

‖W‖
L̃∞

T
(Bσ

2,1
)
≤ δ1,(3.15)

then

‖W‖
L̃∞

T
(Bσ

2,1
)

+µ1

{∥∥∥
(√

τ̺,
1√
τ
u,

√
τεE

)∥∥∥
L̃2

T
(Bσ

2,1
)
+
∥∥∥ 1√

ε
∇F

∥∥∥
L̃2

T
(Bσ−1

2,1
)

}

≤ C1‖W0‖Bσ
2,1
.(3.16)

Having Proposition 3.2, thanks to the standard continuation argument, we can
extend the local-in-time solutions in Proposition 3.1, and achieve the global existence
of classical solutions to the system (3.2)-(3.3), here we omit details, see e.g. [10].
It follows from Remark 2.1, Proposition 2.5 and the imbedding property Bσ

2,1 →֒ C1

that W ∈ C1([0,∞) ×RN ) solves (3.2)-(3.3). The choice of δ1 is sufficient to ensure
γ−1
2 ̺+ψ̄ > 0. Then according to Remark 3.1, we know (n,u,E,B) ∈ C1([0,∞)×RN)

is a solution of (1.1)-(1.3) with n > 0. Furthermore, we arrive at Theorem 1.2.
Actually, the proof of Proposition 3.2 is to capture the dissipation rates from con-

tributions of (̺,u,E,F) in turn by using the high- and low-frequency decomposition
methods. To do this, we divide it into several lemmas.

Lemma 3.3. If W ∈ C̃T (Bσ
2,1) ∩ C̃1

T (B
σ−1
2,1 ) is a solution of (3.2)-(3.3) for any

T > 0 and 0 < τ, ε ≤ 1, then the following estimate holds:

‖W‖
L̃∞

T
(Bσ

2,1
)
+

√
µ2

τ
‖u‖

L̃2
T
(Bσ

2,1
)

≤ C‖W0‖Bσ
2,1

+ C
√
‖W‖

L̃∞

T
(Bσ

2,1
)

∥∥∥
(√

τ̺,
1√
τ
u
)∥∥∥

L̃2
T
(Bσ

2,1
)
,(3.17)

where µ2, C are some uniform positive constants independent of (τ, ε).
Proof. By integrating (3.9) with respect to t ∈ [0, T ], with the help of Cauchy-

Schwartz inequality, we have

1

2

(
‖∆q̺‖2L2 + ‖∆qu‖2L2 +

1

n̄
‖∆qE‖2L2 +

1

n̄
‖∆qF‖2L2

)∣∣∣
t

0
+

1

τ
‖∆qu‖2L2

t
(L2)

≤ 1

2
‖∇u‖L2

T
(L∞)

(
‖∆q̺‖L2

T
(L2)‖∆q̺‖L∞

T
(L2) + ‖∆qu‖L2

T
(L2)‖∆qu‖L∞

T
(L2)

)

+
γ − 1

2
‖∇̺‖L∞

T
(L∞)‖∆q̺‖L2

T
(L2)‖∆qu‖L2

T
(L2) + ‖[u,∆q] · ∇̺‖L2

T
(L2)‖∆q̺‖L2

T
(L2)

+‖[u,∆q] · ∇u‖L2
T
(L2)‖∆qu‖L2

T
(L2) +

γ − 1

2
‖[̺,∆q]∇̺‖L2

T
(L2)‖∆qu‖L2

T
(L2)

+
γ − 1

2
‖[̺,∆q]divu‖L2

T
(L2)‖∆q̺‖L2

T
(L2) + ε‖∆q(u× F)‖L2

T
(L2)‖∆qu‖L2

T
(L2)
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+
1

n̄
‖∆q(h(̺)u)‖L1

T
(L2)‖∆qE‖L∞

T
(L2).(3.18)

There exists a constant µ2 > 0 independent of (τ, ε) after multiplying the factor 22qσ

on both sides of (3.18), such that

22qσ‖∆qW‖2L2 +
µ2

τ
22qσ‖∆qu‖2L2

t
(L2)

≤ C22qσ‖∆qW0‖2L2

+C
{
‖u‖

L̃2
T
(Bσ

2,1
)

(
c2q‖̺‖L̃2

T
(Bσ

2,1
)
‖̺‖

L̃∞

T
(Bσ

2,1
)
+ c2q‖u‖L̃2

T
(Bσ

2,1
)
‖u‖

L̃∞

T
(Bσ

2,1
)

)

+c2q‖̺‖L̃∞

T
(Bσ

2,1
)
‖̺‖

L̃2
T
(Bσ

2,1
)
‖u‖

L̃2
T
(Bσ

2,1
)
+ c2q‖u‖L̃∞

T
(Bσ

2,1
)
‖u‖2

L̃2
T
(Bσ

2,1
)

+c2q‖u× F‖
L̃2

T
(Bσ

2,1
)
‖u‖

L̃2
T
(Bσ

2,1
)
+ c2q‖h(̺)u‖L̃1

T
(Bσ

2,1
)
‖E‖

L̃∞

T
(Bσ

2,1
)

}
,(3.19)

where we used Remark 2.1, Lemma 2.6 and the smallness of ε(0 < ε ≤ 1); Here and
below C > 0 denotes a uniform constant independent of (τ, ε); {cq} denotes some
sequence which satisfies ‖(cq)‖l1 ≤ 1 although each {cq} is possibly different in (3.19).

Then, with aid of Young’s inequality(
√
fg ≤ (f + g)/2, f, g ≥ 0), it follows from

Proposition 2.5 and Proposition 2.7 that

2qσ‖∆qW‖L∞

T
(L2) +

√
µ2

τ
2qσ‖∆qu‖L2

T
(L2)

≤ C2qσ‖∆qW0‖L2

+Ccq
√
‖̺‖

L̃∞

T
(Bσ

2,1
)

(√
τ‖̺‖

L̃2
T
(Bσ

2,1
)
+

1√
τ
‖u‖

L̃2
T
(Bσ

2,1
)

)

+Ccq
√
‖u‖

L̃∞

T
(Bσ

2,1
)

1√
τ
‖u‖

L̃2
T
(Bσ

2,1
)
+ Ccq

√
‖F‖

L̃∞

T
(Bσ

2,1
)

1√
τ
‖u‖

L̃2
T
(Bσ

2,1
)

+Ccq
√
‖E‖

L̃∞

T
(Bσ

2,1
)

(√
τ‖̺‖

L̃2
T
(Bσ

2,1
)
+

1√
τ
‖u‖

L̃2
T
(Bσ

2,1
)

)
.(3.20)

Hence, summing up (3.20) on q ≥ −1 yields

‖W‖
L̃∞

T
(Bσ

2,1
)
+

√
µ2

τ
‖u‖L2

T
(Bσ

2,1
)

≤ C‖W0‖Bσ
2,1

+ C
√

‖W‖
L̃∞

T
(Bσ

2,1
)
‖(√τ̺, 1√

τ
u)‖

L̃2
T
(Bσ

2,1
)
,

which is just the desired inequality (3.17).

