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Abstract. We analyze the controllability properties of systems which provide a description,
at first approximation, of a kind of viscoelastic fluid. We consider linear Mazwell fluids. First, we
establish the large time approximate-finite dimensional controllability of the system, with distributed
or boundary controls supported by arbitrary small sets. Then, we prove the large time exact con-
trollability of fluids of the same kind with controls supported by suitable large sets. The proofs
of these results rely on classical arguments. In particular, the approximate controllability result is
implied by appropriate unique continuation properties, while exact controllability is a consequence
of observability (inverse) inequalities. We also discuss questions concerning the controllability of
viscoelastic fluids and some related open problems.

Key words. controllability, Maxwell fluids, vicoelastic fluids
AMS subject classifications. 93B05, 35B37, 76A10, 76D55, 93C20

DOI. 10.1137/100813592

1. Introduction and main results. Let 2 C RY (N = 2 or 3) be a bounded
connected open set with boundary 99 of class C? (for example). Let O C Q be a
nonempty open set and let v C 92 be a nonempty relative open set such that the set
90\ v has positive measure.

In this paper, we will sometimes (but not always) assume that

(1) YOI ={zecdQ: (z—2° 7fAzx) >0}

for some 2° € RY, where 7i(x) is the outward unit normal vector to (2 at the point
x € 092. We will also set

(2) m(r) =z —2° R(z%) = glea%( |i(x)|, T(z°) =2R(2").

(We have used the notation introduced by J.-L. Lions in [15].) Similarly, we will
sometimes consider open sets O satisfying

(3) 0>5G5(2°) = |J B:d)nQ

zel'(x0)

for some ¢ > 0, where B(x;6) is the open ball centered at x of radius d.

In fact, assumption (1) or (3) will be needed when dealing with exact controlla-
bility results, but not in the framework of approximate controllability; see below for
the definition of these properties and the precise statements.

Let T > 0 be a prescribed final time. In the paper, we will use the following
notation: Q@ = Q x (0,7), ¥ = 92 x (0,T), X(z°) = I'(z°) x (0,7); Ls(RY) will
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denote the space of symmetric real N x N-matrices; |- | and || - || (resp., (-,-) and
(-,-) will stand for the usual norms (resp., scalar products) in L?(2) and H}(Q);
(-,-) will be used to denote several duality products; and C' will denote a generic
positive constant.

The following spaces will be needed:

V={0pecCr(Q)N:V-¢=0inQ},
H={wel? QN :V-w=0inQ, w-n=0o0ndN},
V={we H(Q)YN : V- w=0inQ},

® = L2(Q; Ls(RY)).

Moreover, for any 19 € @, we will set
Oo={Dw:weV} and ®*(rp)=e 79+ P,

where Dy is the usual deformation tensor:
1
Dy = 5(Vy +'Vy).

The spaces H, V, and ® are Hilbert spaces for the norms |- |, || - ||, and | - |,
respectively. On the other hand, V is dense in H and V.

We will consider the following system, which describes at least at first approxi-
mation the behavior of a viscoelastic fluid of the Mazwell kind:

Oy+Vr =V -74+0vlp inQ,

V-y=0 in Q,
4) Oy + at = 20Dy in Q,
y=0 on 3,

y(0) =yo, 7(0)=m9 in Q.

Here, 10 is the characteristic function of Oj; the functions y = y(z,t), 7 = w(z,t),
and 7 = 7(x,t) are, respectively, the velocity field, the pressure distribution, and the
elastic stress tensor of the fluid (of course, y = {y;} and 7 = {r;;} for some scalar
functions y; and 7;; with 7;; = 75;). It is assumed that the mass density of the fluid
is pg = 1. a and b are positive constants, yo € H and 19 € .

The constants a and b have the dimensions of (time)~! and (velocity)?, respec-
tively.

We can obviously make (4) dimensionless with the help of suitable length, time,
and velocity reference units. For instance, we can introduce

L=X"? T, and U=x"?T;",

where ) is the first eigenvalue of the Dirichlet Laplacian in €2 and T is a characteristic
time of the flow. In that case, (4) is rewritten as a similar system where the new
parameters a and b satisfy the following:

e a = We™!, the reciprocal of the Weissenberg number of the fluid. By defini-
tion, We is the ratio of the relaxzation time and the characteristic time Ty and
physically represents the rate at which elastic energy is stored or released. In
other words, We can be used as a “measure” of the elasticity of the media.

e b=We 'Re™!, where Re is the Reynolds number of the fluid, i.e.,

UL 1

R, =
¢ v /\1T01/ ’

where v is the kinematic viscosity.
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For more details on the physical meaning of these parameters, see, for instance, [24,
13).

In (4), v € L*(O x (0,T))" is a distributed control with support in the cylinder
O x (0,T). It can be interpreted as an external force field that is active in a part
of the fluid domain. We will refer to (4) as the distributed controlled problem for a
Maxwell fluid.

We will also consider similar boundary controlled problems, that is, systems of
the form

oy+Vm=V-r1 in Q,
V-y=0 in @,
(5) T + at = 2bDy in Q,
y=1yr on X,

y(0)=yo, 7(0)=79 in€Q,

where 1, is the characteristic function of v and r € L?*(y x (0,T))" is a boundary
control, acting on v x (0,7).

Notice that in this case, we must deal in principle with linear time-dependent
equations where we prescribe some nonregular data on a part of the boundary. Never-
theless, we will be able to solve problems of this kind by introducing suitable auxiliary
systems.

These models can be respectively viewed as first approximations (when y and 7
are small) of the following nonlinear systems (see [13]):

oy+ (y-Vy+Vr=V-7+0vlp in Q,
V.oy=0 inQ,
(6) 0T+ (y- V)T +9(Vy,7) +ar = 20Dy in Q,
y=20 on X,
y(0) =yo, 7(0) =19 in Q,
and
oy+(y-Vy+Vor=V.-71 in Q,
V-y=0 in Q,
(7) o7+ (y- V)T +9(Vy,7) + a7 =2bDy in Q,
y=1yr on X,
y(0) =yo, 7(0) =70 in Q.