Lemma 3.4. If W ∈ C̃T (Bσ
2,1) ∩ C̃1

T (B
σ−1
2,1 ) is a solution of (3.2)-(3.3) for any

T > 0 and 0 < τ, ε ≤ 1, then the following estimate holds:

√
τ‖̺‖

L̃2
T
(Bσ

2,1
)

≤ C(‖(̺,u)‖
L̃∞

T
(Bσ

2,1
)
+ ‖(̺0,u0)‖Bσ

2,1
)

+C
{ 1√

τ
‖u‖

L̃2
T
(Bσ

2,1
)
+
√
‖(̺,u,F)‖

L̃∞

T
(Bσ

2,1
)

∥∥∥
(√

τ̺,
1√
τ
u
)∥∥∥

L̃2
T
(Bσ

2,1
)

}
.(3.21)

where C is a uniform positive constant independent of (τ, ε).
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Proof. Set

WI =

(
̺
u

)
, AI

j (u) =

(
uj ψ̄e⊤j
ψ̄ej ujIN×N

)

(IN×N denotes the unit matrix of order N

and ej is N -dimensional vector where the jth component is one, others are zero).

Then the first two equations of (3.2) for WI can be written as the following vector
form

∂tWI +
N∑

j=1

AI
j (u)∂xj

WI =

(
− γ−1

2 ̺divu

−u
τ − γ−1

2 ̺∇̺+G

)
,(3.22)

where G := −(E+ εu× (F+B)).
To capture the dissipation rate of ̺, we make the best use of Shizuta-Kawashima

skew-symmetric condition in Fourier spaces, which was developed for general hyper-
bolic systems of balance laws [18, 29]. Thanks to the isentropic Euler equations (3.22),
the concrete information of skew-symmetry matrix K(ξ) is well known (e.g. see [5]),
which is very helpful to estimate the coupled electromagnetic field (E,B). Now we
state the structural condition.

Lemma 3.5 (Shizuta-Kawashima). For all ξ ∈ RN , ξ 6= 0, there exists a real
skew-symmetric smooth matrix K(ξ) which is defined in the unit sphere SN−1:

K(ξ) =

(
0 ξ⊤

|ξ|

− ξ
|ξ| 0

)
,(3.23)

such that

K(ξ)

N∑

j=1

ξjA
I
j (0) =

(
ψ̄|ξ| 0

0 −ψ̄ ξ⊗ξ
|ξ|

)
,(3.24)

where AI
j is the matrix appearing in the system (3.22).

First, we rewrite (3.22) into the linearized form

∂tWI +

N∑

j=1

AI
j (0)∂xj

WI = G +

(
− γ−1

2 ̺divu

−u
τ − γ−1

2 ̺∇̺+G

)
,(3.25)

where

G =

N∑

j=1

{
AI

j (0)−AI
j (u)

}
∂xj

WI .(3.26)

Applying the operator ∆q to the system (3.25) gives

∂t∆qWI +

N∑

j=1

AI
j (0)∂xj

∆qWI

= ∆qG +

( − γ−1
2 ∆q(̺divu)

−∆qu
τ − γ−1

2 ∆q(̺∇̺) + ∆qG

)
.(3.27)



Compressible Euler-Maxwell equations 17

Then we perform the Fourier transform (in the space variable x) for (3.27), multiply

the resulting equation by −iτ(∆̂qWI)
∗K(ξ)(∗ represents transpose and conjugator),

and take the real part of each term in the equality. Using the expression (3.23) of the
matrix K(ξ) we obtain

τIm
(
(∆̂qWI)

∗K(ξ)
d

dt
∆̂qWI

)
+ τ(∆̂qWI)

∗K(ξ)
( N∑

j=1

ξjA
I
j (0)

)
∆̂qWI

= τIm
(
(∆̂qWI)

∗K(ξ)(∆̂qG)
)
− Im

(
(∆̂q̺)

ξ⊤

|ξ| ∆̂qu
)
+ τIm

(
(∆̂q̺)

ξ⊤

|ξ| ∆̂qG
)

+
γ − 1

2
τIm

(
∆̂qu · ξ|ξ|

̂(∆q(̺divu))
)
− γ − 1

2
τIm

(
∆̂q̺

ξ⊤

|ξ|
̂(∆q(̺∇̺))

)
.(3.28)

The skew-symmetry of K(ξ) implies the relation

Im
(
(∆̂qWI)

∗K(ξ)
d

dt
∆̂qWI

)
=

1

2

d

dt
Im
(
(∆̂qWI)

∗K(ξ)∆̂qWI

)
.(3.29)

Substituting (3.24) into the second term on the left-hand side of (3.28), it is not
difficult to get a lower bound. Indeed, we have

τIm
(
(∆̂qWI)

∗K(ξ)
d

dt
∆̂qWI

)
+ τ(∆̂qWI)

∗K(ξ)
( N∑

j=1

ξjA
I
j (0)

)
∆̂qWI

≥ τ

2

d

dt
Im
(
(∆̂qWI)

∗K(ξ)∆̂qWI

)
+ ψ̄τ |ξ||∆̂qWI |2 − 2ψ̄τ |ξ||∆̂qu|2.(3.30)

With the help of Young inequality and the uniform boundedness of the matrixK(ξ)(ξ 6=
0), the right-side of (3.28) can be estimated as

τIm
(
(∆̂qWI)

∗K(ξ)(∆̂qG)
)
− Im

(
(∆̂q̺)

ξ⊤

|ξ| ∆̂qu
)
+ τIm

(
(∆̂q̺)

ξ⊤

|ξ| ∆̂qG
)

+
γ − 1

2
τIm

(
∆̂qu · ξ|ξ|

̂(∆q(̺divu))
)
− γ − 1

2
τIm

(
∆̂q̺

ξ⊤

|ξ|
̂(∆q(̺∇̺))

)

≤ ψ̄τ

2
|ξ||∆̂qWI |2 +

C

τ |ξ| |∆̂qu|2 + τ |∆̂qWI ||∆̂qG|+ Cτ |∆̂qu|| ̂(∆q(̺divu))|

+Cτ |∆̂q̺|| ̂(∆q(̺∇̺))|+ τIm
(
(∆̂q̺)

ξ⊤

|ξ| ∆̂qG
)
,(3.31)

where C > 0 is a constant independent of (τ, ε). Combining the equality (3.28) and
the inequality (3.30)-(3.31), we deduce that

ψ̄τ

2
|ξ||∆̂qWI |2

≤ C

τ

(
|ξ|+ 1

|ξ|
)
|∆̂qu|2 + τ |∆̂qWI ||∆̂qG|

+Cτ |∆̂qu|| ̂(∆q(̺divu))|+ Cτ |∆̂q̺|| ̂(∆q(̺∇̺))|

+τIm
(
(∆̂q̺)

ξ⊤

|ξ| ∆̂qG
)
− τ

2

d

dt
Im
(
(∆̂qWI)

∗K(ξ)∆̂qWI

)
.(3.32)
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Multiplying (3.32) by |ξ| and integrating it over [0, t]×RN , then using Plancherel’s
theorem yields

ψ̄τ

2

∫ t

0

‖∆q∇WI‖2L2dς

≤ C

τ

∫ t

0

(‖∆qu‖2L2 + ‖∆q∇u‖2L2)dς + Cτ

∫ t

0

‖∆q∇WI‖L2‖∆qG‖L2dς

+Cτ

∫ t

0

‖∆q∇u‖L2‖∆q(̺divu)‖L2dς + Cτ

∫ t

0

‖∆q∇̺‖L2‖∆q(̺∇̺)‖L2dς

+τ

∫ t

0

Im

∫ (
(∆̂q̺)ξ

⊤∆̂qG
)
dξdς − τ

2
Im

∫
|ξ|
(
(∆̂qWI)