Here, (y - V)y and (y - V)7 are the usual transport terms and
gVy,7) =17 -Wy—-Wy-7—r(Dy-7+7-Dy),

where Wy = %(Vy — 'Vy) is the vorticity tensor and x € [—1,1].
In this paper, we will analyze some controllability properties of the linear systems
(4) and (5). This has already been the objective of some previous works; see [22, 19].
To this purpose, let us first see that after an appropriate change of variables, (4)
and (5) can be equivalently rewritten as second-order in time hyperbolic systems.
More precisely, let (y, 7, 7) be a solution to (4) and let us set

t
z(t) :/ e y(s)ds, Z=e"n, u=e", and
0

(8) ¢
T(t) = e %7 + 2b/ e~ =) Dy (s) ds = e~ 1y + 2be” Dz (t).
0
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From these identities, we easily see that 7 satisfies the second equation of (4) and
the initial condition 7(0) = 79 and also that

Oy + V= 2be” Az + eV - 15 + vlo.
Multiplying by e the previous identity and taking into account that
Oz = ey, Oyz = aliz + e™0yy,
we deduce that z solves, together with some Z, the linear problem

Oz — a0z —bAz+VZ =V -19+ulp in Q,

V-z2=0 in @,
(9) z=0 on X,
2(0) = 2%  9;2(0) = 2* in Q,

where (29, 21) = (0, yo).
A similar reformulation can be found for (5). Indeed, if (y,m,7) solves (5), we
conserve the definitions of z and Z in (8) and we set

(10) w= | " entr(s) ds

we also find that
Opz — a0z —bAz+VZ =V -19 in Q,

V.z=0 in Q,
(11) z=wl, on X,
2(0) = 2%, 9;2(0) = 2t in Q.

From (8) and (10), it becomes clear that the existence, uniqueness, and control-
lability properties of (4) and (5) can be reformulated in terms of similar properties
of (9) and (11), respectively.

Notice that in view of the expression of 7 in (8), 7(T") belongs to the linear
manifold ®*(7p). Thus, in order to introduce good definitions of controllability, we
will always fix the desired elastic stress tensor 74 in ®*(7p). For technical reasons, it
will also be assumed that V - 79 € L2(Q).

It will be said that (4) (resp., (5)) is approzimately controllable in H x ® at
time T if for any yo,yq € H, any 19 € ®, any 74 € ®*(79), and any € > 0, there exist
distributed controls v € L2(Ox (0,T))" (resp., boundary controls r € L2(yx (0,T))V)
such that the associated solutions satisfy

(12) (1) —yal <&, |7(T) =71l <e.

It will be said that (4) (resp., (5)) is approzimately finite dimensional controllable
if for any finite dimensional space

Y C Hx®, (resp.,Y C H x &),

any initial and final (desired) data as above, and any £ > 0, the previous controls v
and r can be chosen such that in addition to (12), the following holds:

(13) Py ((T),7(T)) = Py (ya,7a) (resp., Py(y(T),7(T)) = Py (ya, 7a))-

Here, Py : Hx ®—Y and Py : H x & — Y are the usual orthogonal projectors.
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It will be said that (4) (resp., (5)) are exactly controllable at time T if for any
Yo,ya € H, any 79 € ®, and any 74 € ®*(1p), there exists v € L*(O x (0,T))N
(resp., r € L*(y x (0,T))Y) such that the associated solutions satisfy

(14) y(T) =ya, 7(T) =14

Finally, if this is satisfied for any yo € H, any 79 € ®, and the desired states
yg = 0 and 74 = 0, it will be said that the considered system is null controllable at
time 7.

The controllability properties of systems (4) and (5) will be deduced from the
properties of the solutions to the linear hyperbolic systems (9) and (11). The latter can
be viewed as incompressible nonscalar versions of the wave equation. Consequently,
it will be convenient to recall some known results on the exact and approximate
controllability of the wave equation and, also, of systems of the Stokes kind.

For any nonempty O and 7 (not necessarily satisfying (1)), the approximate
distributed and boundary controllability of the wave equation hold if T" is large enough;
see [15].

In [11], it was proved that the boundary exact controllability result for the wave
equation also holds if ¥ D I'(2°) and T > 0 is large enough. Later, this result was
improved in [15], where the optimal control time T(z°) was found. These results
were proved by the multipliers method, which relies on computing the global integral
in @ of the product of the equation by the gradient of the solution following some
convenient vector field and then performing appropriate integrations by parts. Let
us also mention the work [16], where a more general kind of boundary control sets
was found. The distributed exact controllability of the wave equation was deduced
in [15] from the boundary exact controllability if O is a neighborhood of T'(z°) and
T > T(a2).

In [1], by using microlocal analysis and geometric optic techniques, a necessary
and sufficient condition and a minimal control time were obtained for the exact con-
trollability of the wave equation in regular domains. We also refer to [18], [27], and
the references therein for boundary and distributed exact controllability results for
the wave equation with a potential. These last results were established with the help
of global Carleman estimates.

The approximate controllability of the classical Stokes equations is well known.
For general linear systems of the Stokes kind with distributed control, the same prop-
erty was estalished in [6]. Some partial results concerning the approximate controlla-
bility for the Navier—Stokes system can be found, for example, in [6, 7, 3, 4]. The null
controllability of the Stokes and Navier—Stokes systems has been studied intensively
in recent years. For instance, let us mention the papers [10, 12, 8, 9].

Our first main result concerns the approximate-finite dimensional controllability
of (4).

THEOREM 1.1. There exists a positive time Ty = T1(b,Q, O) such that if T > T,
(4) is approzimately finite dimensional controllable at time T .

The proof relies on a unique continuation property for the solutions of a system
similar to (9). We need a large time T due to hyperbolicity. This property will
be established in section 2.1 as a consequence of the classical Holmgren uniqueness
theorem.

A consequence of Theorem 1.1 is that for large T, (5) is also approximately
controllable.

THEOREM 1.2. There ezists a positive time Ty = Ty (b,Q,7) such that if T > Ty,
then (5) is approxzimately finite dimensional controllable at time T'.
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The main tool for the proof of these two results is a uniqueness theorem that
ultimately relies on Holmgren’s principle. See [15, Chapter 1, section 8]. This provides
unique continuation only for large times, depending on b but independent of a.

Our third main result deals with the exact controllability of (4).

THEOREM 1.3. Let us assume that (3) is satisfied for some 2° € RN and some
0 >0 and

(15) 0<a<2yMb,

where Ay is the first eigenvalue of the Dirichlet Laplacian in Q). There exists Ty =
Ty(a,b,,2°,6) with the following property: for all T > Ty, there exists a Hilbert
space F' such that (4) is exactly controllable at time T with initial and final data
in F'. More precisely, for all (yo,70), (ya,7d) € F' with 74 € ®*(70), there exists
v e L0 x (0,T))N such that

y(T) =ya, 7(T)=1a.

Moreover, F' contains all couples (y,7) withy € H and T € ®.

Concerning the exact controllability of (5), we have the following.