∗K(ξ)∆̂qWI

)
dξ
∣∣∣
t

0
.(3.33)

The matrix K(ξ) is uniform bounded when ξ ∈ RN (ξ 6= 0), thus we have

−τ
2
Im

∫
|ξ|
(
(∆̂qWI)

∗K(ξ)∆̂qWI

)
dξ
∣∣∣
t

0

≤ Cτ
( ∫

(1 + |ξ|2)| ̂∆qWI(t)|2dξ +
∫
(1 + |ξ|2)| ̂∆qWI(0)|2dξ

)

≤ C(‖∆qWI(t)‖2L2 + ‖∆q∇WI(t)‖2L2 + ‖∆qWI(0)‖2L2 + ‖∆q∇WI(0)‖2L2),(3.34)

where we used the smallness of τ(0 < τ ≤ 1) in the last step.
Next we turn to estimate the coupled electromagnetic field (E,B):

τ

∫ t

0

Im

∫ (
(∆̂q̺)ξ

⊤∆̂qG
)
dξdς

= −τ
∫ t

0

Im

∫ (
(∆̂q̺)ξ

⊤∆̂qE
)
dξdς

−τε
∫ t

0

Im

∫ (
(∆̂q̺)ξ

⊤ ̂∆q(u× (F+B))
)
dξdς

≡ I1 + I2,(3.35)

where the first term I1 is estimated as follows

I1 = −τ
∫ t

0

Im

∫ (
(∆̂q̺)ξ

⊤∆̂qE
)
dξdς

= −τ
{
−
∫ t

0

i

2

∫ (
(∆̂q̺)ξ

⊤∆̂qE
)
dξdς +

∫ t

0

i

2

∫ (
(∆̂q̺)ξ

⊤∆̂qE
)
dξdς

}

= −τ
2

{∫ t

0

∫
(∆̂q∇̺) · ∆̂qEdξdς +

∫ t

0

∫
(∆̂q∇̺) · ∆̂qEdξdς

}

= −τ(2π)N
∫ t

0

∫
∆q∇̺ ·∆qEdxdς

= τ(2π)N
∫ t

0

∫
∆q̺∆qdivEdxdς

= −τ(2π)N
∫ t

0

∫
∆q̺∆q(h(̺)− h(0))dxdς

= −τ(P0γ)
− 1

2 n̄
3−γ

2 (2π)N
∫ t

0

‖∆q̺‖2L2dς − τ(2π)N
∫ t

0

∫
∆q̺∆q(h̃(̺)̺)dxdς



Compressible Euler-Maxwell equations 19

≤ −τ(P0γ)
− 1

2 n̄
3−γ

2 (2π)N
∫ t

0

‖∆q̺‖2L2dς + Cτ

∫ t

0

‖∆q(h̃(̺)̺)‖L2‖∆q̺‖L2dς.(3.36)

Here, h̃(̺) =
∫ 1

0 h
′(ǫ̺)dς − (P0γ)

− 1
2 n̄

3−γ
2 is a smooth function on {̺|γ−1

2 ǫ̺ + ψ̄ >

0, ǫ ∈ [0, 1]} satisfying h̃(0) = 0.
In a similar way, I2 is estimated as

I2 = −τε
∫ t

0

Im

∫ (
(∆̂q̺)ξ

⊤ ̂∆q(u× (F+B))
)
dξdς

≤ Cτε

∫ t

0

(
‖∆qdiv(u×B)‖L2 + ‖∆qdiv(u× F)‖L2

)
‖∆q̺‖L2dς.(3.37)

Thus, combining with (3.33)-(3.37), we get

ψ̄τ

2

∫ t

0

‖∆q∇WI‖2L2dς + τ(P0γ)
− 1

2 n̄
3−γ

2 (2π)N
∫ t

0

‖∆q̺‖2L2dς

≤ C(‖∆qWI(t)‖2L2 + ‖∆q∇WI(t)‖2L2 + ‖∆qWI(0)‖2L2 + ‖∆q∇WI(0)‖2L2)

+
C

τ

∫ t

0

(‖∆qu‖2L2 + ‖∆q∇u‖2L2)dς + Cτ

∫ t

0

‖∆q∇WI‖L2‖∆qG‖L2dς

+Cτ

∫ t

0

‖∆q∇u‖L2‖∆q(̺divu)‖L2dς + Cτ

∫ t

0

‖∆q∇̺‖L2‖∆q(̺∇̺)‖L2dς

+Cτ

∫ t

0

‖∆q(h̃(̺)̺)‖L2‖∆q̺‖L2dς

+Cτε

∫ t

0

(
‖∆qdiv(u×B)‖L2 + ‖∆qdiv(u× F)‖L2

)
‖∆q̺‖L2dς.(3.38)

Recalling Lemma 2.2, we have

‖∆q∇f‖L2 ≈ 2q‖∆qf‖L2 (q ≥ 0).

Note that this fact, from (3.38), we get the high-frequency part of ‖∆q̺‖L2
t
(L2)(q ≥ 0):

ψ̄τ

2
22q‖∆q̺‖2L2

t
(L2)

≤ C(22q‖∆qWI‖2L∞

T
(L2) + 22q‖∆qWI(0)‖2L2) + C

{22q
τ

‖∆qu‖2L2
T
(L2)

+τε‖∆q̺‖L2
T
(L2)‖∆qdiv(u×B)‖L2

T
(L2) + 2qτ‖∆qWI‖L2

T
(L2)‖∆qG‖L2

T
(L2)

+2qτ‖∆qu‖L2
T
(L2)‖∆q(̺divu)‖L2

T
(L2) + 2qτ‖∆q̺‖L2

T
(L2)‖∆q(̺∇̺)‖L2

T
(L2)

+τ‖∆q(h̃(̺)̺)‖L2
T
(L2)‖∆q̺‖L2

T
(L2) + τε‖∆qdiv(u× F)‖L2

T
(L2)‖∆q̺‖L2

T
(L2)

}
(3.39)

and the corresponding low-frequency part:

τ(P0γ)
− 1

2 n̄
3−γ
2 (2π)N‖∆−1̺‖2L2

t
(L2)

≤ C(‖∆−1WI‖2L∞

T
(L2) + ‖∆−1WI(0)‖2L2)

+C
{ 1
τ
‖∆−1u‖2L2

T
(L2) + τε‖∆−1̺‖L2

T
(L2)‖∆−1div(u×B)‖L2

T
(L2)

+τ‖∆−1WI‖L2
T
(L2)‖∆−1G‖L2

T
(L2) + τ‖∆−1u‖L2

T
(L2)‖∆−1(̺divu)‖L2

T
(L2)

+τ‖∆−1̺‖L2
T
(L2)‖∆−1(̺∇̺)‖L2

T
(L2) + τ‖∆−1(h̃(̺)̺)‖L2

T
(L2)‖∆−1̺‖L2

T
(L2)