THEOREM 1.4. Let us assume that (1) is satisfied for some 2° € RN, a and b
satisfy (15), and T > Ty, where

- T ()

~ min(1,b— a2/(4)\))

and T(z°) is given by (2). There exists a Hilbert space F such that (5) is exactly
controllable at time T with initial and final data in F'. Moreover, F' contains all
couples (y,7) withy € H and 7 € ®.

The first key point of the proofs of these results will be a “boundary” observability
inequality for a hyperbolic (adjoint) system similar to (11). The second key point will
be a similar “distributed” estimate. Then, the proofs will be achieved by adapting
the Hilbert uniqueness method (HUM), introduced by J.-L. Lions in [14] and [15].

Note. Notice that, in physical terms, taking into account that a = VVe_lT(f1 and
b=We 'Re '\ '7;?, (15) can be rewritten as follows:

Re

— < 4.
We

If we denote by T, the relaxation time, then

T,
We = -~
e i
and the assumption (15) reads
1
Re* := 4.
¢ )\1TTV <

This means that the “elastic Reynolds number” Re* cannot be large in Theorems 1.3
and 1.4. The extension of these results to the case of more general control sets O or
v (for instance, as in [16]) or general positive a and b not necessarily satisfying (15)
is an open question; see section 4 for more details. ]

The rest of this paper is organized as follows.
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In section 2, we will analyze the approximate-finite dimensional controllability of
(4) and (5): we prove a unique continuation property and we give the proofs of the
first two main results (Theorems 1.1 and 1.2). For these proofs, the main ideas have
been taken from [15] and [28].

Section 3 is devoted to proving the exact controllability of (4) and (5), that
is, Theorems 1.3 and 1.4. The key point is to deduce a suitable boundary inverse
inequality that holds when v satisfies (1) and T is large enough. To this end, we
apply the multipliers method.

In section 4, we make some additional remarks and comments and we mention
some open questions. Finally, the proof of a basic existence and uniqueness result is
sketched in an appendix.

2. Proofs of Theorems 1.1 and 1.2. In this section, we consider the controlled
linear Maxwell systems (4) and (5).

Recall that thanks to the change of variables (8), (4) is equivalent to (9) with
(2%, 2Y) = (0,90). Accordingly, we will first prove that (9) is approximately finite
dimensional controllable, and we will then deduce Theorem 1.1 from this.

Theorem 1.2 will be a straightforward consequence of this result.

We will denote by A the usual Stokes operator in €. Recall that A : D(A) — H
with

D(A) = H* Q)N NV, Aw = Py(—Aw) Yw € D(A),

where Py : L2(Q)N — H is the orthogonal projector.
We will begin by considering a slightly more general problem:

Oz —adiz —bAz+cz+VZ=f inQ,

V-z2=0 in Q,
(16) z=0 on 3,
2(0) =29  9;2(0) = 2! in Q,

where a,c € R, b > 0, and 2° and 2! are given.

We have the following existence, uniqueness, and regularity result.

THEOREM 2.1. Let us first assume that f = 0. For any (2°,2') € H x V/,
there exists a unique solution (z,Z) to (16) (Z is unique up to a distribution in
W=12°(0,T)) that satisfies

2 € C°[0,T); H)yn C*([0,T]; V') n C*([0, T); D(A)).
If (2°,2') € V x H, one also has
z€ C°([0,T);V)nC*([0,T]; H) N C*([0,T]; V)

and the pressure Z can be chosen in L2(0,T; L2(2)). Moreover, if (2°,2') € D(A)xV,
then

2 € C%[0,T); D(A)) N CY([0,T); V)N C3([0,T]; H)

holds, and Z can be chosen in C°([0,T]; H()).

Let us now consider nonzero data f in (16). If f € LY(0,T; H-*(Q)N) and
(29,21) € H x V', there exists a unique “generalized” solution to (16) with z €
C°([0,T); HYNCL([0,T); V'). That solution is “classical,” that is, = € C°([0,T]; V) N
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CH[0,T); H) N C%([0,T); V'), if one additionally has 0;f € L*(0,T; H-Y(Q)N) and
(29,21) e V x H.

If f € LY0,T;H) and (2°,2%) € V x H, the solution to (16) satisfies z €
C[0,T); V)N CY([0,T); H); if 0 f € LY(0,T; H) and (2°,2') € D(A) x V, then (16)
satisfies z € C°([0,T); D(A)) N C*([0,T); V) N C*([0,T); H).

Finally, aoll these assertions hold with continuous dependence with respect to the
data. Thus, for instance, if f =0 and (2°,2) € V x H, the solution to (16) satisfies

Il zllcoo,r1:v) + 19ezllco(o,ry ) + 1062l c2 (o, 7757y + 12|22 (0,722)
<O 2 v xn

for some positive C only depending on a, b, ¢, Q, and T.
This result can be proved using classical and very well known arguments from
semigroup theory; for completeness, we provide a sketch of the proof in the appendix.
Notice that due to the time reversibility of (16), Theorem 2.1 also holds if in (16)
the initial conditions are replaced by the final conditions

2(T)=2° 0z(T)=2" in Q.

Taking ¢ = 0 and using (8), we easily deduce the following.
THEOREM 2.2. Let us assume that yo € H, 19 € ®, and v € L*(O x (0,7))V.
Then there exists a unique solution (y,m, ) to (4) with

y e C%0,T); H), 0w e C’0,T);V)), 7eC%]0,T];®).

Furthermore, if one also has yo € V, V19 € L2(Q)V, and 9,(1pv) € L2(O x (0,T))V,
then

y e C%[0,T);V), 0w e C’0,T);H), 7€ CY[0,T];®).

2.1. A first unique continuation property. In this section, we will present
a unique continuation property which will be crucial in the proof of Theorem 1.1.
Our starting point is the following result, which is proved in [15] as a consequence of
Holmgren’s principle (see, for instance, [2]).

LEMMA 2.3. There exists a positive time Ty = T1(b,Q, O) such that if T > Ti,
the following holds: If h € L>(0,T; H'()), d;h € L>=(0,T; L*(Q)),

(17) {ztt:h()_ adth — bAh =0 ZOT;%:
and

h=0 on Ox(0,7T),
then h = 0.

Notice that if & has the regularity in this lemma and satisfies (17), one actually
has h € CY([0,T]; H}(Q)) and d;h € C°([0,T); L3()).