+τε‖∆−1div(u× F)‖L2
T
(L2)‖∆−1̺‖L2

T
(L2)

}
.(3.40)
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To conclude, we combine (3.39)-(3.40) and multiply the factor 22q(σ−1) on both sides
of the resulting inequality to obtain

τ22qσ‖∆q̺‖2L2
t
(L2)

≤ Cc2q(‖WI‖2
L̃∞

T
(Bσ

2,1
)
+ ‖WI(0)‖2Bσ

2,1
)

+C
{c2q
τ
‖u‖2

L̃2
T
(Bσ

2,1
)
+ τεc2q‖̺‖L̃2

T
(Bσ

2,1
)
‖div(u×B)‖

L̃2
T
(Bσ−1

2,1
)

+τc2q‖WI‖L̃2
T
(Bσ

2,1
)
‖G‖

L̃2
T
(Bσ−1

2,1
)
+ τc2q‖u‖L̃2

T
(Bσ

2,1
)
‖̺divu‖

L̃2
T
(Bσ−1

2,1
)

+τc2q‖̺‖L̃2
T
(Bσ

2,1
)

(
‖̺∇̺‖

L̃2
T
(Bσ−1

2,1
)
+ ‖h̃(̺)̺‖

L̃2
T
(Bσ−1

2,1
)

+ε‖div(u× F)‖
L̃2

T
(Bσ−1

2,1
)

)}
,(3.41)

where {cq} denotes some sequence which satisfies ‖(cq)‖l1 ≤ 1.
By employing Young’s inequality, we are led to the estimate

√
τ2qσ‖∆q̺‖L2

T
(L2)

≤ Ccq(‖WI‖L̃∞

T
(Bσ

2,1
)
+ ‖WI(0)‖Bσ

2,1
)

+C
{ cq√

τ
‖u‖

L̃2
T
(Bσ

2,1
)
+
√
τεcq

√
‖̺‖

L̃2
T
(Bσ

2,1
)
‖u‖

L̃2
T
(Bσ

2,1
)

+cq
√
‖u‖

L̃∞

T
(Bσ

2,1
)

(√
τ‖̺‖

L̃2
T
(Bσ

2,1
)
+

1√
τ
‖u‖

L̃2
T
(Bσ

2,1
)

)

+
cq√
τ

√
‖̺‖

L̃∞

T
(Bσ

2,1
)
‖u‖

L̃2
T
(Bσ

2,1
)

+cq
√
‖(̺,F)‖

L̃∞

T
(Bσ

2,1
)

(√
τ‖̺‖

L̃2
T
(Bσ

2,1
)
+

1√
τ
‖u‖

L̃2
T
(Bσ

2,1
)

)}
.(3.42)

In the end, with the help of the smallness of (τ, ε), summing up (3.42) on q ≥ −1
concludes the inequality (3.21) readily.

Lemma 3.6. If W ∈ C̃T (Bσ
2,1) ∩ C̃1

T (B
σ−1
2,1 ) is a solution of (3.2)-(3.3) for any

T > 0 and 0 < τ, ε ≤ 1, then the following estimate holds:
√
τε‖E‖

L̃2
T
(Bσ

2,1
)

≤ C(‖(u,E,F)‖
L̃∞

T
(Bσ

2,1
)
+ ‖(u0,E0,F0)‖Bσ

2,1
)

+C
{∥∥∥
(√

τ̺,
u√
τ

)∥∥∥
L̃2

T
(Bσ

2,1
)
+
∥∥∥∇F√

ε

∥∥∥
L̃2

T
(Bσ−1

2,1
)

+
√
‖(̺,u,F)‖

L̃∞

T
(Bσ

2,1
)

[∥∥∥
(√

τ̺,
u√
τ
,
√
τεE

)∥∥∥
L̃2

T
(Bσ

2,1
)
+
∥∥∥∇F√

ε

∥∥∥
L̃2

T
(Bσ−1

2,1
)

]}
,(3.43)

where C > 0 is a uniform constant independent of (τ, ε).
Proof. A nice “div-curl” construction of Maxwell’s equations of (3.2) enables

us to obtain the high-frequency part of E. Indeed, by applying ∆q to both side of
∇ · E = −h(̺)(q ≥ 0), integrating it over RN after multiplying ∇ ·∆qE, in virtue of
Hölder’s inequality, we obtain

‖∇ ·∆qE‖2L2

≤ C{(P0γ)
− 1

2 n̄
3−γ

2 ‖∆q̺‖L2 + ‖∆q(h̃(̺)̺)‖L2}‖∇ ·∆qE‖L2,(3.44)
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where the function h̃(̺) is defined by (3.36).
On the other hand, applying ∆q(q ≥ 0) to the fourth equation of (3.2) and

multiplying the resulting equation by ∇×∆qE, after integration by parts, yields

‖∇ ×∆qE‖2L2 = −ε
∫
∂t∆qF · (∇×∆qE)

= ε

∫
(∇× ∂t∆qF) ·∆qE.(3.45)

Substituting the third equation of (3.2) into (3.45), by Cauchy-Schwartz inequality,
leads to

‖∇ ×∆qE‖2L2 + ‖∇×∆qF‖2L2

≤ ε
d

dt

∫
(∇×∆qF) ·∆qE+ n̄ε‖∆qu‖L2‖∆q(∇× F)‖L2

+ε‖∆q(h(̺)u)‖L2‖∆q(∇× F)‖L2 .(3.46)

Combining with (3.44) and (3.46), it follows from the elementary relation

‖∇f‖L2 ≈ ‖∇ · f‖L2 + ‖∇× f‖L2

that

‖∇∆qE‖2L2

≤ C{(P0γ)
− 1

2 n̄
3−γ

2 ‖∆q̺‖L2 + ‖∆q(h̃(̺)̺)‖L2}‖∇ ·∆qE‖L2

+ε
d

dt

∫
(∇×∆qF) ·∆qE+ n̄ε‖∆qu‖L2‖∆q(∇× F)‖L2

+ε‖∆q(h(̺)u)‖L2‖∆q(∇× F)‖L2 .(3.47)

Note that q ≥ 0, from Lemma 2.2, we further get

τε22q‖∆qE‖2L2

≤ Cτ‖∆q̺‖2L2 + Cτε‖∆q(h̃(̺)̺)‖L22q‖∆qE‖L2

+τε2
d

dt

∫
(∇×∆qF) ·∆qE+ Cτε2‖∆qu‖L2‖∆q(∇× F)‖L2

+τε2‖∆q(h(̺)u)‖L2‖∆q(∇× F)‖L2 ,(3.48)

where the smallness of ε is used. Integrating (3.48) in t ∈ [0, T ] implies

τε22q‖∆qE‖2L2
t
(L2)

≤ τε22q‖∆qF‖L∞

T
(L2)‖∆qE‖L∞

T
(L2) + τε22q‖∆qF0‖L2‖∆qE0‖L2

+Cτ‖∆q̺‖2L2
T
(L2) + Cτε‖∆q(h̃(̺)̺)‖L2

T
(L2)2

q‖∆qE‖L2
T
(L2)

+Cτε2‖∆qu‖L2
T
(L2)‖∆q(∇× F)‖L2

T
(L2)

+τε2‖∆q(h(̺)u)‖L2
T
(L2)‖∆q(∇× F)‖L2

T
(L2).(3.49)