LEMMA 2.4. Let us assume that T > Ty, where Ty is furnished by Lemma 2.3.
Then the following holds: If ¢ € L*°(0,T;V), dwp € L*°(0,T; H), p € D'(Q),

O —aldip —bAp+Vp=0 inQ,

(18) V.op=0 in Q,
p=0 on X,
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and
(19) =0 in Ox(0,T),

then ¢ = 0.
Proof. Thanks to (19), we deduce from the first equation of (18) that

Vp=0 in Ox(0,T).

Therefore, p is space-independent in O x (0,7"). On the other hand, applying the
divergence operator to the first equation of (18) and using that V - ¢ = 0, we obtain

Ap=0 in Q.
Consequently,
Vp=0 in @

and p is also space-independent in Q).

The system satisfied by ¢ is thus reduced to N uncoupled scalar equations. By
applying Lemma 2.3 to the components of ¢, we find that ¢ = 0.

This ends the proof. O

As we said in section 1, the time 77 provided by Lemma 2.3 is independent of a.
This is clearly seen in the arguments in [15], where only the principal part of the PDE
in (17) is relevant.

2.2. Approximate-finite dimensional controllability. This section is de-
voted to proving Theorems 1.1 and 1.2.

The proof of Theorem 1.1 will be a consequence of the following result.

PROPOSITION 2.5. Let us assume that T > Ty, where Ty = T1(b,Q, O) is fur-
nished by Lemma 2.3. Then, the approzimate-finite dimensional controllability of (9)
holds.

In other words, for any 7o € @, any (2°, z1), (W, w!) € V x H, any finite dimen-
sional space E C'V x H, and any € > 0, there exists u € L*(O x (0,T))N such that
the associated solution of (9) satisfies

(20) [(2(T), 0,2(T)) — (w®, wh)|lyxn < e
and
(21) Pg(2(T),0:2(T)) = Pg(w’,w"),

where Pg : V x H — FE is the usual orthogonal projector.
Proof. We will write the solution to (9) in the form

z=n+2,

where 1 € C°([0,T]; V) N C'([0,T]; H) is (together with some pressure) the solution
to (9) with u = 0 (the uncontrolled solution) and 2 is (together with Z) the solution
to

Ot —adz —bA2+VZ =ulp inQ,

V-2=0 in Q,
(22) z2=0 on X,
2(0) =0, 0:2(0)=0 in Q.
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The proof of Proposition 2.5 is then reduced to see that for any 79, (2°,21),
(w® w'), and E and e > 0, there exists a control u € L2(O x (0,T))" such that the
solution to (22) satisfies

(23) (D), 04(T)) — (0%, ) |lvxm <&, Pr(2(T),0,2(T)) = Pp(w’, a'),

where (%, w!) = (w® — n(T),w* — A(T)).
To this end, we will adapt the arguments in [28]. Thus, for any (¢°, ¢') € H x V",
let us consider the adjoint system

Oy +adip —bAp+Vp=0 inQ,

V.op=0 in @,

=0 on X,

e(T)=¢" 0p(T)=¢'  inQ.
We know that (24) possesses a unique solution (¢, p) (p is unique up to a distri-
bution in W=°°(0,T)) satisfying » € C°([0,T]; H) and dyp € C°([0,T]; V'). Let us
introduce the functional

// . (o + €l = Pe)(A5" 0" ")y
(= an®, %)) V(% ') € H x V|

(24)

where (-, -) denotes the duality pairing for H x V' and H x V and Ay : V — V' is
the usual isomorphism induced by the Stokes operator in 2. Notice that since F is a
finite dimensional space, the operator Pg is compact.

From the unique continuation property in Lemma 2.4 and the compactness of Pg,
it can be deduced, arguing as in the proof of Theorem 1.3 of [28], that J : H x V/ — R
is continuous and strictly convex and, moreover,

0,1
lim inf % >
160 Dlvr 100 @) v
Therefore, J possesses exactly one minimizer (¢°, gb ). Let us check that the
control u = @|ox (0,1), where (¢, p) solves (24) with (¢°, ') as final data, is such that

the solution to (22) satisfies (23).
Indeed, for any (", 1) € H x V' and any X\ € R, we have

J(@%,¢") < J(@" + X%, o1 + At

From this inequality, it is immediate that

0 [ Ft s ]
Ox(0,T) (’)><OT)

+ e|M[[(I — Pe)(Ag "o, v0) ||V><H_ MO0, b, (! — aw®, —a?)).

If we now take A > 0, divide by ), and take limits as A\ — 0T, we get
/] (00,0, (@' —ai®, —0%) > —]|(T—Pe)(Ag 6", 0°) v car
O x( OT)

This, together with the same compuations for A < 0, leads to the following;:

A0 AN (A1 A0 A0
o5) ‘//M,T)W (0,41, (0" — au, i >>‘
el = Pe) (AW YO0 lvxr V(O 91) € Hx V.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/13/16 to 150.214.182.169. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

910 BOLDRINI, DOUBOVA, FERNANDEZ-CARA, AND GONZALEZ-BURGOS

On the other hand, if we multiply by 1 the equation satisfied by 2 (see (22)) and
we integrate by parts in @), we see that

/ / 51 = (U°,01), (DA(T) — a2(T), ~5(T))).
Ox(0,T)

Taking into account this identity in (25) we deduce that

{|<<w°,w1>, (04(T) — a2(T), —2(T))) — (0, ¥1), (' — an®, —i?))|
<ell(I = Pe)(Ag "L ) lvur V(@O 0') € HxV,

which is clearly equivalent to (20)—(21). O

We can now achieve the proof of Theorem 1.1.

Proof. Let us fix yo,ya € H, 10 € ®, 74 € ®*(79), a finite dimensional space
Y C H x ®, and a real number € > 0.

First, notice that

w]? = / Vel dz =2 / Dufde VeV,
Q Q

As a consequence, ®q is a closed subspace of ® (and thus ®*(7p) is a closed affine
subspace of @) and D : V +— &g and B : (21,22) € V X H = (22,Dz1) € H X ®g are
linear, bijective, and isometric.

Let wg € V be such that 74 = e~ *T'75 + wy and let us set (w°, w') = (%e“de,
e*Tyq) and E = B~'Y. By applying Proposition 2.5 to (9) for this (w®, w!) and
recalling again the change of variables (8), we deduce that there exists v € L?(O x
(0,7))N such that the unique solution to (4) satisfies (12) and (13).

This ends the proof. O

Let us now give the proof of Theorem 1.2.

Proof. Let yo, ya, T0, Td, Y, and € be given and let us consider the boundary
controlled system (5).

Let us introduce an auxiliary distributed controllability problem as follows.

Let D be a new regular bounded domain with D D Q, D # ., such that the
restriction to Q of any function z € H}(D) satisfies

z=0 on 00N\ 7.

Let us denote by H(D), V(D), and ®(D) the spaces H, V, and ® relative to D. We
will use that the extension by zero to D of any w € H (resp., any w € V, any o € ®)
belongs to H(D) (resp., V(D), ®(D)); this is obvious and well known.

Let 9o, 94, To, T4, and Y by the extensions by zero of yg, Y4, 70, 74, and Y,
respectively. We then have o, 94 € H(D), 79,74 € ®(D), 74 = e~ 7y + D for some
e V(D) and Y C H(D).

We can now choose an open set OcD \ Q and consider the system

Oy +Vi=V-7+0ly inQ,

V-g=0 in Q,
(26) O,7 + af = 2bDj in Q,
=0 on X,

79(0) = go, 7(0) =10 in D,

where we have used the notation Q = D x (0,7) and 3 = dD x (0,T).
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From Theorem 1.1, we know that there exist L? controls ¢ such that the corre-
sponding states satisfy

|(9(T), 7(T)) = (Ja. 7a)l <&, Py (§(T),7(T)) = Py (Ja: 7a)-

Now, if y, 7, and 7, respectively, denote the restrictions of ¢, 7, and 7 to 2x (0,7,
it is clear that they satisfy (5) for some r € L?*(y x (0,T))Y and also the desired
controllability requirements.

This shows that (5) is approximately finite dimensional controllable at time T
and ends the proof. d

3. Proofs of Theorems 1.3 and 1.4. This section is devoted to proving ex-
act controllability results for (4) and (5). To this end, we will first establish some
observability (inverse) estimates for the solutions to the linear system (24).

3.1. Some inverse inequalities. The first result of this section is the following
boundary inverse inequality.

LEMMA 3.1. Let v, a, b, and T satisfy the assumptions of Theorem 1.4. There
exists a positive constant C, only depending on a, b, Q, 2°, and T, such that

0
(27) 1% oY) ||VxH<C// 9”
vx(0,T)

for any (goo, cpl) € D(A)xV, where ¢ is, together with some p, the associated solution
o (24).
Proof. Let us first perform a new change of variables in (24):

(28) Y=, g=e .

do dt

Then (24) can be rewritten equivalently as follows:

2
b = b~ Lo+ Vg =0 in Q,
(29) Ve =0 in Q,
=0 on X,
WT)=9° G(T)=¢' Q.

Lemma 3.1 will be proved if for some C only depending on a, b, 2, z°, and T, we
establish the following inverse inequality for the solutions to (29):

do dt

o |?
0 Y)[|2, < C
TR //MT) -

for all (wo,wl) € D(A) x V. To this purpose, we will use the multipliers method,
adapting arguments from [14, 15].

From Theorem 2.1, we deduce that the solution to (29) satisfies (v, q) € C°([0,T);
D(A)) x L*(0,T; H*(Q)). By multiplying the first equality in (29) by (73 - V)1 (where
m = m(z) is given in (2)) and integrating in Q, we get

/ Oy - mk b//Acp mka
Tk

o

——//mka—xk¢+//QVQ'mka—xk—Oa

where we have used the standard convention of repeated index summation.

(30)
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After some integrations by parts, we see that the first term in the left-hand side
of (30) is equal to

t=T
// 815,5’1/) mka // 8mk|at¢|2 / 3“/) mp 8_¢
CC;.C 8x;€ —

t=0

The second term in the left-hand side can be written in the form
omy, O 0%
b A ekl
// VT (’956;~C // Ox; ((%cj Oxy, T Oz 0z,
/ / “/’ - dodt.

Integrating by parts, we also obtain that

5,
333] 3xj833k
= —— // 8mk ¢|2 + g/ mknk|V1/)|2dcrdt.
b

Using that ¢ = 0 on X, we deduce that

VP2 = }

on

Thus, from (30) the following identity is found:

/ 0t - - // O (|atw|2 b|vw|2 W)
(31) +b// %Tgw g—i—-//mknk
:/Q(—VQ)'mka—;i

Let us deduce the inverse inequality (27) from (31).
It is not difficult to see that

oY
/Q(_vq)'mka—xk =0.

Indeed, integrating by parts and taking into account that V - ¢ = 0, we get

Oy O -/ / ovi
/ (=Vq) - mk / 3xi R qu 8xk nZ do dt.

The two integrals in the right-hand side of this equality vanish: the first one vanishes

because %’ZF = 01 for 1 < i,k < N and V -9 = 0; the second one is zero because

1 =0 on X and thus

da dt

on

o O i

—n; = —nin = —ni =0.
Oz ' on " ;
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Consequently, thanks to the choice of the function m, (31) can be rewritten as
follows:

t=T

[ow mka—kt +3 // (WP b|v¢|2 W)
+b// |V1/)|2——//mknk

Notice that by multiplying by % the first equation in (29) and integrating by parts
in @, we have

2
A= [[ (10w —svo+ ) =

Let us also introduce

(32)
da dt = 0.

on

t=T

9%

aka

A —/3t¢ my ——

t=0

and let us denote by E(t) the total energy of ¢ at time ¢, that is,

— 1 2 2 a’_2 2
5= [ (1000F + 1V - LlooP).
Then, it is immediate that
o1 12 02 a_2 02
BO) =i [ (WP 4w - S1p)
and

(33) E(t)=E, VYtel[0,T].

Taking into account this equality and the definitions of A; and As, we deduce
from (32) that

N-1 a? , b op?
A2+TA1+TEQ+Z/Q|’(/J| —5//Emknk %

Since m -7 < 0 on X\ X(2°) and |7 - ii] < R(2°) on %(20), this gives

do dt.

do dt.

N-1 a? , _ bR(z0) o |?
R i < 2\ J
(34) Ag + 5 A1 +TEy+ 1 / o |¢| < 9 /,/23(10) an

In what follows, we will estimate the first two terms in the left-hand side of (34).
First, we have

oy N

N —
‘AQ + —A1 <2| / O - (mka— =+ —1/)) HL”(QT)'
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o N-1
) 1 A N
) [0+ gy e

gR(a:O)/ (10]? + |Ve[?)

N(N-1) (N —1)?
- 2R(ZIJO) /|1/’|2 (0) /|¢|2

< R(x )/(|atw|2+|w|

Second,

< R(xo)/Q (18:9] + [V [?)

for all t € [0, 7.