On the other hand, the desired low-frequency of E can be deduced from the
Lorentz field in the Euler equations of (3.2). Using the second equation of (3.2), we
have

ut +E = −ψ̄∇̺− u

τ
− u · ∇u− γ − 1

2
̺∇̺− εu× (F+B).(3.50)
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Applying the operator ∆−1 to (3.50) implies

∂t∆−1u+∆−1E = −ψ̄∆−1∇̺−
∆−1u

τ
−∆−1(u · ∇u)

−γ − 1

2
∆−1(̺∇̺)− ε∆−1(u× (F+B)).(3.51)

Multiplying (3.51) by τε∆−1E and integrating the resulting equation over RN , we
get

τε
d

dt

∫
∆−1u ·∆−1E+ τε‖∆−1E‖2L2 + τεψ̄(P0γ)

− 1
2 n̄

3−γ

2 ‖∆−1̺‖2L2

= n̄τε‖∆−1u‖2L2 + τ

∫
∆−1u ·∆−1(∇× F) + τε

∫
∆−1u ·∆q(h(̺)u)

+τεψ̄

∫
∆−1(h̃(̺)̺)∆−1̺− ε

∫
∆−1u ·∆−1E

−τε2
∫
(∆−1u×B) ·∆−1E− τε

∫
∆−1(u · ∇u) ·∆−1E

−γ − 1

2
τε

∫
∆−1(̺∇̺) ·∆−1E− τε2

∫
∆−1(u× F) ·∆−1E,(3.52)

where we have used the third equation of (3.2). From Cauchy-Schwartz and Young’s
inequalities, we arrive at

τε
d

dt

∫
∆−1u ·∆−1E+

τε

4
‖∆−1E‖2L2

≤ C
(1
τ
‖∆−1u‖2L2 + τ‖∆−1u‖L2‖∆−1(∇× F)‖L2

)

+Cτε
(
‖∆−1(h(̺)u)‖L2‖∆−1u‖L2 + ‖∆−1(h̃(̺)̺)‖L2‖∆−1̺‖L2

+‖∆−1(u · ∇u)‖L2‖∆−1E‖L2 + ‖∆−1(̺∇̺)‖L2‖∆−1E‖L2

+ε‖∆−1(u× F)‖L2‖∆−1E‖L2

)
.(3.53)

Then integrating (3.53) in t ∈ [0, T ] gives

τε‖∆−1E‖2L2
t
(L2)

≤ Cτε(‖∆−1u‖L∞

T
(L2)‖∆−1E‖L∞

T
(L2) + ‖∆−1u0‖L2‖∆−1E0‖L2)

+C
(1
τ
‖∆−1u‖2L2

T
(L2) + τ‖∆−1u‖L2

T
(L2)‖∆−1(∇× F)‖L2

T
(L2)

)

+Cτε
(
‖∆−1(h(̺)u)‖L2

T
(L2)‖∆−1u‖L2

T
(L2) + ‖∆−1(h̃(̺)̺)‖L2

T
(L2)

·‖∆−1̺‖L2
T
(L2) + ‖∆−1(u · ∇u)‖L2

T
(L2)‖∆−1E‖L2

T
(L2)

+‖∆−1(̺∇̺)‖L2
T
(L2)‖∆−1E‖L2

T
(L2) + ε‖∆−1(u× F)‖L2

T
(L2)‖∆−1E‖L2

T
(L2)

)
.(3.54)

Therefore, by combining with the high-frequency estimate (3.49) and low-frequency
estimate (3.54), we infer that for q ≥ −1,

τε22q‖∆qE‖2L2
t(L

2)

≤ C22q(‖(∆qu,∆qE,∆qF)‖2L∞

T
(L2) + ‖(∆qu0,∆qE0,∆qF0)‖2L2)
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+C
(1
τ
‖∆qu‖2L2

T
(L2) + τ‖∆q̺‖2L2

T
(L2) + τ‖∆qu‖L2

T
(L2)‖∆q(∇× F)‖L2

T
(L2)

)

+Cτε
{
‖∆q(h(̺)u)‖L2

T
(L2)‖∆qu‖L2

T
(L2) + ‖∆q(h̃(̺)̺)‖L2

T
(L2)‖∆q̺‖L2

T
(L2)

+
(
‖∆q(u · ∇u)‖L2

T
(L2) + ‖∆q(̺∇̺)‖L2

T
(L2) + 2q‖∆q(h̃(̺)̺)‖L2

T
(L2)

+ε‖∆q(u× F)‖L2
T
(L2)

)
‖∆qE‖L2

T
(L2)

+τε2‖∆q(h(̺)u)‖L2
T
(L2)‖∆q(∇× F)‖L2

T
(L2)

}
.(3.55)

By multiplying the factor 22q(σ−1) on both sides of (3.55), we gather

τε22qσ‖∆qE‖2L2
t(L

2)

≤ Cc2q(‖(u,E,F)‖2L̃∞

T
(Bσ

2,1
)
+ ‖(u0,E0,F0)‖2Bσ

2,1
)

+C
{c2q
τ
‖u‖2

L̃2
T
(Bσ

2,1
)
+ τc2q‖̺‖2L̃2

T
(Bσ

2,1
)
+ τc2q‖u‖L̃2

T
(Bσ

2,1
)
‖∇× F‖

L̃2
T
(Bσ−1

2,1
)

+τεc2q‖h(̺)u‖L̃2
T
(Bσ

2,1
)
‖u‖

L̃2
T
(Bσ

2,1
)
+ τεc2q‖h̃(̺)̺‖L̃2

T
(Bσ

2,1
)
‖̺‖

L̃2
T
(Bσ

2,1
)

+τεc2q

(
‖u · ∇u‖

L̃2
T
(Bσ−1

2,1
)
+ ‖̺∇̺‖

L̃2
T
(Bσ−1

2,1
)
+ ‖h̃(̺)̺‖

L̃2
T
(Bσ

2,1
)

+ε‖u× F‖
L̃2

T
(Bσ−1

2,1
)

)
‖E‖

L̃2
T
(Bσ

2,1
)
+ τε2c2q‖h(̺)u‖L̃2

T
(Bσ

2,1
)
‖∇× F‖

L̃2
T
(Bσ−1

2,1
)

}
,(3.56)

where {cq} denotes some sequence which satisfies ‖(cq)‖l1 ≤ 1.
Then it follows from Young’s inequality that

√
τε2qσ‖∆qE‖L2

T
(L2)

≤ Ccq(‖(u,E,F)‖L̃∞

T
(Bσ

2,1
)
+ ‖(u0,E0,F0)‖Bσ

2,1
)

+C
{ cq√

τ
‖u‖

L̃2
T
(Bσ

2,1
)
+
√
τcq‖̺‖L̃2

T
(Bσ

2,1
)
+

cq√
ε
‖∇× F‖

L̃2
T
(Bσ−1

2,1
)

+cq
√
‖u‖

L̃∞

T
(Bσ

2,1
)

(√
τ‖̺‖

L̃2
T
(Bσ

2,1
)
+

1√
τ
‖u‖

L̃2
T
(Bσ

2,1
)

)

+cq
√
‖u‖

L̃∞

T
(Bσ

2,1
)

( 1√
τ
‖u‖

L̃2
T
(Bσ

2,1
)
+
√
τε‖E‖

L̃2
T
(Bσ

2,1
)

)

+cq
√
‖̺‖

L̃∞

T
(Bσ

2,1
)
(
√
τ‖̺‖

L̃2
T
(Bσ

2,1
)
+
√
τε‖E‖

L̃2
T
(Bσ

2,1
)
)

+cq
√
‖F‖

L̃∞

T
(Bσ

2,1
)

( 1√
τ
‖u‖

L̃2
T
(Bσ

2,1
)
+
√
τε‖E‖

L̃2
T
(Bσ

2,1
)

)}

+cq
√
‖̺‖

L̃∞

T
(Bσ

2,1
)

( 1√
τ
‖u‖

L̃2
T
(Bσ

2,1
)
+

1√
ε
‖∇× F‖

L̃2
T
(Bσ−1

2,1
)

)
,(3.57)

where we has used Proposition 2.5. Finally, we sum up (3.57) on q ≥ −1 and deduce
the inequality (3.43) immediately.