On the other hand, using (33) and taking into account the assumption (15), we

find that for all ¢,

1

2
Bo=3 [ (10w +over - 1ot

> 5 [ 10w+ (b——)/IVW’
> imln (1 b— Iy )/Q(|at7/)|2+|v¢|2)v

where \; is the first eigenvalue of the Dirichlet Laplacian in 2. Therefore,

/Q (102 + |V5J2)

N-—-1
Ay + TAl < R({EO)

Lo°(0,T)

: min (1,b— %) Fo
We find from (34) and (35) that
r__ 2R@Y) %
min (1,6 - 47) 2(20)
Since
T )= 2R(2°) _ T (z°)

min (1,b—%) min (l,b—%)

bR(z")
T min (1, b— %) —2R(x9)

we deduce (27) with

C:

This completes the proof. ad
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Note. Let us assume that T > TQ and let us set

16°, oI = //
3(x0)

for any (¢°, p!) € D(A) x V, where ¢ is, together with p, the solution to (24). Then
|| - |l is a norm in D(A) x V. Let us denote by G the completion of D(A) x V for
this norm. Then G is a Hilbert space and we have

dp 2
on do dt

DA XV —-G—=VxH

with dense and continuous embeddings. O
We will now prove a distributed inverse inequality for the solutions to (24).
LeEmMMA 3.2. Let O, a, and b satisfy the assumptions in Theorem 1.3. There
exists Ty = To(a,b,Q,2°,8) with the following property: for any T > Ty, there exists
a positive constant C only depending on a, b, Q, z°, §, and T such that

(36) 12 e <€ [ ol

Ox(0,T)
for any (°, ') € H x V', where ¢ is, together with some p, the associated solution
to (24).

Proof. Let us again introduce the change of variables (28). It is then clear that
it suffices to prove that there exists 75 such that for all T > T5, one has

0 1 2 , C 2
1, 61 2 < //m,n |

for all (¢4°,¢') € H x V', where C only depends on a, b, Q, 2%, §, and T.
Let v and T3 be given by
T(z)
min(1,b —a?/(4M\1))

v = U B(z;0/2)NoQ, Ty =
z€l(z0)

Let us assume that T > Tg and let o > 0 be such that T — 2« > Tg. We will

assume for the moment that there exists C'(§) > 0 such that for all (u°,ul) € V x H,
the solution u to (29) with final data (u°,u!) satisfies

(37) 1, a2 < C(6) / / Oul2.
Gs(20)x(0,T)

Let (¢°,4') € H x V' be given, let us set u! = ¢°, let u° be the unique function
satisfying

(uC,w) = (' w) YweV,u’ eV

(ie., u® = Ag'yt), and let us introduce u with

u(t) = u® + /T Y(s)ds Vte[0,T],
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where 1 is (together with some ¢) the solution to (29). It is then easy to check that u
is, together with some pressure h, the unique solution to (29)with final data (u", u).
Moreover,

1Cu®, w1 = N0 ) -

Consequently, we see from (37) that

O [y < C6 ¥|?
16 e <00 [

for all (v°,4') € H x V.

This shows that in order to get (36), we only have to prove (37).

Let us now establish (37). Obviously, it will suffice to prove this inequality when
(u®,ut) € D(A) x V. To this aim, we will use Lemma 3.1 and, more precisely, that if
T > T, there exists C' > 0 such that

I < [
¥x(0,T)

for every (u® u') € D(A) x V. }
Observe that if € > 0 is such that T'— 2¢ > T5, we still have

ou

2
do dt
on 7

Ou
38 u ut) | < C// —
(38) II( M < ey | O7

for some C = C(a,b,Q,2°,T).
Now, let €/, ¢’, and ¢” be such that

2
do dt

§/2<8 <" <6 and 0<e <e.

Let £ = {(x,t) be a vector field in W1>°(Q)" such that

Uz, t) =7i(x) Y(x,t)eyx(e,T—¢),

Uz, t) =0 VY(z,t)€Q with t<e or t>T —¢,
l(x,t) =0 VY(z,t) € Q with x ¢ Gs (aY),
x,t)-fi(z) >0 VY(x,t)eyx(0,T).

Multiplying the equation satisfied by v and h by ¢- Vu and integrating in @, we easily
obtain

/[yx(s,T—s)

2

Ou do dt

on

2 Ju
do dt < // 7| —
o0x (e!, T—e’) on

< 0// (Jul? + [0yul? + [Vul? + |h] [Vu]) .
Gyr (20) x (! T—e")

For any small x > 0, we have that

/ / 1] (V] < w][B][32(q) + C(r) / / Vul?
G5 (a0)x (e, T—¢’) Gy (20)x (e/, T—e")
< Crl|(®, )2 + C(r) / / Vul?,
Gyr (20)x (¢/,T—¢")
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in view of Theorem 2.1. On the other hand, using localized energy estimates, we find
easily that

// |Vul? < C’// (luf® + |8eul® + |A] |u])
G5 (x0)x (e, T—¢’) G (x0)x(0,T)
< kllhl122(0) + C(#) // (jul? + |0vul?)
95// (zO)X(O,T)
< Ol (@, )y + ) [ (1uf? + [B0uf?)
g(;// (zO)X(O,T)

Consequently, we also have the following estimate for any small k > O:

2

@ do dt

//yx (e,T—¢) on

< Ol u)) |2 g + Clr) / / (uf? + 0euf?) .
gé(zO)X(O,T)

In view of (38), by choosing k small enough, we deduce that

I a) <€ [ (ju? + 01,
Gs(x9)x(0,T)

Finally, using a straighforward uniqueness-compactness argument (see, for exam-
ple, Appendix 1 in [15] for a similar argument), we can eliminate the zero-order term
|u|? in the previous estimate.

This gives (37) for a new constant C = C(d) and ends the proof. O

3.2. The distributed exact controllability result. The goal of this section is
to give the proof of Theorem 1.3. This will be possible thanks to the inverse inequality
in Lemma 3.2.

We can easily connect the controllability properties of systems (4) and (9). More
precisely, the exact controllability of (9) starting from (0,yg) is equivalent to the
exact controllability for the velocity field y and the stress tensor 7 in (5) starting from
(Y0, 10)-

We have the following result, which provides the exact controllability of (9).

THEOREM 3.3. Let O, a, b, and 1y satisfy the assumptions of Theorem 1.3 and
let us assume that T > Ty. For any (2°,21), (w®,w') € V x H there exists a control
u € L*O x (0,7))N such that the unique solution to the associated problem (9)
satisfies

(39) (2(T),0:2(T)) = (w”, wh).

Proof. Let us give the sketch of the proof of Theorem 3.3. We will adapt the HUM
of J.-L. Lions [14, 15]. The argument is very classical and well known; consequently,
we only give a sketch of the proof.

Since (9) is linear and reversible in time (up to a change of sign of a), it can be
assumed that 7p = 0 and it suffices to prove a null controllability property, that is,
(39) for (w°, w') = (0,0).

On the other hand, the change of variables

o= efat/ZZ’ 7% — efat/2Z
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allows us to rewrite (9) (with 79 = 0) as follows:

2
25 — bAZ* — azz* +VZ"=ulp inQ,

(40) V.2z*=0 in Q,
z2*=0 on E,
2%(0) = 2%, 0;2*(0) = 2t — %zo in Q

and it is obviously sufficient to prove that the same property holds for (40).
Let us assume that (¢°,¢') € H x V' and let us consider the following homoge-
neous problem:

2
3ttcp—bA<p—aZ<p+Vp=O in Q,

(41) V-p=0 in Q,
=0 on X,
©(0) = ¢, 9p(0) = ! in Q.

This problem admits a unique solution (¢, p) with
@ECO([OvT]aH)v 815(:0600([07T]avl)

Let us now introduce the following backward problem:

2
Outh —bAY = T+ Vg = plo i Q,

V=0 in Q,
=0 on X,
W(IT) =0, Op(T)=0 in Q.

Again, this problem possesses exactly one solution 1. Now,
¥ € CU[0,T;V), 9w € C°((0,T]; H).
Let us introduce the linear operator B : H x V' — H x V with
B(¢°,¢") = (0(0), —4(0))  V(p", ¢') € H x V.
Then B is a well-defined linear continuous mapping.
Let us consider an initial data (£°,£) € H x V’ and let us denote by (£,Z) the

solution to the corresponding problem (41). Then, taking into account the definition
of B, it is clear that

0 1y (¢0 ¢y _ )
(B2, 01), (€0, € ”‘//M,T)@ ¢

for all (¢°, o) € Hx V', where (-,-) denotes the duality pairing associated to H x V'
and H x V. In particular, we have

0 1 0 1 _ 2 . 0 1 2
(B, o), (¢ 01)) —//OX(O’T)|¢| = )

for all (¢, ') € V x H.
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Since T > T3, we know from Lemma 3.2 that

1/2
1%, M) = (// W)
Ox(0,T)

is a norm in H X V' equivalent to the usual product norm. Consequently, for any
(2°,21) € V x H there exists a unique (©°, ') € H x V' satisfying

(42) B(¢°, o) = (zl - gzo,zo) .

Let us take in (40) the control u = plep, where ¢ is, together with p, the solution
to (41) associated to this (¢°, ¢!). Then, taking into account the definition of B, it is
obvious that

(z"(T),0:2"(T)) = (0,0).

Thus, we have solved the null controllability problem for (40) with a control v €
L?(0x(0,T))" and an associated state that starts from the initial data (2°, 2! — £29).

This ends the proof. O

We can now achieve the proof of Theorem 1.3.

Let the assumptions in this theorem be satisfied and let T, yo , yq4, 70, and 74 be
given with T' > Ts, yo,yq € H, 70 € @, and 74 € ®*(79). Let us show that there exists
v € L?(0 x (0,T))N such that the solution to (4) satisfies (14).

Let us set

=0, 2=y, w'=eTy,
and let us choose w® € V such that
Tqd = e_aTTo + bDwP.

Then, using again (8), it becomes clear that what we have to prove is that for some
u € L%(0 x (0,T))Y, the solution to (9) satisfies (39). But this is true in view of
Theorem 3.3.

Consequently, Theorem 1.3 holds.

3.3. The boundary exact controllability result. This section is devoted
to proving Theorem 1.4. Thus, let us consider the system (5), where T > T, and
(yo,70) € H x ®, and let us fix ya € H and 74 € ®*(79).

Our aim is to find a control r € L?(y x (0,7))" and an associated solution to (5)
satisfying (14).

Since v is an open neighborhood of I'(z°) in 052, there exists a bounded regular
open set D D ) with the following two properties:

e If 2 € HY(D), then 2 =0 on 9Q \ 7.
e Let us set

Az ={z€dD: (x -2 -7i(x) >0}.
Then, for some ¢ > 0, one has

Hs(2°) = U B(x;6)NnD c D\ Q.
z€A(z?)

e Let us denote by 5’2 the time Tg relative to D. Then T > 5’2.
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As in section 2.2, we can denote by H(D), V(D), and ®(D) the spaces H, V,
and @ relative to D and we can extend by zero the functions yg, yq4, 70, and 74 to
get 90,94 € H(D), 79 € ®(D), and 74 € ®(D) with 74 = e~ "% + D for some
w e V(D).

In view of Theorem 3.3, there exist L? controls such that the solution to the
auxiliary problem (26) satisfies

9(T) =ga, 7(T)=7a.

Then, the trace on v x (0,7T) of § and the restrictions to @ of the functions ¢, 7,
and 7 solve the considered exact controllability problem.
This proves Theorem 1.4.

4. Further remarks and open questions.

4.1. Exact controllability of linear Maxwell fluids with general controls.
The exact controllability of the Maxwell models (4) and (5) with controls supported
by more general sets is unknown. To our knowledge, we only have “abstract” results.
Thus, for instance, the following holds:

Assume that, for instance, 7o = 0 and T > Ty (this is the minimal
time furnished by Theorem 1.1). Then there exists a Hilbert space F;
that contains V as a dense subspace such that for any yo € F{ N H
there exist controls v € L*(O x (0,T))N such that the corresponding
solutions to (4) satisfy

(43) y(T) =0, 7(T)=0.

The proof can be obtained by adapting again the HUM method of [15]. For
completeness, let us present a sketch.

First, by means of the change of variables (8), we see again that (4) is equivalent
to (9) with (2%, 21) = (0,30) and the null controllability of (9) starting from (0, yo) is
equivalent to the null controllability of (4) starting from (yo, 70).

On the other hand, it can be proved that whenever 3 is chosen in an appropriate
space, (9) is null controllable if T > T; and 79 = 0. More precisely, let Fy be the
completion of V x V for the norm

H(@Oa@l)HFo = ||90||L2(0x(o,T)),

where ¢ is the solution to the adjoint system (24). Notice that || - | p, is a true norm
in V x V (because T > T; and, consequently, the previous adjoint system satisfies the
unique continuation property). Let F} be the dual space of Fy. Then, for any (29, 21)
such that (2! — a2% —2%) € F{, there exist controls u € L?(O x (0,T))" such that
the corresponding solution of (9) satisfies

2(T)=0, 0:2(T)=0.