Lemma 3.7. If W ∈ C̃T (Bσ
2,1) ∩ C̃1

T (B
σ−1
2,1 ) is a solution of (3.2)-(3.3) for any

T > 0 and 0 < τ, ε ≤ 1, then the following estimate holds:

1√
ε
‖∇F‖

L̃2
T
(Bσ−1

2,1
)
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≤ C(‖(E,F)‖
L̃∞

T
(Bσ

2,1
)
+ ‖(E0,F0)‖Bσ

2,1
)

+C
{∥∥∥ u√

τ

∥∥∥
L̃2

T
(Bσ

2,1
)
+
√
‖̺‖

L̃∞

T
(Bσ

2,1
)

(∥∥∥ u√
τ

∥∥∥
L̃2

T
(Bσ

2,1
)
+
∥∥∥∇F√

ε

∥∥∥
L̃2

T
(Bσ−1

2,1
)

)}
,(3.58)

where C > 0 is a uniform positive constant independent of (τ, ε).
Proof. Multiply the third equation of (3.2) by −∆q(∇×F)(q ≥ −1) and integrate

the resulting quality over RN . Then integration by parts implies

d

dt

∫
∆q(∇×E) ·∆qF+

1

ε
‖∆q(∇× F)‖2L2

=

∫
∆q(∇×E) ·∆qFt − n̄

∫
∆qu ·∆q(∇× F)

−
∫

∆q(h(̺)u) ·∆q(∇× F).(3.59)

Substituting the fourth equation of (3.2) into the first term of (3.59), by Cauchy-
Schwartz inequality, leads to

d

dt

∫
∆q(∇×E) ·∆qF+

1

ε
‖∆q(∇× F)‖2L2 +

1

ε
‖∆q(∇×E)‖2L2

≤ n̄‖∆qu‖L2‖∆q(∇× F)‖L2 + ‖∆q(h(̺)u)‖L2‖∆q(∇× F)‖L2 .(3.60)

Due to the incompressible condition of F in (3.2), by integrating (3.60) with respect
to t ∈ [0, T ], we easily derive

1

ε
‖∆q∇F‖2L2

t
(L2)

≤ ‖∆q(∇×E)‖L∞

T
(L2)‖∆qF‖L∞

T
(L2) + ‖∆q(∇×E0)‖L2‖∆qF0‖L2

+n̄‖∆qu‖L2
T
(L2)‖∆q(∇× F)‖L2

T
(L2)

+‖∆q(h(̺)u)‖L2
T
(L2)‖∆q(∇× F)‖L2

T
(L2).(3.61)

Noticing that the regularity of E in the assumption of Lemma 3.7, we multiply (3.61)
by the factor 22q(σ−1) to get

1

ε
22q(σ−1)‖∆q∇F‖2L2

t
(L2)

≤ C
{
c2q‖E‖

L̃∞

T
(Bσ

2,1
)
‖F‖

L̃∞

T
(Bσ−1

2,1
)
+ c2q‖E0‖Bσ

2,1
‖F0‖Bσ−1

2,1

+c2q‖u‖L̃2
T
(Bσ−1

2,1
)
‖∇× F‖

L̃2
T
(Bσ−1

2,1
)

+c2q‖h(̺)u‖L̃2
T
(Bσ−1

2,1
)
‖∇× F‖

L̃2
T
(Bσ−1

2,1
)

}
,(3.62)

where {cq} denotes some sequence which satisfies ‖(cq)‖l1 ≤ 1.
Furthermore, we apply Young’s inequality to (3.62) and obtain

1√
ε
2q(σ−1)‖∆q∇F‖L2

T
(L2)

≤ Ccq

{
‖(E,F)‖

L̃∞

T
(Bσ

2,1
)
+ ‖(E0,F0)‖Bσ

2,1

}

+C
{
cq
√
‖u‖

L̃2
T
(Bσ

2,1
)
‖∇× F‖

L̃2
T
(Bσ−1

2,1
)

+cq
√
‖h(̺)u‖

L̃2
T
(Bσ

2,1
)
‖∇× F‖

L̃2
T
(Bσ−1

2,1
)

}
.(3.63)
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Finally, after summing up (3.63) on q ≥ −1, it follows from Proposition 2.5 that

1√
ε
‖∇F‖

L̃2
T
(Bσ−1

2,1
)

≤ C(‖(E,F)‖
L̃∞

T
(Bσ

2,1
)
+ ‖(E0,F0)‖Bσ

2,1
) + C

{ 1√
τ
‖u‖

L̃2
T
(Bσ

2,1
)

+
√
‖̺‖

L̃∞

T
(Bσ

2,1
)

( 1√
τ
‖u‖

L̃2
T
(Bσ

2,1
)
+

1√
ε
‖∇× F‖

L̃2
T
(Bσ−1

2,1
)

)}
.

This is just the inequality (3.58). Hence, the proof of Lemma 3.7 is complete.

Remark 3.2. In the proof of Lemma 3.7, the dissipation rate of F is not available
due to the absence of low-frequency estimate on ‖∆−1F‖L2

T
(L2). This is a key reason

that Chemin-Lerner’s spaces with critical regularity are first introduced to establish
the global existence of uniform classical solutions. Otherwise, we need to add a
little regularity in order to ensure that the Besov spaces (in x) are still continuously
embedded in C1(RN ) spaces. For the similar details, the reader is referred to [9].

Having these lemmas proved above, the proof of Proposition 3.2 can be finished.