In particular, setting Fy = Fy X F» and F} = F| x F}, we see that whenever T' > T}
and 79 = 0, for each yo € F] there exists a control v € L?(O x (0,T))" such that the
solution to (4) satisfies (43).

This proves our assertion.

The space Fj is defined as the completion of ¥V x V for a suitable norm and,
obviously, depends on a, b, 2, O, and T. Unfortunately, it is not easy to identify Fj
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in terms of usual functional spaces (and this is why we say that we are only able to
obtain “abstract” results).

Mainly, this is because we do not know how to prove suitable inverse inequalities.
For instance, if ¥ = ¥; x U5 were an easy-to-handle Banach space containing V x V
as a dense subspace and the inverse inequality

(44) ||<sa°,¢>n%,sc// W2 V() eV xV
Ox(0,T)

were satisfied, then we would have Fy C ¥ with a continuous and dense embedding
and, therefore, we would also have F' D ¥’. The consequence would be that any
initial (yo,0) € ¥’ can be driven exactly to zero with controls v € L?(O x (0,7))" at
time 7.

A related question is the following: which conditions on O and T ensure that (44)
holds, for instance, for ¥ = H x V'?

In view of what is known for the wave equation, it seems reasonable to expect
that the well-known geometric control conditions on O and T suffice. In fact, it is
maybe possible to adapt the microlocal analysis techniques in [1] and/or the Carleman
techniques in [18, 27] to this context. But, at present, this is an open question.

4.2. On the exact controllability of linear Maxwell fluids for large a2 /b.
For large a? /b, the arguments in section 3 cannot be applied and do not lead to exact
controllability directly. What we need is, again, an inverse inequality of the form

(45) Wl <e ff g

for the solutions to (29) with (¢°, ') € D(A) x V.

A natural and quite tempting strategy to get (45) is to apply a compactness-
uniqueness argument. Thus, we write the solution to (29) in the form ¢ = 7 + (,
where 7 is, together with some 3, the solution to

dadt

8tt77—bAT]+VB:0 in Q,
V.n=0 in @,
n= 0 on E,
U(T) = ¢07 atU(T) = ’lr/)l in Qa
and ( is, together with some pressure, the solution to (29) for (¢°,4!) = (0,0) with
the right-hand side f = a’n/4.
Assume that 7' > T5. Then, in view of Lemma 3.1, one has
on 2
1@ oDl <c [[ |52 doar
vx(0,1) | OT ) )
SC’// oy dadt+0// % do dt
v (0,7) | O v (0,7) |01

= C// 4
'YX(07T)

w ~
o do dt + C|IAW°, ") |72y (0.1

Consequently, in order to deduce (45), it would be sufficient to check that
e A:V x Hw L2(X)N is well defined, linear, and compact and

o

s W g

x(0,T)

is one-to-one.
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The first of these assertions is relatively easy to prove. However, the second one
(a unique continuation property) is an open question. As in the previous section, it
is reasonable to expect that appropriate techniques lead to a positive answer, at least
for T sufficiently large, depending on a. But this is unknown.

4.3. Controllability problems for nonlinear Maxwell system. In control
theory, it is relatively frequent to deduce local controllability properties for a nonlinear
state equation from the controllability of its linearization at a well-chosen state.

Thus, for instance, it should make sense to view (4) as the linearization at zero
of (6) and to try to use Theorem 1.3 as a first step in the proof of the following local
exact controllability property: there exists x > 0 such that whenever yo,yqs € H,
70 € P, 754 € P, and

1ol + llyall + lI7oll + lI7all < 5,

there exists v € L?(O x (0,T))Y such that the associated solution satisfies (14).

However, there are reasons to think that this will not be easy. First, several recent
works by Renardy show that the solutions to (4) necessarily satisfy, even in the case
of (simplified) parallel shear flows, particular structural properties of the form

7(T) € R(10,T),

where R(79,T) is a nontrivial subset of ® that can be complicated and not easy
to identify; see [20, 21, 23, 25]. Furthermore, even if we were able to characterize
attainable states, we would have to find an appropriate mathematical framework to
formulate the problem and pass from the linear to the nonlinear setting (in short, an
adequate inverse function theorem).

Appendix A. A technical result. In this section, we will give a sketch of the
proof of Theorem 2.1.

Proof. Let us present the sketch of the proof of Theorem 2.1. This result is
implied by classical semigroup theory; see, for example, [5, 17, 26]. For instance, let
us prove the results that have been claimed when f =0 and (2°,2') € V x H.

We can introduce the Hilbert space X = V x H and the unbounded operator
B: D(B) — X with D(B) = D(A) x V and

B(z,w) = (w+ az,bAz + cz) V(z,w) € D(B),

where A : D(A) — H is the usual Stokes operator.

It is not difficult to check that B is the generator of a continuous group {S(¢) }+cr
of bounded linear operators in X. Consequently, for all (z°, z!) € V x H, the function
t > S(t)(2°, 21 — az®) is well defined and continuous and provides a solution to the
Cauchy problem

d d
d_'::w+az, d—f:bAz—i—cz, teR,

2(0) = 2%  w(0) = 2! — a2’
Taking into account the definition of the Stokes operator and using the classical

De Rham lemma, we find that z is, together with some Z, the unique solution to (16)
with f = 0 and satisfies the required properties.
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The regularity and estimate of Z can be established as follows. Let us first assume
that (2°,21) € D(A) x V and let us normalize Z by imposing

/ Z=0 in (0,7).
Q
Then, for some constants C = C(a, b, ¢, 2, T), we have

2R <CIVZ@)E 2 2 2
< O (19z(0) -1 + 12O s + 120 s + 1A=l -1)
< 0t + CI ) e

Also,

T T
/ 100z (8)||2, 1 dt = / (D2 (1), (=) Dpez()) 1 gyt
0 0

= /T<a8tz(t) + bAz(t) — cz(t) — VZ(t), (_A)ilattz(t)>H—1)Hé dt
0

T
—b/o (2(), Bz (t)) dt
T
+/O (adyz(t) — cz(t) = VZ(8), (~A) " 0uz(t)) g1y dt

T
< b / (2(t), B (t)) dt + CJ|(2°, 2|2

and, finally,

T T T
- [ Go0uwn = [ 1oz d - (0] < I
0 0 =
These estimates show that Z € L?(0,T; L*(Q)) and

1Z]| 20,022y < Cll(2°, 2 |lvwn

for some C' = C(a,b,c,Q,T). Now, an elementary density argument allows us to
deduce the same for general data (2%, 21) € V x H. O
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