Proof of Proposition 3.2. Combing (3.17), (3.21), (3.43) and (3.58), we end up with

‖W‖
L̃∞

T
(Bσ

2,1
)
+K1

√
τ‖̺‖

L̃2
T
(Bσ

2,1
)
+

√
µ2

τ
‖u‖

L̃2
T
(Bσ

2,1
)

+K2

√
τε‖E‖

L̃2
T
(Bσ

2,1
)
+
K3√
ε
‖∇F‖

L̃2
T
(Bσ−1

2,1
)

≤ C‖W0‖Bσ
2,1

+ C
√
‖W‖

L̃∞

T
(Bσ

2,1
)

∥∥∥
(√

τ̺,
1√
τ
u
)∥∥∥

L̃2
T
(Bσ

2,1
)

+CK1

{
(‖WI‖L̃∞

T
(Bσ

2,1
)
+ ‖WI(0)‖Bσ

2,1
) +

1√
τ
‖u‖

L̃2
T
(Bσ

2,1
)

+
√
‖(̺,u,F)‖

L̃∞

T
(Bσ

2,1
)

∥∥∥
(√

τ̺,
1√
τ
u
)∥∥∥

L̃2
T
(Bσ

2,1
)

}

+CK2

{
(‖(u,E,F)‖

L̃∞

T
(Bσ

2,1
)
+ ‖(u0,E0,F0)‖Bσ

2,1
)

+
∥∥∥
(√

τ̺,
1√
τ
u
)∥∥∥

L̃2
T
(Bσ

2,1
)
+

1√
ε
‖∇F‖

L̃2
T
(Bσ−1

2,1
)

+
√
‖(̺,u,F)‖

L̃∞

T
(Bσ

2,1
)

[∥∥∥
(√

τ̺,
1√
τ
u,

√
τεE

)∥∥∥
L̃2

T
(Bσ

2,1
)

+
∥∥∥ 1√

ε
∇F

∥∥∥
L̃2

T
(Bσ−1

2,1
)

]}
+ CK3

{
(‖(E,F)‖

L̃∞

T
(Bσ

2,1
)
+ ‖(E0,F0)‖Bσ

2,1
)

+
1√
τ
‖u‖

L̃2
T
(Bσ

2,1
)
+
√
‖̺‖

L̃∞

T
(Bσ

2,1
)

( 1√
τ
‖u‖

L̃2
T
(Bσ

2,1
)

+
1√
ε
‖∇F‖

L̃2
T
(Bσ−1

2,1
)

)}
,(3.64)

where K1,K2 and K3 are some uniform positive constants (independent of (τ, ε)) to
be determined. In order to eliminate the terms ‖(̺,u,E,F)‖

L̃∞

T
(Bσ

2,1
)
, ‖√τ̺‖

L̃2
T
(Bσ

2,1
)
,

‖u/√τ‖
L̃2

T
(Bσ

2,1
)
and ‖∇F/

√
ε‖

L̃2
T
(Bσ−1

2,1
)
arising in the right-hand side of (3.64), we
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may confine the constants to the following cases:

K1 ≤ min
{ 1

4C
,

√
µ2

4C

}
, K2 ≤ min

{ 1

4C
,
K1

2C
,

√
µ2

4C
,
K3

2C

}
, K3 ≤ min

{ 1

4C
,

√
µ2

4C

}
.

Furthermore, it is not difficult to obtain

1

2
‖W‖

L̃∞

T
(Bσ

2,1
)
+
K1

√
τ

2
‖̺‖

L̃2
T
(Bσ

2,1
)
+

√
µ2

4
√
τ
‖u‖

L̃2
T
(Bσ

2,1
)

+K2

√
τε‖E‖

L̃2
T
(Bσ

2,1
)
+

K3

2
√
ε
‖∇F‖

L̃2
T
(Bσ−1

2,1
)

≤ C‖W0‖Bσ
2,1

+ C
√

‖W‖
L̃∞

T
(Bσ

2,1
)

∥∥∥
(√

τ̺,
1√
τ
u
)∥∥∥

L̃2
T
(Bσ

2,1
)

+CK1

{
‖(̺0,u0)‖Bσ

2,1
+
√
‖(̺,u,F)‖

L̃∞

T
(Bσ

2,1
)

·
∥∥∥
(√

τ̺,
1√
τ
u
)∥∥∥

L̃2
T
(Bσ

2,1
)

}
+ CK2

{
‖(u0,E0,F0)‖Bσ

2,1

+
√
‖(̺,u,F)‖

L̃∞

T
(Bσ

2,1
)

[∥∥∥
(√

τ̺,
1√
τ
u,

√
τεE

)∥∥∥
L̃2

T
(Bσ

2,1
)

+
∥∥∥∇F√

ε

∥∥∥
L̃2

T
(Bσ−1

2,1
)

]}
+ CK3

{
‖(E0,F0)‖Bσ

2,1

+
√
‖̺‖

L̃∞

T
(Bσ

2,1
)

( 1√
τ
‖u‖

L̃2
T
(Bσ

2,1
)
+

1√
ε
‖∇F‖

L̃2
T
(Bσ−1

2,1
)

)}

≤ C‖W0‖Bσ
2,1

+ C
√

‖W‖
L̃∞

T
(Bσ

2,1
)

{∥∥∥
(√

τ̺,
1√
τ
u,

√
τεE

)∥∥∥
L̃2

T
(Bσ

2,1
)

+
∥∥∥∇F√

ε

∥∥∥
L̃2

T
(Bσ−1

2,1
)

}

≤ C‖W0‖Bσ
2,1

+ C
√
δ1

{∥∥∥
(√

τ̺,
1√
τ
u,

√
τεE

)∥∥∥
L̃2

T
(Bσ

2,1
)
+
∥∥∥∇F√

ε

∥∥∥
L̃2

T
(Bσ−1

2,1
)

}
,(3.65)

where we used the a priori assumption (3.15) in the last step of (3.65).
Finally, we choose the positive constant δ1 such that

C
√
δ1 < min

{K1

2
,

√
µ2

4
,K2,

K3

2

}
,

then the inequality (3.16) follows immediately. This finishes the proof of Proposition
3.2 eventually.

3.3. Non-relativistic limit. In this section, we justify the non-relativistic limit
of the system (1.1)-(1.3) with τ = 1.

Proof of Theorem 1.4. For any fixed T > 0, let (nε,uε,Eε,Bε) be the global solution
of (1.1)-(1.3) given by Theorem 1.2. It follows from the uniform energy estimate (1.11)
and Remark 2.1 that

(nε − n̄,uε) ∈ L∞
T (Bσ

2,1) ∩ L2
T (B

σ
2,1),(3.66)

Eε ∈ L∞
T (Bσ

2,1),
√
εEε ∈ L2

T (B
σ
2,1),(3.67)
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Bε −B ∈ L∞
T (Bσ

2,1),
∇Bǫ

√
ε

∈ L2
T (B

σ−1
2,1 ),(3.68)

uniformly in ε. Note that (3.68), we deduce

{∫ T

0

‖∇Bε(t, ·)‖2
Bσ−1

2,1

dt
}1/2

=
√
ε
{∫ T

0

∥∥∥∇Bε(t, ·)√
ε

∥∥∥
2

Bσ−1

2,1

dt
}1/2

≤ C
√
ε→ 0, as ε→ 0.(3.69)

That is,

{∇Bε} → 0 strongly in L2
T (B

σ−1
2,1 ), as ε→ 0.(3.70)

Moreover, with the help of (1.1), we have

(nε
t ,u

ε
t ) ∈ L2

T (B
σ−1
2,1 ),(3.71)

√
εEε

t ∈ L2
T (B

σ−1
2,1 ),(3.72)

uniformly in ε.
According to (3.66)-(3.68) and (3.71)-(3.72), it can be derived from Proposi-

tion 2.3 and Aubin-Lions compactness lemma in [26] that there exists some func-
tion (n0,u0,E0) ∈ C([0,∞), n̄+Bσ

2,1)×C([0,∞), Bσ
2,1)×C([0,∞), Bσ

2,1) such that the
sequences (up to subsequences) as ε→ 0, it holds that

{nε} → n0 strongly in C([0, T ], (Bσ−δ
2,1 )loc),(3.73)

{uε} → u0 strongly in C([0, T ], (Bσ−δ
2,1 )loc),(3.74)

{√εEε} → 0 strongly in C([0, T ], (Bσ−δ
2,1 )loc),(3.75)

{Eε}⇀ E0 weakly⋆ in L∞
T (Bσ

2,1),(3.76)

{Bε}⇀ B weakly⋆ in L∞
T (Bσ

2,1),(3.77)

for any T > 0 and δ ∈ (0, 1). Thus, in the system (1.1)-(1.3), the uniform bounded
properties (3.66)-(3.68) as well as the convergence properties (3.69) and (3.73)-(3.77)
allow us to pass to the limit ε → 0 in the sense of distributions, which implies that
(n0,u0,E0) is a global weak solution to the Euler-Poisson equations (1.6) satisfying
(1.12). This completes the proof of Theorem 1.4.

3.4. Relaxation limit. In this section, we prove the relaxation limit of (1.1)-
(1.3) with ε = 1.

Proof of Theorem 1.5. From the scaled variable transform (1.7) and the uniform en-
ergy estimate (1.11) in Theorem 1.2, it is shown that (nτ ,uτ ,Eτ ,Bτ ) is a unique
global solution of the system (1.8) and (1.13), furthermore, for any fixed T > 0, we
have

nτ − n̄ ∈ L∞
T (Bσ

2,1) ∩ L2
T (B

σ
2,1),(3.78)
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τuτ ∈ L∞
T (Bσ

2,1), uτ ∈ L2
T (B

σ
2,1),(3.79)

Eτ ∈ L∞
T (Bσ

2,1) ∩ L2
T (B

σ
2,1),(3.80)

Bτ −B ∈ L∞
T (Bσ

2,1),
∇Bτ

√
τ

∈ L2
T (B

σ−1
2,1 ),(3.81)

uniformly in τ . Similar to (3.69), it follows from (3.81) that

{∇Bτ} → 0 strongly in L2
T (B

σ−1
2,1 ), as τ → 0.(3.82)

Moreover, from the equations (1.8), we conclude that

nτ
t ∈ L2

T (B
σ−1
2,1 ),(3.83)

τ2uτ
t ∈ L2

T (B
σ−1
2,1 ),(3.84)

√
τEτ

t ∈ L2
T (B

σ−1
2,1 ),(3.85)

uniformly in τ .

Together with (3.78)-(3.81) and (3.83)-(3.85), it follows from Proposition 2.3 and
Aubin-Lions compactness lemma in [26] that there exists some function (N ,U , E) ∈
C([0,∞), n̄+Bσ

2,1)×L2([0,∞), Bσ
2,1)× C([0,∞), Bσ

2,1) such that the sequences (up to
subsequences) as τ → 0, it holds that

{nτ} → N strongly in C([0, T ], (Bσ−δ
2,1 )loc),(3.86)

{τ2uτ} → 0 strongly in C([0, T ], (Bσ−δ
2,1 )loc),(3.87)

{uτ}⇀ U weakly in L2
T (B

σ
2,1),(3.88)

{√τEτ} → 0 strongly in C([0, T ], (Bσ−δ
2,1 )loc),(3.89)

{Eτ}⇀ E weakly⋆ in L∞
T (Bσ

2,1),(3.90)

{Bτ}⇀ B weakly⋆ in L∞
T (Bσ

2,1),(3.91)

for any T > 0 and δ ∈ (0, 1). Thus, the uniform bounded properties (3.78)-(3.81)
as well as the convergence properties (3.82) and (3.86)-(3.91) allow us to pass to the
limit τ → 0 in the system (1.8) and (1.13) in the sense of distributions, which implies
that (N , E) is a global weak solution to the drift-diffusion equations (1.9) satisfying
(1.14). Hence, the proof of Theorem 1.5 is complete.
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3.5. Combined non-relativistic and relaxation limits. In the last section,
we perform the combined relativistic and relaxation limits of (1.1)-(1.3).

Proof of Theorem 1.6. Combined with the scaled variable transform (1.7) where the
superscript τ is replaced by (τ, ε) and the uniform energy estimate (1.11) in Theorem

1.2, it is obtained that (n(τ,ε),u(τ,ε),E(τ,ε),B(τ,ε)) is a unique solution of the system
(1.10) and (1.13) with the superscript τ replaced by (τ, ε), furthermore, for any fixed
T > 0, we infer that

n(τ,ε) − n̄ ∈ L∞
T (Bσ

2,1) ∩ L2
T (B

σ
2,1),(3.92)

τu(τ,ε) ∈ L∞
T (Bσ

2,1), u(τ,ε) ∈ L2
T (B

σ
2,1),(3.93)

E(τ,ε) ∈ L∞
T (Bσ

2,1),
√
εE(τ,ε) ∈ L2

T (B
σ
2,1),(3.94)

B(τ,ε) −B ∈ L∞
T (Bσ

2,1),
∇B(τ,ε)

√
τε

∈ L2
T (B

σ−1
2,1 ),(3.95)

uniformly in (τ, ε). The relation (3.95) turns out to yield

{∇B(τ,ε)} → 0 strongly in L2
T (B

σ−1
2,1 ), as τ, ε→ 0.(3.96)

Moreover, using the equations (1.10), we get

n
(τ,ε)
t ∈ L2

T (B
σ−1
2,1 ),(3.97)

τ2u
(τ,ε)
t ∈ L2

T (B
σ−1
2,1 ),(3.98)

√
τεE

(τ,ε)
t ∈ L2

T (B
σ−1
2,1 ),(3.99)

uniformly in (τ, ε).
As previously, it follows from the standard weak convergence methods and com-

pactness lemma in [26] that there exists some function (N ,U , E) ∈ C([0,∞), n̄ +
Bσ

2,1)×L2([0,∞), Bσ
2,1)×C([0,∞), Bσ

2,1) such that the sequences (up to subsequences)
as τ, ε→ 0, it holds that

{n(τ,ε)} → N strongly in C([0, T ], (Bσ−δ
2,1 )loc),(3.100)

{τ2u(τ,ε)} → 0 strongly in C([0, T ], (Bσ−δ
2,1 )loc),(3.101)

{u(τ,ε)}⇀ U weakly in L2
T (B

σ
2,1),(3.102)

{√τεE(τ,ε)} → 0 strongly in C([0, T ], (Bσ−δ
2,1 )loc),(3.103)

{E(τ,ε)}⇀ E weakly⋆ in L∞
T (Bσ

2,1),(3.104)

{B(τ,ε)}⇀ B weakly⋆ in L∞
T (Bσ

2,1),(3.105)

for any T > 0 and δ ∈ (0, 1). Thus, in the system (1.10) and (1.13), the uniform
bounded properties (3.92)-(3.95) as well as the convergence properties (3.96) and
(3.100)-(3.105) allow us to pass to the limits τ, ε → 0 in the sense of distributions,
which implies that (N , E) is a global weak solution to the drift-diffusion equations
(1.9) satisfying (1.15). This concludes the proof of Theorem 1.6.
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